JP2010229508A - Case hardening steel having excellent size-reduction property of maximum crystal grain - Google Patents

Case hardening steel having excellent size-reduction property of maximum crystal grain Download PDF

Info

Publication number
JP2010229508A
JP2010229508A JP2009079358A JP2009079358A JP2010229508A JP 2010229508 A JP2010229508 A JP 2010229508A JP 2009079358 A JP2009079358 A JP 2009079358A JP 2009079358 A JP2009079358 A JP 2009079358A JP 2010229508 A JP2010229508 A JP 2010229508A
Authority
JP
Japan
Prior art keywords
less
steel
excluding
case
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009079358A
Other languages
Japanese (ja)
Other versions
JP5385656B2 (en
Inventor
Shigeaki Okamoto
成朗 岡本
Mutsuhisa Nagahama
睦久 永濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009079358A priority Critical patent/JP5385656B2/en
Publication of JP2010229508A publication Critical patent/JP2010229508A/en
Application granted granted Critical
Publication of JP5385656B2 publication Critical patent/JP5385656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a case hardening steel in which crystal grains are highly controlled, and which is useful for producing a steel component used by being subjected to surface hardening treatment such as carburizing treatment. <P>SOLUTION: The case hardening steel has a chemical component composition comprising, by mass, 0.10 to 0.25% C, ≤0.45% (not including 0%) Si, ≤0.60% (not including 0%) Mn, ≤2.5% (not including 0%) Cr and 0.010 to 0.060% Ti, and the balance iron with inevitable impurities. The total area ratio of Ti based sulfides and/or Ti based carbosulfides with an area of ≥10 μm<SP>2</SP>is 1×10<SP>-5</SP>to 1.0×10<SP>-4</SP>%, and the following inequality (1) is satisfied. In the hardening steel, the size-reduction properties of the maximum crystal grains are excellent: A/[Ti]≤0.080.. (1) (wherein, A denotes the total area ratio (%) of the Ti based carbides, carbonitrides, nitrides, sulfides and carbosulfides with an area of ≥10 μm<SP>2</SP>, and [Ti] denotes the Ti content (mass%) in the steel). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車、建築機械、その他産業機械において浸炭処理等の表面硬化処理をして使用される鋼部品を製造するのに有用な肌焼鋼に関する。   The present invention relates to a case-hardened steel useful for producing steel parts used for surface hardening treatment such as carburizing treatment in automobiles, construction machines, and other industrial machines.

自動車、建築機械、その他産業機械において、高い材料強度が要求される機械構造用部品には、通常SCr、SCM、SNCM等のJIS規格で定められた肌焼鋼が使用される。これらの肌焼鋼は切削によって所望の形状に成形された後、浸炭や浸炭窒化処理などの表面硬化処理を施され、その後研磨などの工程を経て鋼部品が製造される。   In automobiles, construction machines, and other industrial machines, case-hardened steels defined by JIS standards such as SCr, SCM, SNCM, etc. are usually used for mechanical structural parts that require high material strength. These case-hardened steels are formed into a desired shape by cutting, and then subjected to surface hardening treatment such as carburizing or carbonitriding, and then steel parts are manufactured through a process such as polishing.

近年、自動車、建築機械、産業機械などに使用される鋼部品は、生産効率の向上、および生産コストの低減が望まれており、成形方法を切削加工から鍛造へ変更することによって、機械加工にかかるコストを低減する取り組みが行われている。しかし、熱間鍛造だけでは高い精度を必要とする部品を製造することが困難であるため、冷間鍛造のみで高精度の部品を製造することが望まれている。   In recent years, steel parts used in automobiles, construction machinery, industrial machinery, etc. have been desired to improve production efficiency and reduce production costs. By changing the forming method from cutting to forging, machining can be performed. Efforts are being made to reduce such costs. However, since it is difficult to manufacture parts that require high accuracy only by hot forging, it is desired to manufacture high-precision parts only by cold forging.

また、冷間鍛造後に表面硬化処理を施すと、オーステナイト結晶粒が粗大化するため、冷間鍛造を行う肌焼鋼には、冷間鍛造性に加えて結晶粒粗大化防止特性が要求される。   In addition, when a surface hardening treatment is performed after cold forging, austenite crystal grains become coarse, so case hardening steel that performs cold forging requires crystal grain coarsening prevention characteristics in addition to cold forgeability. .

結晶粒の粗大化を防止する技術として、例えば特許文献1〜4には微細なTi系炭化物や炭窒化物を利用する技術が開示されている。特許文献1〜2は、微細なTiCやTi系炭窒化物を形成する為に、圧延の加熱時に十分に加熱する点に特徴がある。例えば、特許文献1では、圧延の加熱が不足するとTiCが粗大になると共にTi系炭硫化物が形成され、微細なTiCを十分に確保することができないことを記載している。特許文献2では、Ti系炭窒化物を均一微細に析出させるために粗大なTi系炭窒化物をオーステナイト中に一旦完全固溶させており、例えば、1300℃で3時間程度加熱している。   As techniques for preventing the coarsening of crystal grains, for example, Patent Documents 1 to 4 disclose techniques that use fine Ti-based carbides and carbonitrides. Patent Documents 1 and 2 are characterized in that they are sufficiently heated at the time of rolling in order to form fine TiC and Ti-based carbonitride. For example, Patent Document 1 describes that when heating for rolling is insufficient, TiC becomes coarse and Ti-based carbon sulfide is formed, so that fine TiC cannot be sufficiently secured. In Patent Document 2, a coarse Ti-based carbonitride is once completely dissolved in austenite in order to precipitate Ti-based carbonitride uniformly and finely, and is heated at 1300 ° C. for about 3 hours, for example.

一方、特許文献3〜4は、短時間加熱と長時間加熱の両方を含んでいる点に特徴がある。特許文献3では、圧延前の加熱条件が1200〜1350℃で10〜60分程度になっており(実施例)、特許文献4では、圧延前の加熱条件が1200℃で10分以上になっている(実施例)。従って特許文献3〜4も、長時間加熱の場合は、前記特許文献1〜2と同様、Ti系炭化物・炭窒化物を完全固溶させた後、微細に析出させている。一方、短時間加熱では、Ti系炭化物・炭窒化物が完全固溶しない場合がある。   On the other hand, Patent Documents 3 to 4 are characterized in that both short-time heating and long-time heating are included. In Patent Document 3, the heating conditions before rolling are 1200 to 1350 ° C. for about 10 to 60 minutes (Example), and in Patent Document 4, the heating conditions before rolling are 1200 ° C. and 10 minutes or more. (Example). Accordingly, in Patent Documents 3 to 4, in the case of heating for a long time, similarly to Patent Documents 1 and 2, Ti-based carbides / carbonitrides are completely precipitated and then finely precipitated. On the other hand, Ti-based carbides and carbonitrides may not completely dissolve in short-time heating.

特開2008−81841号公報JP 2008-81841 A 特開2007−31787号公報JP 2007-31787 A 特開2007−162128号公報JP 2007-162128 A 特開2005−240175号公報JP-A-2005-240175

上述の特許文献1〜4のように、微細析出物を利用することで、結晶粒の粗大化防止特性を向上させることができる。本発明の目的は、従来技術を改善し、結晶粒をさらに高度に制御することにある。   As in Patent Documents 1 to 4 described above, the use of fine precipitates can improve crystal grain coarsening prevention characteristics. The object of the present invention is to improve the prior art and to control the crystal grains to a higher degree.

特許文献1〜2と、特許文献3〜4の長時間加熱技術ではいずれもTi系炭化物・炭窒化物を十分に固溶することで、これらを微細析出させている。ところが、本発明者らがさらに検討を重ねたところ、Ti系炭化物・炭窒化物を十分に固溶させる場合にはTi系硫化物・炭硫化物も固溶してしまうこと、そうすると圧延後に粗大なTi系介在物(特に炭化物、炭窒化物)が増え、ほとんどの結晶粒は粗大化が防止されているが、ごく一部に特異的に大きな結晶粒が存在していること(混粒)が明らかとなった。また固溶時間が長くなると、一部のTi系炭化物・炭窒化物がオストワルド成長し、周辺の微細なTi系介在物を吸収することも、混粒が生じる原因と思われる。   In each of the long-time heating techniques of Patent Documents 1 and 2 and Patent Documents 3 and 4, Ti-based carbides and carbonitrides are sufficiently solid-dissolved to finely precipitate them. However, as a result of further studies by the present inventors, in the case where Ti-based carbides / carbonitrides are sufficiently dissolved, Ti-based sulfides / carbonitrides are also dissolved, and in that case coarsely after rolling. Ti-based inclusions (particularly carbides and carbonitrides) are increasing, and most of the crystal grains are prevented from becoming coarse, but there are only a few large grains (mixed grains). Became clear. In addition, when the solid solution time becomes longer, some Ti-based carbides / carbonitrides are Ostwald-growth and the surrounding fine Ti-based inclusions are absorbed, which seems to be a cause of mixed grains.

一方、特許文献3〜4に開示の短時間加熱技術でも混粒が生じることが明らかとなった。そしてその原因について更に検討を進めた結果、特許文献3〜4ではTiが比較的多く添加されていること、そのため短時間加熱では粗大なTi系介在物が残存すること、そして粗大なTi系介在物が残存すると、オーステナイト域での熱処理時に周辺の微細なTi系介在物を吸収しオストワルド成長する結果、極一部で特異的に結晶粒が大きくなることが判明した。   On the other hand, it has been clarified that mixed grains are produced even by the short-time heating technique disclosed in Patent Documents 3 to 4. As a result of further investigation on the cause, Patent Documents 3 to 4 show that a relatively large amount of Ti is added, so that coarse Ti-based inclusions remain in short-time heating, and coarse Ti-based inclusions. It was found that when the material remained, as a result of the Ostwald growth by absorbing the surrounding fine Ti-based inclusions during the heat treatment in the austenite region, the crystal grains specifically increased in a very small part.

そこで微細なTi系介在物を多数分散して結晶粒の粗大化を防止しつつも、最大となる結晶粒を縮小化できる技術(混粒を防止できる技術)を目指してさらに検討を進めた。その結果、Tiの添加量を抑えて鋳造段階での粗大なTi系介在物を抑制しつつ、圧延前の加熱時間を短くしてTi系硫化物・炭硫化物を適正量確保すれば、粗大なTi系介在物(炭化物、窒化物、炭窒化物、硫化物、炭硫化物)の形成を防止でき、その結果Ti系介在物のオストワルド成長を防止でき、かつTi系硫化物・炭硫化物によるピンニング効果も利用することができること、そのため混粒を生じることなく結晶粒を微細化できることを見出し、本発明を完成した。   Therefore, further investigation was advanced with the aim of a technique (a technique capable of preventing mixed grains) capable of reducing the largest crystal grains while dispersing a large number of fine Ti-based inclusions to prevent the crystal grains from becoming coarse. As a result, if the addition amount of Ti is suppressed and coarse Ti-based inclusions in the casting stage are suppressed, the heating time before rolling is shortened to secure an appropriate amount of Ti-based sulfide / carbon sulfide. Ti-based inclusions (carbides, nitrides, carbonitrides, sulfides, carbosulfides) can be prevented, resulting in prevention of Ostwald growth of Ti-based inclusions, and Ti-based sulfides / carbonides The present inventors have found that the pinning effect due to can be utilized, and that the crystal grains can be refined without generating mixed grains, thereby completing the present invention.

すなわち、本発明に係る肌焼鋼はC:0.10〜0.25%(質量%の意味。以下、化学成分組成について同じ。)、Si:0.45%以下(0%を含まない)、Mn:0.60%以下(0%を含まない)、Cr:2.5%以下(0%を含まない)、Ti:0.010〜0.060%を含有し、残部は鉄および不可避不純物であり、面積10μm2以上のTi系硫化物および/またはTi系炭硫化物の合計面積率が1×10-5〜1.0×10-4%であるとともに、下記式(1)を満足している。このような肌焼鋼は、最大結晶粒の縮小化特性に優れている。
A/[Ti]≦0.080 …(1)
(式中、Aは面積10μm2以上のTi系の炭化物、炭窒化物、窒化物、硫化物、および炭硫化物の合計面積率(%)を示す。[Ti]は鋼中のTi含有量(質量%)を示す。)
That is, the case-hardened steel according to the present invention has C: 0.10 to 0.25% (meaning mass%, hereinafter the same for the chemical composition), Si: 0.45% or less (excluding 0%). , Mn: 0.60% or less (not including 0%), Cr: 2.5% or less (not including 0%), Ti: 0.010 to 0.060%, the balance being iron and inevitable The total area ratio of Ti-based sulfide and / or Ti-based carbon sulfide having an area of 10 μm 2 or more is 1 × 10 −5 to 1.0 × 10 −4 %, and the following formula (1) Is pleased. Such a case-hardened steel is excellent in the reduction characteristics of the maximum crystal grains.
A / [Ti] ≦ 0.080 (1)
(In the formula, A indicates the total area ratio (%) of Ti-based carbides, carbonitrides, nitrides, sulfides, and carbonsulfides having an area of 10 μm 2 or more. [Ti] is the Ti content in the steel. (Mass%) is shown.)

前記肌焼鋼には、更にB:0.0005〜0.0050%、Mo:2.0%以下(0%を含まない)、Cu:0.10%以下(0%を含まない)、Ni:0.10%以下(0%を含まない)などを適宜添加しても良い。なお、前記不可避不純物は、例えばP:0.03%以下(0%を含まない)、S:0.030%以下(0%を含まない)、Al:0.1%以下(0%を含まない)、N:0.025%以下(0%を含まない)などである。   The case-hardened steel further includes B: 0.0005 to 0.0050%, Mo: 2.0% or less (not including 0%), Cu: 0.10% or less (not including 0%), Ni : 0.10% or less (not including 0%) may be added as appropriate. The inevitable impurities are, for example, P: 0.03% or less (not including 0%), S: 0.030% or less (not including 0%), Al: 0.1% or less (including 0%) N), N: 0.025% or less (not including 0%).

本発明には、上記の肌焼鋼を冷間加工した後、表面硬化処理した鋼材も含まれる。   The present invention also includes a steel material that has been subjected to cold working on the above case-hardened steel and then subjected to surface hardening treatment.

本発明によれば、Tiの添加量を抑え、さらにTi系硫化物・炭硫化物を適正量確保しているため、粗大なTi系介在物を抑制することができ、肌焼鋼の最大結晶粒の縮小化特性を高めることができる。   According to the present invention, since the addition amount of Ti is suppressed, and an appropriate amount of Ti-based sulfide / carbon sulfide is ensured, coarse Ti-based inclusions can be suppressed, and the maximum crystal of case-hardened steel Grain shrinkage characteristics can be enhanced.

図1は実施例で得られた鋼材を焼鈍するときのヒートパターンを示す図である。FIG. 1 is a diagram showing a heat pattern when the steel material obtained in the example is annealed. 図2は実施例で用いる試験片の形状を示す図である。FIG. 2 is a diagram showing the shape of a test piece used in the examples. 図3は実施例で得られた鋼材をガス浸炭するときのヒートパターンを示す図である。FIG. 3 is a view showing a heat pattern when gas carburizing the steel material obtained in the example. 図4は式(1)の左辺(A/[Ti])と最大結晶粒の粒度番号との関係を示す図である。FIG. 4 is a diagram showing the relationship between the left side (A / [Ti]) of the formula (1) and the grain size number of the largest crystal grain.

本発明は、部品形状に加工した後で表面硬化処理するのに適した鋼材、すなわち肌焼鋼を対象とする。そして表面硬化処理における加熱時に結晶粒が粗大化するのを防止するため、Tiが添加されている。Tiは鋼中で微細なTi(C、N)を生成し、表面硬化処理(浸炭など)時の結晶粒粗大化を抑制する。一方、Ti量が過剰になると、粗大なTi系介在物が残存し、オーステナイト域での熱処理時にオストワルド成長することによって、ごく一部で特異的に結晶粒が大きくなる。また、鋼材の製造コストの上昇や、粗大なTi系介在物の生成による冷間鍛造性および衝撃強度の低下を招く。そこでTi量は0.010〜0.060%、好ましくは0.015〜0.050%、より好ましくは0.025〜0.045%とする。   The present invention is directed to a steel material suitable for surface hardening after being processed into a part shape, that is, case-hardened steel. And Ti is added in order to prevent a crystal grain coarsening at the time of the heating in a surface hardening process. Ti produces fine Ti (C, N) in the steel and suppresses coarsening of crystal grains during surface hardening (such as carburizing). On the other hand, when the amount of Ti becomes excessive, coarse Ti-based inclusions remain, and the Ostwald growth occurs during the heat treatment in the austenite region, so that the crystal grains specifically increase in a small part. Moreover, the manufacturing cost of steel materials increases, and cold forgeability and impact strength decrease due to the generation of coarse Ti-based inclusions. Therefore, the Ti amount is 0.010 to 0.060%, preferably 0.015 to 0.050%, more preferably 0.025 to 0.045%.

本発明の肌焼鋼は、さらにC:0.10〜0.25%、Si:0.45%以下(0%を含まない)、Mn:0.60%以下(0%を含まない)、Cr:2.5%以下(0%を含まない)を必須元素として含有する。各元素の添加理由は以下の通りである。   The case-hardened steel of the present invention further includes C: 0.10 to 0.25%, Si: 0.45% or less (not including 0%), Mn: 0.60% or less (not including 0%), Cr: 2.5% or less (not including 0%) is contained as an essential element. The reason for adding each element is as follows.

C:0.10〜0.25%
Cは部品として必要な芯部硬さを確保する上で重要な元素であり、C量が不足すると浸炭後の硬さ不足により、部品としての静的強度が不足する。一方、C量が過剰になると硬くなりすぎ、鍛造性が低下する。そこでC量は0.10〜0.25%、好ましくは0.12〜0.23%、より好ましくは0.14〜0.20%とする。
C: 0.10 to 0.25%
C is an important element for securing the core hardness necessary for a component. If the amount of C is insufficient, the static strength as a component is insufficient due to insufficient hardness after carburizing. On the other hand, when the amount of C is excessive, it becomes too hard and the forgeability decreases. Therefore, the C content is 0.10 to 0.25%, preferably 0.12 to 0.23%, more preferably 0.14 to 0.20%.

Si:0.45%以下(0%を含まない)
Siは焼戻し処理時の硬さ低減を抑制するため、表面硬化処理部品表層の硬さを確保するのに有効な元素である。しかし、添加量の増大に伴って材料の変形抵抗が増し、鍛造性を低下させる。そこでSiは0.45%以下、好ましくは0.02〜0.35%、より好ましくは0.05〜0.15%とする。
Si: 0.45% or less (excluding 0%)
Si is an effective element for ensuring the hardness of the surface layer of the surface-hardened treated part in order to suppress the hardness reduction during the tempering process. However, as the addition amount increases, the deformation resistance of the material increases and the forgeability decreases. Therefore, Si is 0.45% or less, preferably 0.02 to 0.35%, more preferably 0.05 to 0.15%.

Mn:0.60%以下(0%を含まない)
Mnは脱酸材として作用し酸化物系介在物量を低減して鋼材の内部品質を高める作用を発揮するとともに、表面硬化処理(浸炭など)後の焼入れ時の焼入性を著しく向上させる効果を有する。しかし、Mnの増加に伴い縞状偏析が顕著となり、材質のバラツキが大きくなって冷間加工性に悪影響を与える。そこでMn量は0.60%以下、好ましくは0.10〜0.55%、より好ましくは0.20〜0.50%とする。
Mn: 0.60% or less (excluding 0%)
Mn acts as a deoxidizer, reduces the amount of oxide inclusions and enhances the internal quality of the steel, and significantly improves the hardenability during quenching after surface hardening (such as carburizing). Have. However, as the Mn increases, striped segregation becomes prominent, resulting in large variations in material and adversely affecting cold workability. Therefore, the amount of Mn is 0.60% or less, preferably 0.10 to 0.55%, more preferably 0.20 to 0.50%.

Cr:2.5%以下(0%を含まない)
Crは炭化物に固溶して炭化物の硬さを向上させる効果があるため、耐磨耗性の向上に有効である。また、Mnと同様に表面硬化処理(浸炭など)後の焼入れ時の焼入性を著しく向上させる効果を有する。一方、Cr量が過剰になると素材の硬度が高くなりすぎて鍛造性が不良となる。そこでCr量は、2.5%以下、好ましくは0.5〜2.3%、より好ましくは0.8〜2.0%とする。
Cr: 2.5% or less (excluding 0%)
Since Cr has the effect of improving the hardness of the carbide by dissolving in the carbide, it is effective for improving the wear resistance. Further, like Mn, it has an effect of remarkably improving the hardenability at the time of quenching after the surface hardening treatment (carburization, etc.). On the other hand, if the amount of Cr is excessive, the hardness of the material becomes too high and the forgeability becomes poor. Therefore, the Cr content is 2.5% or less, preferably 0.5 to 2.3%, more preferably 0.8 to 2.0%.

本発明の肌焼鋼は、必要に応じて他の成分を含有していてもよい。他の成分としてはB、Mo、Cu、Niなどが例示でき、これらは単独で添加してもよく、適宜組み合わせて添加してもよい。B、Mo、Cu、Niなどの好ましい添加量及び添加理由は以下の通りである。   The case hardening steel of this invention may contain the other component as needed. Examples of other components include B, Mo, Cu, and Ni, and these may be added alone or in appropriate combination. Preferred addition amounts and reasons for addition of B, Mo, Cu, Ni, etc. are as follows.

B:0.0005〜0.0050%
Bは微量で鋼材の焼入性を大幅に向上させる効果があることに加えて、結晶粒界を強化して衝撃強度を高める作用があるため添加してもよい。しかし、過剰に添加すると窒化物が生成しやすくなり、冷間及び熱間加工性を低下させる。そこでB量は0.0005〜0.0050%とするのが好ましく、より好ましくは0.0010〜0.0040%、さらに好ましくは0.0015〜0.0030%とする。
B: 0.0005 to 0.0050%
B may be added in a small amount because it has the effect of significantly improving the hardenability of the steel material and has the effect of strengthening the grain boundaries and increasing the impact strength. However, if it is added excessively, nitrides are likely to be formed, and cold and hot workability are reduced. Therefore, the B content is preferably 0.0005 to 0.0050%, more preferably 0.0010 to 0.0040%, and still more preferably 0.0015 to 0.0030%.

Mo:2.0%以下(0%を含まない)
Moは表面硬化処理(浸炭など)後の焼入れ時の焼入性を著しく向上させる効果に加え、耐衝撃強度の向上に有効であるので添加してもよい。しかし、過度に添加すると素材が硬くなるため被削性が低下する。そこでMo量は2.0%以下とするのが好ましく、より好ましくは0.01〜1.0%、さらに好ましくは0.05〜0.9%とする。
Mo: 2.0% or less (excluding 0%)
Mo is effective for improving the impact strength in addition to the effect of remarkably improving the hardenability at the time of quenching after surface hardening treatment (such as carburizing), and may be added. However, if added excessively, the material becomes hard and machinability is lowered. Therefore, the Mo amount is preferably 2.0% or less, more preferably 0.01 to 1.0%, and still more preferably 0.05 to 0.9%.

Cu:0.10%以下(0%を含まない)
CuはFeより酸化されにくい元素であるため、鋼材の耐食性を向上させる。しかし、Cu量が過剰になると鋼材の熱間延性が低下する。従って、Cu量は0.10%以下とするのが好ましく、より好ましくは0.01〜0.05%、さらに好ましくは0.01〜0.03%とする。
Cu: 0.10% or less (excluding 0%)
Since Cu is an element that is less likely to be oxidized than Fe, it improves the corrosion resistance of the steel material. However, when the amount of Cu becomes excessive, the hot ductility of the steel material decreases. Therefore, the Cu content is preferably 0.10% or less, more preferably 0.01 to 0.05%, and still more preferably 0.01 to 0.03%.

Ni:0.10%以下(0%を含まない)
NiはCuとともに鋼材の耐食性を向上させる元素であり、単独で添加してもよいが、Cuと組み合わせて添加することが望ましい。またNiは、鋼材の耐衝撃特性を向上させる効果もある。しかし、過剰に添加すると鋼材のコスト上昇を招く。そこで、Ni量は0.10%以下とするのが好ましく、より好ましくは0.01〜0.05%、さらに好ましくは0.01〜0.03%以下である。
Ni: 0.10% or less (excluding 0%)
Ni is an element that improves the corrosion resistance of the steel together with Cu, and may be added alone, but it is desirable to add it in combination with Cu. Ni also has the effect of improving the impact resistance of the steel material. However, excessive addition causes an increase in the cost of the steel material. Therefore, the Ni content is preferably 0.10% or less, more preferably 0.01 to 0.05%, and still more preferably 0.01 to 0.03%.

本発明の肌焼鋼では、上記以外の成分(残部)は、通常、鉄及び不可避不純物である。なお、不可避不純物とは、原料(主原料、副原料など)や製造設備から混入してくる不純物を意味し、例えば、P、S、Al、Nなどが挙げられる。P、S、Al、Nなどの好ましい量は、以下の通りである。   In the case-hardened steel of the present invention, the components other than the above (remainder) are usually iron and inevitable impurities. The inevitable impurities mean impurities mixed from raw materials (main raw materials, auxiliary raw materials, etc.) and manufacturing equipment, and examples thereof include P, S, Al, N, and the like. Preferred amounts of P, S, Al, N, etc. are as follows.

P:0.03%以下(0%を含まない)
Pは結晶粒界に偏析して部品の衝撃特性を低減させる元素であるため、なるべく低減することが好ましい。P量は0.03%以下であり、好ましくは0.02%以下、より好ましくは0.015%以下とする。
P: 0.03% or less (excluding 0%)
Since P is an element that segregates at the grain boundaries and reduces the impact characteristics of the part, it is preferably reduced as much as possible. The amount of P is 0.03% or less, preferably 0.02% or less, more preferably 0.015% or less.

S:0.030%以下(0%を含まない)
SはMnと結合してMnS介在物を生成し、部品の疲労強度、衝撃強度を低下させるため、なるべく低減することが好ましい。従ってS量は0.030%以下とし、好ましくは0.025%以下、より好ましくは0.023%以下とする。なお、Sは切削性の向上に寄与する場合がある。従ってS量は例えば0.001%以上、好ましくは0.005%以上、より好ましくは0.010%以上としてもよい。
S: 0.030% or less (excluding 0%)
Since S combines with Mn to generate MnS inclusions and lowers the fatigue strength and impact strength of the part, it is preferably reduced as much as possible. Therefore, the S content is 0.030% or less, preferably 0.025% or less, more preferably 0.023% or less. In addition, S may contribute to improvement of machinability. Accordingly, the S amount may be, for example, 0.001% or more, preferably 0.005% or more, and more preferably 0.010% or more.

Al:0.1%以下(0%を含まない)
Alは脱酸材として作用し酸化物系介在物を低減して鋼材の内部品質を高める作用を発揮する。一方、Al量が過剰になると粗大で硬い非金属介在物(Al23)が生成し、疲労特性を低下させる。そこでAl量は0.1%以下、好ましくは0.01〜0.05%とする。
Al: 0.1% or less (excluding 0%)
Al acts as a deoxidizing material and exhibits an effect of reducing the oxide inclusions and improving the internal quality of the steel material. On the other hand, when the amount of Al is excessive, coarse and hard non-metallic inclusions (Al 2 O 3 ) are generated, and fatigue characteristics are deteriorated. Therefore, the Al content is 0.1% or less, preferably 0.01 to 0.05%.

N:0.025%以下(0%を含まない)
Nは量が多いと粗大なTi系介在物が生成して衝撃強度を低下させるとともに、鋼材の硬さ、変形抵抗を増大させ鍛造性を低減させる。そこでN量は0.025%以下、好ましくは0.020%以下、より好ましくは0.018%以下とする。
N: 0.025% or less (excluding 0%)
When the amount of N is large, coarse Ti-based inclusions are generated to lower the impact strength, and the hardness and deformation resistance of the steel material are increased to reduce the forgeability. Therefore, the N amount is 0.025% or less, preferably 0.020% or less, more preferably 0.018% or less.

本発明の肌焼鋼では、上述したように、Tiの添加量を抑えて鋳造段階での粗大なTi系介在物の形成を抑制している。そのため、オーステナイト域での熱処理におけるオストワルド成長を抑制でき、Ti系介在物の粗大化を抑制できる。さらに、分塊圧延前の加熱時間を短時間とすることによってTi系硫化物・炭硫化物を適正量確保することができ、圧延後の粗大なTi系介在物を抑制することができる。Ti系介在物の粗大化を抑制すれば、最大結晶粒を縮小化でき、混粒を防止できる。さらに冷間鍛造性も向上できる。なお、Ti量が少なくなるほど粗大なTi系介在物の量も少なくなるため、粗大なTi系介在物の許容量はTi添加量に応じて定める。すなわち、本発明の肌焼鋼は式(1)を満足する。
A/[Ti]≦0.080 …(1)
(式中、Aは面積10μm2以上のTi系の炭化物、炭窒化物、窒化物、硫化物、および炭硫化物の合計面積率(%)を示す。[Ti]は鋼中のTi含有量(質量%)を示す。)
In the case-hardened steel of the present invention, as described above, the amount of Ti added is suppressed to suppress the formation of coarse Ti-based inclusions at the casting stage. Therefore, the Ostwald growth in the heat treatment in the austenite region can be suppressed, and the coarsening of Ti-based inclusions can be suppressed. Further, by setting the heating time before the partial rolling to a short time, an appropriate amount of Ti-based sulfide / carbon sulfide can be secured, and coarse Ti-based inclusions after rolling can be suppressed. If coarsening of Ti inclusions is suppressed, the maximum crystal grains can be reduced and mixed grains can be prevented. Furthermore, the cold forgeability can be improved. Since the amount of coarse Ti-based inclusions decreases as the amount of Ti decreases, the allowable amount of coarse Ti-based inclusions is determined according to the amount of Ti added. That is, the case-hardened steel of the present invention satisfies the formula (1).
A / [Ti] ≦ 0.080 (1)
(In the formula, A indicates the total area ratio (%) of Ti-based carbides, carbonitrides, nitrides, sulfides, and carbonsulfides having an area of 10 μm 2 or more. [Ti] is the Ti content in the steel. (Mass%) is shown.)

式(1)は面積10μm2以上のTi系介在物を粗大な介在物と位置づけ、その量が低減されていることを意味する。鋼中に存在するTi系介在物のうち微細な介在物はピンニング粒子と呼ばれ、結晶粒の粗大化防止に有効に働く。一方、粗大なTi系介在物はオーステナイト域での熱処理時に周辺の微細なTi系介在物を吸収し、オストワルド成長するため、粗大なTi系介在物の周辺ではピンニング粒子が減少して結晶粒粗大化防止効果を有効に発揮することができず、局所的に大きな異常粒を発生させる原因となってしまう。そこで、粗大なTi系介在物を抑制すれば、最大結晶粒を縮小化でき、混粒を防止できる。オストワルド成長は介在物の大きさに律速するので、本発明ではオストワルド成長するか否かの基準として面積10μm2以上を基準としている。 Formula (1) means that Ti-based inclusions having an area of 10 μm 2 or more are positioned as coarse inclusions, and the amount thereof is reduced. Of the Ti-based inclusions present in the steel, fine inclusions are called pinning particles and effectively work to prevent coarsening of crystal grains. On the other hand, coarse Ti-based inclusions absorb fine Ti-based inclusions at the time of heat treatment in the austenite region and cause Ostwald growth, so that pinning particles are reduced around coarse Ti-based inclusions, resulting in coarse crystal grains. The anti-oxidation effect cannot be exhibited effectively, causing large abnormal grains to be generated locally. Therefore, if coarse Ti-based inclusions are suppressed, the maximum crystal grains can be reduced and mixed grains can be prevented. Since Ostwald growth is rate-determined by the size of inclusions, the present invention uses an area of 10 μm 2 or more as a reference as to whether or not Ostwald growth is performed.

さらに、粗大なTi系介在物は鋼素地よりも硬いため、冷間鍛造時に鋼素地に比べて変形を受けにくく、鋼素地と粗大なTi系介在物との界面に局部的な歪みが集中し、割れが発生しやすくなるなど、冷間鍛造性に悪影響を及ぼす。従って、粗大なTi系介在物を低減することによって、最大結晶粒の縮小化に加えて、冷間鍛造性も確保できる。   Furthermore, since coarse Ti-based inclusions are harder than steel substrates, they are less susceptible to deformation during cold forging, and local strain concentrates at the interface between the steel substrate and coarse Ti-based inclusions. It adversely affects cold forgeability, such as cracking. Therefore, by reducing the coarse Ti-based inclusions, in addition to reducing the maximum crystal grains, it is possible to ensure cold forgeability.

そこで、好ましい式(1)の左辺(A/[Ti])の値を0.080以下とし、好ましくは0.07以下、より好ましくは0.06以下とする。なお、式(1)の左辺(A/[Ti])の値の下限は特に制限されないが、小さくしすぎても制御が難しくなるだけであってその効果が飽和する。したがって下限は例えば0.01以上(特に0.02以上)であってもよい。   Therefore, the value of the left side (A / [Ti]) of the preferable formula (1) is set to 0.080 or less, preferably 0.07 or less, more preferably 0.06 or less. Note that the lower limit of the value of the left side (A / [Ti]) of the formula (1) is not particularly limited. However, even if the value is too small, the control becomes difficult and the effect is saturated. Therefore, the lower limit may be, for example, 0.01 or more (particularly 0.02 or more).

本発明の肌焼鋼は、上述したように、Ti系硫化物・炭硫化物が適正量確保されている点にも特徴があり、具体的には、面積10μm2以上のTi系硫化物および/またはTi系炭硫化物の合計面積率が1×10-5〜1.0×10-4%になっており、好ましくは2×10-5〜0.8×10-4%、より好ましくは3×10-5〜0.6×10-4%である。 As described above, the case-hardened steel of the present invention is also characterized in that an appropriate amount of Ti-based sulfide / carbosulfide is secured. Specifically, Ti-based sulfide having an area of 10 μm 2 or more and / The total area ratio of the Ti-based carbon sulfide is 1 × 10 −5 to 1.0 × 10 −4 %, preferably 2 × 10 −5 to 0.8 × 10 −4 %, more preferably Is 3 × 10 −5 to 0.6 × 10 −4 %.

Ti系硫化物・Ti系炭硫化物は粗大であって、析出すると結晶粒粗大化防止効果が低下する。しかし、Ti系硫化物・Ti系炭硫化物は、Ti系炭化物・Ti系炭窒化物よりも弱いもののピンニング効果を有しているため、僅かであれば残しておいた方が良い。また、Ti系硫化物・Ti系炭硫化物の析出量を0にしようとすると、Ti系炭化物・Ti系炭窒化物が粗大化してしまうことからもTi系硫化物・Ti系炭硫化物を僅かであれば残しておいた方が良い。   Ti-based sulfides and Ti-based carbon sulfides are coarse, and when precipitated, the effect of preventing crystal grain coarsening is reduced. However, Ti-based sulfides and Ti-based carbon sulfides have a pinning effect although they are weaker than Ti-based carbides and Ti-based carbonitrides. In addition, if the precipitation amount of Ti-based sulfide / Ti-based carbon sulfide is reduced to 0, Ti-based carbide / Ti-based carbonitride is coarsened. If it is a little, you should leave it.

本発明の肌焼鋼は、鋳造時の冷却速度を速くし、加熱温度を1200℃以上にする圧延の際の加熱速度を速くし、かつ加熱時間を極めて短くし、熱間加工前の加熱温度を低めにすることで製造できる。例えば、線材(棒鋼など)を製造する際には、分塊圧延、熱間圧延などするが、通常、分塊圧延の時の加熱温度の方が高いため、この加熱温度を1200℃以上にし、かつ急速、短時間加熱することが推奨される。鋳造の冷却速度を速くし、かつ加熱速度を速くすることで、Ti系介在物の粗大化を防止できる。また加熱時間を短くすることで、Ti系介在物のオストワルド成長を防止でき、かつTi系硫化物やTi系炭硫化物の消失を防止できる。さらに熱間加工前の加熱温度を低めにすることで、Ti系硫化物やTi系炭硫化物の消失を防止できる。各工程の好ましい製造条件は以下の通りである。   The case-hardened steel of the present invention increases the cooling rate during casting, increases the heating rate at the time of rolling to a heating temperature of 1200 ° C. or more, and extremely shortens the heating time, and the heating temperature before hot working It can be manufactured by lowering. For example, when manufacturing a wire rod (such as a steel bar), it is subjected to split rolling, hot rolling, etc. However, since the heating temperature at the time of split rolling is usually higher, this heating temperature is set to 1200 ° C. or higher, And it is recommended to heat quickly and for a short time. By increasing the cooling rate of casting and increasing the heating rate, it is possible to prevent the Ti inclusions from becoming coarse. Further, by shortening the heating time, Ostwald growth of Ti inclusions can be prevented, and disappearance of Ti sulfide and Ti carbon sulfide can be prevented. Further, by lowering the heating temperature before hot working, it is possible to prevent the disappearance of Ti-based sulfide and Ti-based carbon sulfide. Preferred production conditions for each step are as follows.

鋳造の際の凝固開始から凝固終了までの平均冷却速度、分塊圧延時の平均加熱速度はTi系介在物の粗大化を防止するためいずれも速くすることが推奨される。鋳造の際の凝固開始から凝固終了までの平均冷却速度は例えば150℃/h以上(より好ましくは180℃/h以上、さらに好ましくは200℃/h以上)とするのがよく、分塊圧延時の平均加熱速度は例えば、250℃/h以上(より好ましくは260℃/h以上、さらに好ましくは270℃/h以上)とするのがよい。   It is recommended to increase both the average cooling rate from the start of solidification to the end of solidification during casting and the average heating rate at the time of partial rolling in order to prevent the Ti-based inclusions from becoming coarse. The average cooling rate from the start of solidification to the end of solidification during casting is, for example, 150 ° C./h or more (more preferably 180 ° C./h or more, more preferably 200 ° C./h or more). The average heating rate is, for example, 250 ° C./h or more (more preferably 260 ° C./h or more, more preferably 270 ° C./h or more).

分塊圧延の加熱温度T1(℃)と加熱時間t(分)(t≦10)は式(2)、(3)を満足することが好ましい。
1200≦T1≦1300 …(2)
(T1+273)×log10(t)<1100 … (3)
It is preferable that the heating temperature T1 (° C.) and the heating time t (min) (t ≦ 10) of the block rolling satisfy the expressions (2) and (3).
1200 ≦ T1 ≦ 1300 (2)
(T1 + 273) × log 10 (t) <1100 (3)

加熱温度T1が1200℃未満であると、オストワルド成長は僅かに起こるものの、Ti系介在物の鉄基地への溶解はほとんどなく、またTi系硫化物および/またはTi系炭硫化物が固溶せずに残存することによって、これらの合計面積率が上記範囲を超えてしまう結果、粗大なTi系介在物を抑制することができない。一方、加熱温度T1が1300℃を超えると、Ti系炭化物、Ti系炭窒化物の固溶が進み微細な介在物が減少して平均結晶粒径が大きくなるとともに、Ti系硫化物および/またはTi系炭硫化物の固溶が進むことによってこれらを適正量確保することができず、さらに粗大なTi系介在物のオストワルド成長も進み、粗大なTi系介在物を抑制することができない。そこで加熱温度T1を1200≦T1≦1300とすることが望ましい。T1のより好ましい範囲は、1230≦T1≦1270である。   When the heating temperature T1 is less than 1200 ° C., Ostwald growth occurs slightly, but there is almost no dissolution of Ti-based inclusions in the iron base, and Ti-based sulfide and / or Ti-based carbon sulfide is dissolved. As a result, the total area ratio exceeds the above range, so that coarse Ti-based inclusions cannot be suppressed. On the other hand, when the heating temperature T1 exceeds 1300 ° C., solid solution of Ti carbide and Ti carbonitride progresses and fine inclusions decrease to increase the average crystal grain size, and Ti sulfide and / or As the solid solution of Ti-based carbon sulfide progresses, an appropriate amount of these cannot be ensured, and further, Ostwald growth of coarse Ti-based inclusions progresses, and coarse Ti-based inclusions cannot be suppressed. Therefore, it is desirable that the heating temperature T1 is 1200 ≦ T1 ≦ 1300. A more preferable range of T1 is 1230 ≦ T1 ≦ 1270.

分塊圧延の加熱時間tが長くなると、微細なTi系介在物が減少するとともに、Ti系硫化物および/またはTi系炭硫化物が減少し、粗大なTi系介在物のオストワルド成長が進む。そこで分塊圧延の加熱時間tは極力短くすることが推奨され、式(3)の左辺((T1+273)×log10(t))は1100未満とするのが好ましく、さらに小さくてもよく、例えば500以下、特に0以下であってもよい。 When the heating time t of the block rolling is increased, the fine Ti-based inclusions are decreased, and Ti-based sulfides and / or Ti-based carbon sulfides are decreased, and Ostwald growth of coarse Ti-based inclusions proceeds. Therefore, it is recommended to shorten the heating time t of the block rolling as much as possible, and the left side of the equation (3) ((T1 + 273) × log 10 (t)) is preferably less than 1100, and may be even smaller, It may be 500 or less, particularly 0 or less.

熱間圧延の加熱温度は例えば850〜1000℃(より好ましくは900〜1000℃)とするのが好ましい。熱間圧延の加熱温度が1000℃を超えると、Ti系介在物が粗大化し、またTi系硫化物および/またはTi系炭硫化物が固溶してしまい、適正量確保することが困難である。   The heating temperature of the hot rolling is preferably 850 to 1000 ° C. (more preferably 900 to 1000 ° C.). When the heating temperature of hot rolling exceeds 1000 ° C., Ti-based inclusions become coarse, and Ti-based sulfides and / or Ti-based carbon sulfides are dissolved, making it difficult to secure an appropriate amount. .

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

転炉溶製により表1に示す化学成分に調整した鋼を鋳造し、得られた鋳片を所定温度まで加熱した後、分塊圧延することによって155mm×155mm×10mのビレットを得た。得られたビレットを再加熱して熱間圧延(棒鋼圧延)することによって、直径23mmの棒鋼を製造した。分塊圧延前の加熱条件および棒鋼圧延前の加熱条件は表2に示す通りである。なお、鋳造時の平均冷却速度および分塊圧延時の平均加熱速度は表3〜8に示す。   The steel adjusted to the chemical composition shown in Table 1 by casting in a converter was cast, and the resulting slab was heated to a predetermined temperature, and then subjected to block rolling to obtain a billet of 155 mm × 155 mm × 10 m. The obtained billet was reheated and hot-rolled (steel rolling) to produce a steel bar having a diameter of 23 mm. Table 2 shows the heating conditions before the block rolling and the heating conditions before the bar rolling. In addition, the average cooling rate at the time of casting and the average heating rate at the time of block rolling are shown in Tables 3-8.

Figure 2010229508
Figure 2010229508

Figure 2010229508
Figure 2010229508

得られた棒鋼の各特性を以下のようにして評価した。
(1)冷間鍛造性
棒鋼を、図1に示すように760℃で5時間加熱した後、8時間かけて680℃まで冷却してから炉冷した(球状化焼鈍又は軟化焼鈍)。焼鈍後の棒鋼から直径15mm×高さ22.5mmの円柱状試験片を切り出した。該試験片の横断面(軸心に垂直な断面)のサンプルを採取し、D/4位置(Dは直径)における硬度を、ビッカース硬度計((株)アカシ製、荷重10kg)で測定した。ビッカース硬度が150HV以下の場合を冷間鍛造性に優れると評価した。
Each characteristic of the obtained steel bar was evaluated as follows.
(1) Cold forgeability The steel bar was heated at 760 ° C. for 5 hours as shown in FIG. 1, then cooled to 680 ° C. over 8 hours, and then furnace-cooled (spheroidizing annealing or softening annealing). A cylindrical test piece having a diameter of 15 mm and a height of 22.5 mm was cut out from the annealed steel bar. A sample of the cross section of the test piece (cross section perpendicular to the axis) was taken, and the hardness at the D / 4 position (D is the diameter) was measured with a Vickers hardness meter (manufactured by Akashi Corporation, load 10 kg). The case where the Vickers hardness was 150 HV or less was evaluated as being excellent in cold forgeability.

(2)結晶粒粗大化防止特性および最大結晶粒の縮小化特性(平均結晶粒度番号と最大結晶粒度番号)
前記棒鋼から直径15mm×高さ22.5mmの円柱状試験片を切り出し(図2)、この試験片を高さ方向に圧縮した(圧縮率70%)。その後、図3に示す浸炭条件(浸炭期条件は、温度:950℃、時間:70分、浸炭ガス:プロパンガス、カーボンポテンシャル:0.8。拡散期条件は、温度:850℃、時間:60分、浸炭ガス:プロパンガス、カーボンポテンシャル:0.8。焼入れ条件は、80℃まで油冷)でガス浸炭した。
相当歪で1.1となる箇所の旧オーステナイト粒の粒度番号GhをJIS G0551により求めた。より詳細には、計数方法(附属書3)によって、平均結晶粒度番号を求めた。また最大結晶粒度番号は、観察視野800μm×800μmの中で最も粗大な結晶粒の粒度番号を比較法によって求め、これを最大結晶粒度番号とした。この最大結晶粒度番号が5番よりも大きい場合、最大結晶粒が縮小化できていると評価した。
(2) Grain coarsening prevention characteristics and maximum grain reduction characteristics (average grain size number and largest grain size number)
A cylindrical test piece having a diameter of 15 mm and a height of 22.5 mm was cut out from the steel bar (FIG. 2), and the test piece was compressed in the height direction (compression ratio 70%). Thereafter, the carburizing conditions shown in FIG. 3 (the carburizing period conditions are temperature: 950 ° C., time: 70 minutes, carburizing gas: propane gas, carbon potential: 0.8. The diffusion period conditions are temperature: 850 ° C., time: 60 Min, carburizing gas: propane gas, carbon potential: 0.8, quenching conditions were oil-cooled to 80 ° C.).
The grain size number Gh of the prior austenite grains at a location where the equivalent strain is 1.1 was determined according to JIS G0551. More specifically, the average grain size number was determined by a counting method (Appendix 3). The maximum grain size number was determined by a comparative method to obtain the grain size number of the coarsest crystal grain in the observation field of 800 μm × 800 μm, and this was used as the maximum grain size number. When the maximum grain size number was larger than 5, it was evaluated that the maximum grain size could be reduced.

(3)面積10μm2以上のTi系介在物の面積率
棒鋼のD/4位置(Dは直径)から縦断面(軸心に平行な断面)のサンプルを切り出し研磨した。研磨面をEPMA(Electron Probe Microanalyzer)で測定した。面積が10μm2以上の介在物の組成を調べ、Ti含有量が5質量%以上の介在物をTi系介在物とし、さらにS含有量が5質量%以上であるものをTi系硫化物またはTi系炭硫化物とし、その面積率を算出した。Ti系炭化物、Ti系窒化物、およびTi系炭窒化物の合計面積率は、全Ti系介在物の面積率から、Ti系硫化物およびTi系炭硫化物の合計面積率を差し引いて求めた。また個々のTi系介在物について最大粒径を測定し、Ti系炭化物・窒化物・炭窒化物中での最大粒径の平均値、およびTi系硫化物・炭硫化物中での最大粒径の平均値をもとめ、表3〜8に「平均最大粒径」として示した。EPMAの測定条件は下記の通りである。
EPMA分析装置:JXA−8100型電子プローブマイクロアナライザー(日本電気株式会社製)
分析装置(EDS):SystemSix(サーモフィッシャーサイエンティフィック社製)
加速電圧:15kV
操作電流:4nA
測定面積:100mm2以上
観察倍率:200倍
結果を表3〜8に示す。
(3) Area ratio of Ti inclusions with an area of 10 μm 2 or more
A sample of a longitudinal section (a section parallel to the axis) was cut and polished from the D / 4 position (D is the diameter) of the steel bar. The polished surface was measured with EPMA (Electron Probe Microanalyzer). The composition of inclusions having an area of 10 μm 2 or more was examined. Inclusions having a Ti content of 5% by mass or more were made Ti-based inclusions, and those having an S content of 5% by mass or more were Ti-based sulfides or Ti The area ratio was calculated using a system carbon sulfide. The total area ratio of Ti carbide, Ti nitride, and Ti carbonitride was determined by subtracting the total area ratio of Ti sulfide and Ti carbon sulfide from the area ratio of all Ti inclusions. . The maximum particle size is measured for each Ti-based inclusion, the average value of the maximum particle size in Ti-based carbides / nitrides / carbonitrides, and the maximum particle size in Ti-based sulfides / carbonitrides. The average value was obtained and shown in Tables 3 to 8 as “average maximum particle size”. The measurement conditions of EPMA are as follows.
EPMA analyzer: JXA-8100 type electron probe microanalyzer (manufactured by NEC Corporation)
Analyzer (EDS): SystemSix (manufactured by Thermo Fisher Scientific)
Acceleration voltage: 15 kV
Operating current: 4nA
Measurement area: 100 mm 2 or more Observation magnification: 200 times The results are shown in Tables 3-8.

また式(1)の左辺(A/[Ti])を計算し、表3〜8に示す。さらにこの左辺(A/[Ti])と最大結晶粒の粒度番号との関係を図4に示す。   Moreover, the left side (A / [Ti]) of Formula (1) is calculated and shown in Tables 3-8. Furthermore, the relationship between this left side (A / [Ti]) and the grain size number of the largest crystal grain is shown in FIG.

Figure 2010229508
Figure 2010229508

Figure 2010229508
Figure 2010229508

Figure 2010229508
Figure 2010229508

Figure 2010229508
Figure 2010229508

Figure 2010229508
Figure 2010229508

Figure 2010229508
Figure 2010229508

No.1〜15、17〜24、26〜29、31〜38、40〜55、57〜60、62〜65、67〜70、72〜83、85〜92、94〜97は、適正量のTiを添加し、かつTi系硫化物および/またはTi系炭硫化物を適正量確保できる圧延条件I〜IVを採用している。その結果、粗大なTi系介在物の生成を抑制することができ、A/[Ti]を小さくできているため、最大結晶粒も小さくすることができている。また冷間鍛造性にも優れている。   No. 1 to 15, 17 to 24, 26 to 29, 31 to 38, 40 to 55, 57 to 60, 62 to 65, 67 to 70, 72 to 83, 85 to 92, and 94 to 97 include an appropriate amount of Ti. The rolling conditions I to IV that can be added and can secure an appropriate amount of Ti-based sulfide and / or Ti-based carbon sulfide are employed. As a result, generation of coarse Ti-based inclusions can be suppressed, and A / [Ti] can be reduced, so that the maximum crystal grain can also be reduced. It also has excellent cold forgeability.

一方、No.16、25、30、39、56、61、71、93は分塊圧延温度が低い製造条件Vを採用した例である。これらはTi系介在物の鉄基地への溶解はほとんど起こらないが、オストワルド成長は僅かに起こっているため、A/[Ti]の値が大きくなり、最大結晶粒が大きくなっている。   On the other hand, no. Nos. 16, 25, 30, 39, 56, 61, 71, and 93 are examples in which the production condition V having a low ingot rolling temperature is employed. In these, the dissolution of Ti inclusions in the iron base hardly occurs, but since Ostwald growth occurs slightly, the value of A / [Ti] becomes large and the maximum crystal grain becomes large.

No.66、84は分塊圧延温度が高い製造条件VIを採用した例である。分塊圧延温度が高いために、Ti系硫化物・炭硫化物が全て固溶してしまい、さらにTi系炭化物・窒化物・炭窒化物がオストワルド成長したため、粗大なTi系介在物が増加することとなりA/[Ti]の値が大きくなっている。そのため、最大結晶粒が大きくなっている。   No. 66 and 84 are examples in which production conditions VI having a high ingot rolling temperature are employed. Due to the high rolling temperature, all Ti-based sulfides and carbonitrides are dissolved, and Ti-based carbides, nitrides, and carbonitrides are Ostwald-grown, resulting in an increase in coarse Ti-based inclusions. As a result, the value of A / [Ti] is increased. Therefore, the maximum crystal grain is large.

またNo.98〜121は、成分組成が本願発明範囲から外れる例である。   No. 98 to 121 are examples in which the component composition deviates from the scope of the present invention.

No.98〜101はTi量が少ないため、A/[Ti]の値が大きくなり、その結果最大結晶粒が大きくなっている。またTi量が少ないため、微細なTi系介在物の量が不足し、平均結晶粒も粗大化している。   No. Since 98 to 101 have a small amount of Ti, the value of A / [Ti] is increased, and as a result, the maximum crystal grain is increased. Further, since the amount of Ti is small, the amount of fine Ti-based inclusions is insufficient, and the average crystal grain is also coarsened.

No.102〜105はTi量が多かった例であり、Ti量が過剰であったためにTi系介在物が粗大化しA/[Ti]の値が大きくなって、最大結晶粒が大きくなっている。またTi量が過剰であるため、ビッカース硬度が大きくなっている。   No. Nos. 102 to 105 are examples in which the amount of Ti is large. Since the amount of Ti is excessive, the Ti-based inclusions are coarsened, the value of A / [Ti] is increased, and the maximum crystal grain is increased. Further, since the amount of Ti is excessive, the Vickers hardness is increased.

No.106〜109はMn量が多かった例であり、Mnの炭化物を形成しやすくなるため、鉄基地中のC量が減少する結果、Ti系炭化物、Ti系炭窒化物、Ti系窒化物のうち、粗大なTi系窒化物が形成されやすくなりA/[Ti]の値が大きくなって、最大結晶粒が大きくなっている。また、Mn量が過剰であるため、ビッカース硬度が大きくなっている。   No. 106 to 109 are examples in which the amount of Mn is large, and it becomes easier to form carbides of Mn. As a result, the amount of C in the iron base decreases, and as a result, among Ti-based carbides, Ti-based carbonitrides, and Ti-based nitrides. Coarse Ti-based nitrides are easily formed, and the value of A / [Ti] is increased, so that the maximum crystal grain is increased. Further, since the amount of Mn is excessive, the Vickers hardness is increased.

No.110〜113はMn量およびS量が多かった例であり、上記No.106〜109と同様の理由により、A/[Ti]の値が大きくなって、最大結晶粒が大きくなっている。   No. 110 to 113 are examples in which the amount of Mn and the amount of S were large. For the same reason as 106 to 109, the value of A / [Ti] is increased and the maximum crystal grain is increased.

No.114〜117はSi量が多かった例であり、Siの炭化物が形成しやすくなるため鉄基地中のC量が減少する結果、Ti系炭化物、Ti系炭窒化物、Ti系窒化物のうち、粗大なTi系窒化物が形成されやすくなり、A/[Ti]の値が大きくなって、最大結晶粒が大きくなっている。   No. 114 to 117 are examples in which the amount of Si was large, and as a result of the decrease in the amount of C in the iron base because Si carbide is easily formed, among Ti-based carbide, Ti-based carbonitride, Ti-based nitride, Coarse Ti-based nitride is easily formed, the value of A / [Ti] is increased, and the maximum crystal grain is increased.

No.118〜121はSi量およびMn量が多かった例であり、Siの炭化物やMnの炭化物が形成しやすくなるため鉄基地中のC量が減少する結果、Ti系炭化物、Ti系炭窒化物、Ti系窒化物のうち、粗大なTi系窒化物が形成されやすくなり、A/[Ti]の値が大きくなって、最大結晶粒が大きくなっている。   No. 118 to 121 are examples in which the amount of Si and the amount of Mn were large, and as a result of reducing the amount of C in the iron base because Si carbide and Mn carbide are easily formed, Ti-based carbide, Ti-based carbonitride, Of the Ti-based nitrides, coarse Ti-based nitrides are easily formed, the value of A / [Ti] increases, and the maximum crystal grain becomes larger.

本発明の肌焼鋼は、加工性(特に冷間鍛造性)に優れ、表面硬化処理後の混粒を防止できるため、自動車、建築機械、その他産業機械における鋼部品(例えば、歯車、シャフト類、無段変速機(CVT)プーリ、等速ジョイント(CVJ)、軸受など)を製造するのに有用である。   The case-hardened steel of the present invention is excellent in workability (especially cold forgeability) and can prevent mixed grains after the surface hardening treatment. Therefore, steel parts (for example, gears, shafts) in automobiles, construction machinery, and other industrial machines. , Continuously variable transmission (CVT) pulley, constant velocity joint (CVJ), bearing, etc.).

Claims (6)

C:0.10〜0.25%(質量%の意味。以下、化学成分組成について同じ。)、
Si:0.45%以下(0%を含まない)、
Mn:0.60%以下(0%を含まない)、
Cr:2.5%以下(0%を含まない)、
Ti:0.010〜0.060%、
を含有し、残部は鉄および不可避不純物であり、
面積10μm2以上のTi系硫化物および/またはTi系炭硫化物の合計面積率が1×10-5〜1.0×10-4%であるとともに、
下記式(1)を満足することを特徴とする最大結晶粒の縮小化特性に優れた肌焼鋼。
A/[Ti]≦0.080 …(1)
(式中、Aは面積10μm2以上のTi系の炭化物、炭窒化物、窒化物、硫化物、および炭硫化物の合計面積率(%)を示す。[Ti]は鋼中のTi含有量(質量%)を示す。)
C: 0.10 to 0.25% (meaning mass%, hereinafter the same for chemical composition)
Si: 0.45% or less (excluding 0%),
Mn: 0.60% or less (excluding 0%),
Cr: 2.5% or less (excluding 0%),
Ti: 0.010 to 0.060%,
The balance is iron and inevitable impurities,
The total area ratio of Ti-based sulfide and / or Ti-based carbon sulfide having an area of 10 μm 2 or more is 1 × 10 −5 to 1.0 × 10 −4 %,
A case-hardening steel excellent in shrinking characteristics of maximum crystal grains characterized by satisfying the following formula (1).
A / [Ti] ≦ 0.080 (1)
(In the formula, A indicates the total area ratio (%) of Ti-based carbides, carbonitrides, nitrides, sulfides, and carbonsulfides having an area of 10 μm 2 or more. [Ti] is the Ti content in the steel. (Mass%) is shown.)
前記不可避不純物には、P、S、Al、及びNが含まれ、これらの含有量が以下の通りである請求項1に記載の肌焼鋼。
P:0.03%以下(0%を含まない)
S:0.030%以下(0%を含まない)
Al:0.1%以下(0%を含まない)
N:0.025%以下(0%を含まない)
The case-hardened steel according to claim 1, wherein the inevitable impurities include P, S, Al, and N, and the contents thereof are as follows.
P: 0.03% or less (excluding 0%)
S: 0.030% or less (excluding 0%)
Al: 0.1% or less (excluding 0%)
N: 0.025% or less (excluding 0%)
更に、B:0.0005〜0.0050%を含有する請求項1または2に記載の肌焼鋼。   Furthermore, the case hardening steel of Claim 1 or 2 containing B: 0.0005-0.0050%. 更に、Mo:2.0%以下(0%を含まない)を含有する請求項1〜3のいずれかに記載の肌焼鋼。   Furthermore, the case hardening steel in any one of Claims 1-3 containing Mo: 2.0% or less (0% is not included). 更に、Cu:0.10%以下(0%を含まない)および/またはNi:0.10%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の肌焼鋼。   Further, Cu: 0.10% or less (excluding 0%) and / or Ni: 0.10% or less (not including 0%), case hardening steel according to any one of claims 1 to 4 . 請求項1〜5のいずれかに記載の肌焼鋼を冷間加工した後、表面硬化処理した鋼材。   A steel material subjected to a surface hardening treatment after cold working the case-hardened steel according to any one of claims 1 to 5.
JP2009079358A 2009-03-27 2009-03-27 Case-hardened steel with excellent maximum grain reduction characteristics Expired - Fee Related JP5385656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079358A JP5385656B2 (en) 2009-03-27 2009-03-27 Case-hardened steel with excellent maximum grain reduction characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079358A JP5385656B2 (en) 2009-03-27 2009-03-27 Case-hardened steel with excellent maximum grain reduction characteristics

Publications (2)

Publication Number Publication Date
JP2010229508A true JP2010229508A (en) 2010-10-14
JP5385656B2 JP5385656B2 (en) 2014-01-08

Family

ID=43045590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079358A Expired - Fee Related JP5385656B2 (en) 2009-03-27 2009-03-27 Case-hardened steel with excellent maximum grain reduction characteristics

Country Status (1)

Country Link
JP (1) JP5385656B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132786A1 (en) * 2011-03-29 2012-10-04 株式会社神戸製鋼所 Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JP2014181400A (en) * 2013-03-21 2014-09-29 Koyo Thermo System Kk Continuous carburization furnace
WO2014208562A1 (en) * 2013-06-26 2014-12-31 大同特殊鋼株式会社 Carburized component
JP2015140481A (en) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 Case hardened steel and carburization component using the same
JP2015140482A (en) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 Case hardened steel and carburized part using the same
WO2015146837A1 (en) * 2014-03-27 2015-10-01 株式会社神戸製鋼所 Case-hardened steel having excellent cold forgeability and capable of suppressing abnormal grain growth during carburizing treatment
CN105121687A (en) * 2013-04-18 2015-12-02 新日铁住金株式会社 Case-hardening steel material and case-hardening steel member
JP2016188422A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Carburized component
CN109689911A (en) * 2016-09-09 2019-04-26 杰富意钢铁株式会社 The manufacturing method of case-hardened steel and its manufacturing method and geared parts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518089A (en) * 2018-06-28 2019-03-26 江苏省沙钢钢铁研究院有限公司 Low-carbon steel wire rod and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031787A (en) * 2005-07-27 2007-02-08 Kobe Steel Ltd Case-hardened steel having superior grain coarsening resistance, fatigue characteristic and machinability, and manufacturing method therefor
JP2008081841A (en) * 2006-08-28 2008-04-10 Kobe Steel Ltd Case hardening steel having excellent cold forgeability and crystal grain coarsening prevention property, and machine part obtained therefrom

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031787A (en) * 2005-07-27 2007-02-08 Kobe Steel Ltd Case-hardened steel having superior grain coarsening resistance, fatigue characteristic and machinability, and manufacturing method therefor
JP2008081841A (en) * 2006-08-28 2008-04-10 Kobe Steel Ltd Case hardening steel having excellent cold forgeability and crystal grain coarsening prevention property, and machine part obtained therefrom

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207244A (en) * 2011-03-29 2012-10-25 Kobe Steel Ltd Case hardening steel, method for producing the same, and mechanical structural part using the case hardening steel
CN103443316A (en) * 2011-03-29 2013-12-11 株式会社神户制钢所 Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
EP2692888A1 (en) * 2011-03-29 2014-02-05 Kabushiki Kaisha Kobe Seiko Sho Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
EP2692888A4 (en) * 2011-03-29 2014-12-24 Kobe Steel Ltd Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
KR101520208B1 (en) * 2011-03-29 2015-05-13 가부시키가이샤 고베 세이코쇼 Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
WO2012132786A1 (en) * 2011-03-29 2012-10-04 株式会社神戸製鋼所 Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
US9297051B2 (en) 2011-03-29 2016-03-29 Kobe Steel, Ltd. Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JP2014181400A (en) * 2013-03-21 2014-09-29 Koyo Thermo System Kk Continuous carburization furnace
CN105121687A (en) * 2013-04-18 2015-12-02 新日铁住金株式会社 Case-hardening steel material and case-hardening steel member
WO2014208562A1 (en) * 2013-06-26 2014-12-31 大同特殊鋼株式会社 Carburized component
JP2015028205A (en) * 2013-06-26 2015-02-12 大同特殊鋼株式会社 Carburized member
US10428414B2 (en) 2013-06-26 2019-10-01 Daido Steel Co., Ltd. Carburized component
JP2015140482A (en) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 Case hardened steel and carburized part using the same
WO2015115336A1 (en) * 2014-01-30 2015-08-06 大同特殊鋼株式会社 Case hardening steel and carburized component obtained therefrom
CN106062227A (en) * 2014-01-30 2016-10-26 大同特殊钢株式会社 Case hardening steel and carburized component obtained therefrom
JP2015140481A (en) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 Case hardened steel and carburization component using the same
US10689721B2 (en) 2014-01-30 2020-06-23 Daido Steel Co., Ltd. Case hardening steel and carburized component obtained therefrom
WO2015146837A1 (en) * 2014-03-27 2015-10-01 株式会社神戸製鋼所 Case-hardened steel having excellent cold forgeability and capable of suppressing abnormal grain growth during carburizing treatment
JP2016188422A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Carburized component
CN109689911A (en) * 2016-09-09 2019-04-26 杰富意钢铁株式会社 The manufacturing method of case-hardened steel and its manufacturing method and geared parts
US11332799B2 (en) 2016-09-09 2022-05-17 Jfe Steel Corporation Case hardening steel, method of producing the same, and method of producing gear parts

Also Published As

Publication number Publication date
JP5385656B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP5432105B2 (en) Case-hardened steel and method for producing the same
JP4956146B2 (en) Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
JP4775506B1 (en) Bearing steel
JP5862802B2 (en) Carburizing steel
JP5458048B2 (en) Case-hardened steel, its manufacturing method, and machine structural parts using case-hardened steel
WO2012046779A1 (en) Case hardened steel and method for producing the same
JP5400089B2 (en) Bearing steel excellent in rolling fatigue life characteristics, ingot material for bearing, and production method thereof
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP4775505B1 (en) Bearing ingot material with excellent rolling fatigue life and method for producing bearing steel
JP5503170B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP2006299296A (en) Rolled bar steel for case hardening having excellent fatigue property and crystal grain coarsening resistance, and method for producing the same
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP2015189987A (en) Case hardening steel having excellent cold forgeability with suppressable abnormal grain growth upon carburizing
JPWO2018061101A1 (en) steel
JP4847681B2 (en) Ti-containing case-hardened steel
JP2012237052A (en) Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
JP2010248630A (en) Case-hardened steel and method for manufacturing the same
JP2007107046A (en) Steel material to be induction-hardened
JP2006307270A (en) Case hardening steel having excellent crystal grain coarsening resistance and cold workability, and method for producing the same
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP6635100B2 (en) Case hardened steel
JP7111029B2 (en) Method for manufacturing steel parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5385656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees