JP3996386B2 - Carburizing steel with excellent torsional fatigue properties - Google Patents

Carburizing steel with excellent torsional fatigue properties Download PDF

Info

Publication number
JP3996386B2
JP3996386B2 JP2001380412A JP2001380412A JP3996386B2 JP 3996386 B2 JP3996386 B2 JP 3996386B2 JP 2001380412 A JP2001380412 A JP 2001380412A JP 2001380412 A JP2001380412 A JP 2001380412A JP 3996386 B2 JP3996386 B2 JP 3996386B2
Authority
JP
Japan
Prior art keywords
mass
less
content
steel
torsional fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001380412A
Other languages
Japanese (ja)
Other versions
JP2003183772A (en
Inventor
陽介 新堂
安部  聡
浩 家口
雅男 杵渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001380412A priority Critical patent/JP3996386B2/en
Publication of JP2003183772A publication Critical patent/JP2003183772A/en
Application granted granted Critical
Publication of JP3996386B2 publication Critical patent/JP3996386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用部品、建築機械用部品、産業機械用部品などに使用される軸状部材を製造するのに有用なねじり疲労特性に優れた浸炭用鋼に関するものである。
【0002】
【従来の技術】
自動車、建築機械、産業機械などにおいて、動力の高出力化が行われてきており、例えば、自動車においてはエンジン出力が増大してきている。これら出力の増大につれて、前記自動車等において動力の伝達に使用されている軸状部材(シャフトなど)のねじり疲労強度の向上が求められている。
【0003】
前記軸状部材としては、多くの場合、高周波焼入れによって表面の強度が高められた部材が使用されている。高周波焼入れは比較的簡易な設備で焼入れ処理ができ、生産性も高いため汎用的に用いられている。そのため、高周波焼入れに関する発明も多く行われており、高周波焼入鋼においてねじり疲労強度を高めた発明も多く行われている。例えば特許第2774118号公報には、Cr及びNiは高周波焼入によってねじり疲労強度を向上させるのに有用な元素であり、Crを1.0wt%以上含有させ、Niを0.10wt%以上含有させ、かつNi+0.70Crを0.250wt%以上とすることにより高いねじり疲労強度が得られることが記載されている。
【0004】
しかし、高周波焼入用鋼は、一般に、C量が多いため被削性の点に課題を残している。また高周波焼入は、高周波によって部材の表面だけを加熱する方法であるため、形状が複雑な部材を焼入するのは困難である。従って、例えば、穴部や溝部などを有する部材を製造する場合、高周波焼入を利用するのは困難である。
【0005】
穴部や溝部などを有するなど形状が複雑な部材の表面を硬化する場合、近年、浸炭焼入が行われるケースが増大してきている。浸炭焼入では、形状が複雑な部材でも容易に表面を硬化させることができる。ところが、高周波焼入に対してはねじり疲労強度を向上させる発明が種々なされているのに対して、浸炭に対してはねじり疲労強度を向上させる発明は殆ど見あたらない。
【0006】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、浸炭用鋼において、ねじり疲労特性を向上させる点にある。
【0007】
【課題を解決するための手段】
本発明者らは、前記課題を解決するため、浸炭焼入れを行った軸状部材のねじり疲労破壊に対する詳細な研究を行った結果、従来の浸炭部材において曲げ疲労特性を向上させる点では重要視されていなかった浸炭層内の炭化物量が、ねじり疲労特性の点では極めて大きな影響を及ぼしていることを発見した。以下、この点について図1を参照しながら詳細に説明する。
【0008】
すなわち図1に示すように、浸炭用鋼では、Cr添加量が多いほど浸炭層の焼入性が向上し、表面硬さが向上する結果、耐ピッチング性や耐摩耗性が向上する(図1の実線参照)。Crは鋼中のセメンタイトに固溶して鋼を硬化させる特性を有しているためである。従って、耐ピッチング性や耐摩耗性の観点からすればCr添加量は多いほど好ましいといえる。
【0009】
しかし本発明者らの検討によれば、高周波焼入部材とは異なり、浸炭部材ではCr添加量が増大するにつれてねじり疲労特性が低下することを発見した(図1の細破線参照)。そしてさらに検討を重ねたところ、Crの添加量そのものではなく、浸炭層中のCr炭化物量が増大するにつれてねじり疲労特性が低下することを突き止めた。すなわちCrは単独でも炭化物を形成しやすい元素であり、通常は、添加量を増量すると炭素濃度の高い浸炭部最表層ではCrと炭素とが結合してCr炭化物も大量に生じる(図1の細一点鎖線参照)。そしてねじり疲労においては、この増大したCr炭化物が疲労き裂の進展を助長し、疲労強度を低下させているのではないかと考えられた。そこでCrの添加量を増大しても、炭化物の生成量を抑制するようにすると(図1の太一点鎖線参照)、ねじり疲労強度は従来に比べて向上することを見出した(図1の太破線参照)。要約すると、本発明者らは、Crの添加量を増大させるのが望ましい浸炭用鋼においては、ねじり疲労特性を改善するためにはCr炭化物の生成を抑制することが重要であることを突き止めたのである。
【0010】
そしてCr炭化物の生成量を抑制するために、さらに鋭意検討を重ねた結果、Crの添加量が増大するにつれて、Co、Ni、又はCuの添加量も増大すると、炭化物(特に、粒界にフィルム状に析出する炭化物)の形成を抑制することができ、ねじり疲労強度を改善できることを見出し、本発明を完成した。
【0011】
すなわち上記目的を達成し得た本発明のねじり疲労特性に優れた浸炭用鋼とは、炭素含有量が0.1〜0.3質量%であり、Crを含有する浸炭用鋼において、Co、Ni、及びCuから選択された少なくとも一種を下記式(1)を満足する範囲で含有している点に要旨を有するものである。
【0012】
[Co]+2.1×[Ni]+2.8×[Cu]−2.4×[Cr]>0 …(1)
[式中、[Co]、[Ni]、[Cu]、又は[Cr]は、それぞれ、鋼中のCo含有量(質量%)、Ni含有量(質量%)、Cu含有量(質量%)、又はCr含有量(質量%)を示す]
前記Co、Ni、Cu及びCrの好ましい含有量は、Co:7質量%以下(0%を含む)、Ni:4.5質量%以下(0%を含む)、Cu:4質量%以下(0%を含む)、Cr:0.5〜2質量%である(ただし、Co、Ni、Cuが同時に0%になることはない)
前記浸炭用鋼は、さらにMo:0.45質量%以下(0%を含まない)、B:0.003質量%以下(0%を含まない)、Ti:0.1質量%以下(0%を含まない)、Nb:0.1質量%以下(0%を含まない)、Al:0.1質量%以下(0%を含まない)などを含有していてもよい。
【0013】
前記浸炭用鋼は、通常、さらにSi:0.5質量%以下(0%を含まない)、Mn:2質量%以下(0%を含まない)、N:0.05質量%以下(0%を含まない)、P:0.03質量%以下(0%を含まない)、S:0.03質量%以下(0%を含まない)を含有している。
【0014】
【発明の実施の形態】
本発明の浸炭用鋼は、炭素含有量が0.1〜0.3質量%であり、Crを含有している。炭素含有量を0.1質量%以上としているのは、炭素含有量が少ないと得られる部材の強度が不足するためである。炭素含有量は、0.10質量%以上であるのが好ましく、0.15質量%以上であるのがさらに好ましい。また炭素含有量の上限を0.3質量%に設定しているのは、部材の製造工程で浸炭するために表面の炭素濃度を高めることができるため、鋼材の段階では被削性を維持するために炭素濃度を抑制しておくのが望ましいためである。炭素含有量の上限は、0.25質量%であるのが望ましい。
【0015】
Crの含有量は特に限定されないが、浸炭用鋼であることを考慮すると、含有量が多い程、得られる部材の耐摩耗性や耐ピッチング性が向上するため望ましい。Crの含有量は、例えば、0.5質量%以上、好ましくは0.6質量%以上、さらに好ましくは0.7質量%以上である。なおCr含有量が多すぎると、後述のCr炭化物抑制策を施しても炭化物を充分に抑制できず、部材のねじり疲労強度が低下してくる場合がある。そこでCr含有量は、例えば、3質量%以下、好ましくは2質量%以下、さらに好ましくは1.5質量%以下、特に1.2質量%以下に抑制するのが望ましい。
【0016】
そして本発明では、上記のようなCrを含有する浸炭用鋼において、Co、Ni、Cuなどの元素も添加している。Cr含有量が多いほど、浸炭時にCr炭化物が多量に生成し易くなり、ねじり疲労強度が低下し易くなるにも拘わらず、本発明ではCrの添加量に応じて、Co、Ni、Cuなどの元素の添加量も増大させているため、Cr炭化物の生成を抑制でき、ねじり疲労強度が低下するのを防止できる。Co、Ni、Cuなどは、炭化物生成を抑制する元素であり、これら元素を添加するとCr炭化物の生成をも抑制できるのである。Co、Ni、Cuの添加量は、これらの元素の炭化物抑制能とCr添加量とに応じて適宜決定できるが、例えば、下記式(1)、好ましくは下記式(2)、さらに好ましくは下記式(3)を満足する範囲で添加する。
【0017】
[Co]+2.1×[Ni]+2.8×[Cu]−2.4×[Cr]>0 …(1)
[Co]+2.1×[Ni]+2.8×[Cu]−2.4×[Cr]>1 …(2)
[Co]+2.1×[Ni]+2.8×[Cu]−2.4×[Cr]>2 …(3)
[式中、[Co]、[Ni]、[Cu]、又は[Cr]は、それぞれ、鋼中のCo含有量(質量%)、Ni含有量(質量%)、Cu含有量(質量%)、又はCr含有量(質量%)を示す]
上記式(1)〜(3)の左辺の値が大きい程、浸炭後の浸炭層中のCr炭化物量を抑制でき、浸炭部材のねじり疲労強度を高めることができる。なお前記Co、Ni、Cuは単独で添加してもよく、2種以上組み合わせて添加してもよい。
【0018】
なお前記式(1)〜(3)を満たす限りCoの添加量は特に限定されないが、例えば、7質量%以下(0%を含む)、好ましくは6質量%以下、さらに好ましくは5質量%以下、特に3質量%以下(例えば、1.5質量%以下)に抑制するのが望ましい。Coを添加しすぎても添加量に比べて効果が飽和し、さらには高価な元素であるため製造コストが向上する。
【0019】
またNiの添加量も前記式(1)〜(3)を満たす限り特に限定されないが、例えば、4.5質量%以下(0%を含む)、好ましくは3.5質量%以下、さらに好ましくは2.5質量%以下、特に1.7質量%以下に抑制するのが望ましい。Niを添加しすぎても添加量に比べて効果が飽和する。
【0020】
Cuの添加量も前記式(1)〜(3)を満たす限り特に限定されないが、例えば、4質量%以下、好ましくは3質量%以下、さらに好ましくは2質量%以下、特に1.5質量%以下に抑制するのが望ましい。Cuを添加しすぎても添加量に比べて効果が飽和し、さらには製品のリサクル性が低下する。
【0021】
前記浸炭用鋼は、通常、Si:0.5質量%以下(0%を含まない)、Mn:2質量%以下(0%を含まない)、及びN:0.05質量%以下(0%を含まない)を含有しており、P:0.03質量%以下(0%を含まない)、S:0.03質量%以下(0%を含まない)に抑制されていることが多く、残部はFe及び不可避的不純物であってもよく、必要に応じて種々の添加成分を含有していてもよい。以下、上記成分の限定理由について説明する。
【0022】
Si:0.5質量%以下(0%を含まない)
Siは粒界酸化層の生成を招き、疲労強度を低下させることもあるので必要以上に含有させないのが望ましい。Siの含有量は、例えば、0.5質量%以下、好ましくは0.35質量%以下、さらに好ましくは0.15質量%以下である。なおSiは、脱酸元素として有用であるため、積極的に添加する場合もある。積極的に添加する場合、Siの含有量は、例えば、0.05質量%以上、好ましくは0.10質量%以上程度である。
【0023】
Mn:2質量%以下(0%を含まない)
Mnの含有量が多すぎると、製鋼条件によっては疵や中心偏析を誘発し、鋼材の品質を劣化させることもあるため、必要以上に含有させないのが望ましい。従ってMnの含有量は、例えば、2質量%以下、好ましくは1.5質量%以下、さらに好ましくは1.2質量%以下である。なおMnは鋼材の脱酸に有用であり、また焼入れ性向上元素であるために浸炭硬化層深さを大きくするのに有効であり、積極的に添加する場合もある。積極添加する場合、Mnの含有量は、例えば、0.5質量%以上、好ましくは0.6質量%以上、さらに好ましくは0.8質量%以上である。
【0024】
N:0.05質量%以下(0%を含まない)
Nが過剰になると、非金属介在物が形成され靭性が低下する。従って、Nの含有量は、例えば、0.05質量%以下、好ましくは0.03質量%以下、さらに好ましくは0.02質量%以下にする。なお鋼がAlやTiを含有する場合、Nが存在していれば、AlNやTiNを生成することによって結晶粒の粗大化を防止し、耐ピッチング性を高める作用がある。この場合、Nの含有量は、例えば、0.005質量%以上、好ましくは0.01質量%以上、さらに好ましくは0.015質量%以上とする。
【0025】
P:0.03質量%以下(0%を含まない)
Pは粒界に偏析し鋼材の疲労強度を劣化させるため、なるべく抑制することが望ましい。例えば、P含有量は、0.03質量%以下、好ましくは0.02質量%以下、さらに好ましくは0.015質量%以下に抑制するのが望ましい。
【0026】
S:0.03質量%以下(0%を含まない)
Sは鋼中でMnと結合してMnS介在物となり、部品形状によっては疲労強度を低下させる要因ともなるので、なるべく抑制することが望ましい。例えば、S含有量は、0.03質量%以下、好ましくは0.025質量%以下、さらに好ましくは0.02質量%以下に抑制するのが望ましい。
【0027】
前記浸炭用鋼は、さらに、Mo:0.45質量%以下(0%を含まない)、及びB:0.003質量%以下(0%を含まない)から選択された少なくとも一種を含有しているのが望ましい。
【0028】
Moは浸炭層の焼入性を向上させるのに有用であり、また浸炭異常層を軽減して疲労強度を改善することができる。Moの含有量は、例えば、0.1質量%以上、好ましくは0.2質量%以上、さらに好ましくは0.25質量%以上である。一方、Moを過剰に添加すると、コスト上昇を招き、さらには圧延材の硬さが上昇して被削性や加工性が低下する。従って、Moの含有量は、例えば、0.45質量%以下、好ましくは0.4質量%以下、さらに好ましくは0.3質量%以下とする。
【0029】
Bも浸炭層の焼入性を向上させるのに有用である。Bの含有量は、例えば、0.0005質量%以上、好ましくは0.001質量%以上である。一方、Bを多量に添加しても焼入性向上効果は飽和し、コスト上昇を招くだけである。従って、Bの含有量は、例えば、0.003質量%以下、好ましくは0.002質量%以下、さらに好ましくは0.0015質量%以下とする。
【0030】
本発明の浸炭用鋼は、さらに、Ti:0.1質量%以下(0%を含まない)、Nb:0.1質量%以下(0%を含まない)、及びAl:0.1質量%以下(0%を含まない)から選択された少なくとも一種を含有するのが望ましい。Tiは鋼中のNを固定し、γ粒を微細化するのに有用である。Nbは微細炭化物を形成し、γ粒を微細化するのに有用である。AlはTiと同様にNを固定し、γ粒を微細化するのに有用である。なおこれらの成分の好ましい添加量は、下記の通りである。
【0031】
Ti:好ましくは0.01質量%以上(さらに好ましくは0.02質量%以上)、0.1質量%以下(さらに好ましくは0.05質量%以下)
Nb:好ましくは0.01質量%以上(さらに好ましくは0.02質量%以上)、0.1質量%以下(さらに好ましくは0.05質量%以下)
Al:好ましくは0.01質量%以上(さらに好ましくは0.02質量%以上)、0.1質量%以下(さらに好ましくは0.05質量%以下)
前記浸炭用鋼の形状は特に限定されないが、軸状部材に加工することを考慮すると、線状又は棒状であるのが望ましい。
【0032】
前記浸炭用鋼は、必要に応じて圧延、伸線、鍛造、熱処理、切削などの慣用の種々の処理を施した後、浸炭することによって浸炭部材(軸状部材など)に加工することができる。
【0033】
浸炭条件は特に限定されず、汎用の条件で浸炭してもよい。浸炭温度は、例えば、750〜1100℃程度、好ましくは800〜1000℃程度、さらに好ましくは850〜950℃程度の範囲から適宜選択できる。また浸炭時の炭素ポテンシャル(雰囲気中の平衡炭素濃度)は、0.5〜1.6質量%程度、好ましくは0.6〜1.4質量%程度、さらに好ましくは0.7〜1.0質量%程度の範囲から適宜選択できる。本発明では、このような汎用の条件で浸炭しても、鋼がCrの添加量に応じた所定量のCo、Ni、及び/又はCuを含有しているため、Cr炭化物の生成量が抑制され、浸炭部材の耐ねじれ疲労強度が高められている。
【0034】
なお前記浸炭条件は、部材表面の硬さを浸炭によって所定以上の硬さに維持できる限り、すなわち浸炭部の炭素濃度を所定以上の濃度にできる限り、炭化物の生成を抑制可能な条件で行ってもよい。例えば、浸炭雰囲気の炭素ポテンシャルを0.5〜0.8質量%程度、好ましくは0.5〜0.7質量%程度に抑制してもよい。
【0035】
本発明によって得られる浸炭部材の浸炭部表面の炭素濃度は、例えば、0.6〜1.2質量%程度、好ましくは0.7〜1.0質量%程度、さらに好ましくは0.8〜0.9質量%程度である。
【0036】
前記浸炭部材は、ねじり疲労強度に優れているため、例えば、軸状部材、好ましくは自動車用部品、建築機械用部品、産業機械用部品などにおいて動力を伝達するために使用される軸状部材として極めて有用である。
【0037】
浸炭部材のねじり疲労強度は、例えば、図2に示すダンベル形状の試験片を切り出し、負荷トルク70〜120kgf・mの範囲で、繰り返し速度5Hzの片降り試験を行いうことによって、10万回の疲労試験に耐える応力(10万回疲労強度)を求めることにより評価できる。本発明で得られる浸炭部材のねじり疲労強度(10万回疲労強度)は、例えば、680MPa以上(好ましくは700MPa以上、さらに好ましくは720MPa以上、特に740MPa以上)であり、通常、1000MPa以下である。
【0038】
また本発明によれば、高いねじり疲労強度を維持したままでCr含有量を高めることができる。従って高Crの鋼材を使用する場合には、軸状部材の耐ピッチング性も高めることができる。この耐ピッチング性は、具体的には、下記1)〜4)に示す二ローラ式試験法によって測定できる。
【0039】
1)軸状部材の製造方法と同様の方法で円筒試験片(ただし半径12mmの半円柱状の突出部が円筒試験片の側壁部を周方向に1周するように設けられている。前記突出部を含めた試験片の直径=70cm)を製造し、相手方の円筒部材(ただし高さ12mm、幅10mmの直方体状の突出部が円筒試験片の側壁部を周方向に1周するように設けられている。前記突出部を含めた試験片の直径=70cm。JIS SUJ2鋼製)と、互いに突出部で接するように並列に並べる。
【0040】
2)前記円筒試験片と相手方円筒部材とを面圧5000MPaで押圧し、摺動部(接触部)にオートマチックトランスミッション用ギアオイルを流量2L/minで供給しながら、円筒試験片を回転数1910rpmで回転させ、相手方の円筒部材を回転数1364rpmで回転させる(すべり速度;2.0m/s)。
【0041】
3)摺動面にピッチングが生じ、振動異常が発生するまでの円筒試験片の回転回数を測定する。
【0042】
4)複数の円筒試験片を用いて、前記1)〜3)に示す試験を行い、10%の試験片において振動異常が発生する回転数を求める(L10寿命)。
【0043】
本発明によれば、前記試験によって求められるL10寿命を、例えば、5×107回以上、好ましくは7×107回以上、さらに好ましくは9×107回以上にすることができる。
【0044】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0045】
実験例1〜23
真空誘導溶解炉(VIF炉)において、表1に示す化学組成を有する鋼(残部はFe及び不可避的不純物)を150kg溶製し、熱間鍛造により直径50mmの丸棒鋼にした後、溶体化処理(1300℃×1時間)及び熱ならし(900℃×2時間)処理を行った。この丸棒鋼を切削し、図2に示す試験片形状(ダンベル状)に切り出した。
【0046】
前記ダンベル状の鋼材を、第1ステップ(温度900℃、150分、炭素ポテンシャル:0.95質量%)、第2ステップ(温度840℃、30分、炭素ポテンシャル:0.85質量%)、及び第3ステップ(水冷)からなる浸炭焼入を施した後、温度180℃×2時間の条件で焼戻しし、最表面から0.1mm(±0.025mm)の深さまで表面研磨を行った。
【0047】
得られたダンベル状の浸炭部材をねじり疲労試験機にセットし、負荷トルク70〜120kgf・mの範囲で、繰り返し速度5Hzの片降り試験を行い、10万回の疲労試験に耐える応力(10万回疲労強度)を求めた。
【0048】
また前記ダンベル状浸炭部材と同様にして、円筒状浸炭部材(ただし半径12mmの半円柱状の突出部が円筒試験片の側壁部を周方向に1周するように設けられている。前記突出部を含めた試験片の直径=70cm)を製造した。この円筒状浸炭部材を用いて、上述の耐ピッチング試験(二ローラ式試験)を行い、耐ピッチング性(L10寿命)を測定した。
【0049】
結果を表2及び図3、図4に示す。なお図3中、○印は[Co]+2.1×[Ni]+2.8×[Cu]−2.4[Cr]>0の実験結果に対応しており、×印は[Co]+2.1×[Ni]+2.8×[Cu]−2.4[Cr]≦0の実験結果に対応している。
【0050】
【表1】

Figure 0003996386
【0051】
【表2】
Figure 0003996386
【0052】
表2及び図3より明らかなように、[Co]+2.1×[Ni]+2.8×[Cu]−2.4[Cr]≦0の場合(Crの添加量に対するCo、Ni、又はCuの添加量が不足する場合;図3中の×印)、ねじり疲労強度はCrの添加量が増大するにつれて急速に低下する。これに対して[Co]+2.1×[Ni]+2.8×[Cu]−2.4[Cr]>0の場合(図3中の○印)、Cr添加量が増大してもねじり疲労強度の低下が抑制されている。
【0053】
また図4より明らかなように、Cr含有量が増大するにつれて、耐ピッチング性も向上する。そこで、Cr含有量を0.5質量%以上程度で区切り、耐ピッチング性に優れた試験片において、式[Co]+2.1×[Ni]+2.8×[Cu]−2.4[Cr]とねじり疲労強度との関係を整理した。結果を図5に示す。図5より明らかなように、Cr含有量を0.5質量%以上とし、[Co]+2.1×[Ni]+2.8×[Cu]−2.4[Cr]>0とすれば、耐ピッチング性とねじり疲労強度とを両立できる。
【0054】
なお実験例14は、10万回疲労強度に優れているものの、C含有量が少ないため、強度(静的強度)の点で他のC含有量が多い実験例の方が優れている。実験例15は、10万回疲労強度に優れているものの、C含有量が多いため、被削性の点で他のC含有量が少ない実験例の方が優れている。
【0055】
【発明の効果】
本発明の鋼によれば、Crの添加量が増大するにつれて、Co、Ni、Cuなども増量添加しているため、浸炭処理した際に浸炭層中のCr炭化物の生成量を抑制することができ、浸炭部材のねじり疲労強度を向上させることができる。
【図面の簡単な説明】
【図1】図1はCr含有量と鋼材特性との関係を概念的に示すグラフである。
【図2】図2はねじり疲労試験で使用する試験片の概略図である。
【図3】図3は実施例で試験した鋼材について、Cr含有量とねじり疲労強度(MPa)との関係を示すグラフである。
【図4】図4は実施例で試験した鋼材について、Cr含有量とローラーピッチング寿命との関係を示すグラフである。
【図5】図5は計算式[Co]+2.1×[Ni]+2.8[Cu]−2.4[Cr]の値とねじり疲労強度との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carburizing steel excellent in torsional fatigue characteristics useful for manufacturing a shaft-like member used for automobile parts, building machine parts, industrial machine parts and the like.
[0002]
[Prior art]
In automobiles, construction machines, industrial machines, etc., the output of motive power has been increased. For example, in automobiles, engine output has increased. As these outputs increase, improvement in torsional fatigue strength of shaft-like members (shafts and the like) used for power transmission in the automobiles and the like has been demanded.
[0003]
As the shaft member, a member whose surface strength is increased by induction hardening is often used. Induction hardening is generally used because it can be quenched with relatively simple equipment and has high productivity. For this reason, many inventions related to induction hardening have been carried out, and many inventions in which torsional fatigue strength is increased in induction hardening steels. For example, in Japanese Patent No. 2774118, Cr and Ni are elements useful for improving torsional fatigue strength by induction hardening, and Cr is contained in an amount of 1.0 wt% or more and Ni is contained in an amount of 0.10 wt% or more. In addition, it is described that high torsional fatigue strength can be obtained by setting Ni + 0.70Cr to 0.250 wt% or more.
[0004]
However, induction hardening steel generally has a problem in machinability because of the large amount of C. In addition, induction hardening is a method in which only the surface of the member is heated by high frequency, and thus it is difficult to harden a member having a complicated shape. Therefore, for example, when manufacturing a member having a hole or a groove, it is difficult to use induction hardening.
[0005]
In the case where the surface of a member having a complicated shape such as having a hole or a groove is hardened, the number of cases in which carburizing and quenching is performed has increased in recent years. In carburizing and quenching, even a member having a complicated shape can easily harden the surface. However, while various inventions for improving torsional fatigue strength have been made for induction hardening, few inventions have been found for improving torsional fatigue strength for carburizing.
[0006]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above-described circumstances, and an object thereof is to improve torsional fatigue characteristics in carburizing steel.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted detailed research on torsional fatigue fracture of a carburized and quenched shaft-like member, and as a result, have been regarded as important in improving the bending fatigue characteristics of conventional carburized members. It was discovered that the amount of carbide in the carburized layer that had not been found had an extremely large effect in terms of torsional fatigue characteristics. Hereinafter, this point will be described in detail with reference to FIG.
[0008]
That is, as shown in FIG. 1, in the carburizing steel, the hardenability of the carburized layer is improved as the Cr content is increased, and the surface hardness is improved. As a result, the pitting resistance and wear resistance are improved (FIG. 1). (See the solid line). This is because Cr has a characteristic of solidifying the cementite in the steel and hardening the steel. Therefore, it can be said that the larger the amount of Cr added, the better from the viewpoint of pitting resistance and wear resistance.
[0009]
However, according to the study by the present inventors, it was found that the torsional fatigue characteristics of the carburized member decrease as the Cr content increases, unlike the induction-hardened member (see the thin broken line in FIG. 1). As a result of further studies, it was found that the torsional fatigue characteristics decline as the amount of Cr carbide in the carburized layer increases, not the amount of Cr itself. In other words, Cr alone is an element that easily forms carbides. Normally, when the addition amount is increased, Cr and carbon are combined in a carburized portion outermost layer having a high carbon concentration, and a large amount of Cr carbide is generated (see FIG. 1). (See dashed line). In torsional fatigue, it was thought that this increased Cr carbide promotes fatigue crack growth and reduces fatigue strength. Therefore, it was found that even if the amount of Cr added is increased, the torsional fatigue strength is improved as compared with the conventional case (see the thick line in FIG. 1) if the amount of carbide generated is suppressed (see the thick dashed line in FIG. 1). (See dashed line). In summary, the inventors have found that in carburizing steels where it is desirable to increase the amount of Cr added, it is important to suppress the formation of Cr carbides in order to improve torsional fatigue properties. It is.
[0010]
As a result of further intensive studies to suppress the amount of Cr carbide produced, as the amount of Cr increases, the amount of Co, Ni, or Cu increases, and carbide (particularly, a film at the grain boundary). The present inventors have found that the formation of carbides precipitated in a shape can be suppressed and the torsional fatigue strength can be improved, and the present invention has been completed.
[0011]
That is, the carburizing steel excellent in torsional fatigue characteristics of the present invention that can achieve the above-mentioned object has a carbon content of 0.1 to 0.3% by mass, and in the carburizing steel containing Cr, Co, It has a gist in that at least one selected from Ni and Cu is contained within a range satisfying the following formula (1).
[0012]
[Co] + 2.1 × [Ni] + 2.8 × [Cu] −2.4 × [Cr]> 0 (1)
[In the formula, [Co], [Ni], [Cu], or [Cr] are Co content (% by mass), Ni content (% by mass), and Cu content (% by mass) in steel, respectively. Or Cr content (% by mass)]
The preferred contents of Co, Ni, Cu and Cr are Co: 7% by mass or less (including 0%), Ni: 4.5% by mass or less (including 0%), Cu: 4% by mass or less (0 %), Cr: 0.5 to 2% by mass (however, Co, Ni and Cu are not simultaneously 0%)
The carburizing steel further includes Mo: 0.45% by mass or less (excluding 0%), B: 0.003% by mass or less (not including 0%), Ti: 0.1% by mass or less (0% Nb: 0.1% by mass or less (not including 0%), Al: 0.1% by mass or less (not including 0%), and the like.
[0013]
The carburizing steel is usually further Si: 0.5% by mass or less (not including 0%), Mn: 2% by mass or less (not including 0%), N: 0.05% by mass or less (0% P: 0.03% by mass or less (not including 0%), S: 0.03% by mass or less (not including 0%).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The carburizing steel of the present invention has a carbon content of 0.1 to 0.3% by mass and contains Cr. The reason why the carbon content is 0.1% by mass or more is that the strength of the obtained member is insufficient when the carbon content is low. The carbon content is preferably 0.10% by mass or more, and more preferably 0.15% by mass or more. In addition, the upper limit of the carbon content is set to 0.3% by mass because the carbon concentration on the surface can be increased in order to carburize in the manufacturing process of the member, so that machinability is maintained at the stage of the steel material. This is because it is desirable to suppress the carbon concentration. The upper limit of the carbon content is desirably 0.25% by mass.
[0015]
The content of Cr is not particularly limited, but considering that it is a carburizing steel, the higher the content, the better the wear resistance and pitting resistance of the resulting member. The Cr content is, for example, 0.5% by mass or more, preferably 0.6% by mass or more, and more preferably 0.7% by mass or more. In addition, when there is too much Cr content, even if it takes the Cr carbide | carbonized_material suppression measure mentioned later, a carbide | carbonized_material cannot fully be suppressed and the torsional fatigue strength of a member may fall. Therefore, the Cr content is desirably suppressed to, for example, 3% by mass or less, preferably 2% by mass or less, more preferably 1.5% by mass or less, and particularly 1.2% by mass or less.
[0016]
In the present invention, elements such as Co, Ni, and Cu are also added to the carburizing steel containing Cr as described above. The greater the Cr content, the more easily Cr carbides are generated during carburizing, and the torsional fatigue strength is likely to be reduced.In the present invention, depending on the amount of Cr added, Co, Ni, Cu, etc. Since the addition amount of the element is also increased, the formation of Cr carbide can be suppressed and the torsional fatigue strength can be prevented from being lowered. Co, Ni, Cu, and the like are elements that suppress the formation of carbides, and the addition of these elements can also suppress the formation of Cr carbides. The addition amount of Co, Ni, and Cu can be appropriately determined according to the carbide suppressing ability of these elements and the addition amount of Cr. For example, the following formula (1), preferably the following formula (2), and more preferably the following formula (2) Addition is made within a range satisfying the formula (3).
[0017]
[Co] + 2.1 × [Ni] + 2.8 × [Cu] −2.4 × [Cr]> 0 (1)
[Co] + 2.1 × [Ni] + 2.8 × [Cu] −2.4 × [Cr]> 1 (2)
[Co] + 2.1 × [Ni] + 2.8 × [Cu] −2.4 × [Cr]> 2 (3)
[In the formula, [Co], [Ni], [Cu], or [Cr] are Co content (% by mass), Ni content (% by mass), and Cu content (% by mass) in steel, respectively. Or Cr content (% by mass)]
The larger the value on the left side of the above formulas (1) to (3), the more the amount of Cr carbide in the carburized layer after carburizing can be suppressed, and the torsional fatigue strength of the carburized member can be increased. The Co, Ni, and Cu may be added alone or in combination of two or more.
[0018]
The amount of Co added is not particularly limited as long as the above formulas (1) to (3) are satisfied. For example, 7% by mass or less (including 0%), preferably 6% by mass or less, and more preferably 5% by mass or less. In particular, it is desirable to suppress to 3% by mass or less (for example, 1.5% by mass or less). Even if Co is added too much, the effect is saturated as compared with the added amount, and further, since it is an expensive element, the manufacturing cost is improved.
[0019]
Further, the amount of Ni added is not particularly limited as long as the above formulas (1) to (3) are satisfied. For example, it is 4.5% by mass or less (including 0%), preferably 3.5% by mass or less, more preferably It is desirable to suppress to 2.5% by mass or less, particularly 1.7% by mass or less. Even if Ni is added too much, the effect is saturated as compared with the added amount.
[0020]
The amount of Cu added is not particularly limited as long as the above formulas (1) to (3) are satisfied. For example, 4% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less, particularly 1.5% by mass. It is desirable to suppress to the following. Even if Cu is added excessively, the effect is saturated as compared with the added amount, and further, the recyclability of the product is lowered.
[0021]
The carburizing steel is usually Si: 0.5% by mass or less (not including 0%), Mn: 2% by mass or less (not including 0%), and N: 0.05% by mass or less (0%) Is not contained), P: 0.03% by mass or less (not including 0%), S: 0.03% by mass or less (not including 0%) is often suppressed, The balance may be Fe and inevitable impurities, and may contain various additive components as necessary. Hereinafter, the reasons for limiting the above components will be described.
[0022]
Si: 0.5% by mass or less (excluding 0%)
Si invites the formation of a grain boundary oxide layer and may reduce fatigue strength, so it is desirable not to contain Si more than necessary. The Si content is, for example, 0.5% by mass or less, preferably 0.35% by mass or less, and more preferably 0.15% by mass or less. Since Si is useful as a deoxidizing element, it may be actively added. In the case of positively adding, the Si content is, for example, 0.05% by mass or more, and preferably about 0.10% by mass or more.
[0023]
Mn: 2% by mass or less (excluding 0%)
If the content of Mn is too large, depending on the steelmaking conditions, wrinkles and center segregation may be induced and the quality of the steel material may be deteriorated. Therefore, the Mn content is, for example, 2% by mass or less, preferably 1.5% by mass or less, and more preferably 1.2% by mass or less. Note that Mn is useful for deoxidation of steel materials and is effective in increasing the depth of the carburized hardened layer because it is a hardenability improving element, and may be actively added. In the case of positive addition, the Mn content is, for example, 0.5% by mass or more, preferably 0.6% by mass or more, and more preferably 0.8% by mass or more.
[0024]
N: 0.05% by mass or less (excluding 0%)
If N is excessive, nonmetallic inclusions are formed and the toughness is reduced. Accordingly, the N content is, for example, 0.05% by mass or less, preferably 0.03% by mass or less, and more preferably 0.02% by mass or less. In addition, when steel contains Al and Ti, if N exists, it has the effect | action which prevents the coarsening of a crystal grain by producing | generating AlN and TiN, and improves pitting resistance. In this case, the N content is, for example, 0.005% by mass or more, preferably 0.01% by mass or more, and more preferably 0.015% by mass or more.
[0025]
P: 0.03 mass% or less (excluding 0%)
Since P segregates at the grain boundaries and degrades the fatigue strength of the steel material, it is desirable to suppress it as much as possible. For example, the P content is preferably 0.03% by mass or less, preferably 0.02% by mass or less, and more preferably 0.015% by mass or less.
[0026]
S: 0.03 mass% or less (excluding 0%)
S binds to Mn in the steel to form MnS inclusions, and depending on the part shape, may cause a decrease in fatigue strength, so it is desirable to suppress as much as possible. For example, the S content is desirably 0.03% by mass or less, preferably 0.025% by mass or less, and more preferably 0.02% by mass or less.
[0027]
The carburizing steel further contains at least one selected from Mo: 0.45% by mass or less (not including 0%) and B: 0.003% by mass or less (not including 0%). It is desirable.
[0028]
Mo is useful for improving the hardenability of the carburized layer, and can reduce the carburized abnormal layer and improve the fatigue strength. The Mo content is, for example, 0.1% by mass or more, preferably 0.2% by mass or more, and more preferably 0.25% by mass or more. On the other hand, if Mo is added excessively, the cost is increased, and the hardness of the rolled material is increased, so that machinability and workability are reduced. Therefore, the Mo content is, for example, 0.45 mass% or less, preferably 0.4 mass% or less, and more preferably 0.3 mass% or less.
[0029]
B is also useful for improving the hardenability of the carburized layer. The content of B is, for example, 0.0005% by mass or more, preferably 0.001% by mass or more. On the other hand, even if a large amount of B is added, the effect of improving the hardenability is saturated and only the cost is increased. Accordingly, the B content is, for example, 0.003% by mass or less, preferably 0.002% by mass or less, and more preferably 0.0015% by mass or less.
[0030]
In the carburizing steel of the present invention, Ti: 0.1% by mass or less (not including 0%), Nb: 0.1% by mass or less (not including 0%), and Al: 0.1% by mass It is desirable to contain at least one selected from the following (excluding 0%). Ti is useful for fixing N in steel and refining γ grains. Nb forms fine carbides and is useful for refining γ grains. Al, like Ti, is useful for fixing N and making γ grains finer. In addition, the preferable addition amount of these components is as follows.
[0031]
Ti: Preferably 0.01 mass% or more (more preferably 0.02 mass% or more), 0.1 mass% or less (more preferably 0.05 mass% or less)
Nb: Preferably 0.01 mass% or more (more preferably 0.02 mass% or more), 0.1 mass% or less (more preferably 0.05 mass% or less)
Al: Preferably 0.01 mass% or more (more preferably 0.02 mass% or more), 0.1 mass% or less (more preferably 0.05 mass% or less)
The shape of the carburizing steel is not particularly limited, but it is desirable that the carburizing steel be linear or rod-shaped in consideration of processing into a shaft-shaped member.
[0032]
The carburizing steel can be processed into a carburized member (such as a shaft-shaped member) by performing carburizing after performing various conventional treatments such as rolling, wire drawing, forging, heat treatment, and cutting as required. .
[0033]
The carburizing conditions are not particularly limited, and carburizing may be performed under general-purpose conditions. The carburizing temperature can be appropriately selected from the range of, for example, about 750 to 1100 ° C, preferably about 800 to 1000 ° C, and more preferably about 850 to 950 ° C. Further, the carbon potential at the time of carburization (equilibrium carbon concentration in the atmosphere) is about 0.5 to 1.6% by mass, preferably about 0.6 to 1.4% by mass, and more preferably 0.7 to 1.0%. It can select suitably from the range of about mass%. In the present invention, even when carburizing under such general-purpose conditions, the steel contains a predetermined amount of Co, Ni, and / or Cu according to the amount of Cr added, so the amount of Cr carbide produced is suppressed. As a result, the torsional fatigue strength of the carburized member is increased.
[0034]
The carburizing conditions are performed under conditions that can suppress the formation of carbides as long as the hardness of the surface of the member can be maintained at a predetermined level or higher by carburization, that is, as long as the carbon concentration of the carburized portion can be set to a predetermined level or higher. Also good. For example, the carbon potential of the carburizing atmosphere may be suppressed to about 0.5 to 0.8 mass%, preferably about 0.5 to 0.7 mass%.
[0035]
The carbon concentration of the carburized portion surface of the carburized member obtained by the present invention is, for example, about 0.6 to 1.2% by mass, preferably about 0.7 to 1.0% by mass, and more preferably 0.8 to 0%. About 9% by mass.
[0036]
Since the carburized member is excellent in torsional fatigue strength, for example, as a shaft-shaped member, preferably a shaft-shaped member used for transmitting power in automobile parts, building machine parts, industrial machine parts, etc. Very useful.
[0037]
The torsional fatigue strength of the carburized member is, for example, 100,000 times by cutting out a dumbbell-shaped test piece shown in FIG. 2 and performing a one-way descending test at a repetition rate of 5 Hz in a load torque range of 70 to 120 kgf · m. It can be evaluated by obtaining a stress (100,000 times fatigue strength) that can withstand a fatigue test. The torsional fatigue strength (100,000 times fatigue strength) of the carburized member obtained in the present invention is, for example, 680 MPa or more (preferably 700 MPa or more, more preferably 720 MPa or more, particularly 740 MPa or more), and usually 1000 MPa or less.
[0038]
According to the present invention, the Cr content can be increased while maintaining a high torsional fatigue strength. Therefore, when using a high Cr steel material, the pitching resistance of the shaft-like member can be improved. Specifically, the pitting resistance can be measured by a two-roller test method shown in the following 1) to 4).
[0039]
1) A cylindrical specimen (however, a semi-columnar projection having a radius of 12 mm is provided so as to make one round in the circumferential direction of the side wall of the cylindrical specimen in the same manner as the method of manufacturing the shaft member. The diameter of the test piece including the part = 70 cm is manufactured, and the counterpart cylindrical member (however, a rectangular parallelepiped protrusion with a height of 12 mm and a width of 10 mm is provided so that the side wall of the cylindrical test piece makes one round in the circumferential direction) The diameter of the test piece including the protrusions is 70 cm (made of JIS SUJ2 steel), and the test pieces are arranged in parallel so as to contact each other at the protrusions.
[0040]
2) The cylindrical test piece and the counterpart cylindrical member are pressed at a surface pressure of 5000 MPa, and the cylindrical test piece is rotated at a rotation speed of 1910 rpm while supplying gear oil for automatic transmission at a flow rate of 2 L / min to the sliding part (contact part). And the other cylindrical member is rotated at a rotation speed of 1364 rpm (sliding speed; 2.0 m / s).
[0041]
3) Measure the number of rotations of the cylindrical test piece until pitching occurs on the sliding surface and vibration abnormality occurs.
[0042]
4) The tests shown in the above 1) to 3) are performed using a plurality of cylindrical test pieces, and the rotation speed at which vibration abnormality occurs in 10% of the test pieces is determined (L10 life).
[0043]
According to the present invention, the L10 life required by the test can be, for example, 5 × 10 7 times or more, preferably 7 × 10 7 times or more, more preferably 9 × 10 7 times or more.
[0044]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
[0045]
Experimental Examples 1 to 23
In a vacuum induction melting furnace (VIF furnace), 150 kg of steel having the chemical composition shown in Table 1 (the balance is Fe and unavoidable impurities) is melted and made into a round bar steel having a diameter of 50 mm by hot forging, followed by solution treatment. (1300 ° C. × 1 hour) and heat conditioning (900 ° C. × 2 hours) were performed. This round steel bar was cut and cut into a test piece shape (dumbbell shape) shown in FIG.
[0046]
The dumbbell-shaped steel material is subjected to a first step (temperature 900 ° C., 150 minutes, carbon potential: 0.95 mass%), a second step (temperature 840 ° C., 30 minutes, carbon potential: 0.85 mass%), and After carburizing and quenching comprising the third step (water cooling), tempering was performed at a temperature of 180 ° C. for 2 hours, and surface polishing was performed from the outermost surface to a depth of 0.1 mm (± 0.025 mm).
[0047]
The obtained dumbbell-shaped carburized member is set in a torsional fatigue testing machine, and a one-way descending test at a repetition rate of 5 Hz is performed in a load torque range of 70 to 120 kgf · m, and a stress (100,000 to withstand 100,000 fatigue tests). Fatigue strength) was determined.
[0048]
Further, in the same manner as the dumbbell-shaped carburized member, a cylindrical carburized member (provided that a semi-columnar projecting portion having a radius of 12 mm makes one round in the circumferential direction of the side wall portion of the cylindrical test piece.) The diameter of the test piece including 70 mm was manufactured. Using this cylindrical carburized member, the above-mentioned pitching resistance test (two-roller test) was performed, and the pitching resistance (L10 life) was measured.
[0049]
The results are shown in Table 2, FIG. 3 and FIG. In FIG. 3, the circles correspond to the experimental results of [Co] + 2.1 × [Ni] + 2.8 × [Cu] −2.4 [Cr]> 0, and the crosses indicate [Co] +2. 1 × [Ni] + 2.8 × [Cu] −2.4 [Cr] ≦ 0.
[0050]
[Table 1]
Figure 0003996386
[0051]
[Table 2]
Figure 0003996386
[0052]
As apparent from Table 2 and FIG. 3, in the case of [Co] + 2.1 × [Ni] + 2.8 × [Cu] −2.4 [Cr] ≦ 0 (Co, Ni with respect to the added amount of Cr, or When the addition amount of Cu is insufficient; x in FIG. 3), the torsional fatigue strength decreases rapidly as the addition amount of Cr increases. On the other hand, in the case of [Co] + 2.1 × [Ni] + 2.8 × [Cu] -2.4 [Cr]> 0 (marked with a circle in FIG. 3), the torsion occurs even when the Cr addition amount increases. A decrease in fatigue strength is suppressed.
[0053]
As is clear from FIG. 4, as the Cr content increases, the pitting resistance also improves. Therefore, in a test piece excellent in pitting resistance by dividing the Cr content by about 0.5% by mass or more, the formula [Co] + 2.1 × [Ni] + 2.8 × [Cu] -2.4 [Cr And the torsional fatigue strength. The results are shown in FIG. As is clear from FIG. 5, if the Cr content is 0.5 mass% or more and [Co] + 2.1 × [Ni] + 2.8 × [Cu] −2.4 [Cr]> 0, Both pitting resistance and torsional fatigue strength can be achieved.
[0054]
In addition, although Experimental Example 14 is excellent in 100,000 times fatigue strength, since the C content is small, the experimental example having a large other C content is superior in terms of strength (static strength). Although the experimental example 15 is excellent in 100,000 times fatigue strength, since the C content is large, the experimental example with less other C content is superior in terms of machinability.
[0055]
【The invention's effect】
According to the steel of the present invention, as the added amount of Cr increases, Co, Ni, Cu, and the like are also added in an increased amount, so that the amount of Cr carbide generated in the carburized layer can be suppressed when carburizing treatment is performed. The torsional fatigue strength of the carburized member can be improved.
[Brief description of the drawings]
FIG. 1 is a graph conceptually showing the relationship between Cr content and steel material properties.
FIG. 2 is a schematic view of a test piece used in a torsional fatigue test.
FIG. 3 is a graph showing the relationship between Cr content and torsional fatigue strength (MPa) for the steel materials tested in the examples.
FIG. 4 is a graph showing the relationship between Cr content and roller pitting life for steel materials tested in Examples.
FIG. 5 is a graph showing the relationship between the value of the calculation formula [Co] + 2.1 × [Ni] +2.8 [Cu] -2.4 [Cr] and torsional fatigue strength.

Claims (3)

炭素含有量が0.1〜0.3質量%であり、Crの含有量が0.5〜2質量%であり、Coの含有量が7質量%以下(0%を含む)、Niの含有量が1.7質量%以下(0%を含む)、及びCuの含有量が4質量%以下(0%を含む)であり(ただしCo、Ni、Cuが同時に0%になることはない)、さらにSi:0.5質量%以下(0%を含まない)、Mn:2質量%以下(0%を含まない)、Al:0.1質量%以下(0%を含まない)及びN:0.05質量%以下(0%を含まない)を含有し、P:0.03質量%以下(0%を含まない)、S:0.03質量%以下(0%を含まない)に抑制し、残部はFe及び不可避的不純物であり、下記式(1)を満足することを特徴とするねじり疲労特性に優れた浸炭用鋼。
[Co]+2.1×[Ni]+2.8×[Cu]−2.4×[Cr]>0 …(1)
[式中、[Co]、[Ni]、[Cu]、又は[Cr]は、それぞれ、鋼中のCo含有量(質量%)、Ni含有量(質量%)、Cu含有量(質量%)、又はCr含有量(質量%)を示す]
Carbon content is 0.1 to 0.3% by mass, Cr content is 0.5 to 2% by mass, Co content is 7% by mass or less (including 0%), Ni content The amount is 1.7% by mass or less (including 0%), and the Cu content is 4% by mass or less (including 0%) (however, Co, Ni and Cu are not simultaneously 0%). Further, Si: 0.5% by mass or less (not including 0%), Mn: 2% by mass or less (not including 0%), Al: 0.1% by mass or less (not including 0%), and N: 0.05% by mass or less (not including 0%), P: 0.03% by mass or less (not including 0%), S: 0.03% by mass or less (not including 0%) and the balance is Fe and inevitable impurities, under following formula (1) excellent carburizing steel torsional fatigue characteristics characterized and Turkey to satisfy.
[Co] + 2.1 × [Ni] + 2.8 × [Cu] −2.4 × [Cr]> 0 (1)
[In the formula, [Co], [Ni], [Cu], or [Cr] are Co content (% by mass), Ni content (% by mass), and Cu content (% by mass) in steel, respectively. Or Cr content (% by mass)]
さらに、Mo:0.45質量%以下(0%を含まない)、及びB:0.003質量%以下(0%を含まない)から選択された少なくとも一種を含有する請求項に記載の浸炭用鋼。Further, Mo: 0.45 wt% or less (not including 0%), and B: carburizing according to claim 1 containing at least one selected from 0.003 wt% or less (not including 0%) Steel. さらにTi:0.1質量%以下(0%を含まない)、及びNb:0.1質量%以下(0%を含まない)から選択された少なくとも一種を含有する請求項1または2に記載の浸炭用鋼。Further Ti: 0.1 wt% or less (not including 0%), and Nb: 0.1 wt% or less (not including 0%) or al selected at least one containing claim 1 or 2 Carburizing steel.
JP2001380412A 2001-12-13 2001-12-13 Carburizing steel with excellent torsional fatigue properties Expired - Fee Related JP3996386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001380412A JP3996386B2 (en) 2001-12-13 2001-12-13 Carburizing steel with excellent torsional fatigue properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001380412A JP3996386B2 (en) 2001-12-13 2001-12-13 Carburizing steel with excellent torsional fatigue properties

Publications (2)

Publication Number Publication Date
JP2003183772A JP2003183772A (en) 2003-07-03
JP3996386B2 true JP3996386B2 (en) 2007-10-24

Family

ID=27591479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001380412A Expired - Fee Related JP3996386B2 (en) 2001-12-13 2001-12-13 Carburizing steel with excellent torsional fatigue properties

Country Status (1)

Country Link
JP (1) JP3996386B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114488A (en) * 2007-11-02 2009-05-28 Daido Steel Co Ltd Steel for rolling member, rolling member and method for manufacturing rolling member
JP2014177668A (en) * 2013-03-14 2014-09-25 Honda Motor Co Ltd Pulley for belt type cvt and steel for pully
JP6788817B2 (en) * 2015-10-14 2020-11-25 大同特殊鋼株式会社 Manufacturing method of vacuum carburized nitrided parts

Also Published As

Publication number Publication date
JP2003183772A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
KR101464712B1 (en) Steel component having excellent temper softening resistance
JPWO2010082454A1 (en) Induction hardening steel
JP4941252B2 (en) Case-hardened steel for power transmission parts
CN112292471B (en) Mechanical component
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP5804832B2 (en) Steel material made of carburizing steel with excellent torsional fatigue properties
JP4847681B2 (en) Ti-containing case-hardened steel
JP2010222634A (en) Case hardening steel superior in properties of reducing size of maximum crystal grain and manufacturing method therefor
JP4557833B2 (en) High-strength mechanical structural steel parts with excellent fatigue properties and manufacturing method thereof
JPH10306343A (en) Steel for soft-nitriding, excellent in cold forgeability and pitting resistance
JP5146063B2 (en) High strength steel with excellent internal fatigue damage resistance and method for producing the same
WO2017209180A1 (en) Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method
JP6460069B2 (en) Case-hardened steel, method for producing the same, and method for producing gear parts
JP4488228B2 (en) Induction hardening steel
JP2001152284A (en) High strength chromium steel for carburizing and carbo- nitriding treatment
JP2015134949A (en) Case hardened steel and machine structural component
JP3996386B2 (en) Carburizing steel with excellent torsional fatigue properties
JPH07188895A (en) Manufacture of parts for machine structure use
JP6447064B2 (en) Steel parts
JPH0488148A (en) High strength gear steel capable of rapid carburization and high strength gear
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP2021028414A (en) Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP3883782B2 (en) Case-hardened steel with excellent pitting resistance
JP4821582B2 (en) Steel for vacuum carburized gear

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees