JP2002194484A - Steel for machine structure - Google Patents

Steel for machine structure

Info

Publication number
JP2002194484A
JP2002194484A JP2000399187A JP2000399187A JP2002194484A JP 2002194484 A JP2002194484 A JP 2002194484A JP 2000399187 A JP2000399187 A JP 2000399187A JP 2000399187 A JP2000399187 A JP 2000399187A JP 2002194484 A JP2002194484 A JP 2002194484A
Authority
JP
Japan
Prior art keywords
less
content
steel
value
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000399187A
Other languages
Japanese (ja)
Inventor
Hitoshi Matsumoto
斉 松本
Takatoshi Arai
貴俊 新井
Masayuki Horimoto
雅之 堀本
Takeshi Sato
武史 佐藤
Daisuke Suzuki
大輔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metals Kokura Ltd
Original Assignee
Sumitomo Metals Kokura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metals Kokura Ltd filed Critical Sumitomo Metals Kokura Ltd
Priority to JP2000399187A priority Critical patent/JP2002194484A/en
Publication of JP2002194484A publication Critical patent/JP2002194484A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide steel for a machine structure having excellent surface hardening treatment characteristics including carburizing and quenching properties, cold workability, machinability and fatigue resistance. SOLUTION: (1) The steel for a machine structure has a composition containing 0.10 to <0.30% C, 0.05 to 1.0% Si, 0.30 to 2.0% Mn, 0.005 to 0.05% S, 0.05 to 0.2% Ti and Cu, Cr, Ni, Mo, B, Nb, V and Al, and the balance Fe with impurities, and in which the value of Ti-3S-3.4N is >=0. Further, the maximum diameter of the equivalent circle of inclusions expressed by (πLW/4)0.5 when the cumulative distribution function estimated by extremum statistical treatment with the length of the inclusions in the longitudinal cross-sectional face in the longitudinal direction as L (μm), and the breadth as W (μm) is 99% is <=30 μm. (2) It is possible that the content of Ti is <=0.2%, the content of Zr is <=0.2%, and the value of Ti+Zr-3S-3.4N is >=0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械構造用鋼材に
関する。詳しくは、自動車の歯車を初めとした浸炭焼入
れや浸炭窒化処理など表面硬化処理を施される部品の素
材として好適な機械構造用鋼材に関する。
[0001] The present invention relates to a steel material for a machine structure. More specifically, the present invention relates to a steel material for a machine structure suitable as a material of a part to be subjected to a surface hardening treatment such as carburizing and quenching or carbonitriding treatment, such as an automobile gear.

【0002】[0002]

【従来の技術】動力機械の出力アップや燃費向上のため
の軽量化を目的に、動力伝達部品の高強度化が求められ
ている。なかでも、自動車の歯車に対する高強度化の要
求が大きい。
2. Description of the Related Art For the purpose of increasing the output of a power machine and reducing its weight for improving fuel efficiency, it is required to increase the strength of a power transmission component. Above all, there is a great demand for high strength gears of automobiles.

【0003】自動車の歯車などは、鍛造後の寸法精度が
高く切削量の低減が可能な冷間鍛造で成形加工された
後、浸炭焼入れなど表面硬化処理を施されて製造される
ことが多い。したがって、素材となる鋼材には浸炭焼入
れ性を初めとした良好な表面硬化処理性が要求される。
なお、近年、一層のコスト低減及び製造工程の簡便化の
ために、良好な表面硬化処理性を有するとともに、より
優れた被削性と冷間加工性とを有する鋼材に対する要求
が大きくなっている。又、上記自動車の歯車の場合、歯
元部に曲げ応力が繰り返し作用する。したがって、歯元
部での疲労強度を高めて歯車の軽量化を容易にするため
に、耐疲労特性が一層優れた鋼材に対する要求も大きく
なっている。
[0003] In many cases, automobile gears and the like are manufactured by cold forging having high dimensional accuracy after forging and capable of reducing the amount of cutting, and then subjected to a surface hardening treatment such as carburizing and quenching. Therefore, a steel material as a raw material is required to have good surface hardening treatment properties including carburizing and quenching properties.
In recent years, for further cost reduction and simplification of the manufacturing process, there is an increasing demand for steel materials having good surface hardening properties and having better machinability and cold workability. . Further, in the case of the above-described automobile gear, bending stress repeatedly acts on the tooth root. Therefore, in order to increase the fatigue strength at the root of the tooth and facilitate the weight reduction of the gear, there is an increasing demand for a steel material having more excellent fatigue resistance.

【0004】冷間加工性を高めるために、従来、鋼材に
球状化焼鈍を施したり、鋼材の清浄性を高める方法が採
られてきたが、こうした方法では鋼材を切削する際の被
削性が低下する傾向にある。一方、被削性を高めるた
め、鋼にPb、Te、Bi、Caなどの快削元素(被削
性改善元素)が添加されているが、単に上記快削元素を
添加しただけでは冷間加工性の低下が生ずることがあ
る。
[0004] In order to enhance the cold workability, conventionally, a method of performing spheroidizing annealing on a steel material or improving the cleanliness of the steel material has been adopted. However, in such a method, the machinability when cutting the steel material is reduced. It tends to decrease. On the other hand, in order to enhance machinability, free-cutting elements such as Pb, Te, Bi, and Ca (elements for improving machinability) are added to steel. May be reduced.

【0005】特開平11−1743号公報には「被削性
に優れた高強度高靱性調質鋼材」として、Ti硫化物の
サイズと量を制御することで被削性を向上させる技術が
提案されている。しかし、鋼を冷間加工する場合には硫
化物だけではなく酸化物、窒化物などの非金属介在物
(以下、単に介在物という)が冷間加工性の低下を引き
起こすことがあるため、単にTi硫化物のサイズと量を
規定するだけでは、被削性と冷間加工性の両立が図れな
い場合がある。
[0005] Japanese Patent Application Laid-Open No. 11-1743 proposes a technique for improving machinability by controlling the size and amount of Ti sulfide as a "high-strength, high-toughness tempered steel excellent in machinability". Have been. However, when steel is cold-worked, not only sulfides but also non-metallic inclusions such as oxides and nitrides (hereinafter simply referred to as inclusions) may cause a reduction in cold workability. Simply defining the size and amount of Ti sulfide may not achieve both machinability and cold workability.

【0006】このように、冷間加工性と被削性とは相反
する場合が多く、両立させることは難しい。
As described above, the cold workability and the machinability are often contradictory, and it is difficult to achieve both.

【0007】一方、自動車用歯車の歯元部での疲労強度
を高めるために、浸炭焼入れなど表面硬化処理後にショ
ットピーニングを施す技術が提案されている。これは、
ショットピーニングによって表面硬化層に圧縮の残留応
力を導入し、この残留応力によって繰返しの負荷で表層
部に作用する引張応力を緩和しようとするものである。
このため、より高い圧縮残留応力を得るために、様々な
ショットピーニング方法が提案されている。
On the other hand, in order to increase the fatigue strength at the tooth root portion of an automotive gear, a technique of performing shot peening after surface hardening treatment such as carburizing and quenching has been proposed. this is,
A residual compressive stress is introduced into the surface hardened layer by shot peening, and the residual stress is intended to relieve the tensile stress acting on the surface layer portion by a repeated load.
Therefore, various shot peening methods have been proposed in order to obtain higher compressive residual stress.

【0008】しかしながら、ショットピーニングによっ
て圧縮残留応力が導入されるのは、表面から高々0.2
〜0.3mm程度の深さの部位までであり、それよりも
深い部位では圧縮残留応力による繰返しの負荷応力に対
する緩和効果はなくなる。このため、前記0.2〜0.
3mm程度より深い部位に介在物などの欠陥が存在する
と、それを起点に疲労き裂が発生して、早期の破壊を招
くことも多い。
[0008] However, compressive residual stress is introduced by shot peening at most 0.2 mm from the surface.
It is up to a portion having a depth of about 0.3 mm, and at a portion deeper than that, the effect of reducing the repeated load stress due to the compressive residual stress is lost. For this reason, the above-mentioned 0.2-0.
If a defect such as an inclusion is present at a portion deeper than about 3 mm, a fatigue crack is generated from the defect, which often causes early destruction.

【0009】介在物を低減して耐疲労特性を高める技術
が、例えば、特開平2−270935号公報に開示され
ている。上記公報で提案された技術は、酸化物と窒化物
を極力少なくすることにより、疲労特性の向上を図った
ものである。
A technique for reducing the inclusions and improving the fatigue resistance is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-270935. The technique proposed in the above publication aims to improve fatigue characteristics by minimizing oxides and nitrides.

【0010】しかし、実際の部品に加わる応力、つま
り、自動車の歯車における歯元の曲げ応力は、圧延方向
や鍛錬軸に垂直に作用することが多いので、酸化物や窒
化物に比べて圧延方向や鍛錬軸方向に展伸している粗大
なMnSが疲労破壊の起点となる。すなわち、自動車の
歯車などにおいては、酸化物や窒化物よりもMnSが疲
労強度低下の原因となるので、疲労強度向上のために
は、酸化物と窒化物だけではなく、MnSを含む全ての
介在物を微細にコントロールする必要がある。
However, the stress applied to the actual parts, that is, the bending stress at the root of the gear of an automobile often acts perpendicular to the rolling direction or the forging axis, so that the rolling direction is higher than that of oxides or nitrides. And coarse MnS extending in the direction of the forging axis are the starting points of fatigue fracture. That is, in gears of automobiles and the like, MnS causes a decrease in fatigue strength more than oxides and nitrides. Therefore, in order to improve fatigue strength, not only oxides and nitrides but also all intervening materials including MnS are included. You need to control things finely.

【0011】硫化物系の介在物、なかでもMnSを微細
化する技術として、既に述べた特開平11−1743号
公報が挙げられるが、上記公報においては全介在物につ
いての検討がなされているわけではないので、圧延方向
や鍛錬軸に垂直な応力が作用する場合の疲労強度を高め
るのには必ずしも十分とはいえない。
As a technique for miniaturizing sulfide-based inclusions, especially MnS, Japanese Patent Application Laid-Open No. H11-1743 mentioned above can be cited. In the above-mentioned publication, all inclusions are examined. However, it is not necessarily sufficient to increase the fatigue strength when a stress perpendicular to the rolling direction or the wrought axis acts.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、その目的は、浸炭焼入れ性を初め
とする表面硬化処理特性、冷間加工性及び被削性に優
れ、しかも、耐疲労特性、なかでも圧延方向や鍛錬軸に
垂直な応力が負荷された場合の耐疲労特性にも優れ、表
面硬化処理される部品の素材として好適な機械構造用鋼
材を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide excellent surface hardening properties such as carburizing and hardening properties, excellent cold workability and machinability, and An object of the present invention is to provide a steel material for machine structural use which is excellent in fatigue resistance characteristics, especially excellent in fatigue resistance characteristics when a stress perpendicular to the rolling direction or the wrought axis is applied, and is suitable as a material of a part subjected to surface hardening treatment. .

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、下記
(1)及び(2)に示す機械構造用鋼材にある。
SUMMARY OF THE INVENTION The gist of the present invention resides in steel materials for machine structures shown in the following (1) and (2).

【0014】(1)化学組成が質量%で、C:0.10
%以上で0.30%未満、Si:0.05〜1.0%、
Mn:0.30〜2.0%、S:0.005〜0.05
%、Ti:0.05〜0.2%、Cu:0〜0.50
%、Cr:0〜2.0%、Ni:0〜3.5%、Mo:
0〜1.0%、B:0〜0.005%、Nb:0〜0.
1%、V:0〜0.3%、Al:0.01%以下を含有
し、残部はFe及び不純物からなり、不純物中のPは
0.03%以下、Nは0.008%以下、O(酸素)は
0.0025%以下、且つ、下記 (1)式で表されるfn
1の値が0以上であり、更に、長手方向縦断面における
非金属介在物の長径をL(μm)、短径をW(μm)と
して極値統計処理によって予測される累積分布関数が9
9%時の下記(2)式で表される非金属介在物の最大等価
円直径fn2が30μm以下である機械構造用鋼材。 fn1=Ti(%)−3S(%)−3.4N(%)・・・(1) fn2=(πLW/4)0.5 ・・・(2) (2)化学組成が質量%で、C:0.10%以上で0.
30%未満、Si:0.05〜1.0%、Mn:0.3
0〜2.0%、S:0.005〜0.05%、Ti:
0.2%以下、Zr:0.2%以下で、且つ、Ti
(%)+Zr(%):0.05〜0.2%、Cu:0〜
0.50%、Cr:0〜2.0%、Ni:0〜3.5
%、Mo:0〜1.0%、B:0〜0.005%、N
b:0〜0.1%、V:0〜0.3%、Al:0.01
%以下を含有し、残部はFe及び不純物からなり、不純
物中のPは0.03%以下、Nは0.008%以下、O
(酸素)は0.0025%以下、且つ、下記 (3)式で表
されるfn3の値が0以上であり、更に、長手方向縦断
面における非金属介在物の長径をL(μm)、短径をW
(μm)として極値統計処理によって予測される累積分
布関数が99%時の下記 (2)式で表される非金属介在物
の最大等価円直径fn2が30μm以下である機械構造
用鋼材。 fn3=Ti(%)+Zr(%)−3S(%)−3.4N(%)・・・(3) fn2=(πLW/4)0.5 ・・・(2) なお、本発明でいう鋼材の「長手方向縦断面」(以下、
L断面という)とは、鋼材の圧延方向又は鍛錬軸に平行
に、その中心線を通って切断した面をいう。又、L断面
において、極値統計処理によって予測される累積分布関
数が99%時の前記 (2)式で表される介在物の最大等価
円直径fn2は次のようにして求めたものを指す。
(1) Chemical composition in mass%, C: 0.10
% To less than 0.30%, Si: 0.05 to 1.0%,
Mn: 0.30 to 2.0%, S: 0.005 to 0.05
%, Ti: 0.05 to 0.2%, Cu: 0 to 0.50
%, Cr: 0 to 2.0%, Ni: 0 to 3.5%, Mo:
0 to 1.0%, B: 0 to 0.005%, Nb: 0 to 0.
1%, V: 0 to 0.3%, Al: 0.01% or less, the balance being Fe and impurities, P in the impurities is 0.03% or less, N is 0.008% or less, O (oxygen) is 0.0025% or less, and fn represented by the following formula (1)
The value of 1 is 0 or more, and the cumulative distribution function predicted by the extreme value statistical processing with the major axis of the nonmetallic inclusion in the longitudinal longitudinal section being L (μm) and the minor axis being W (μm) is 9
A steel material for machine structure in which the maximum equivalent circular diameter fn2 of the nonmetallic inclusion represented by the following formula (2) at 9% is 30 μm or less. fn1 = Ti (%)-3S (%)-3.4N (%) (1) fn2 = (πLW / 4) 0.5 (2) (2) Chemical composition is% by mass and C: 0.1% or more.
Less than 30%, Si: 0.05 to 1.0%, Mn: 0.3
0 to 2.0%, S: 0.005 to 0.05%, Ti:
0.2% or less, Zr: 0.2% or less, and Ti
(%) + Zr (%): 0.05 to 0.2%, Cu: 0 to 0
0.50%, Cr: 0 to 2.0%, Ni: 0 to 3.5
%, Mo: 0 to 1.0%, B: 0 to 0.005%, N
b: 0 to 0.1%, V: 0 to 0.3%, Al: 0.01
%, The balance consists of Fe and impurities, P in the impurities is 0.03% or less, N is 0.008% or less, and O
(Oxygen) is 0.0025% or less, the value of fn3 represented by the following formula (3) is 0 or more, and the major axis of the nonmetallic inclusion in the longitudinal longitudinal section is L (μm), Diameter W
A steel material for machine structural use in which the maximum equivalent circular diameter fn2 of nonmetallic inclusions represented by the following formula (2) when the cumulative distribution function predicted by the extreme value statistical processing as (μm) is 99% is 30 μm or less. fn3 = Ti (%) + Zr (%)-3S (%)-3.4N (%) (3) fn2 = (πLW / 4) 0.5 (2) "Longitudinal longitudinal section" (hereinafter,
The term “L section” means a plane cut through the center line of the steel material in a direction parallel to the rolling direction or the forging axis. In the L-section, when the cumulative distribution function predicted by the extreme value statistical processing is 99%, the maximum equivalent circular diameter fn2 of the inclusion represented by the above equation (2) indicates the value obtained as follows. .

【0015】鋼材から採取した試験片のL断面を鏡面
研磨した後、その研磨面を被検面とし、光学顕微鏡の倍
率を400倍として、JIS G 0555に規定された「鋼の非
金属介在物の顕微鏡試験方法」中の「5.点算法による
顕微鏡試験方法」に則って50視野測定し、個々の介在
物の長径をL(μm)、短径をW(μm)として、各視
野における(πLW/4)0.5 の値が最大になるものを
求める。
After the L section of a test piece taken from a steel material is mirror-polished, the polished surface is used as a surface to be measured, and the magnification of an optical microscope is set to 400 times. 50 fields in accordance with “5. Microscopic test method by dot calculation method” in “Microscopic test method”, and the major axis of each inclusion is L (μm) and the minor axis is W (μm). (πLW / 4) Find the one with the maximum value of 0.5 .

【0016】上記で求めた50の(πLW/4)
0.5 の値を小さいものから順に並べ直してそれぞれ(π
LW/4)0.5 j(ここで、j=1〜50)とし、それぞ
れのjについて累積分布関数Fj =100(j/51)
(%)を計算する。
The above-obtained 50 (πLW / 4)
Rearrange the values of 0.5 in ascending order and assign
LW / 4) 0.5 j (where j = 1 to 50), and the cumulative distribution function F j = 100 (j / 51) for each j
Calculate (%).

【0017】基準化変数yj =−loge (−log
e (j/51) )を縦軸に、横軸に(πLW/4)0.5
jを取ったグラフを書き、最小自乗法によって近似直線
を求める。
The scaling variable y j = −log e (−log
e (j / 51)) on the vertical axis and (πLW / 4) 0.5 on the horizontal axis.
Draw a graph with j taken and find the approximate straight line by the least squares method.

【0018】上記で求めた直線から、累積分布関数
j が99%となる時(すなわち、基準化変数yj
4.6となる時)の(πLW/4)0.5 jの値を読みと
り、これを最大等価円直径fn2=(πLW/4)0.5
とする。以下、上記の(1)、(2)に記載のものをそ
れぞれ(1)の発明、(2)の発明という。
From the straight line obtained above, when the cumulative distribution function F j becomes 99% (that is, when the standardized variable y j
The value of (πLW / 4) 0.5 j at the time of 4.6) is read, and this is read as the maximum equivalent circular diameter fn2 = (πLW / 4) 0.5
And Hereinafter, those described in the above (1) and (2) are referred to as the invention of (1) and the invention of (2), respectively.

【0019】本発明者らは、前記した課題を解決するた
めに種々検討を行い、下記の知見を得た。
The present inventors have conducted various studies to solve the above-mentioned problems, and have obtained the following findings.

【0020】(a)L断面において、全介在物の極値統
計処理によって予測される累積分布関数が99%時の前
記 (2)式で表される介在物の最大等価円直径fn2が3
0μm以下であれば、介在物起点による冷間加工性の低
下が防止できるとともに、圧延方向や鍛錬軸に垂直な応
力が作用する場合の疲労強度の低下を防止することがで
きる。そこで更に検討を続けた結果、下記の事項が明ら
かになった。 (b)上記(a)における介在物の最大等価円直径fn
2を30μm以下とするには、第1に粗大なMnSが生
成することを防止すればよい。
(A) In the L section, when the cumulative distribution function predicted by the extreme value statistical processing of all inclusions is 99%, the maximum equivalent circular diameter fn2 of the inclusion represented by the above equation (2) is 3
When it is 0 μm or less, it is possible to prevent a decrease in cold workability due to inclusion starting points, and also to prevent a decrease in fatigue strength when a stress perpendicular to the rolling direction or the wrought axis acts. Then, as a result of further study, the following matters became clear. (B) Maximum equivalent circular diameter fn of the inclusion in (a) above
In order to make 2 smaller than or equal to 30 μm, first, it is only necessary to prevent the generation of coarse MnS.

【0021】(c)Alの含有量を質量%で0.01%
以下に抑え、Mnよりも安定して硫化物を形成するTi
やZrを添加し、更に、前記 (1)式で表されるfn1の
値や前記 (3)式で表されるfn3の値を0以上とすれ
ば、Ti硫化物やZr硫化物の形成によって粗大なMn
Sの生成が防止でき、しかも、生成するTi硫化物やZ
r硫化物は微細である。なお、本発明でいうTi硫化物
やZr硫化物には、TiやZrの単なる硫化物だけでは
なく「炭硫化物」をも含む。
(C) The content of Al is 0.01% by mass.
Ti, which forms sulfide more stably than Mn
And Zr are added, and if the value of fn1 represented by the formula (1) or the value of fn3 represented by the formula (3) is set to 0 or more, Ti sulfide or Zr sulfide is formed. Coarse Mn
The formation of S can be prevented, and the generated Ti sulfide and Z
r Sulphide is fine. The Ti sulfide and Zr sulfide referred to in the present invention include not only mere sulfides of Ti and Zr but also “carbosulfides”.

【0022】(d)Alは鋼中で酸化物となって容易に
クラスターを形成するが、Al含有量を質量%で0.0
1%以下にするとともに適正量のTiやZrを添加する
ことで、酸化物クラスターの形成を防止することもでき
る。 (e)Nの含有量を質量%で0.008%以下とすれ
ば、粗大なTiNやZrNの形成を防止することができ
る。
(D) Al forms an oxide in steel and easily forms clusters.
By setting the content to 1% or less and adding an appropriate amount of Ti or Zr, formation of an oxide cluster can also be prevented. (E) When the content of N is 0.008% or less by mass%, formation of coarse TiN or ZrN can be prevented.

【0023】本発明は、上記の知見に基づいて完成され
たものである。
The present invention has been completed based on the above findings.

【0024】[0024]

【発明の実施の形態】以下、本発明の各要件について詳
しく説明する。なお、各元素の含有量の「%」表示は
「質量%」を意味する。 (A)鋼材の化学組成 C:Cは、表面硬化処理された部品全体の強度を高め、
疲労強度を確保するのに有効な元素である。しかし、そ
の含有量が0.10%未満では添加効果に乏しい。一
方、Cを0.30%以上含有させると、表面硬化処理と
して浸炭焼入れや浸炭窒化処理(以下、浸炭焼入れや浸
炭窒化処理を総称して「浸炭処理」ということがある)
を施した場合の部品全体の靱性が低下する場合がある。
したがって、Cの含有量を0.10%以上で0.30%
未満とした。なお、Cの含有量は0.15〜0.25%
とすることが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Each requirement of the present invention will be described in detail below. In addition, "%" of the content of each element means "% by mass". (A) Chemical composition of steel C: C enhances the strength of the entire surface-hardened part,
It is an effective element for securing the fatigue strength. However, if the content is less than 0.10%, the effect of addition is poor. On the other hand, when C is contained in an amount of 0.30% or more, carburizing and nitrocarburizing treatment (hereinafter, may be collectively referred to as “carburizing treatment”).
In some cases, the toughness of the entire part may be reduced when the method is applied.
Therefore, when the content of C is 0.10% or more and 0.30%
Less than. The content of C is 0.15 to 0.25%.
It is preferable that

【0025】Si:Siは、鋼の脱酸及び表面硬化処理
を受けた部品の転動疲労寿命向上に有効な元素である。
しかし、その含有量が0.05%未満では添加効果に乏
しい。一方、1.0%を超えると浸炭処理性の低下を招
く。したがって、Siの含有量を0.05〜1.0%と
した。なお、Siの含有量は0.1〜0.5%とするこ
とが好ましい。
Si: Si is an element effective for improving the rolling fatigue life of a part that has undergone steel deoxidation and surface hardening treatment.
However, if the content is less than 0.05%, the effect of addition is poor. On the other hand, if it exceeds 1.0%, the carburizing property is lowered. Therefore, the content of Si is set to 0.05 to 1.0%. Note that the content of Si is preferably set to 0.1 to 0.5%.

【0026】Mn:Mnは、鋼の焼入性を高める効果が
ある。しかし、C含有量が0.10%以上で0.30%
未満と低めの本発明に係る鋼材の場合には、Mnの含有
量が0.30%未満では、前記効果が得難い。一方、M
nは偏析しやすい元素であり、その含有量が2.0%を
超えると表面硬化処理を受けた部品の機械的性質にばら
つきが生ずる。したがって、Mnの含有量を0.30〜
2.0%とした。なお、Mnの含有量は0.5〜1.5
%とすることが好ましい。 S:Sは、Ti、ZrやMnと結合して硫化物を形成
し、鋼の被削性を高める作用を有する。しかし、その含
有量が0.005%未満では前記の効果が得られない。
一方、Sを多量に含有させると硫化物系介在物の生成量
が多くなりすぎて冷間加工性が低下し、特に、S含有量
が0.05%を超えると冷間加工性の低下が著しくな
る。したがって、Sの含有量を0.005〜0.05%
とした。なお、Sの含有量は0.005〜0.03%と
することが好ましい。
Mn: Mn has the effect of improving the hardenability of steel. However, when the C content is 0.10% or more, 0.30%
In the case of the steel material according to the present invention, which is lower and lower, the effect is difficult to be obtained if the Mn content is less than 0.30%. On the other hand, M
n is an element that tends to segregate, and if its content exceeds 2.0%, the mechanical properties of the parts subjected to the surface hardening treatment vary. Therefore, the content of Mn is 0.30
2.0%. In addition, the content of Mn is 0.5 to 1.5.
% Is preferable. S: S combines with Ti, Zr and Mn to form a sulfide, and has an effect of enhancing the machinability of steel. However, if the content is less than 0.005%, the above effects cannot be obtained.
On the other hand, when a large amount of S is contained, the amount of sulfide-based inclusions becomes too large and the cold workability decreases, and in particular, when the S content exceeds 0.05%, the cold workability decreases. It becomes remarkable. Therefore, the content of S is 0.005 to 0.05%
And The S content is preferably set to 0.005 to 0.03%.

【0027】Ti、Zr:Ti、Zrは本発明において
粗大なMnSの生成を防止するための重要な合金元素で
ある。又、Ti、Zrには鋼を脱酸、脱窒する作用があ
る。
Ti, Zr: Ti and Zr are important alloy elements for preventing the formation of coarse MnS in the present invention. Further, Ti and Zr have an effect of deoxidizing and denitrifying steel.

【0028】Tiを単独で添加する場合、その含有量が
0.05%以上の場合に前記の効果が確実に得られる。
更に、TiがSと結合したTi硫化物によって被削性が
向上する。なお既に述べたように、本発明でいうTi硫
化物には、Tiの単なる硫化物だけではなく「炭硫化
物」をも含む。しかし、Tiを0.2%を超えて多量に
含有させても、Ti硫化物の形成による粗大MnSの生
成防止効果が飽和するし、鋼の脱酸、脱窒作用も飽和す
るのでコストが嵩んでしまう。したがって、(1)の発
明にあってはTiの含有量を0.05〜0.2%とし
た。なお、(1)の発明の場合には、Tiの含有量は
0.05〜0.15%とすることが好ましい。
In the case where Ti is added alone, the above-mentioned effects are surely obtained when the content is 0.05% or more.
Further, machinability is improved by Ti sulfide in which Ti is combined with S. As described above, the Ti sulfide in the present invention includes not only a simple sulfide of Ti but also a “carbosulfide”. However, even if a large amount of Ti is contained in excess of 0.2%, the effect of preventing the formation of coarse MnS due to the formation of Ti sulfide is saturated, and the deoxidizing and denitrifying effects of steel are also saturated. Get out. Therefore, in the invention of (1), the content of Ti is set to 0.05 to 0.2%. In the case of the invention (1), the content of Ti is preferably set to 0.05 to 0.15%.

【0029】一方、上記の効果は、TiとZrの含有量
に関し、Ti(%)+Zr(%)の値が0.05%以上
の場合にも確実に得られる。しかし、Ti(%)+Zr
(%)の値で0.2%を超えるTiとZrを含有させて
も、Ti硫化物やZr硫化物の形成による粗大MnSの
生成防止効果が飽和するし、鋼の脱酸、脱窒作用が飽和
するのでコストが嵩んでしまう。なお、Ti(%)+Z
r(%)の値で0.05〜0.2%でありさえすればよ
いので、必ずしもTiとZrとを複合して含有させる必
要はない。Zrを添加しない場合は前記した(1)の発
明になり、この場合はTiを0.2%を超えて含有させ
ると疲労強度の劣化が著しくなる場合がある。Tiを添
加しない、つまりZrを単独で添加する場合に、Zrを
0.2%を超えて多量に含有させても、Zr硫化物の形
成による粗大MnSの生成防止効果が飽和するし、鋼の
脱酸、脱窒作用も飽和するのでコストが嵩んでしまう。
したがって、(2)の発明にあってはTiとZrの含有
量をいずれも0.2%以下で、且つ、Ti(%)+Zr
(%)の値を0.05〜0.2%とした。なお、(2)
の発明の場合、Ti(%)+Zr(%)の値は0.05
〜0.15%とすることが好ましい。なお既に述べたよ
うに、本発明でいうZr硫化物には、Zrの単なる硫化
物だけではなく「炭硫化物」をも含む。 Cu:Cuは添加しなくてもよい。添加すれば焼入れ性
を高める効果を有する。この効果を確実に得るには、C
uは0.05%以上の含有量とすることが好ましいが、
その反面においてCuは、熱間加工性を劣化させ、特
に、Cuの含有量が0.50%を超えると熱間加工性の
劣化が著しくなることがある。したがって、Cuの含有
量を0〜0.50%とした。
On the other hand, the above effect can be reliably obtained even when the value of Ti (%) + Zr (%) is 0.05% or more with respect to the contents of Ti and Zr. However, Ti (%) + Zr
Even when Ti and Zr exceeding 0.2% (%) are contained, the effect of preventing the formation of coarse MnS due to the formation of Ti sulfide and Zr sulfide is saturated, and the deoxidation and denitrification of steel are effected. Is saturated, so that the cost increases. In addition, Ti (%) + Z
Since it is sufficient that the value of r (%) is 0.05 to 0.2%, it is not always necessary to contain Ti and Zr in a composite manner. In the case where Zr is not added, the invention of the above-mentioned (1) is obtained. In this case, if the content of Ti exceeds 0.2%, the fatigue strength may be significantly deteriorated. When Ti is not added, that is, when Zr is added alone, even if Zr is contained in a large amount exceeding 0.2%, the effect of preventing the formation of coarse MnS due to the formation of Zr sulfide saturates, and Since the deoxidizing and denitrifying effects are saturated, the cost increases.
Therefore, in the invention of (2), the contents of Ti and Zr are both 0.2% or less, and Ti (%) + Zr
The value of (%) was set to 0.05 to 0.2%. (2)
In the case of the invention of (1), the value of Ti (%) + Zr (%) is 0.05
It is preferably set to 0.15%. As described above, the Zr sulfide referred to in the present invention includes not only a simple sulfide of Zr but also a “carbosulfide”. Cu: Cu need not be added. If added, it has the effect of increasing the hardenability. To ensure this effect, C
It is preferable that the content of u is 0.05% or more,
On the other hand, Cu deteriorates hot workability, and particularly when the Cu content exceeds 0.50%, the hot workability may be significantly deteriorated. Therefore, the content of Cu is set to 0 to 0.50%.

【0030】Cr:Crは添加しなくてもよい。添加す
れば焼入れ性を高める効果を有する。この効果を確実に
得るには、Crは0.05%以上の含有量とすることが
好ましいが、その反面においてCrは、変形抵抗を高め
て冷間加工性を劣化させ、特に、C含有量が0.10%
以上で0.30%未満と低めの本発明に係る鋼材の場合
には、Crの含有量が2.0%を超えると冷間加工性の
低下が著しくなる。したがって、Crの含有量を0〜
2.0%とした。なお、Cr含有量の上限は1.5%と
することが好ましい。
Cr: Cr need not be added. If added, it has the effect of increasing the hardenability. To ensure this effect, it is preferable that the content of Cr be 0.05% or more, but on the other hand, Cr increases the deformation resistance and deteriorates the cold workability. Is 0.10%
In the case of the steel material according to the present invention having a low content of less than 0.30% as described above, when the content of Cr exceeds 2.0%, the cold workability significantly decreases. Therefore, if the content of Cr is 0 to
2.0%. The upper limit of the Cr content is preferably 1.5%.

【0031】焼入れ性を高める目的でCu、Crを添加
する場合には、これら元素の1種以上を添加すればよ
い。
When Cu and Cr are added for the purpose of improving hardenability, one or more of these elements may be added.

【0032】Ni:Niは添加しなくてもよい。添加す
れば表面硬化処理、なかでも浸炭処理を受けた部品の疲
労強度を高める効果を有する。この効果を確実に得るに
は、Niは0.05%以上の含有量とすることが好まし
い。しかし、その含有量が3.5%を超えると被削性の
低下が著しくなる。したがって、Niの含有量を0〜
3.5%とした。なお、Ni含有量の上限は2.5%と
することが好ましい。 Mo:Moは添加しなくてもよい。添加すれば表面硬化
処理、なかでも浸炭処理を受けた部品の疲労強度を高め
る効果を有する。この効果を確実に得るには、Moは
0.05%以上の含有量とすることが好ましい。しか
し、その含有量が1.0%を超えると被削性の低下が著
しくなる。したがって、Moの含有量を0〜1.0%と
した。なお、Mo含有量の上限は0.8%とすることが
好ましい。 B:Bは添加しなくてもよい。添加すれば表面硬化処
理、なかでも浸炭処理を受けた部品の疲労強度を高める
効果を有する。この効果を確実に得るには、Bは0.0
010%以上の含有量とすることが好ましい。しかし、
0.005%を超えて含有させても前記の効果は飽和し
コストが嵩むばかりである。したがって、Bの含有量を
0〜0.005%とした。なお、B含有量の上限は0.
004%とすることが好ましい。
Ni: Ni may not be added. If added, it has the effect of increasing the fatigue strength of components that have been subjected to surface hardening, especially carburizing. To ensure this effect, the content of Ni is preferably set to 0.05% or more. However, when the content exceeds 3.5%, the machinability is significantly reduced. Therefore, the content of Ni is 0 to
3.5%. The upper limit of the Ni content is preferably 2.5%. Mo: Mo may not be added. If added, it has the effect of increasing the fatigue strength of components that have been subjected to surface hardening, especially carburizing. To ensure this effect, it is preferable that the content of Mo be 0.05% or more. However, when the content exceeds 1.0%, the machinability is significantly reduced. Therefore, the content of Mo is set to 0 to 1.0%. The upper limit of the Mo content is preferably set to 0.8%. B: B may not be added. If added, it has the effect of increasing the fatigue strength of components that have been subjected to surface hardening, especially carburizing. To ensure this effect, B should be 0.0
The content is preferably 010% or more. But,
Even if the content exceeds 0.005%, the above effect is saturated and the cost is increased. Therefore, the content of B is set to 0 to 0.005%. The upper limit of the B content is 0.1.
004% is preferable.

【0033】表面硬化処理、なかでも浸炭処理を受けた
部品の疲労強度を高める目的でNi、Mo、Bを添加す
る場合には、これら元素の1種以上を添加すればよい。 Nb:Nbは添加しなくてもよい。添加すれば、炭窒化
物を形成してオーステナイト粒を微細化し、疲労強度を
高める作用がある。この効果を確実に得るには、Nbは
0.01%以上の含有量とすることが好ましい。しか
し、0.1%を超えて含有させても前記の効果が飽和し
てコストが嵩むし、被削性の低下も生じる。したがっ
て、Nbの含有量を0〜0.1%とした。なお、Nb含
有量の上限は0.06%とすることが好ましい。 V:Vは添加しなくてもよい。添加すれば、炭窒化物を
形成してオーステナイト粒を微細化し、疲労強度を高め
る作用がある。この効果を確実に得るには、Vは0.0
3%以上の含有量とすることが好ましい。しかし、0.
3%を超えて含有させても前記の効果が飽和してコスト
が嵩むし、被削性の低下も生じる。したがって、Vの含
有量を0〜0.3%とした。なお、V含有量の上限は
0.2%とすることが好ましい。オーステナイト粒を微
細化し、疲労強度を高める目的でV、Nbを添加する場
合には、これら元素の1種以上を添加すればよい。
When Ni, Mo, or B is added for the purpose of increasing the fatigue strength of a part that has been subjected to a surface hardening treatment, especially a carburizing treatment, one or more of these elements may be added. Nb: Nb may not be added. If added, it has the effect of forming carbonitrides to refine the austenite grains and increasing the fatigue strength. In order to surely obtain this effect, the content of Nb is preferably set to 0.01% or more. However, if the content exceeds 0.1%, the above effect is saturated and the cost is increased, and the machinability is also reduced. Therefore, the content of Nb was set to 0 to 0.1%. The upper limit of the Nb content is preferably set to 0.06%. V: V may not be added. If added, it has the effect of forming carbonitrides to refine the austenite grains and increasing the fatigue strength. To ensure this effect, V should be 0.0
The content is preferably 3% or more. However, 0.
If the content exceeds 3%, the above effect is saturated and the cost is increased, and the machinability is also reduced. Therefore, the content of V is set to 0 to 0.3%. The upper limit of the V content is preferably set to 0.2%. When V and Nb are added for the purpose of refining austenite grains and increasing fatigue strength, one or more of these elements may be added.

【0034】Al:Alは添加しなくてもよい。脱酸な
どの目的からAlを添加する場合でも、本発明において
は、Alの含有量を0.01%以下に抑えることが極め
て重要である。すなわち、Alの含有量を0.01%以
下に抑え、Ti、Zr、Sを既に述べた範囲の含有量と
し、更に、前記 (1)式で表されるfn1の値、前記 (3)
式で表されるfn3の値を0以上にすることで、Ti硫
化物、Zr硫化物は微細になり、粗大なMnSの生成が
防止されるし、酸化物クラスターの形成も防止されるか
らである。Alの含有量が0.01%を超えると、fn
2の値が30μmを超えることがあるため、たとえ他の
条件が満たされても疲労強度と冷間加工性が著しく低下
する場合がある。したがって、Alの含有量を0.01
%以下とした。なお、Al含有量の上限は0.008%
とすることが好ましい。
Al: Al may not be added. Even when Al is added for the purpose of deoxidation or the like, in the present invention, it is extremely important to suppress the Al content to 0.01% or less. That is, the content of Al is suppressed to 0.01% or less, the content of Ti, Zr, and S is set in the range described above. Further, the value of fn1 represented by the above formula (1) and the value of (3)
By setting the value of fn3 represented by the formula to 0 or more, Ti sulfide and Zr sulfide become finer, formation of coarse MnS is prevented, and formation of oxide clusters is also prevented. is there. If the Al content exceeds 0.01%, fn
Since the value of 2 may exceed 30 μm, the fatigue strength and the cold workability may be significantly reduced even if other conditions are satisfied. Therefore, the content of Al is set to 0.01
% Or less. The upper limit of the Al content is 0.008%
It is preferable that

【0035】本発明においては、不純物元素としての
P、N及びO(酸素)の含有量を下記のとおりに制限す
る。
In the present invention, the contents of P, N and O (oxygen) as impurity elements are limited as follows.

【0036】P:Pは粒界に偏析して靱性を低下させ
る。特に、Pの含有量が0.03%を超えると、靱性の
低下が著しくなる。したがって、不純物元素としてのP
の含有量は0.03%以下とした。なお、不純物元素と
してのPの含有量は0.02%以下とすることが好まし
い。
P: P segregates at the grain boundaries and lowers toughness. In particular, when the content of P exceeds 0.03%, the toughness is significantly reduced. Therefore, P as an impurity element
Was 0.03% or less. Note that the content of P as an impurity element is preferably set to 0.02% or less.

【0037】N:Nは、変形抵抗を高めて冷間加工性を
低下させ、又、Ti、Zrと結合して粗大なTiN、Z
rNが生成すると疲労強度が低下する。特に、Nの含有
量が0.008%を超えると、fn1あるいはfn3の
値が0以上であっても、fn2の値が30μmを超える
ことがあるため、冷間加工性と疲労強度の低下が著しく
なる場合がある。したがって、不純物元素としてのNの
含有量は0.008%以下とした。なお、不純物元素と
してのNの含有量は0.006%以下とすることが好ま
しい。
N: N increases the deformation resistance and lowers the cold workability, and combines with Ti and Zr to form coarse TiN and Z.
The generation of rN lowers the fatigue strength. In particular, when the content of N exceeds 0.008%, even if the value of fn1 or fn3 is 0 or more, the value of fn2 may exceed 30 μm. May be significant. Therefore, the content of N as an impurity element is set to 0.008% or less. Note that the content of N as an impurity element is preferably set to 0.006% or less.

【0038】O(酸素):O(酸素)は酸化物を形成し
て鋼中に存在し、疲労強度や冷間加工性を低下させる。
特に、Oの含有量が0.0025%を超えると、fn1
あるいはfn3の値が0以上であっても、fn2の値が
30μmを超えることがあるため、疲労強度の低下や冷
間加工性の低下が著しくなる場合がある。したがって、
不純物元素としてのOの含有量は0.0025%以下と
した。なお、不純物元素としてのOの含有量は0.00
15%以下とすることが好ましい。
O (oxygen): O (oxygen) forms an oxide and is present in steel, and reduces fatigue strength and cold workability.
In particular, when the O content exceeds 0.0025%, fn1
Alternatively, even when the value of fn3 is 0 or more, the value of fn2 may exceed 30 μm, so that the fatigue strength and the cold workability may significantly decrease. Therefore,
The content of O as an impurity element was set to 0.0025% or less. The content of O as an impurity element is 0.00
It is preferable that the content be 15% or less.

【0039】fn1、fn3:(1)の発明において、
Ti、S、Alを既に述べた範囲の含有量とし、更に、
前記 (1)式で表されるfn1の値を0以上にすること
で、Ti硫化物が微細になり、粗大なMnSの生成が防
止され、更に、酸化物クラスターの形成も防止できるの
で、良好な被削性と冷間加工性とを確保することがで
き、又、耐疲労特性の低下を防止することができる。f
n1の値が0未満の場合、粗大なMnSの生成を抑制す
ることができず、したがって、L断面において、前記
(2)式で表される介在物の最大等価円直径fn2を30
μm以下にすることができないので、大幅な疲労強度の
低下が生じる。更に冷間加工性も低下してしまう。この
ため、(1)の発明におけるfn1の値を0以上と規定
した。なお、既に述べた範囲のTi、S、Al、N及び
Oの含有量の下で、Ti硫化物の微細化、粗大なMnS
の生成防止及び酸化物クラスターの形成防止の各作用を
安定して確保し、一層良好な被削性と冷間加工性を確保
するとともに、耐疲労特性の低下を防止するためには、
fn1の値は0.01以上であることが好ましい。
(2)の発明において、Ti、Zr、S、Alを既に述
べた範囲の含有量とし、更に、前記 (3)式で表されるf
n3の値を0以上にすることで、Ti硫化物、Zr硫化
物が微細になり、粗大なMnSの生成が防止され、更
に、酸化物クラスターの形成も防止できるので、良好な
被削性と冷間加工性とを確保することができ、又、耐疲
労特性の低下を防止することができる。fn3の値が0
未満の場合、粗大なMnSの生成を抑制することができ
ず、したがって、L断面において、前記 (2)式で表され
る介在物の最大等価円直径fn2を30μm以下にする
ことができないので、大幅な疲労強度の低下が生じる。
更に冷間加工性も低下してしまう。このため、(2)の
発明におけるfn3の値を0以上と規定した。なお、既
に述べた範囲のTi、Zr、S、Al、N及びOの含有
量の下で、Ti硫化物やZr硫化物の微細化、粗大なM
nSの生成防止及び酸化物クラスターの形成防止の各作
用を安定して確保し、一層良好な被削性と冷間加工性を
確保するとともに、耐疲労特性の低下を防止するために
は、fn3の値は0.01以上であることが好ましい。 (B)介在物 前記(A)項に記載した化学成分に加えて、硫化物、酸
化物、窒化物など全介在物のサイズを制御することでは
じめて、機械構造用鋼材に良好な表面硬化処理特性、冷
間加工性と被削性とを具備させることができ、更に、良
好な耐疲労特性、なかでも圧延方向や鍛錬軸に垂直な応
力が負荷された場合における良好な耐疲労特性を付与す
ることができる。すなわち、L断面において、全介在物
の極値統計処理によって予測される累積分布関数が99
%時の前記 (2)式で表される介在物の最大等価円直径f
n2が30μm以下の場合に、介在物起点による冷間加
工性の低下が防止され、加えて、圧延方向や鍛錬軸に垂
直な応力が作用する場合の疲労強度の低下が防止され
る。
Fn1, fn3: In the invention of (1),
The contents of Ti, S, and Al are set in the ranges described above.
By setting the value of fn1 represented by the formula (1) to 0 or more, the Ti sulfide becomes fine, the formation of coarse MnS is prevented, and the formation of oxide clusters can be prevented. In addition, excellent machinability and cold workability can be ensured, and a decrease in fatigue resistance can be prevented. f
When the value of n1 is less than 0, generation of coarse MnS cannot be suppressed.
The maximum equivalent circular diameter fn2 of the inclusion represented by the equation (2) is 30
Since the thickness cannot be reduced to μm or less, a significant decrease in fatigue strength occurs. Further, the cold workability is also reduced. For this reason, the value of fn1 in the invention of (1) is defined as 0 or more. It should be noted that under the contents of Ti, S, Al, N and O in the range already described, the refinement of Ti sulfide and the coarse MnS
In order to stably secure the actions of preventing the formation of oxides and the formation of oxide clusters, as well as ensuring better machinability and cold workability, and preventing deterioration in fatigue resistance,
The value of fn1 is preferably 0.01 or more.
In the invention of (2), the contents of Ti, Zr, S, and Al are set to the above-mentioned ranges, and further, f is expressed by the above formula (3).
By setting the value of n3 to 0 or more, Ti sulfide and Zr sulfide become finer, coarse MnS is prevented from being formed, and the formation of oxide clusters can be prevented. Cold workability can be ensured, and a decrease in fatigue resistance can be prevented. The value of fn3 is 0
If it is less than 30, the generation of coarse MnS cannot be suppressed, and therefore, in the L cross section, the maximum equivalent circular diameter fn2 of the inclusion represented by the formula (2) cannot be reduced to 30 μm or less. Significant reduction in fatigue strength occurs.
Further, the cold workability is also reduced. For this reason, the value of fn3 in the invention of (2) is defined as 0 or more. It should be noted that, under the contents of Ti, Zr, S, Al, N and O in the range already described, the refinement of Ti sulfide and Zr sulfide and the coarse M
In order to stably secure the actions of preventing the generation of nS and the formation of oxide clusters, as well as to ensure better machinability and cold workability, and to prevent a decrease in fatigue resistance, fn3 Is preferably 0.01 or more. (B) Inclusions In addition to the chemical components described in the above (A), good surface hardening treatment is applied to steel for machine structural use only by controlling the size of all inclusions such as sulfides, oxides, and nitrides. Properties, cold workability and machinability, and also imparts good fatigue resistance properties, especially good fatigue resistance properties when stress is applied perpendicular to the rolling direction or the forging axis. can do. That is, in the L section, the cumulative distribution function predicted by the extreme value statistical processing of all inclusions is 99.
% Maximum equivalent circular diameter f of the inclusion represented by the formula (2)
When n2 is 30 μm or less, a decrease in cold workability due to the inclusion starting point is prevented, and a decrease in fatigue strength when stress perpendicular to the rolling direction or the wrought axis acts is also prevented.

【0040】L断面において、前記 (2)式で表される介
在物の最大等価円直径fn2が30μmを超える場合に
は、介在物起点の破壊が生じて冷間加工性(特に限界据
え込み率)が低下するし、疲労強度も大きく低下してし
まう。
When the maximum equivalent circular diameter fn2 of the inclusion represented by the above-mentioned formula (2) exceeds 30 μm in the L section, the starting point of the inclusion is destroyed and the cold workability (particularly the critical upsetting ratio) is increased. ) Is reduced, and the fatigue strength is also significantly reduced.

【0041】したがって、L断面において、全介在物の
極値統計処理によって予測される累積分布関数が99%
時の前記 (2)式で表される介在物の最大等価円直径fn
2を30μm以下と規定した。前記 (2)式で表される介
在物の最大等価円直径fn2は20μm以下であること
が好ましい。
Therefore, in the L section, the cumulative distribution function predicted by the extreme value statistical processing of all inclusions is 99%
Maximum equivalent circular diameter fn of the inclusion represented by the above equation (2)
2 was defined as 30 μm or less. It is preferable that the maximum equivalent circular diameter fn2 of the inclusion represented by the formula (2) is 20 μm or less.

【0042】なお、前記(A)項で述べた化学成分範
囲、及び (1)式で表されるfn1の値や(3)式で表され
るfn3の値に関する規定を満たしても、酸化物などの
生成によって、前記した介在物の最大等価円直径fn2
が30μmを超える場合があるため、例えば、転炉溶製
後、Siなど脱酸作用を有する元素で充分に脱酸し、そ
の後通常の方法で炉外精錬を行い、その処理の末期にT
iやZrを添加する製鋼法を採用することが望ましい。
It should be noted that even if the chemical composition range described in the above item (A) and the value of fn1 represented by the formula (1) and the value of fn3 represented by the formula (3) are satisfied, the oxides may not be satisfied. And the like, the maximum equivalent circular diameter fn2 of the aforementioned inclusions
In some cases, for example, after melting the converter, it is sufficiently deoxidized with an element having a deoxidizing effect such as Si, and then subjected to out-of-pile refining by a usual method.
It is desirable to adopt a steelmaking method in which i or Zr is added.

【0043】以下、実施例により本発明を説明する。Hereinafter, the present invention will be described with reference to examples.

【0044】[0044]

【実施例】(実施例1)表1〜3に示す化学組成を有す
る鋼を試験溶解炉を用いて溶製した。表1〜3では前記
fn1とfn3は (3)式で計算した値をfnとして記載
した。
EXAMPLES (Example 1) Steels having the chemical compositions shown in Tables 1 to 3 were melted using a test melting furnace. In Tables 1 to 3, fn1 and fn3 are described as values calculated by the equation (3) as fn.

【0045】表1〜3における鋼A1〜A27及び鋼B
24〜26は成分が本発明で規定する条件を満たす鋼、
表2、表3における鋼B1〜B23、鋼B27及び鋼B
28は成分のいずれかが本発明で規定する条件から外れ
た比較例の鋼である。
Steels A1 to A27 and Steel B in Tables 1 to 3
24 to 26 are steels whose components satisfy the conditions specified in the present invention,
Steel B1 to B23, Steel B27 and Steel B in Tables 2 and 3
Reference numeral 28 denotes a steel of a comparative example in which any of the components deviated from the conditions specified in the present invention.

【0046】上記の鋼のうち鋼A1〜A27、鋼B4、
鋼B6及び鋼B11は、真空溶解炉を用いて溶製した。
これらの鋼のうち鋼B4を除いた鋼は、Al、Si等で
脱酸した後、Ti、Zrの少なくとも1種以上を添加し
て製造した。鋼B4は、Al、Siで脱酸した後にTi
もZrも添加せずに製造した。
Of the above steels, steels A1 to A27, steel B4,
Steel B6 and steel B11 were melted using a vacuum melting furnace.
Among these steels, steels other than steel B4 were produced by deoxidizing with Al, Si or the like, and then adding at least one or more of Ti and Zr. After steel B4 is deoxidized with Al and Si, Ti
No Zr was added.

【0047】一方、鋼B1〜B3、鋼B5、鋼B7〜B
10及び鋼B12〜B28は、大気溶解炉を用いて溶製
した。これらの鋼のうち鋼B1、鋼B2、鋼B12、鋼
B13、鋼B18、鋼B22及び鋼B23を除いた鋼
は、Al、Si等で脱酸した後、Ti、Zrの少なくと
も1種以上を添加して製造した。鋼B1、鋼B2、鋼B
12、鋼B13、鋼B18、鋼B22及び鋼B23はA
l、Si等で脱酸した後にTiもZrも添加せずに製造
した。
On the other hand, steel B1 to B3, steel B5, steel B7 to B
10 and steels B12 to B28 were melted using an atmospheric melting furnace. Among these steels, steels excluding steel B1, steel B2, steel B12, steel B13, steel B18, steel B22 and steel B23, after deoxidizing with Al, Si, etc., at least one or more of Ti, Zr. Manufactured with addition. Steel B1, Steel B2, Steel B
12, steel B13, steel B18, steel B22 and steel B23 are A
It was manufactured without adding Ti or Zr after deoxidation with 1, Si or the like.

【0048】[0048]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 次いで、これらの鋼を通常の方法によって鋼片にした
後、1200℃に加熱してから、1200℃〜950℃
の温度で熱間鍛造して、直径60mmの丸棒とした。
[Table 3] Next, these steels were made into billets by a usual method, and then heated to 1200 ° C, and then from 1200 ° C to 950 ° C.
At 60 ° C. to obtain a round bar having a diameter of 60 mm.

【0049】上記のようにして得た直径60mmの各丸
棒を分割し、その片方に通常の方法で球状化焼鈍を施
し、各丸棒から長さ30mmの試験片を切り出して「D
/4部(Dは丸棒の直径、すなわち60mm)」のロッ
クウェルB硬さ(以下、HRB硬さという)を測定し
た。
Each round bar having a diameter of 60 mm obtained as described above is divided, one of the bars is subjected to spheroidizing annealing by a usual method, and a 30 mm-long test piece is cut out from each round bar to obtain "D".
/ 4 part (D is the diameter of a round bar, that is, 60 mm) "was measured for Rockwell B hardness (hereinafter referred to as HRB hardness).

【0050】又、球状化焼鈍を施した前記の直径60m
mの各丸棒からそれぞれJIS G 0555の図1に則って介在
物測定用の試験片を切り出し、既に述べた方法によって
前記(2)式で表される介在物の最大等価円直径fn2の
値を求めた。
Further, the above-mentioned diameter of 60 m subjected to spheroidizing annealing
A test piece for inclusion measurement is cut out from each round bar of m in accordance with FIG. 1 of JIS G 0555, and the value of the maximum equivalent circular diameter fn2 of the inclusion represented by the formula (2) is determined by the method described above. I asked.

【0051】すなわち、鋼材から採取した試験片のL
断面を鏡面研磨した後、その研磨面を被検面とし、光学
顕微鏡の倍率を400倍として、JIS G 0555に規定され
た「鋼の非金属介在物の顕微鏡試験方法」中の「5.点
算法による顕微鏡試験方法」に則って50視野測定し、
個々の介在物の長径をL(μm)、短径をW(μm)と
して、各視野における(πLW/4)0.5 の値が最大に
なるものを求め、次に、上記で求めた50の(πL
W/4)0.5 の値を小さいものから順に並べ直してそれ
ぞれ(πLW/4)0.5 j(ここで、j=1〜50)と
し、それぞれのjについて累積分布関数Fj =100
(j/51)(%)を計算した。更に、基準化変数y
j =−loge (−loge (j/51) )を縦軸
に、横軸に(πLW/4)0.5 jを取ったグラフを書き、
最小自乗法によって近似直線を求め、最後に、上記
で求めた直線から、累積分布関数Fj が99%となる時
(すなわち、基準化変数yj ≒4.6となる時)の(π
LW/4)0.5 jの値を読みとり、これを最大等価円直径
fn2=(πLW/4)0.5 とした。
That is, the L of the test piece taken from the steel material
After mirror-polishing the cross section, the polished surface was used as the surface to be inspected, and the magnification of the optical microscope was set to 400 times, and “5. Point” in “Microscope test method for non-metallic inclusions in steel” specified in JIS G 0555. 50 field of view measurement according to "Microscopic test method by arithmetic",
Assuming that the major axis of each inclusion is L (μm) and the minor axis is W (μm), the one that maximizes the value of (πLW / 4) 0.5 in each field of view is determined. πL
W / 4) The values of 0.5 are rearranged in ascending order to obtain (πLW / 4) 0.5 j (where j = 1 to 50), and the cumulative distribution function F j = 100 for each j
(J / 51) (%) was calculated. Further, the scaling variable y
Write a graph with j = -log e (-log e (j / 51)) on the vertical axis and (πLW / 4) 0.5 j on the horizontal axis,
An approximate straight line is obtained by the least squares method. Finally, from the straight line obtained above, when the cumulative distribution function F j becomes 99% (that is, when the normalized variable y j ≒ 4.6), (π
(LW / 4) 0.5 j was read, and this was taken as the maximum equivalent circular diameter fn2 = (πLW / 4) 0.5 .

【0052】最大等価円直径fn2を求めた一例とし
て、図1に、鋼A5と鋼B3の場合を示す。
As an example of obtaining the maximum equivalent circular diameter fn2, FIG. 1 shows the case of steel A5 and steel B3.

【0053】更に、次のようにして冷間加工性の調査も
行った。すなわち、球状化焼鈍を施した直径30mmの
丸棒から、直径が15mmで長さが22.5mmの切欠
き付き冷間加工用試験片を作製し、500t高速プレス
機を用いて通常の方法で冷間拘束型据え込み試験を行
い、割れが発生する限界の据え込み率を測定して冷間加
工性の調査を行った。
Further, the cold workability was investigated as follows. That is, a notched cold-working test piece having a diameter of 15 mm and a length of 22.5 mm was prepared from a round bar having a diameter of 30 mm subjected to spheroidizing annealing, using a 500-t high-speed press machine in a usual manner. A cold restraint type upsetting test was performed, and the upsetting rate at which cracking occurred was measured to investigate cold workability.

【0054】なお、据え込み率が75%まで、各条件ご
とに5回の据え込み試験を行い、3個以上に割れが発生
する最小の据え込み率を限界据え込み率として評価し
た。
The upsetting test was performed five times under each condition until the upsetting ratio reached 75%, and the minimum upsetting ratio at which three or more cracks occurred was evaluated as the limit upsetting ratio.

【0055】ドリル穿孔試験による被削性の調査も行っ
た。すなわち、前記の球状化焼鈍をを行った直径60m
mの丸棒を25mmの長さの輪切りにしたものを用い
て、「R/2部(Rは丸棒の半径、すなわち30m
m)」についてその長さ方向に貫通孔をあけ、刃先摩損
により穿孔不能となったときの貫通孔の個数を数え、被
削性の評価を行った。
The machinability was also investigated by a drilling test. That is, a diameter of 60 m after the spheroidizing annealing was performed.
m round bar having a length of 25 mm was used, and “R / 2 parts (R is the radius of the round bar, ie, 30 m
m)), a through-hole was made in the length direction, and the number of through-holes when drilling became impossible due to abrasion of the cutting edge was counted to evaluate the machinability.

【0056】穿孔条件は、JIS高速度工具鋼SKH5
1の直径5mmストレートシャンクドリルを使用し、水
溶性の潤滑剤を用いて、送り0.15mm/rev、回
転数980rpmで行った。
The drilling conditions were JIS high speed tool steel SKH5.
Using a 5 mm diameter straight shank drill, a water-soluble lubricant was used at a feed rate of 0.15 mm / rev and a rotation speed of 980 rpm.

【0057】表4、表5に、上記の各試験の結果をまと
めて示す。
Tables 4 and 5 collectively show the results of the above tests.

【0058】[0058]

【表4】 [Table 4]

【表5】 表4、表5から、硬さの増加に伴い冷間加工性としての
限界据え込み率は低下し、被削性としての貫通孔個数は
減少するが、鋼の化学成分及び介在物の最大等価円直径
fn2が本発明で規定する条件を満たす本発明例の試験
番号1〜27の場合、比較例としての試験番号28〜5
5に比べて、変形能としての割れが発生する限界据え込
み率は高く冷間加工性に優れており、更に、被削性も良
好なことが明らかである。
[Table 5] From Tables 4 and 5, it can be seen that as the hardness increases, the critical upsetting ratio as cold workability decreases and the number of through holes as machinability decreases, but the maximum equivalent of the chemical composition of steel and inclusions. In the case of test numbers 1 to 27 of the examples of the present invention in which the circular diameter fn2 satisfies the conditions specified in the present invention, test numbers 28 to 5 as comparative examples
As compared with No. 5, it is clear that the critical upsetting ratio at which cracks as deformability occur is high, the cold workability is excellent, and the machinability is also good.

【0059】(実施例2)前記実施例1で分割した直径
60mmの丸棒の残った片方を、その後925℃に加熱
して1時間保持し、大気中で放冷した。
(Example 2) The remaining one of the round bars having a diameter of 60 mm divided in Example 1 was heated to 925 ° C. and maintained for 1 hour, and allowed to cool in the air.

【0060】上記の処理を施した直径60mmの各丸棒
からそれぞれJIS G 0555の図3に則って介在物測定用の
試験片を切り出し、既に述べた方法によって前記 (2)式
で表される介在物の最大等価円直径fn2の値を求め
た。又、平滑小野式回転曲げ疲労試験片(平行部の直径
が6mmで長さが25mm)を作製し、耐疲労特性の調
査も行った。
A test piece for measuring inclusions is cut out from each of the round bars having a diameter of 60 mm that has been subjected to the above-described processing in accordance with FIG. 3 of JIS G 0555, and is represented by the above-mentioned formula (2) by the method described above. The value of the maximum equivalent circular diameter fn2 of the inclusion was determined. In addition, a smooth Ono-type rotating bending fatigue test piece (parallel portion having a diameter of 6 mm and a length of 25 mm) was prepared, and the fatigue resistance was investigated.

【0061】図2に、各丸棒からのサンプル切り出し方
法を示す。図2に示すように、各丸棒についてその鍛錬
軸に平行な方向(以下、「L方向」という)の「R/2
部」及び鍛錬軸に垂直な方向(以下、「T方向」とい
う)の中心部からサンプルを採取した。なお、図3に示
すように、T方向から採取した各サンプルはその両端を
電子ビーム溶接して接合し、L方向から採取したサンプ
ルとともに所定の平滑小野式回転曲げ疲労試験片の寸法
に仕上げた。
FIG. 2 shows a method of cutting out a sample from each round bar. As shown in FIG. 2, for each round bar, “R / 2” in a direction parallel to the training axis (hereinafter, referred to as “L direction”).
Samples were taken from the center of the “section” and the direction perpendicular to the forging axis (hereinafter referred to as “T direction”). As shown in FIG. 3, both ends of each sample taken from the T direction were joined by electron beam welding, and together with the sample taken from the L direction, finished to the size of a predetermined smooth Ono-type rotating bending fatigue test piece. .

【0062】上記のようにして得た平滑小野式回転曲げ
疲労試験片に、図4に示す条件で浸炭焼入れと焼戻しを
行った。なお、図4における「Cp」はカーボンポテン
シャルを、「OQ」は油焼入れを、又、「AC」は空冷
を意味する。次いで、上記のようにして得た平滑小野式
回転曲げ疲労試験片のチャック部をマスキングし、試験
片の平行部及びR部をショットピーニング処理した。
The smooth Ono-type rotating bending fatigue test piece obtained as described above was subjected to carburizing and tempering under the conditions shown in FIG. In FIG. 4, "Cp" means carbon potential, "OQ" means oil quenching, and "AC" means air cooling. Next, the chuck portion of the smooth Ono-type rotating bending fatigue test piece obtained as described above was masked, and the parallel portion and the R portion of the test piece were shot peened.

【0063】なお、ショットピーニング処理は、インペ
ラータイプの機種中で、硬さがロックウェルC硬さ60
のの投射材(商品名SB−6Pm)を用いて、投射速度
が90m/秒、投射密度が540kgf/m3 、アーク
ハイトが0.79mm、ガバレージが300%の条件で
行った。
In the shot peening process, the hardness was set to Rockwell C hardness of 60 in an impeller type machine.
The projection speed was 90 m / sec, the projection density was 540 kgf / m 3 , the arc height was 0.79 mm, and the garbage was 300%, using a projection material (trade name: SB-6Pm).

【0064】小野式回転曲げ疲労試験は室温大気中で行
ない、各供試材の107 回の疲労強度(疲労限度)を測
定した。表6、表7にに、最大等価円直径fn2と疲労
試験の結果を示す。
[0064] Ono rotating bending fatigue test expression conducted in air at room temperature was measured 10 7 times fatigue strength of each sample (fatigue limit). Tables 6 and 7 show the maximum equivalent circular diameter fn2 and the results of the fatigue test.

【0065】[0065]

【表6】 [Table 6]

【表7】 表6、表7から、鋼の化学成分及び介在物の最大等価円
直径fn2が本発明で規定する条件を満たす本発明例の
試験番号56〜82の場合、T方向でも719MPaを
超える疲労強度を有しており、しかも、L方向の疲労強
度に対するT方向の疲労強度の低下は小さい。したがっ
て、鍛錬軸に垂直な応力が作用する場合の疲労強度が低
下しにくいことが明らかである。
[Table 7] From Tables 6 and 7, from the test numbers 56 to 82 of the examples of the present invention in which the chemical composition of steel and the maximum equivalent circular diameter fn2 of the inclusion satisfy the conditions specified in the present invention, the fatigue strength exceeding 719 MPa also in the T direction. In addition, the decrease in the fatigue strength in the T direction relative to the fatigue strength in the L direction is small. Therefore, it is clear that the fatigue strength when the stress perpendicular to the forged axis acts is hard to decrease.

【0066】これに対して、比較例の試験番号83〜1
10の場合、L方向の疲労強度に対するT方向の疲労強
度の低下が著しい。試験番号106〜108の場合、鋼
24〜26の化学成分は本発明で規定する条件を満たす
ものの、fn2の値が本発明で規定する条件から外れる
ため、前記本発明例の試験番号56〜82の場合に比べ
て、L方向の疲労強度に対するT方向の疲労強度の低下
が著しい。
On the other hand, Test Nos. 83 to 1 of Comparative Examples
In the case of 10, the fatigue strength in the T direction is significantly lower than the fatigue strength in the L direction. In the case of Test Nos. 106 to 108, although the chemical components of the steels 24 to 26 satisfy the conditions specified in the present invention, the values of fn2 deviate from the conditions specified in the present invention. The fatigue strength in the T direction is significantly lower than the fatigue strength in the L direction as compared with the case of (1).

【0067】[0067]

【発明の効果】本発明の機械構造用鋼材は、浸炭焼入れ
性を初めとする表面硬化処理特性、冷間加工性及び被削
性に優れ、更に、耐疲労特性、なかでも圧延方向や鍛錬
軸に垂直な応力が負荷された場合の耐疲労特性にも優
れ、圧延方向や鍛錬軸に垂直な応力が負荷された場合の
耐疲労特性の低下が防止できるので、自動車の歯車など
各種の表面硬化処理される部品の素材として利用するこ
とができる。
The steel material for machine structural use of the present invention is excellent in surface hardening properties such as carburizing and quenching properties, cold workability and machinability, as well as fatigue resistance properties, especially rolling direction and forged shaft. It also has excellent fatigue resistance characteristics when a vertical stress is applied, and prevents deterioration of the fatigue resistance characteristics when a vertical stress is applied to the rolling direction and the wrought shaft. It can be used as a material for parts to be processed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の鋼材における最大等価円直径fn2の
一例を示す図である。
FIG. 1 is a diagram illustrating an example of a maximum equivalent circular diameter fn2 of a steel material according to an embodiment.

【図2】鍛錬軸に平行な方向(L方向)及び鍛錬軸に垂
直な方向(T方向)から平滑小野式回転曲げ疲労試験片
のサンプルを切り出す方法を説明する図である。
FIG. 2 is a diagram illustrating a method of cutting out a sample of a smooth Ono-type rotating bending fatigue test piece from a direction parallel to the wrought axis (L direction) and a direction perpendicular to the wrought axis (T direction).

【図3】鍛錬軸に垂直な方向から切り出したサンプルの
両端を電子ビーム溶接して接合し、所定の平滑小野式回
転曲げ疲労試験片に仕上げたことを説明する図である。
FIG. 3 is a diagram for explaining that both ends of a sample cut out from a direction perpendicular to a wrought axis are joined by electron beam welding to complete a predetermined smooth Ono-type rotating bending fatigue test piece.

【図4】実施例2において平滑小野式回転曲げ疲労試験
片に施した浸炭焼入れ、焼戻しのヒートパターンを示す
図である。
FIG. 4 is a view showing a heat pattern of carburizing quenching and tempering applied to a smooth Ono type rotating bending fatigue test piece in Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀本 雅之 福岡県北九州市小倉北区許斐町1番地 株 式会社住友金属小倉内 (72)発明者 佐藤 武史 福岡県北九州市小倉北区許斐町1番地 株 式会社住友金属小倉内 (72)発明者 鈴木 大輔 福岡県北九州市小倉北区許斐町1番地 株 式会社住友金属小倉内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayuki Horimoto 1 Konomi-cho, Kokurakita-ku, Kitakyushu-shi, Fukuoka Prefecture (72) Inventor Takefumi Sato 1 Konomi-cho, Kitakyushu-shi, Fukuoka Sumitomo Metals Kokurauchi (72) Inventor Daisuke Suzuki 1 Konomi-cho, Kokurakita-ku, Kitakyushu-shi, Fukuoka Prefecture Sumitomo Metals Kokuranai

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】化学組成が質量%で、C:0.10%以上
で0.30%未満、Si:0.05〜1.0%、Mn:
0.30〜2.0%、S:0.005〜0.05%、T
i:0.05〜0.2%、Cu:0〜0.50%、C
r:0〜2.0%、Ni:0〜3.5%、Mo:0〜
1.0%、B:0〜0.005%、Nb:0〜0.1
%、V:0〜0.3%、Al:0.01%以下を含有
し、残部はFe及び不純物からなり、不純物中のPは
0.03%以下、Nは0.008%以下、O(酸素)は
0.0025%以下、且つ、下記 (1)式で表されるfn
1の値が0以上であり、更に、長手方向縦断面における
非金属介在物の長径をL(μm)、短径をW(μm)と
して極値統計処理によって予測される累積分布関数が9
9%時の下記 (2)式で表される非金属介在物の最大等価
円直径fn2が30μm以下である機械構造用鋼材。 fn1=Ti(%)−3S(%)−3.4N(%)・・・(1) fn2=(πLW/4)0.5 ・・・(2)
1. A chemical composition in mass%, C: 0.10% or more and less than 0.30%, Si: 0.05 to 1.0%, Mn:
0.30 to 2.0%, S: 0.005 to 0.05%, T
i: 0.05 to 0.2%, Cu: 0 to 0.50%, C
r: 0 to 2.0%, Ni: 0 to 3.5%, Mo: 0 to 0%
1.0%, B: 0 to 0.005%, Nb: 0 to 0.1
%, V: 0 to 0.3%, Al: 0.01% or less, the balance being Fe and impurities, P in the impurities is 0.03% or less, N is 0.008% or less, and O (Oxygen) is 0.0025% or less, and fn represented by the following formula (1)
The value of 1 is 0 or more, and the cumulative distribution function predicted by the extreme value statistical processing with the major axis of the nonmetallic inclusion in the longitudinal longitudinal section being L (μm) and the minor axis being W (μm) is 9
A steel material for machine structure in which the maximum equivalent circular diameter fn2 of the nonmetallic inclusion represented by the following formula (2) at 9% is 30 μm or less. fn1 = Ti (%)-3S (%)-3.4N (%) (1) fn2 = (πLW / 4) 0.5 (2)
【請求項2】化学組成が質量%で、C:0.10%以上
で0.30%未満、Si:0.05〜1.0%、Mn:
0.30〜2.0%、S:0.005〜0.05%、T
i:0.2%以下、Zr:0.2%以下で、且つ、Ti
(%)+Zr(%):0.05〜0.2%、Cu:0〜
0.50%、Cr:0〜2.0%、Ni:0〜3.5
%、Mo:0〜1.0%、B:0〜0.005%、N
b:0〜0.1%、V:0〜0.3%、Al:0.01
%以下を含有し、残部はFe及び不純物からなり、不純
物中のPは0.03%以下、Nは0.008%以下、O
(酸素)は0.0025%以下、且つ、下記 (3)式で表
されるfn3の値が0以上であり、更に、長手方向縦断
面における非金属介在物の長径をL(μm)、短径をW
(μm)として極値統計処理によって予測される累積分
布関数が99%時の下記 (2)式で表される非金属介在物
の最大等価円直径fn2が30μm以下である機械構造
用鋼材。 fn3=Ti(%)+Zr(%)−3S(%)−3.4N(%)・・・(3) fn2=(πLW/4)0.5 ・・・(2)
2. Chemical composition in mass%, C: 0.10% or more and less than 0.30%, Si: 0.05-1.0%, Mn:
0.30 to 2.0%, S: 0.005 to 0.05%, T
i: 0.2% or less, Zr: 0.2% or less, and Ti
(%) + Zr (%): 0.05 to 0.2%, Cu: 0 to 0
0.50%, Cr: 0 to 2.0%, Ni: 0 to 3.5
%, Mo: 0 to 1.0%, B: 0 to 0.005%, N
b: 0 to 0.1%, V: 0 to 0.3%, Al: 0.01
%, The balance consists of Fe and impurities, P in the impurities is 0.03% or less, N is 0.008% or less, and O
(Oxygen) is 0.0025% or less, the value of fn3 represented by the following formula (3) is 0 or more, and the major axis of the nonmetallic inclusion in the longitudinal vertical section is L (μm), Diameter W
A steel material for machine structural use in which the maximum equivalent circular diameter fn2 of nonmetallic inclusions represented by the following formula (2) when the cumulative distribution function predicted by the extreme value statistical processing as (μm) is 99% is 30 μm or less. fn3 = Ti (%) + Zr (%)-3S (%)-3.4N (%) (3) fn2 = (πLW / 4) 0.5 (2)
JP2000399187A 2000-10-02 2000-12-27 Steel for machine structure Withdrawn JP2002194484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000399187A JP2002194484A (en) 2000-10-02 2000-12-27 Steel for machine structure

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000302731 2000-10-02
JP2000321785 2000-10-20
JP2000-302731 2000-10-20
JP2000-321785 2000-10-20
JP2000399187A JP2002194484A (en) 2000-10-02 2000-12-27 Steel for machine structure

Publications (1)

Publication Number Publication Date
JP2002194484A true JP2002194484A (en) 2002-07-10

Family

ID=27344833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000399187A Withdrawn JP2002194484A (en) 2000-10-02 2000-12-27 Steel for machine structure

Country Status (1)

Country Link
JP (1) JP2002194484A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238702A (en) * 2003-02-07 2004-08-26 Sumitomo Metal Ind Ltd Carburized component excellent in low-cycle impact fatigue resistance
JP2007016271A (en) * 2005-07-06 2007-01-25 Kobe Steel Ltd Steel for induction hardening for pinion having excellent machinability, method for producing the same, and pinion having excellent bending fatigue property
JP2007039722A (en) * 2005-08-01 2007-02-15 Kobe Steel Ltd Bloom having superior machinability and manufacturing method therefor
JP2009242923A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Component for machine structure having excellent rolling fatigue property, and method for producing the same
JP2011219854A (en) * 2010-03-26 2011-11-04 Jfe Steel Corp Case-hardening steel and method for manufacturing the same
JP2012001774A (en) * 2010-06-17 2012-01-05 Kobe Steel Ltd Case-hardening steel with little heat-treatment strain
JP2012197519A (en) * 2012-05-31 2012-10-18 Nippon Steel Corp Steel for carburized component superior in grain coarsening prevention characteristic
JP2013018999A (en) * 2011-07-07 2013-01-31 Nippon Steel & Sumitomo Metal Corp Steel for cold forging and nitriding
JP2013019001A (en) * 2011-07-07 2013-01-31 Nippon Steel & Sumitomo Metal Corp Steel material for cold forging and nitriding
JP2013159794A (en) * 2012-02-02 2013-08-19 Nippon Steel & Sumitomo Metal Corp Rolled steel for cold forging/nitriding
CN105648324A (en) * 2016-01-16 2016-06-08 舞阳钢铁有限责任公司 Large-thickness rack steel plate and production method thereof
CN109763078A (en) * 2018-05-28 2019-05-17 宝钢特钢长材有限公司 A kind of heat-resisting alloy carburizing steel and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238702A (en) * 2003-02-07 2004-08-26 Sumitomo Metal Ind Ltd Carburized component excellent in low-cycle impact fatigue resistance
JP2007016271A (en) * 2005-07-06 2007-01-25 Kobe Steel Ltd Steel for induction hardening for pinion having excellent machinability, method for producing the same, and pinion having excellent bending fatigue property
JP4502892B2 (en) * 2005-07-06 2010-07-14 株式会社神戸製鋼所 Steel for induction hardening for pinions with excellent machinability, manufacturing method thereof, and pinion with excellent bending fatigue characteristics
JP2007039722A (en) * 2005-08-01 2007-02-15 Kobe Steel Ltd Bloom having superior machinability and manufacturing method therefor
JP4502902B2 (en) * 2005-08-01 2010-07-14 株式会社神戸製鋼所 Bloom with excellent machinability and its manufacturing method
JP2009242923A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Component for machine structure having excellent rolling fatigue property, and method for producing the same
JP2011219854A (en) * 2010-03-26 2011-11-04 Jfe Steel Corp Case-hardening steel and method for manufacturing the same
JP2012001774A (en) * 2010-06-17 2012-01-05 Kobe Steel Ltd Case-hardening steel with little heat-treatment strain
JP2013018999A (en) * 2011-07-07 2013-01-31 Nippon Steel & Sumitomo Metal Corp Steel for cold forging and nitriding
JP2013019001A (en) * 2011-07-07 2013-01-31 Nippon Steel & Sumitomo Metal Corp Steel material for cold forging and nitriding
JP2013159794A (en) * 2012-02-02 2013-08-19 Nippon Steel & Sumitomo Metal Corp Rolled steel for cold forging/nitriding
JP2012197519A (en) * 2012-05-31 2012-10-18 Nippon Steel Corp Steel for carburized component superior in grain coarsening prevention characteristic
CN105648324A (en) * 2016-01-16 2016-06-08 舞阳钢铁有限责任公司 Large-thickness rack steel plate and production method thereof
CN109763078A (en) * 2018-05-28 2019-05-17 宝钢特钢长材有限公司 A kind of heat-resisting alloy carburizing steel and preparation method thereof
CN109763078B (en) * 2018-05-28 2021-01-05 宝钢特钢长材有限公司 Heat-resistant alloy carburizing steel and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101745224B1 (en) Steel for carburizing
JP6205060B2 (en) Carbonitriding bearing parts
JP6628014B1 (en) Steel for parts to be carburized
JP4941252B2 (en) Case-hardened steel for power transmission parts
WO2020145325A1 (en) Steel material
JP2007131871A (en) Steel for induction hardening
JP5886119B2 (en) Case-hardened steel
JP2001073072A (en) Carbo-nitrided parts excellent in pitching resistance
JP2002194484A (en) Steel for machine structure
JP2011006734A (en) Steel for vacuum carburizing and vacuum-carburized component
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP6399213B2 (en) Case-hardened steel parts
JP4502126B2 (en) Steel for machine structure
JP2006161144A (en) Carburizing rolled steel having excellent high temperature carburizing property and hot forgeability
US11952668B2 (en) Carburized part and method for manufacturing same
JP2015147962A (en) Sleeve dog gear
JP6801782B2 (en) Steel and parts
JP4964060B2 (en) Mechanical structural steel and mechanical structural parts with excellent strength anisotropy and machinability
JPH11229032A (en) Production of steel for soft-nitriding and soft-nitrided parts using the steel
JP3565428B2 (en) Steel for machine structure
JP2005023360A (en) Case hardening steel excellent in treatability of chip
JP2001214241A (en) Steel for machine structural use and machine structural part excellent in machinability
JP3353698B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JPH11236646A (en) Grain coarsening-resistant case hardening steel, surface hardened parts excellent in strength and toughness and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040331

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Effective date: 20040709

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20040831

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041108

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041203

A761 Written withdrawal of application

Effective date: 20051212

Free format text: JAPANESE INTERMEDIATE CODE: A761