JP2015147962A - Sleeve dog gear - Google Patents

Sleeve dog gear Download PDF

Info

Publication number
JP2015147962A
JP2015147962A JP2014020728A JP2014020728A JP2015147962A JP 2015147962 A JP2015147962 A JP 2015147962A JP 2014020728 A JP2014020728 A JP 2014020728A JP 2014020728 A JP2014020728 A JP 2014020728A JP 2015147962 A JP2015147962 A JP 2015147962A
Authority
JP
Japan
Prior art keywords
less
steel
content
sleeve
dog gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014020728A
Other languages
Japanese (ja)
Other versions
JP6301145B2 (en
Inventor
達也 小山
Tatsuya Koyama
達也 小山
久保田 学
Manabu Kubota
学 久保田
法章 香取
Noriaki Katori
法章 香取
正明 川原
Masaaki Kawahara
正明 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Nippon Steel Corp
Original Assignee
Hino Motors Ltd
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Nippon Steel and Sumitomo Metal Corp filed Critical Hino Motors Ltd
Priority to JP2014020728A priority Critical patent/JP6301145B2/en
Publication of JP2015147962A publication Critical patent/JP2015147962A/en
Application granted granted Critical
Publication of JP6301145B2 publication Critical patent/JP6301145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sleeve dog gear excellent in impact wear resistance.SOLUTION: Provided is a sleeve dog gear which is made of a steel having a specific componential composition and which has been subjected to carbonitriding, quenching and tempering, wherein the concentration of C in the surface layer is 0.6 to 1.0%, and, from the surface to a depth of 0.3 mm, precipitates having diameters of 5 to 100 nm and including Ti and/or Nb are present by 10 pieces/μmor more.

Description

本発明は、耐衝撃摩耗性に優れるスリーブ・ドッグギヤに関する。   The present invention relates to a sleeve / dog gear excellent in impact wear resistance.

マニュアルトランスミッションに使用されるスリーブ・ドッグギヤは、変速の際に高速でスライドして変速ギヤに連結する、変速に不可欠な部品である。スリーブ・ドッグギヤは、スライドの際に衝撃的な負荷を受けるため、歯の先端で摩耗が発生する。この摩耗が進行し、顕著な形状変化が起きた場合、変速できない事態となることから、耐衝撃摩耗性の向上がより一層望まれている。   The sleeve / dog gear used in the manual transmission is an indispensable part for shifting, which slides at high speed and is connected to the shifting gear during shifting. Since the sleeve / dog gear receives an impact load during sliding, wear occurs at the tip of the tooth. When this wear progresses and a remarkable shape change occurs, it becomes impossible to shift gears, and therefore, further improvement in impact wear resistance is desired.

従来、変速の際のスライド速度を低下させ、負荷を低減することで顕著な摩耗を回避している。しかし、スライド速度が低下すると変速に要する時間が長くなることから、操作性の低下が問題となる。   Conventionally, significant wear has been avoided by reducing the slide speed during shifting and reducing the load. However, since the time required for shifting increases as the slide speed decreases, a decrease in operability becomes a problem.

耐摩耗性の向上に関する従来技術として、硬質でμmオーダーの析出物を利用した技術が開示されている。例えば、特許文献1では0.5μm以上の大きさを有する粗大で硬質なTiC等を1mmあたり400個以上含有させること、特許文献2では粒子径2μm以上のNb、Tiの1種以上を含有する炭化物を1mmあたり300〜1000個を含有させることによる耐摩耗性の向上が示されている。しかし粗大かつ多量に存在する硬質な析出物は靭性を低下させるため、スリーブ・ドッグギヤへ適用した場合には割れ等の欠陥として問題が顕在化し、耐衝撃摩耗性にも影響する。 As a conventional technique related to improvement of wear resistance, a technique using a hard and μm order precipitate is disclosed. For example, Patent Document 1 contains 400 or more coarse and hard TiC having a size of 0.5 μm or more per mm 2 , and Patent Document 2 contains one or more of Nb and Ti having a particle diameter of 2 μm or more. The improvement of the abrasion resistance by containing 300 to 1000 carbides per 1 mm 2 is shown. However, the coarse and large amount of hard precipitates deteriorates the toughness, so that when they are applied to a sleeve / dog gear, the problem becomes obvious as a defect such as a crack, and the impact wear resistance is also affected.

特許3089882号公報Japanese Patent No. 3089882 特開2010−138453号公報JP 2010-138453 A

以上の状況を鑑み、本発明は、耐衝撃摩耗性に優れるスリーブ・ドッグギヤを提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a sleeve / dog gear excellent in impact wear resistance.

本発明者らは、スリーブ・ドッグギヤの耐衝撃摩耗性を向上するため、衝撃摩耗のメカニズムについて鋭意調査した。その結果、スリーブ・ドッグギヤにおいて摩耗現象を支配しているのは、き裂の発生、伝播に伴うはく離であること、き裂を抑制することで耐衝撃摩耗性が向上することを知見した。   In order to improve the impact wear resistance of the sleeve / dog gear, the present inventors have intensively investigated the mechanism of impact wear. As a result, it was found that the abrasion phenomenon in the sleeve / dog gear dominates the cracking and delamination accompanying propagation, and that the impact wear resistance is improved by suppressing the crack.

次に、本発明者らは、衝撃摩耗時に形成するき裂を抑制できる鋼を実現するために、化学組成を広範囲かつ系統的に変化させた鋼に対して浸炭処理を行った後に、衝撃摩耗試験を実施した。その結果、表層部に存在するTiおよび/またはNbを含有する微細な析出物の量が、き裂の抑制に影響し、Tiおよび/またはNbを含有する微細な析出物の量の増加によって耐衝撃摩耗性が向上することを知見した。   Next, in order to realize a steel capable of suppressing cracks formed during impact wear, the present inventors performed a carburizing treatment on steel having a chemical composition varied widely and systematically, and then applied impact wear. The test was conducted. As a result, the amount of fine precipitates containing Ti and / or Nb present in the surface layer part affects the suppression of cracks, and the amount of fine precipitates containing Ti and / or Nb increases. It has been found that impact wear is improved.

本発明は、上記知見に基づいてなされたもので、その要旨は次のとおりである。
(1)成分組成が、質量%で、
C:0.16〜0.30%、
Si:0.01〜2.0%、
Mn:0.30〜2.0%、
Cr:0.05〜3.0%、
Al:0.001〜0.2%、
S:0.004〜0.04%、
N:0.003〜0.03%
を含有し、
さらに、
Ti:0.001〜0.3%、Nb:0.001〜0.3%のうちの1種又は2種を含有し、
O:0.005%以下、
P:0.025%以下
に制限し、
残部がFe及び不可避的不純物よりなる鋼からなり、浸炭焼入れ焼戻しが施されており、表層C濃度が0.6%以上1.0%以下であり、表面から0.3mm深さまでに、径が5nm以上100nm以下で、Tiおよび/またはNbを含有する析出物が10個/μm以上存在することを特徴とするスリーブ・ドッグギヤ。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) The component composition is mass%,
C: 0.16-0.30%,
Si: 0.01 to 2.0%,
Mn: 0.30 to 2.0%,
Cr: 0.05-3.0%,
Al: 0.001 to 0.2%,
S: 0.004 to 0.04%,
N: 0.003 to 0.03%
Containing
further,
Ti: 0.001 to 0.3%, Nb: 0.001 to 0.3% of one type or two types are contained,
O: 0.005% or less,
P: limited to 0.025% or less,
The balance is made of steel consisting of Fe and unavoidable impurities, carburized, quenched and tempered, the surface layer C concentration is 0.6% to 1.0%, and the diameter is 0.3 mm deep from the surface. A sleeve / dog gear characterized in that a precipitate containing Ti and / or Nb is present at 10 pieces / μm 2 or more at 5 nm to 100 nm.

(2)前記鋼が、さらに、質量%で、
Ni:5.0%以下(0%を含まない)、
Mo:1.0%以下(0%を含まない)
Cu:1.0%以下(0%を含まない)、
B:0.005%以下(0%を含まない)
の1種又は2種以上を含有することを特徴とする上記(1)に記載のスリーブ・ドッグギヤ。
(2) The steel is further mass%,
Ni: 5.0% or less (excluding 0%),
Mo: 1.0% or less (excluding 0%)
Cu: 1.0% or less (excluding 0%),
B: 0.005% or less (excluding 0%)
The sleeve / dog gear as set forth in (1) above, comprising one or more of the above.

(3)前記鋼が、さらに、質量%で、
Ca:0.01%以下(0%を含まない)、
Pb:0.5%以下(0%を含まない)
の1種又は2種を含有することを特徴とする上記(1)又は(2)に記載のスリーブ・ドッグギヤ。
(3) The steel is further mass%,
Ca: 0.01% or less (excluding 0%),
Pb: 0.5% or less (excluding 0%)
The sleeve / dog gear according to (1) or (2) above, which contains one or two of the above.

本発明によれば、耐衝撃摩耗性に優れるスリーブ・ドッグギヤを提供することができる。   According to the present invention, it is possible to provide a sleeve / dog gear excellent in impact wear resistance.

耐衝撃摩耗性を評価するための耐衝撃摩耗試験片を示す模式図である。It is a schematic diagram which shows the impact wear test piece for evaluating impact wear resistance. 耐衝撃摩耗性の評価方法を示す模式図であり、試験片[1]、[2]が衝突前の状態を示す図である。FIG. 3 is a schematic diagram showing a method for evaluating impact wear resistance, and is a diagram showing a state before a collision between test pieces [1] and [2]. 耐衝撃摩耗性の評価方法を示す模式図であり、試験片[1]、[2]が衝突した時の状態を示す図である。FIG. 5 is a schematic diagram showing a method for evaluating impact wear resistance, and shows a state when test pieces [1] and [2] collide. 耐衝撃摩耗性の評価方法を示す模式図であり、試験片[1]、[2]が衝突した後の最終の状態を示す図である。FIG. 3 is a schematic diagram showing a method for evaluating impact wear resistance, and is a diagram showing a final state after collision of test pieces [1] and [2].

以下に、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.

まず、本実施形態に係る鋼の化学成分の限定理由について説明する。以下、合金元素の含有量に係る単位である「質量%」は、単に「%」と記載する。   First, the reasons for limiting the chemical components of the steel according to this embodiment will be described. Hereinafter, “mass%”, which is a unit related to the content of alloy elements, is simply referred to as “%”.

C:0.16〜0.30%
C含有量は、スリーブ・ドッグギヤの芯部(非浸炭部)強度を決定し、さらに有効硬化層深さにも影響する。所要の芯部強度を確保するために、C含有量の下限値を0.16%とする。一方、C含有量が多すぎると製造性が低下するので、C含有量の上限値を0.30%とする。C含有量は、好ましくは0.18〜0.25%である。
C: 0.16-0.30%
The C content determines the strength of the core (non-carburized portion) of the sleeve / dog gear, and also affects the effective hardened layer depth. In order to ensure the required core strength, the lower limit of the C content is 0.16%. On the other hand, since productivity will fall when there is too much C content, the upper limit of C content shall be 0.30%. The C content is preferably 0.18 to 0.25%.

Si:0.01〜2.0%
Siは、鋼の脱酸に有効な元素であるとともに、必要な強度及び焼入れ性を鋼に付与するために有効な元素である。Si含有量が0.01%未満では、その効果が不十分である。また、Si含有量が2.0%を超えると、製造時の脱炭が著しくなり、スリーブ・ドッグギヤの強度および有効硬化層深さが不足する。以上の理由によって、Si含有量を0.01〜2.0%の範囲内とする。Si含有量は、好ましくは0.1〜1.0%である。
Si: 0.01 to 2.0%
Si is an element effective for deoxidizing steel, and is an element effective for imparting necessary strength and hardenability to steel. If the Si content is less than 0.01%, the effect is insufficient. On the other hand, if the Si content exceeds 2.0%, decarburization during production becomes significant, and the strength of the sleeve / dog gear and the effective hardened layer depth are insufficient. For the above reasons, the Si content is set in the range of 0.01 to 2.0%. The Si content is preferably 0.1 to 1.0%.

Mn:0.30〜2.0%
Mnは鋼の脱酸に有効な元素であるとともに、必要な強度及び焼入れ性を鋼に付与するために有効な元素である。Mnは、鋼中に不可避的に混入する不純物元素のSを、MnSとして固定して無害化する元素である。Mnの添加効果を確保するため、含有量は下限を0.30%とする。また、Mn含有量が2.0%を超えると、サブゼロ処理を施しても、残留オーステナイトが安定的に存在して、スリーブ・ドッグギヤの強度が低下する。以上の理由によって、Mn含有量を0.30〜2.0%の範囲内とする。Mn含有量は、好ましくは、0.50〜1.20%である。
Mn: 0.30 to 2.0%
Mn is an element effective for deoxidation of steel and an element effective for imparting necessary strength and hardenability to steel. Mn is an element detoxified by fixing S as an impurity element inevitably mixed in steel as MnS. In order to ensure the effect of adding Mn, the lower limit of the content is 0.30%. On the other hand, if the Mn content exceeds 2.0%, the retained austenite exists stably even when the sub-zero treatment is performed, and the strength of the sleeve / dog gear is lowered. For the above reason, the Mn content is set in the range of 0.30 to 2.0%. The Mn content is preferably 0.50 to 1.20%.

Cr:0.05〜3.0%
Crは、必要な強度及び焼入れ性を鋼に付与するために有効な元素である。Cr含有量が0.05%未満では、その効果が不十分であり、下限を0.05%とする。Cr含有量が3.0%を超えると、硬さが上昇して、冷間加工性が低下するので、上限を3.0%とする。Cr含有量は、好ましくは0.2〜1.5%である。
Cr: 0.05-3.0%
Cr is an effective element for imparting necessary strength and hardenability to steel. If the Cr content is less than 0.05%, the effect is insufficient, and the lower limit is made 0.05%. If the Cr content exceeds 3.0%, the hardness increases and the cold workability decreases, so the upper limit is made 3.0%. The Cr content is preferably 0.2 to 1.5%.

Al:0.001〜0.2%
Alは、鋼の脱酸に有効な元素であるとともに、窒化物として鋼中に析出して、結晶粒微細化効果を奏する元素である。Al含有量が0.001%未満では、その効果が不十分である。また、Al含有量が0.2%を超えると、析出物(Al窒化物)が粗大化し、鋼およびスリーブ・ドッグギヤの脆化の原因となる。以上の理由によって、Al含有量を0.001〜0.2%の範囲内とする。Al含有量のより好適な範囲は0.01〜0.15%である。
Al: 0.001 to 0.2%
Al is an element effective for deoxidation of steel and is an element that precipitates in the steel as a nitride and has the effect of crystal grain refinement. If the Al content is less than 0.001%, the effect is insufficient. On the other hand, if the Al content exceeds 0.2%, the precipitate (Al nitride) becomes coarse, which causes embrittlement of the steel and the sleeve / dog gear. For the above reason, the Al content is set within the range of 0.001 to 0.2%. A more preferable range of the Al content is 0.01 to 0.15%.

S:0.004〜0.04%
Sは、鋼中でMnSを形成し、これにより鋼の被削性を向上させる。Sの添加効果を得るため、下限を0.004%とする。S含有量が0.04%を超えると、その効果は飽和し、むしろ粒界偏析を起こし粒界脆化を引き起こすため、上限は0.04%とする。S含有量のより好適な範囲は0.01〜0.03%である。
S: 0.004 to 0.04%
S forms MnS in the steel, thereby improving the machinability of the steel. In order to obtain the effect of adding S, the lower limit is made 0.004%. If the S content exceeds 0.04%, the effect is saturated, rather, grain boundary segregation occurs and grain boundary embrittlement occurs, so the upper limit is made 0.04%. A more preferable range of the S content is 0.01 to 0.03%.

N:0.003〜0.03%
Nは、鋼中でAl、Ti、Nb等と結合して窒化物又は炭窒化物を生成し、これら窒化物および炭窒化物は結晶粒の粗大化を抑制する効果を有する。また、これら窒化物は、凝固時に形成する粗大な析出物と、凝固の後期およびその後の熱処理で形成する微細な析出物に分かれ、耐衝撃摩耗性の向上には、微細な析出物が影響を及ぼす。Nの添加効果を得るため、下限を0.003%とする。N含有量が0.03%を超えると、粗大な析出物量が顕著になり、部品強度を低下させるため、上限を0.03%とする。N含有量のより好適な範囲は0.004〜0.025%である。
N: 0.003 to 0.03%
N combines with Al, Ti, Nb, etc. in steel to produce nitrides or carbonitrides, and these nitrides and carbonitrides have the effect of suppressing the coarsening of crystal grains. In addition, these nitrides are divided into coarse precipitates formed during solidification and fine precipitates formed in the latter stage of solidification and subsequent heat treatment, and fine precipitates have an effect on the improvement of impact wear resistance. Effect. In order to obtain the effect of adding N, the lower limit is made 0.003%. If the N content exceeds 0.03%, the amount of coarse precipitates becomes prominent and the component strength is reduced, so the upper limit is made 0.03%. A more preferable range of the N content is 0.004 to 0.025%.

Ti:0.001〜0.3%
Tiは、耐衝撃摩耗性の向上に有効な微細な析出物(例えばTiC、(Ti,Nb)C)を鋼中に生成する。また、微細な析出物の効果として、結晶粒微細化効果を奏する元素である。Tiの添加効果を得るため、下限を0.001%とする。Ti含有量が0.3%を越えると、TiN主体の析出物が多くなって、脆性破壊を起こしやすくなるため、上限を0.3%とする。Ti含有量のより好適な範囲は0.02〜0.2%である。
Ti: 0.001 to 0.3%
Ti produces fine precipitates (for example, TiC, (Ti, Nb) C) effective in improving the impact wear resistance in the steel. Further, as an effect of fine precipitates, it is an element that exhibits a crystal grain refinement effect. In order to obtain the addition effect of Ti, the lower limit is made 0.001%. If the Ti content exceeds 0.3%, TiN-based precipitates increase and brittle fracture tends to occur, so the upper limit is made 0.3%. A more preferable range of the Ti content is 0.02 to 0.2%.

Nb:0.001〜0.3%
Nbは、耐衝撃摩耗性の向上に有効な微細な析出物(例えばNbC、NbCN、(Ti,Nb)C)を鋼中に生成する。また、微細な析出物の効果として、結晶粒微細化効果を奏する元素である。Nbの添加効果を得るため、下限を0.001%とする。Nb含有量が0.3%を越えると、析出物が粗大化し、脆性破壊を起こしやすくなるため、上限を0.3%とする。Nb含有量のより好適な範囲は0.02〜0.2%である。
Nb: 0.001 to 0.3%
Nb produces fine precipitates (for example, NbC, NbCN, (Ti, Nb) C) effective in improving the impact wear resistance in the steel. Further, as an effect of fine precipitates, it is an element that exhibits a crystal grain refinement effect. In order to obtain the Nb addition effect, the lower limit is made 0.001%. If the Nb content exceeds 0.3%, the precipitate becomes coarse and brittle fracture is likely to occur, so the upper limit is made 0.3%. A more preferable range of the Nb content is 0.02 to 0.2%.

O:0.005%以下
Oは鋼中で硬い酸化物系介在物を形成して脆性破壊を起こしやすくする元素である。O含有量は0.005%以下に制限されるとよい。O含有量のより好適な範囲は0.002%以下である。O含有量は少ない方が好ましいので、O含有量の下限値は0%である。
O: 0.005% or less O is an element that easily forms brittle fracture by forming hard oxide inclusions in steel. The O content is preferably limited to 0.005% or less. A more preferable range of the O content is 0.002% or less. Since it is preferable that the O content is small, the lower limit of the O content is 0%.

P:0.025%以下
Pは、浸炭時にオーステナイト粒界に偏析し、それにより粒界破壊を引き起こすことよって脆性破壊を起こしやすくする。したがって、P含有量を0.025%以下に制限するとよい。P含有量のより好適な範囲は0.02%以下である。P含有量が少ない方が好ましいので、P含有量の下限値は0%である。しかし、Pの除去を必要以上に行った場合、製造コストが増大する。従って、P含有量の実質的な下限値は約0.004%となるのが通常である。
P: 0.025% or less P segregates at austenite grain boundaries during carburizing, thereby causing grain boundary fracture, thereby easily causing brittle fracture. Therefore, the P content is preferably limited to 0.025% or less. A more preferable range of the P content is 0.02% or less. Since it is preferable that the P content is small, the lower limit value of the P content is 0%. However, if P is removed more than necessary, the manufacturing cost increases. Therefore, the substantial lower limit of the P content is usually about 0.004%.

本発明鋼においては、さらなる焼入れ性の向上を目的として、Ni、Mo、Cu、及び、Bの1種又は2種以上を添加してもよい。
Ni:5.0%以下(0%を含まない)
Mo:1.0%以下(0%を含まない)
Cu:1.0%以下(0%を含まない)
B:0.005%以下(0%を含まない)
In the steel of the present invention, one or more of Ni, Mo, Cu, and B may be added for the purpose of further improving hardenability.
Ni: 5.0% or less (excluding 0%)
Mo: 1.0% or less (excluding 0%)
Cu: 1.0% or less (excluding 0%)
B: 0.005% or less (excluding 0%)

Ni、Mo、Cu及び、Bは、焼入れ性の向上に有効な元素である。その添加効果を確実に得るためには、Niは0.2%以上添加し、Mo及びCuは0.05%以上添加し、Bは0.0006%以上添加するのが好ましい。含有量がNiは5.0%、Mo及びCuは1.0%を超えると、添加効果は飽和し、経済的に不利となるので、それらを上限とする。Bは、0.005%を超えると、B化合物が粒界に析出し靭性が低下するので、含有量の上限を0.005%とする。Ni含有量のより好適な好適範囲は、0.2〜2.0%である。Mo、Cu含有量のより好適な範囲は、0.05〜0.2%である。B含有量のより好適な範囲は0.0006〜0.0025%である。   Ni, Mo, Cu, and B are effective elements for improving hardenability. In order to surely obtain the effect of addition, it is preferable to add 0.2% or more of Ni, 0.05% or more of Mo and Cu, and 0.0006% or more of B. If the content exceeds 5.0% for Ni and 1.0% for Mo and Cu, the effect of addition is saturated and economically disadvantageous, so these are the upper limit. If B exceeds 0.005%, the B compound is precipitated at the grain boundary and the toughness is lowered, so the upper limit of the content is made 0.005%. A more preferable preferable range of the Ni content is 0.2 to 2.0%. A more preferable range of the Mo and Cu contents is 0.05 to 0.2%. A more preferable range of the B content is 0.0006 to 0.0025%.

本発明鋼においては、被削性を改善するために、さらに、Ca、Pbの1種または2種を添加してもよい。
Ca:0.01%以下(0%を含まない)
Pb:0.5%以下(0%を含まない)
In the steel of the present invention, one or two of Ca and Pb may be further added to improve the machinability.
Ca: 0.01% or less (excluding 0%)
Pb: 0.5% or less (excluding 0%)

Caは酸化物を低融点化し、切削加工環境下の温度上昇により軟質化することで、被削性を改善するが、0.01%を超えるとCaSを多量に生成し、被削性が低下するので、Ca含有量の上限を0.01%とする。添加効果を確実に得るにはCa添加量の下限を0.0005%とするのが好ましい。   Ca improves the machinability by lowering the melting point of the oxide and softening it by increasing the temperature in the cutting environment, but if it exceeds 0.01%, it produces a large amount of CaS and the machinability is reduced. Therefore, the upper limit of the Ca content is set to 0.01%. In order to obtain the effect of addition reliably, the lower limit of the Ca addition amount is preferably 0.0005%.

Pbは切削時に溶融、脆化することで被削性を向上する元素である。一方過剰に添加すると製造性が低下することから、上限は0.5%とする。添加効果を確実に得るにはPb添加量の下限は0.01%とするのが好ましい。   Pb is an element that improves machinability by melting and embrittlement during cutting. On the other hand, if the addition is excessive, the productivity decreases, so the upper limit is made 0.5%. In order to ensure the effect of addition, the lower limit of the amount of Pb added is preferably 0.01%.

本実施形態に係る鋼は、上述の合金成分を含有し、残部がFeおよび不可避的不純物を含む。上述の合金成分以外の元素が、不可避的不純物として、原材料および製造装置から鋼中に混入することは、その混入量が鋼の特性に影響を及ぼさない水準である限り許容される。   The steel according to this embodiment contains the above-described alloy components, and the balance contains Fe and inevitable impurities. It is permissible for elements other than the above-described alloy components to be mixed into steel from raw materials and production equipment as unavoidable impurities as long as the amount of the mixed metal does not affect the properties of the steel.

次に、表層C濃度を範囲について説明する。
表層C濃度は、浸炭後の表層部のC濃度であり、表層部の硬さに大きく影響する。表層部の硬さが十分でない場合、Tiおよび/またはNbを含有する微細な析出物の効果以上に耐衝撃摩耗性が低下する。表層C濃度が0.6%未満ではマルテンサイト自体の硬さが低下するため、1.0%以上では残留オーステナイトが多量に存在して硬さが低下するため、表層C濃度の範囲を0.6〜1.0%とする。
Next, the range of the surface layer C concentration will be described.
The surface layer C concentration is the C concentration of the surface layer portion after carburizing and greatly affects the hardness of the surface layer portion. When the hardness of the surface layer portion is not sufficient, the impact wear resistance is lowered more than the effect of fine precipitates containing Ti and / or Nb. When the surface layer C concentration is less than 0.6%, the hardness of the martensite itself is lowered. When the surface layer concentration is 1.0% or more, a large amount of retained austenite is present and the hardness is lowered. 6 to 1.0%.

尚、表層C濃度は、表面から深さ5〜50μmの範囲のC濃度の平均値である。   The surface layer C concentration is an average value of C concentrations in a range of 5 to 50 μm from the surface.

次に、耐衝撃摩耗性の評価方法について説明する。
耐衝撃摩耗性の評価には、図1に示す、断面が10mm×10mmの正方形であり、全長が25mmで、片側に先端角度100度の凸部を持つ衝撃摩耗試験片を用いた。なお、凸部はフライス加工で作製しており、加工面をそのまま試験に使用している。耐衝撃摩耗性の評価には、成分組成や浸炭量等が同材質の衝撃摩耗試験片を一対ずつ作製し、図2、図3、および図4に示す模式図のように実施する。すなわち、図2に示す状態から試験片[1]を、試験片[2]の長手方向軸線に平行に往復運動させ、100℃のミッションオイルを衝突位置に滴下しながら、144kgの荷重を長手方向軸線に対して垂直横向きに負荷して左右方向にのみに平行移動可能に固定された試験片[2]に、試験片[1]を、衝突速度400mm/sで、図3に示すように衝突させ、その後、図4に示す位置まで前進させることを繰り返す衝撃摩耗試験を実施した。なお、試験片[1]を、試験片[2]の長手方向軸線に対し5度傾けるとともに、試験片[1]を試験片[2]に対し下方向に2mmずらして試験片[1]と[2]の縦方向の衝突範囲を3mmとして衝突させているのは実機より厳しい条件で評価する為である。これを344rpmで10万回実施し、試験片[1]の試験前後での重量減量をもって摩耗量とした。耐衝撃摩耗性の良否を判定する基準は摩耗量5mgとし、摩耗量が5mg以下の場合に十分な耐衝撃摩耗性を有するとした。
Next, an impact wear resistance evaluation method will be described.
For the evaluation of impact wear resistance, an impact wear test piece having a square shape with a cross section of 10 mm × 10 mm, a total length of 25 mm, and having a convex portion with a tip angle of 100 degrees on one side as shown in FIG. 1 was used. In addition, the convex part is produced by the milling process, and the processed surface is used for the test as it is. For the evaluation of impact wear resistance, a pair of impact wear test pieces of the same material composition, carburization amount, and the like are produced one by one as shown in the schematic diagrams of FIGS. 2, 3, and 4. That is, the test piece [1] is reciprocated in parallel with the longitudinal axis of the test piece [2] from the state shown in FIG. 2, and a load of 144 kg is applied in the longitudinal direction while dripping 100 ° C. mission oil at the collision position. As shown in FIG. 3, the test piece [1] is applied to the test piece [2] fixed in such a manner as to be able to move parallel to the left and right direction by being loaded in the direction perpendicular to the axis, as shown in FIG. After that, an impact wear test was repeated in which the advancing to the position shown in FIG. 4 was repeated. The test piece [1] is tilted 5 degrees with respect to the longitudinal axis of the test piece [2], and the test piece [1] is shifted downward by 2 mm with respect to the test piece [2]. The reason for the collision in [2] with the vertical collision range of 3 mm is to evaluate under severer conditions than the actual machine. This was carried out 100,000 times at 344 rpm, and the weight loss before and after the test of the test piece [1] was used as the wear amount. The criterion for judging whether or not the impact wear resistance is good is 5 mg of wear, and when the wear amount is 5 mg or less, the impact wear resistance is sufficient.

摩耗量は以下の理由により、5mg以下である必要がある。上述のように、現状のスリーブ・ドッグギヤは、耐衝撃摩耗性が十分でないため、速度の低下すなわち操作性の低下によって部品としての機能を維持している。十分な操作性を得るには、現状広く使用されているSCM822Hの摩耗量7mgに対し、5mg以下に低減することが好ましい。   The amount of wear needs to be 5 mg or less for the following reasons. As described above, since the current sleeve / dog gear has insufficient impact wear resistance, the function as a part is maintained by the decrease in speed, that is, the operability. In order to obtain sufficient operability, it is preferable to reduce the wear amount of SCM822H, which is widely used at present, to 7 mg or less.

次に、耐衝撃摩耗性に寄与するTiおよび/またはNbを含有する微細な析出物について説明する。   Next, a fine precipitate containing Ti and / or Nb that contributes to impact wear resistance will be described.

本発明者らは、スリーブ・ドッグギヤの耐衝撃摩耗性を向上するため、スリーブ・ドッグギヤにおける衝撃摩耗のメカニズムについて鋭意調査した。その結果、摩耗現象を支配しているのは、き裂の発生、伝播に伴うはく離であること、き裂を抑制することで耐衝撃摩耗性が向上することを知見した。そこで、本発明者らはき裂の抑制に影響する鋼成分について検討した。その結果、Tiおよび/またはNbを含有する微細な析出物が存在する際に、顕著にき裂の数が減少することを知見した。これは、Tiおよび/またはNbを含有する微細な析出物によって摩耗に伴う加工を受ける表層部での加工硬化特性が向上したためと考えられる。さらに、Tiおよび/またはNbを含有する微細な析出物と耐衝撃摩耗性の関係を調査した。その結果、表面から0.3mm深さまでに存在する、径が5nm以上100nm以下の、Tiおよび/またはNbを含有する微細な析出物の個数の増加に伴い摩耗量が減少し、10個/μm以上で摩耗量が5mg以下になることを明らかにした。また、Tiおよび/またはNbを含有する微細な析出物は、5000個/μmを超えるとその効果は飽和する。経済的に不利となるので、5000個/μm以下にすることが好ましい。 In order to improve the impact wear resistance of the sleeve / dog gear, the present inventors have intensively investigated the mechanism of impact wear in the sleeve / dog gear. As a result, it has been found that it is the delamination accompanying the generation and propagation of cracks that dominates the wear phenomenon, and that the impact wear resistance is improved by suppressing the cracks. Therefore, the present inventors examined steel components that affect crack suppression. As a result, it has been found that the number of cracks is remarkably reduced when fine precipitates containing Ti and / or Nb are present. This is presumably because the work hardening characteristics in the surface layer portion subjected to processing accompanying wear by the fine precipitates containing Ti and / or Nb were improved. Furthermore, the relationship between fine precipitates containing Ti and / or Nb and impact wear resistance was investigated. As a result, the amount of wear decreases with an increase in the number of fine precipitates containing Ti and / or Nb that are present at a depth of 0.3 mm from the surface and have a diameter of 5 nm to 100 nm, and the number of wear decreases to 10 / μm. It was clarified that the wear amount was 5 mg or less at 2 or more. Further, when the fine precipitates containing Ti and / or Nb exceed 5000 / μm 2 , the effect is saturated. Since it is economically disadvantageous, it is preferable to set it to 5000 / μm 2 or less.

尚、Tiおよび/またはNbを含有する析出物とは、前記のとおり、例えば、TiC、(Ti,Nb)C、NbC、NbCN等の炭化物、窒化物、炭窒化物等である。   As described above, the precipitate containing Ti and / or Nb is, for example, a carbide such as TiC, (Ti, Nb) C, NbC, NbCN, nitride, carbonitride, or the like.

次に、本発明に用いられる鋼、及び、本発明のスリーブ・ドッグギヤの製造方法について説明する。   Next, the steel used in the present invention and the method for producing the sleeve / dog gear of the present invention will be described.

先ず、常法によって、本発明範囲の組成を有する鋼を溶製、鋳造し、得られた鋼片又は鋼塊を熱間加工し、成型して、スリーブ・ドッグギヤ用素形材を得る。Tiおよび/またはNbを含有する微細な析出物を得るためには、十分加熱させて粗大な析出物を溶体化する必要があるため、熱間加工時に1000℃以上に加熱する。熱間加工は、熱間圧延又は熱間鍛造であり、複数回行ってもよく、熱間圧延と熱間鍛造を組み合わせて行ってもよい。成形は、熱間鍛造で行ってもよく、冷間加工や切削、又は、それらの組み合わせで行ってもよい。   First, a steel having a composition within the range of the present invention is melted and cast by a conventional method, and the obtained steel piece or ingot is hot-worked and molded to obtain a sleeve / dog gear shaped material. In order to obtain fine precipitates containing Ti and / or Nb, it is necessary to sufficiently heat and form coarse precipitates, so that they are heated to 1000 ° C. or higher during hot working. The hot working is hot rolling or hot forging, and may be performed a plurality of times, or may be performed by combining hot rolling and hot forging. Molding may be performed by hot forging, cold processing, cutting, or a combination thereof.

得られたスリーブ・ドッグギヤ用素形材に浸炭処理を行い、スリーブ・ドッグギヤを得る。なお、浸炭方法は特別な方法を用いる必要はなく、一般的な浸炭方法であるガス浸炭法、真空浸炭法などを用いても本発明の効果は発現する。また、浸炭に加えて浸窒を実施してもよく、高濃度浸炭を実施してもよい。浸炭処理時の焼入れ方法は油冷却でもガス冷却でもよい。浸炭焼入れ後の焼戻しは、通常の低温焼戻しが採用される。   The obtained sleeve / dog gear shaped material is carburized to obtain a sleeve / dog gear. In addition, it is not necessary to use a special method for the carburizing method, and the effect of the present invention is exhibited even if a general carburizing method such as a gas carburizing method or a vacuum carburizing method is used. In addition to carburizing, nitriding may be performed, or high concentration carburizing may be performed. The quenching method during the carburizing process may be oil cooling or gas cooling. Normal low temperature tempering is employed for tempering after carburizing and quenching.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

表1に示す成分組成を有する種々の鋼塊を1250℃に加熱後、熱間鍛造を行ってφ35mmに鍛伸し、焼準を施した後、機械加工により鍛伸方向を長手方向として図1に示す断面が10mm×10mmの正方形であり、長手方向の全長が25mmで、片側に先端角度90度の凸部を持つ衝撃摩耗試験片を、φ35mmの棒材の表面から9mmの位置を正方形の中心として、それぞれ一対(試験片[1]、[2])ずつ作製した。作製した各試験片対について、表2に示すNo.1〜30は930℃で、浸炭期としてCP1.1の雰囲気下で140分保持した後に、拡散期としてCP0.9の雰囲気下で50分保持した後に、130℃油焼入れを施し、180℃で焼戻しを行った後に衝撃摩耗試験に供した。No.31は、No.1と同じ鋼を用いて930℃で、CP1.1の雰囲気下で190分保持した後に130℃油焼入れを施し、180℃で焼戻しを行った後に衝撃摩耗試験に供した。No.32は、No.1と同じ鋼を用いて930℃で、CP0.5の雰囲気下で190分保持した後に130℃油焼入れを施し、180℃で焼戻しを行った後に上記の衝撃摩耗試験に供した。   Various steel ingots having the composition shown in Table 1 are heated to 1250 ° C., hot forged, forged to 35 mm, normalized, and then machined to the forging direction as the longitudinal direction. The impact wear test piece having a 10 mm × 10 mm square cross section, a total length in the longitudinal direction of 25 mm, and having a convex portion with a tip angle of 90 degrees on one side, A pair (test pieces [1] and [2]) was prepared as a center. No. shown in Table 2 about each produced test piece pair. 1-30 is 930 degreeC, after holding for 140 minutes in the atmosphere of CP1.1 as a carburizing period, after holding for 50 minutes in the atmosphere of CP0.9 as a diffusion period, 130 degreeC oil quenching is performed, and 180 degreeC is given. After tempering, it was subjected to an impact wear test. No. 31 is No. 31. Using the same steel as No. 1, it was held at 930 ° C. for 190 minutes in an CP 1.1 atmosphere, then subjected to 130 ° C. oil quenching, tempered at 180 ° C., and then subjected to an impact wear test. No. 32, No. 32. Using the same steel as No. 1, it was held at 930 ° C. for 190 minutes in an CP 0.5 atmosphere, then subjected to 130 ° C. oil quenching, tempered at 180 ° C., and then subjected to the above-described impact wear test.

試験前後の重量を比較し、減量分を摩耗量とした。   The weight before and after the test was compared, and the weight loss was taken as the amount of wear.

表層C濃度の測定方法を説明する。試験片[1]を先端から15mmの位置で切断し、断面10mm×10mmを研磨した後に、日本電子株式会社製のEPMA、JXA−8200を使用して、断面の辺の中点における深さ方向のCの濃度分布を5μmピッチで測定し、表面から5〜50μmの濃度の平均値を表層C濃度とした。測定点の大きさ(EPMAの電子ビーム径)はφ5μmとした。   A method for measuring the surface layer C concentration will be described. After cutting the test piece [1] at a position 15 mm from the tip and polishing a cross section of 10 mm × 10 mm, using EPMA JXA-8200 manufactured by JEOL Ltd., the depth direction at the midpoint of the side of the cross section The concentration distribution of C was measured at a pitch of 5 μm, and the average value of the concentration of 5 to 50 μm from the surface was taken as the surface layer C concentration. The size of the measurement point (EPMA electron beam diameter) was set to 5 μm.

表層硬さの測定方法を説明する。試験片[1]を先端から15mmの位置で切断し、断面10mm×10mmを研磨した後に、マイクロビッカース硬さ試験機を用いて、荷重200gで断面の辺の中点における表面から50μm深さの硬さを測定し、これを表層硬さとした。   A method for measuring the surface hardness will be described. After cutting the test piece [1] at a position of 15 mm from the tip and polishing a cross section of 10 mm × 10 mm, using a micro Vickers hardness tester, the load was 200 g and the depth of 50 μm from the surface at the midpoint of the cross section side Hardness was measured and this was defined as surface hardness.

Tiおよび/またはNbを含有する微細な析出物量の同定方法について説明する。試験片[1]を先端から15mm位置で切断し、断面10mm×10mmに対し、抽出レプリカ法を用いてカーボン蒸着膜に析出物を付着させた。抽出レプリカ法の電解抽出時の電気量は0.6クーロン/cmとした。その後電解放出型透過電子顕微鏡を用いて、採取できた領域のうち断面の辺の中点近辺で表面から0.3mm深さ×1mmの範囲の中で、倍率20万倍の状態で蛍光X線を用いてTi、Nbの元素マッピングを取得して重ね合わせ、円相当直径が5〜100nm以内の領域数を計数し、マッピング面積で割ることで1μm当たりの個数を算出した。この操作を10視野について行い、平均した個数をTiおよび/またはNbを含有する微細な析出物の個数とした。 A method for identifying the amount of fine precipitates containing Ti and / or Nb will be described. The test piece [1] was cut at a position of 15 mm from the tip, and a precipitate was attached to the carbon vapor deposition film using an extraction replica method with respect to a cross section of 10 mm × 10 mm. The quantity of electricity at the time of electrolytic extraction in the extraction replica method was 0.6 coulomb / cm 2 . Thereafter, using a field emission type transmission electron microscope, fluorescent X-rays at a magnification of 200,000 times in the range of 0.3 mm depth × 1 mm from the surface in the vicinity of the midpoint of the cross-sectional side of the collected region. The elemental mapping of Ti and Nb was obtained using and superimposed, and the number of regions having a circle-equivalent diameter within 5 to 100 nm was counted, and the number per 1 μm 2 was calculated by dividing by the mapping area. This operation was performed for 10 visual fields, and the average number was defined as the number of fine precipitates containing Ti and / or Nb.

表2に各水準の表層C濃度、表面から0.3mmのTiおよび/またはNbを含有する微細な析出物量、および摩耗量を示す。   Table 2 shows the surface layer C concentration at each level, the amount of fine precipitates containing Ti and / or Nb 0.3 mm from the surface, and the amount of wear.

発明例のNo.1〜26は、いずれも摩耗量が5mg以下であり、良好な耐衝撃摩耗性を有する。
これに対し、比較例のNo.27〜32は摩耗量が5mgを越えており、耐衝撃摩耗性は不十分だった。
Invention Example No. Nos. 1 to 26 all have a wear amount of 5 mg or less and have good impact wear resistance.
In contrast, No. of the comparative example. Nos. 27 to 32 had an abrasion amount exceeding 5 mg, and the impact wear resistance was insufficient.

比較例のNo.27は、TiおよびNb添加量が本発明の規定範囲を下回っており、かつTiおよび/またはNbを含有する微細な析出物量が本発明の範囲を下回ったため、低い耐衝撃特性であった。比較例のNo.28、29は、鋼の成分が本発明の規定範囲外であったため、低い耐衝撃摩耗性であった。No.28はC含有量が本発明の規定範囲を下回り、芯部の強度が不足したためである。No.29は、Mn添加量が本発明の規定範囲を超えており、残留オーステナイトが多量に形成されて表層硬さが低下したためである。   Comparative Example No. No. 27 had low impact resistance because the addition amount of Ti and Nb was below the specified range of the present invention, and the amount of fine precipitates containing Ti and / or Nb was below the range of the present invention. Comparative Example No. Nos. 28 and 29 had low impact wear resistance because the steel components were outside the specified range of the present invention. No. No. 28 is because the C content is below the specified range of the present invention, and the strength of the core is insufficient. No. No. 29 is because the amount of Mn added exceeds the specified range of the present invention, a large amount of retained austenite is formed, and the surface hardness decreases.

比較例No.30〜32は、各合金元素の含有量は本発明の規定範囲内ではあるが、その他の要件を満足していないため、低い耐衝撃摩耗性であった。No.30は、Tiおよび/またはNbを含有する微細な析出物が本発明の規定範囲を下回ったためである。No.31、32は、表層C濃度が本発明の規定範囲外で、表層硬さが十分でないためである。   Comparative Example No. Nos. 30 to 32 had low impact wear resistance because the content of each alloy element was within the specified range of the present invention but other requirements were not satisfied. No. No. 30 is because fine precipitates containing Ti and / or Nb were below the specified range of the present invention. No. 31 and 32 are because the surface layer C concentration is outside the specified range of the present invention and the surface layer hardness is not sufficient.

Claims (3)

成分組成が、質量%で、
C:0.16〜0.30%、
Si:0.01〜2.0%、
Mn:0.30〜2.0%、
Cr:0.05〜3.0%、
Al:0.001〜0.2%、
S:0.004〜0.04%、
N:0.003〜0.03%
を含有し、
さらに、
Ti:0.001〜0.3%、Nb:0.001〜0.3%のうちの1種又は2種を含有し、
O:0.005%以下、
P:0.025%以下
に制限し、
残部がFe及び不可避的不純物よりなる鋼からなり、浸炭焼入れ焼戻しが施されており、表層C濃度が0.6%以上1.0%以下であり、表面から0.3mm深さまでに、径が5nm以上100nm以下で、Tiおよび/またはNbを含有する析出物が10個/μm以上存在することを特徴とするスリーブ・ドッグギヤ。
Ingredient composition is mass%,
C: 0.16-0.30%,
Si: 0.01 to 2.0%,
Mn: 0.30 to 2.0%,
Cr: 0.05-3.0%,
Al: 0.001 to 0.2%,
S: 0.004 to 0.04%,
N: 0.003 to 0.03%
Containing
further,
Ti: 0.001 to 0.3%, Nb: 0.001 to 0.3% of one type or two types are contained,
O: 0.005% or less,
P: limited to 0.025% or less,
The balance is made of steel consisting of Fe and unavoidable impurities, carburized, quenched and tempered, the surface layer C concentration is 0.6% to 1.0%, and the diameter is 0.3 mm deep from the surface. A sleeve / dog gear characterized in that a precipitate containing Ti and / or Nb is present at 10 pieces / μm 2 or more at 5 nm to 100 nm.
前記鋼が、さらに、質量%で、
Ni:5.0%以下(0%を含まない)、
Mo:1.0%以下(0%を含まない)
Cu:1.0%以下(0%を含まない)、
B:0.005%以下(0%を含まない)
の1種又は2種以上を含有することを特徴とする請求項1に記載のスリーブ・ドッグギヤ。
The steel is further in mass%,
Ni: 5.0% or less (excluding 0%),
Mo: 1.0% or less (excluding 0%)
Cu: 1.0% or less (excluding 0%),
B: 0.005% or less (excluding 0%)
The sleeve / dog gear according to claim 1, comprising one or more of the following.
前記鋼が、さらに、質量%で、
Ca:0.01%以下(0%を含まない)、
Pb:0.5%以下(0%を含まない)
の1種又は2種を含有することを特徴とする請求項1又は2に記載のスリーブ・ドッグギヤ。
The steel is further in mass%,
Ca: 0.01% or less (excluding 0%),
Pb: 0.5% or less (excluding 0%)
The sleeve / dog gear according to claim 1, comprising one or two of the following.
JP2014020728A 2014-02-05 2014-02-05 Sleeve dog gear Active JP6301145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014020728A JP6301145B2 (en) 2014-02-05 2014-02-05 Sleeve dog gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014020728A JP6301145B2 (en) 2014-02-05 2014-02-05 Sleeve dog gear

Publications (2)

Publication Number Publication Date
JP2015147962A true JP2015147962A (en) 2015-08-20
JP6301145B2 JP6301145B2 (en) 2018-03-28

Family

ID=53891568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014020728A Active JP6301145B2 (en) 2014-02-05 2014-02-05 Sleeve dog gear

Country Status (1)

Country Link
JP (1) JP6301145B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082310A (en) * 2015-10-30 2017-05-18 新日鐵住金株式会社 Manufacturing method of product member and product member
CN108220806A (en) * 2018-01-15 2018-06-29 高博扬 Ultra-high-strength/tenacity abrasion-resistant stee and its manufacturing method
JP2020164936A (en) * 2019-03-29 2020-10-08 Jfeスチール株式会社 Cementation steel and method for producing the same
JP2021028413A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Steel for carburized gear, carburized gear, and manufacturing method of carburized gear

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617123A (en) * 1992-07-02 1994-01-25 Yamaha Motor Co Ltd Improvement of strength of drive mechanism parts by combining shot peening with heat treatment and surface strengthened drive mechanism parts
JPH11201168A (en) * 1998-01-12 1999-07-27 Nippon Seiko Kk Rolling bearing
JP2006161144A (en) * 2004-12-10 2006-06-22 Kobe Steel Ltd Carburizing rolled steel having excellent high temperature carburizing property and hot forgeability
JP2011219854A (en) * 2010-03-26 2011-11-04 Jfe Steel Corp Case-hardening steel and method for manufacturing the same
JP2013112890A (en) * 2011-11-30 2013-06-10 Nisshin Steel Co Ltd Press working annealed steel sheet, manufacturing method therefor, and machine component excellent in wear resistance
JP2013227674A (en) * 2012-03-30 2013-11-07 Kobe Steel Ltd Gear excellent in seizure resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617123A (en) * 1992-07-02 1994-01-25 Yamaha Motor Co Ltd Improvement of strength of drive mechanism parts by combining shot peening with heat treatment and surface strengthened drive mechanism parts
JPH11201168A (en) * 1998-01-12 1999-07-27 Nippon Seiko Kk Rolling bearing
JP2006161144A (en) * 2004-12-10 2006-06-22 Kobe Steel Ltd Carburizing rolled steel having excellent high temperature carburizing property and hot forgeability
JP2011219854A (en) * 2010-03-26 2011-11-04 Jfe Steel Corp Case-hardening steel and method for manufacturing the same
JP2013112890A (en) * 2011-11-30 2013-06-10 Nisshin Steel Co Ltd Press working annealed steel sheet, manufacturing method therefor, and machine component excellent in wear resistance
JP2013227674A (en) * 2012-03-30 2013-11-07 Kobe Steel Ltd Gear excellent in seizure resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082310A (en) * 2015-10-30 2017-05-18 新日鐵住金株式会社 Manufacturing method of product member and product member
CN108220806A (en) * 2018-01-15 2018-06-29 高博扬 Ultra-high-strength/tenacity abrasion-resistant stee and its manufacturing method
CN108220806B (en) * 2018-01-15 2022-02-25 高博扬 Ultrahigh-strength high-toughness wear-resistant steel and manufacturing method thereof
JP2020164936A (en) * 2019-03-29 2020-10-08 Jfeスチール株式会社 Cementation steel and method for producing the same
JP2021028413A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP7295417B2 (en) 2019-08-09 2023-06-21 日本製鉄株式会社 Carburized gear steel, carburized gear, and method for manufacturing carburized gear

Also Published As

Publication number Publication date
JP6301145B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP5862802B2 (en) Carburizing steel
JP4659139B2 (en) Induction hardening steel
JP4688727B2 (en) Carburized parts and manufacturing method thereof
JP4964063B2 (en) Case-hardened steel with excellent cold forgeability and grain coarsening prevention properties and machine parts obtained therefrom
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP3614113B2 (en) Steel material for bearing element parts with excellent machinability
JP2010229508A (en) Case hardening steel having excellent size-reduction property of maximum crystal grain
JPWO2019198415A1 (en) Steel for parts to be carburized
JP6098769B2 (en) Soft nitriding steel and parts and methods for producing them
JP6301145B2 (en) Sleeve dog gear
JP5886119B2 (en) Case-hardened steel
JP2006299296A (en) Rolled bar steel for case hardening having excellent fatigue property and crystal grain coarsening resistance, and method for producing the same
JP6399213B2 (en) Case-hardened steel parts
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP5370073B2 (en) Alloy steel for machine structural use
JP2010222634A (en) Case hardening steel superior in properties of reducing size of maximum crystal grain and manufacturing method therefor
JP6658981B1 (en) Carburized parts and method of manufacturing the same
JP2005220423A (en) Ti-CONTAINING CASE HARDENING STEEL
JP6819503B2 (en) Steel member
JP2016188421A (en) Carburized component
JP6635100B2 (en) Case hardened steel
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP2016188422A (en) Carburized component
JPWO2020090739A1 (en) Soft nitriding steel and soft nitriding parts and their manufacturing methods
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180228

R150 Certificate of patent or registration of utility model

Ref document number: 6301145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350