JP4956146B2 - Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts - Google Patents

Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts Download PDF

Info

Publication number
JP4956146B2
JP4956146B2 JP2006307099A JP2006307099A JP4956146B2 JP 4956146 B2 JP4956146 B2 JP 4956146B2 JP 2006307099 A JP2006307099 A JP 2006307099A JP 2006307099 A JP2006307099 A JP 2006307099A JP 4956146 B2 JP4956146 B2 JP 4956146B2
Authority
JP
Japan
Prior art keywords
less
steel
case
hardened steel
forgeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006307099A
Other languages
Japanese (ja)
Other versions
JP2007162128A5 (en
JP2007162128A (en
Inventor
陽介 新堂
睦久 永濱
俊夫 村上
等 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006307099A priority Critical patent/JP4956146B2/en
Publication of JP2007162128A publication Critical patent/JP2007162128A/en
Publication of JP2007162128A5 publication Critical patent/JP2007162128A5/ja
Application granted granted Critical
Publication of JP4956146B2 publication Critical patent/JP4956146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、自動車などの輸送機器や、建設機械その他の産業機械などにおいて、浸炭処理して使用される機械部品用の素材となる肌焼鋼およびその製造方法並びに浸炭部品に関するものであり、特に、軸受やCVT用プーリー、シャフト類、歯車、軸付き歯車などの素材として浸炭処理して使用する際に、比較的高い温度で浸炭処理を行なった場合でも結晶粒が粗大化しない様な特性(以下、「結晶粒粗大化防止特性」ということがある)に優れると共に、鍛造時に割れが発生しないような優れた鍛造性を示す肌焼鋼とその製造方法、並びにこうした肌焼鋼を浸炭処理した浸炭部品に関するものである。   The present invention relates to a case-hardened steel that is a material for machine parts used by carburizing treatment in transport equipment such as automobiles, construction machines and other industrial machines, and a method for manufacturing the same, and carburized parts. When carburized and used as a material for bearings, CVT pulleys, shafts, gears, shaft gears, etc., characteristics such that crystal grains do not become coarse even when carburized at a relatively high temperature ( Hereinafter, the case-hardening steel that exhibits excellent forgeability that is excellent in “crystal grain coarsening prevention characteristics” and that does not generate cracks during forging, and a method for producing the same, and carburizing the case-hardening steel. It relates to carburized parts.

自動車、建設機械、その他の各種産業機械用として用いられる機械部品において、特に耐摩耗性、高疲労強度が要求される部品には、従来から浸炭、窒化および浸炭窒化などの表面硬化熱処理(肌焼き処理)が行なわれている。これらの用途には、通常、SCr、SCM、SNCMなどのJIS規格で定められた肌焼鋼を使用し、鍛造・切削などの機械加工により所望の部品形状に成形した後、浸炭、浸炭窒化などの表面硬化熱処理を施し、その後、研磨などの仕上工程を経て製造される。   In machine parts used for automobiles, construction machinery, and other various industrial machines, surface hardening heat treatments such as carburizing, nitriding and carbonitriding (case hardening) have been conventionally applied to parts that require particularly high wear resistance and high fatigue strength. Processing). For these applications, case-hardened steels defined by JIS standards such as SCr, SCM, SNCM, etc. are usually used. After forming into the desired part shape by machining such as forging and cutting, carburizing, carbonitriding, etc. It is manufactured through a finishing process such as polishing.

近年、自動車、建設機械、産業機械等に使用される部品の製造コスト低減が望まれており、鍛造・切削等の機械加工にかかるコストを低減する取り組みが行われている。具体的には、切削加工から鍛造への変更や、鍛造加工であっても熱間鍛造から、寸法精度が高く、鍛造後の切削コストを低減できる温間鍛造や冷間鍛造が適用される傾向がある。   In recent years, it has been desired to reduce the manufacturing cost of parts used in automobiles, construction machines, industrial machines, and the like, and efforts are being made to reduce the cost of machining such as forging and cutting. Specifically, there is a tendency to change from cutting to forging, or from hot forging, even forging, to warm forging and cold forging that can reduce cutting costs after forging with high dimensional accuracy. There is.

また、浸炭処理工程においては、従来のガス浸炭と併せて真空浸炭が用いられるようになっている。この真空浸炭では、浸炭時間を短縮でき、また浸炭部品の表面に浸炭異常層が発生しにくいという利点があるものの、オーステナイト(γ)結晶粒の粗大化が起こりやすいという問題がある。   In the carburizing process, vacuum carburizing is used in combination with conventional gas carburizing. Although this vacuum carburizing has the advantage that the carburizing time can be shortened and an abnormal carburizing layer is hardly generated on the surface of the carburized part, there is a problem that austenite (γ) crystal grains are likely to be coarsened.

こうしたことから、温間鍛造や冷間鍛造に適し、しかも真空浸炭処理にも適用できるような浸炭用鋼(肌焼鋼)が求められているのが実情である。浸炭時における肌焼鋼の結晶粒粗大化を防止するために、これまでにも様々な技術が提案されているが、Al,Nb,Ti等の元素を添加することによって、AlN,Nb(CN),TiC等の析出物を微細に分散させる技術が汎用されている。   For these reasons, there is a demand for carburizing steel (skin-hardened steel) that is suitable for warm forging and cold forging and that can also be applied to vacuum carburizing. Various techniques have been proposed so far to prevent coarsening of the case-hardened steel during carburizing. By adding elements such as Al, Nb and Ti, AlN, Nb (CN ), A technique for finely dispersing precipitates such as TiC is widely used.

こうした技術として例えば特許文献1には、Nb析出物と、NbとAlの複合組成からなる析出物を利用することによって結晶物の粗大化を防止する技術が提案されている。またこの技術では、Tiを同時添加することも示されているが、これは鋼中のNがBと結合してBN化合物を析出し、Bによる焼入れ性向上効果を低下する傾向があるので、NをTiによって捕捉することによってBによる効果を確保するものである。   As such a technique, for example, Patent Document 1 proposes a technique for preventing coarsening of a crystal by using a Nb precipitate and a precipitate composed of a composite composition of Nb and Al. In this technique, it is also shown that Ti is added at the same time, but this is because N in the steel binds to B to precipitate a BN compound, and the effect of improving the hardenability by B tends to be reduced. By capturing N with Ti, the effect of B is ensured.

また特許文献2には、結晶粒粗大化防止のためにNbを積極的に添加すると共に、BN化合物の析出を抑制するために、TiをN量との制約の下で含有させる技術が提案されている。   Patent Document 2 proposes a technique of adding Ti under the restriction of the amount of N in order to positively add Nb to prevent grain coarsening and to suppress precipitation of the BN compound. ing.

これらの技術では、結晶粒の粗大化防止のためにTiを積極添加するものではなく、Bによる焼入れ性向上効果を低減させないためにNを捕捉させることが目的とされている。   In these techniques, Ti is not actively added to prevent crystal grains from coarsening, but is intended to trap N in order not to reduce the effect of improving hardenability by B.

一方、特許文献3では、Tiを0.1超〜0.2%の範囲で積極的に含有させることによって、Ti炭化物、Ti炭・窒化物を微細に析出させることが提案されている。しかしながら、Tiを積極的に含有させると、加工性(特に鍛造性)が劣化することがあり、この技術ではこうした不都合については認識されておらず、鍛造性と結晶粒粗大化防止の両特性を確保することは困難である。
特許第3480630号公報 特許第3551573号公報 特開平10−81938号公報
On the other hand, Patent Document 3 proposes that Ti carbide and Ti charcoal / nitride are finely precipitated by positively containing Ti in the range of more than 0.1 to 0.2%. However, when Ti is positively contained, workability (especially forgeability) may be deteriorated, and this technique has not recognized such inconvenience, and has both forgeability and prevention of grain coarsening. It is difficult to secure.
Japanese Patent No. 3480630 Japanese Patent No. 3551573 Japanese Patent Laid-Open No. 10-81938

本発明は上記の様な事情に着目してなされたものであって、その目的は、鍛造や冷間鍛造を行なっても良好な鍛造性を示すと共に、浸炭処理のための加熱による結晶粒の粗大化を効果的に抑制することのできる肌焼鋼、およびこうした鍛造性および結晶粒粗大化防止特性に優れた肌焼鋼を製造するための有用な方法、並びにこの肌焼鋼を用いて浸炭した浸炭部品を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is to show good forgeability even when forging or cold forging is performed, and to improve the crystal grains by heating for carburizing treatment. Case-hardened steel capable of effectively suppressing coarsening, a useful method for producing such case-hardened steel excellent in forgeability and grain coarsening prevention properties, and carburizing using the case-hardened steel Is to provide carburized parts.

上記課題を解決することのできた本発明に係る肌焼鋼は、C:0.05〜0.30%(「質量%」の意味、以下同じ)、Si:2.0%以下(0%を含まない)、Mn:1.0%以下(0%を含まない)、P:0.03%以下(0%を含む)、S:0.03%以下(0%を含む)、Cr:2.0%以下(0%を含まない)、Al:0.1%以下(0%を含まない)、Nb:0.05〜0.30%、Ti:0.05〜0.10%、N:0.0080%以下(0%を含まない)、O:0.0020%以下(0%を含む)を満たし、残部は鉄および不可避不純物からなり、且つ鋼材中のNbおよびTiを含む複合窒化物の最大粒径が20μm以下であると共に、粒径が1μm以上、20μm以下である当該窒化物が1mm2中に平均50個以下存在する点に要旨を有するものである。 The case-hardened steel according to the present invention that has solved the above problems is: C: 0.05 to 0.30% (meaning “mass%”, the same shall apply hereinafter), Si: 2.0% or less (0% Mn: 1.0% or less (excluding 0%), P: 0.03% or less (including 0%), S: 0.03% or less (including 0%), Cr: 2 0.0% or less (excluding 0%), Al: 0.1% or less (not including 0%), Nb: 0.05 to 0.30%, Ti: 0.05 to 0.10%, N : 0.0080% or less (excluding 0%), O: 0.0020% or less (including 0%), the balance being composed of iron and inevitable impurities, and the composite nitriding containing Nb and Ti in the steel with a maximum particle size of the object is 20μm or less, the particle size is 1μm or more, the nitride is 20μm or less be present in 1 mm 2 mean 50 or less And it has a gist point.

本発明の肌焼鋼には、必要によって更に、(a)Cu:1.0%以下(0%を含まない)および/またはNi:3.0%以下(0%を含まない)、(b)Mo:1.0%以下(0%を含まない)、(c)B:0.0005〜0.0030%、(d)Ca:0.010%以下(0%を含まない)、(e)Pb:0.1%以下(0%を含まない)および/またはBi:0.1%以下(0%を含まない)、(f)V:0.5%以下(0%を含まない)、Zr:0.5%以下(0%を含まない)およびW:0.5%以下(0%を含まない)よりなる群から選ばれる1種または2種以上の元素、等を含有させることも有効であり、含有させる元素の種類に応じて肌焼鋼の特性が更に改善される。   In the case-hardened steel of the present invention, if necessary, (a) Cu: 1.0% or less (not including 0%) and / or Ni: 3.0% or less (not including 0%), (b ) Mo: 1.0% or less (not including 0%), (c) B: 0.0005 to 0.0030%, (d) Ca: 0.010% or less (not including 0%), (e ) Pb: 0.1% or less (not including 0%) and / or Bi: 0.1% or less (not including 0%), (f) V: 0.5% or less (not including 0%) , Zr: 0.5% or less (not including 0%) and W: 0.5% or less (not including 0%), or one or more elements selected from the group consisting of Is effective, and the characteristics of the case-hardened steel are further improved according to the type of element to be contained.

上記のような肌焼鋼によって、温間鍛造や冷間鍛造を行なっても良好な鍛造性を示すと共に、鍛造後に浸炭処理しても、結晶粒の粗大化防止が図れるものとなるが、こうした処理を施した浸炭部品では、その表面から100μm深さまでの表層に、NbおよびTiを含む複合炭窒化物で大きさが10〜50nmのものが3.0個/μm2以上存在するものとなる。 The case-hardened steel as described above exhibits good forgeability even when warm forging or cold forging is performed, and even if carburizing treatment is performed after forging, it can prevent coarsening of crystal grains. In the carburized parts subjected to the treatment, 3.0 / μm 2 or more of composite carbonitride containing Nb and Ti and having a size of 10 to 50 nm is present on the surface layer from the surface to a depth of 100 μm. .

一方、上記目的を達成し得た本発明の製造方法とは、C:0.05〜0.30%、Si:2.0%以下(0%を含まない)、Mn:1.0%以下(0%を含まない)、P:0.03%以下(0%を含む)、S:0.03%以下(0%を含む)、Cr:2.0%以下(0%を含まない)、Al:0.1%以下(0%を含まない)、Nb:0.05〜0.30%、Ti:0.05〜0.10%、N:0.0080%以下(0%を含まない)、O:0.0020%以下(0%を含む)を満たし、残部は鉄および不可避不純物からなる鋼材を分塊圧延し、引き続き800〜1050℃の温度に再加熱した後、熱加工を行う点に要旨を有するものである。
なお分塊圧延では、下記(1)式および(2)式の関係を満足する加熱温度T1(℃)および加熱時間t(秒)で加熱するか、又は
下記(2)式の関係を満足しかつ1200〜1300℃の範囲から選ばれる加熱温度T1(℃)で10〜60分間加熱する。
4000≦(T1+273)×log10(t)≦6000 …(1)
T1−1030×[Nb]−600×[Ti]+2052×[N]−1150≧0 …(2)
但し、[Nb],[Ti]および[N]は、夫々Nb,TiおよびNの含有量(質量%)を示す。
On the other hand, the production method of the present invention that can achieve the above-mentioned object is: C: 0.05 to 0.30%, Si: 2.0% or less (not including 0%), Mn: 1.0% or less (Excluding 0%), P: 0.03% or less (including 0%), S: 0.03% or less (including 0%), Cr: 2.0% or less (not including 0%) Al: 0.1% or less (excluding 0%), Nb: 0.05 to 0.30%, Ti: 0.05 to 0.10%, N: 0.0080% or less (including 0%) no), O: 0.0020% or less met (including 0%), after the balance is slabbing a steel consisting of iron and inevitable impurities, was reheated continued to a temperature of 800 to 1050 ° C., hot working It has a gist in terms of performing.
In the partial rolling, heating is performed at a heating temperature T1 (° C.) and a heating time t (seconds) satisfying the relationship of the following formulas (1) and (2), or
It heats for 10 to 60 minutes at the heating temperature T1 (° C.) satisfying the relationship of the following formula (2) and selected from the range of 1200 to 1300 ° C.
4000 ≦ (T1 + 273) × log 10 (t) ≦ 6000 (1)
T1-1030 × [Nb] −600 × [Ti] + 2052 × [N] −1150 ≧ 0 (2)
However, [Nb], [Ti] and [N] indicate the contents (% by mass) of Nb, Ti and N, respectively.

この製造方法において、対象とする鋼材には、上記したような各種元素を含有することも有用であり、含有させる元素の種類に応じて肌焼鋼の特性が更に改善される。   In this manufacturing method, it is also useful to include various elements as described above in the target steel material, and the characteristics of the case-hardened steel are further improved according to the type of element to be included.

本発明によれば、鋼の化学成分を特定すると共に、NbおよびTiを含む複合窒化物の形態および個数を特定することによって、熱間鍛造や冷間鍛造を行なっても良好な鍛造性を示すと共に、浸炭処理のための加熱による結晶粒の粗大化を効果的に抑制することのできる肌焼鋼が実現でき、こうした肌焼鋼は各種機械部品用の素材として有用である。   According to the present invention, by specifying the chemical composition of steel and specifying the form and number of composite nitrides containing Nb and Ti, good forgeability is exhibited even when hot forging or cold forging is performed. In addition, a case-hardened steel capable of effectively suppressing the coarsening of crystal grains due to heating for carburizing treatment can be realized, and such a case-hardened steel is useful as a material for various machine parts.

本発明者らは前述した様な従来技術の下で、結晶粒粗大化防止特性と鍛造性を更に改善すべく、それらの性能に影響を及ぼす鋼の成分組成や析出物の存在形態などを主体にして研究を重ねてきた。その結果、鋼の成分組成を特定すると共に、NbおよびTiを含む複合窒化物の形態およびその個数を特定してやれば、安定して優れた結晶粒粗大化防止特性と鍛造性を兼ね備えた肌焼鋼が得られることを見出し、本発明を完成した。   Under the prior art as described above, the present inventors mainly have a focus on the component composition of steel and the presence form of precipitates that affect their performance in order to further improve the grain coarsening prevention characteristics and forgeability. I have been doing research. As a result, if the component composition of the steel is specified, and the form and the number of the composite nitride containing Nb and Ti are specified, the case hardening steel having stable and excellent grain coarsening prevention characteristics and forgeability. Was found and the present invention was completed.

本発明では、特にNbおよびTiの複合添加を行い、NbとTiを含む複合窒化物(以下、単に「析出物」と呼ぶことがある)を多量に分散析出させて結晶粒粗大化抑制効果を高めたものである。本発明者らが検討したところによれば、温間・冷間鍛造品の結晶粒の粗大化を防止するには、従来よりも多量の析出物を生成させること、そのためにはNbとTiの添加量を最適化する必要があることが判明した。また、真空浸炭処理では、表層部において析出物の減少する傾向があり、その部分で結晶粒の粗大化が発生し易いことから、Nbに加えてTiを複合添加することによって、析出物(NbとTiを含む複合窒化物)の安定化を図り、これによって良好な結晶粒粗大化防止効果が得られたのである。   In the present invention, Nb and Ti are added in combination, and a large amount of a composite nitride containing Nb and Ti (hereinafter sometimes simply referred to as “precipitate”) is dispersed and precipitated, thereby suppressing the effect of grain coarsening. It is an enhanced one. According to the study by the present inventors, in order to prevent the coarsening of the crystal grains of the warm / cold forged product, a larger amount of precipitates than before is generated, and for that purpose, Nb and Ti. It has been found that the amount added needs to be optimized. Further, in the vacuum carburizing treatment, precipitates tend to decrease in the surface layer portion, and coarsening of crystal grains is likely to occur in that portion. Therefore, by adding Ti in addition to Nb, precipitates (Nb The composite nitride containing Ti and Ti) was stabilized, and a good effect of preventing grain coarsening was obtained.

本発明の肌焼鋼においては、その基本成分も適切に調整する必要があるが、まず鋼の化学成分の範囲限定理由は下記の通りである。   In the case-hardened steel of the present invention, the basic components need to be appropriately adjusted. First, the reasons for limiting the range of chemical components of the steel are as follows.

[C:0.05〜0.30%]
Cは部品として必要な芯部硬さを確保する上で重要な元素であり、0.05%未満では硬さ不足により部品としての静的強度が不足気味となる。しかしC含有量が多過ぎると、硬が過度に高くなり過ぎて鍛造性や被削性が低下するので、0.30%以下に抑える必要がある。C含有量の好ましい下限は0.15%であり、好ましい上限は0.26%である。
[C: 0.05-0.30%]
C is an important element for securing the core hardness necessary for a part, and if it is less than 0.05%, the static strength as a part tends to be insufficient due to insufficient hardness. However, if the C content is too large, the hardness becomes excessively high and the forgeability and machinability deteriorate, so it is necessary to keep it to 0.30% or less. The minimum with preferable C content is 0.15%, and a preferable upper limit is 0.26%.

[Si:2.0%以下(0%を含まない)]
Siは、焼戻し処理時の硬さ低下を抑えて浸炭部品の表層硬さを確保するのに有効な元素である。こうした効果はその含有量が増加するにつれて大きくなるが、Si含有量が多過ぎると素材の変形抵抗が増し、鍛造性を劣化させることになる。こうしたことから、Si含有量は2.0%以下とする必要がある。Si含有量の好ましい上限は、0.35%であり、より好ましくは0.15%以下とするのが良い。
[Si: 2.0% or less (excluding 0%)]
Si is an element effective for suppressing the hardness reduction during the tempering process and ensuring the surface layer hardness of the carburized component. Such an effect increases as the content increases. However, if the Si content is too large, the deformation resistance of the material increases and the forgeability deteriorates. For these reasons, the Si content needs to be 2.0% or less. The upper limit with preferable Si content is 0.35%, More preferably, it is good to set it as 0.15% or less.

[Mn:1.0%以下(0%を含まない)]
Mnは脱酸剤として作用し、酸化物系介在物量を低減して鋼材の内部品質を高める作用を有すると共に、浸炭焼入れ時の焼入性を著しく高める作用を有している。しかしMnの含有量の増加に伴って縞状の偏析が顕著となり、材質のバラツキが大きくなる結果、冷間加工性に悪影響を与える。こうしたことから、Mn含有量は1.0%以下とする必要がある。尚、Mnの好ましい上限は0.6%であり、より好ましくは0.5%以下とするのが良い。
[Mn: 1.0% or less (excluding 0%)]
Mn acts as a deoxidizer and has the effect of reducing the amount of oxide inclusions to increase the internal quality of the steel material, and also has the effect of significantly increasing the hardenability during carburizing and quenching. However, as the Mn content increases, striped segregation becomes prominent, resulting in large variations in material, resulting in an adverse effect on cold workability. For these reasons, the Mn content needs to be 1.0% or less. In addition, the upper limit with preferable Mn is 0.6%, More preferably, it is good to set it as 0.5% or less.

[P:0.03%以下(0%を含む)]
Pは、鋼材中に不可避的に含まれる元素(不純物)であり、結晶粒界に偏析して部品の衝撃特性を低下させるので、できるだけ低減することが好ましいい。こうした観点から、Pの含有量の上限は0.03%とした。P含有量の好ましい上限は0.02%であり、より好ましくは0.015%以下にするのが良い。
[P: 0.03% or less (including 0%)]
P is an element (impurity) inevitably contained in the steel material, and segregates at the grain boundaries to lower the impact characteristics of the component. Therefore, it is preferable to reduce P as much as possible. From such a viewpoint, the upper limit of the content of P is set to 0.03%. The upper limit with preferable P content is 0.02%, More preferably, it is good to set it as 0.015% or less.

[S:0.03%以下(0%を含む)]
Sは、Mnと反応してMnS介在物を形成し、部品の疲労強度、衝撃強度を低下させるのでなるべく低減することが好ましいが、逆に切削性は向上するためその含有量は上記範囲内で適宜調整する必要がある。通常の機械構造用鋼では、疲労強度および衝撃強度の観点から、S含有量は0.03%以下に抑制することが好ましい。S含有量の好ましい上限は0.02%であり、より好ましくは0.015%以下にするのが良い。
[S: 0.03% or less (including 0%)]
S reacts with Mn to form MnS inclusions and lowers the fatigue strength and impact strength of the part, so it is preferable to reduce it as much as possible, but conversely the machinability is improved so that its content is within the above range. It is necessary to adjust accordingly. In ordinary mechanical structural steel, the S content is preferably suppressed to 0.03% or less from the viewpoint of fatigue strength and impact strength. The upper limit with preferable S content is 0.02%, More preferably, it is good to set it as 0.015% or less.

[Cr:2.0%以下(0%を含まない)]
Crは、炭化物に固溶して炭化物の硬さを向上させる効果があるので耐磨耗性向上に有効である。また、Mnと同様に浸炭焼入れ時の焼入れ性を著しく向上させる効果も発揮する。特に、歯車や軸受等の摺動部品には適量含有させることが好ましい。しかし、Cr含有量が過剰になると、鋼材の強度が高くなり過ぎて被削性・鍛造性が劣化するので2.0%以下とすべきである。こうした効果を発揮させるためには、Cr含有量は0.9%以上とすることが好ましい。またCr含有量の好ましい下限は、1.2%である。
[Cr: 2.0% or less (excluding 0%)]
Cr is effective in improving the wear resistance because it has the effect of improving the hardness of the carbide by dissolving in the carbide. Moreover, the effect which remarkably improves the hardenability at the time of carburizing quenching similarly to Mn is exhibited. In particular, it is preferable to contain an appropriate amount in sliding parts such as gears and bearings. However, if the Cr content is excessive, the strength of the steel material becomes too high and the machinability and forgeability deteriorate, so it should be 2.0% or less. In order to exert such effects, the Cr content is preferably 0.9% or more. Moreover, the minimum with preferable Cr content is 1.2%.

[Al:0.1%以下(0%を含まない)]
Alは脱酸剤として有効に作用し、酸化物系介在物量を低減して鋼材の内部品質を高める作用を発揮する適量含有させることが好ましい。しかし、Al含有量が過剰になると、粗大で硬い非金属介在物(Al23)が生成し、疲労特性を低下させるので、0.1%以下に抑えるべきである。Alの好ましい上限は0.07%であり、より好ましくは0.05%以下にするのが良い。
[Al: 0.1% or less (not including 0%)]
It is preferable that Al be contained in an appropriate amount that effectively acts as a deoxidizer and reduces the amount of oxide inclusions to enhance the internal quality of the steel material. However, if the Al content is excessive, coarse and hard non-metallic inclusions (Al 2 O 3 ) are generated and the fatigue characteristics are deteriorated, so it should be suppressed to 0.1% or less. A preferable upper limit of Al is 0.07%, and more preferably 0.05% or less.

[Nb:0.05〜0.30%]
Nbは鋼中のTiと複合して、(Nb,Ti)C、(Nb,Ti)N若しくは(Nb,Ti)CNを形成し、浸炭時のγ結晶粒の粗大化を抑制する作用を発揮する。Nb含有量が0.05%未満では、十分な数量の析出物が得られず、満足する結晶粒粗大化防止効果が得られない。しかしながら、Nb含有量が0.30%を超えると、鋼の鋳造時に粗大なNb炭・窒化物が生成し、衝撃強度や転動疲労強度を却って劣化させることが懸念される。Nb含有量の好ましい上限は0.20%であり、より好ましくは0.10%以下とするのが良い。
[Nb: 0.05 to 0.30%]
Nb combines with Ti in steel to form (Nb, Ti) C, (Nb, Ti) N or (Nb, Ti) CN, and exerts the action of suppressing the coarsening of γ crystal grains during carburizing To do. If the Nb content is less than 0.05%, a sufficient amount of precipitates cannot be obtained, and a satisfactory crystal grain coarsening preventing effect cannot be obtained. However, if the Nb content exceeds 0.30%, coarse Nb charcoal / nitride is generated during steel casting, and there is a concern that the impact strength and rolling fatigue strength may be deteriorated. The upper limit with preferable Nb content is 0.20%, More preferably, it is good to set it as 0.10% or less.

[Ti:0.05〜0.10%]
Tiは、鋼中のNbと複合して、(Nb,Ti)C、(Nb,Ti)N若しくは(Nb,Ti)CNを形成し、浸炭時のγ結晶粒の粗大化を抑制する作用を発揮する。Ti含有量が0.05%未満では、十分な数量の析出物が得られず、満足する結晶粒粗大化防止効果が得られない。しかしながら、Ti含有量が0.10%を超えると、粗大なTiN介在物が生成し、切削性や転動疲労強度を低下させる恐れがある。Ti含有量の好ましい上限は0.09%であり、より好ましくは0.08%以下とするのが良い。
[Ti: 0.05-0.10%]
Ti combines with Nb in steel to form (Nb, Ti) C, (Nb, Ti) N or (Nb, Ti) CN, and has the effect of suppressing the coarsening of γ crystal grains during carburizing. Demonstrate. If the Ti content is less than 0.05%, a sufficient amount of precipitates cannot be obtained, and a satisfactory effect of preventing coarsening of crystal grains cannot be obtained. However, if the Ti content exceeds 0.10%, coarse TiN inclusions are generated, and there is a concern that the machinability and the rolling fatigue strength may be reduced. The upper limit with preferable Ti content is 0.09%, More preferably, it is good to set it as 0.08% or less.

[N:0.0080%以下(0%を含まない)]
Nは、できるだけ低減することが好ましい不純物元素である。N含有量が過剰になると粗大なTiN介在物が生成して切削性や転動疲労強度を低下させると共に、鋼材の硬さ、変形抵抗を増大させて鍛造性を低下させる。こうした観点からN含有量は0.0080%以下に抑制するのが良い。好ましくは0.0060%以下、より好ましくは0.0040%以下にするのが良い。
[N: 0.0080% or less (excluding 0%)]
N is an impurity element that is preferably reduced as much as possible. When the N content is excessive, coarse TiN inclusions are generated to reduce the machinability and rolling fatigue strength, and the hardness and deformation resistance of the steel material are increased to reduce the forgeability. From such a viewpoint, the N content is preferably suppressed to 0.0080% or less. Preferably it is 0.0060% or less, more preferably 0.0040% or less.

[O:0.0020%以下(0%を含む)]
Oは鋼材に不可避的に含まれる元素であり、過剰に含まれると、粗大な酸化物系介在物が生成して鋼材の疲労特性を低下させるので、できるだけ少なくすることが好ましい。こうした観点からO含有量は0.0020%以下に抑制するのが良い。好ましくは0.0015%以下、より好ましくは0.0010%以下にするのが良い。
[O: 0.0020% or less (including 0%)]
O is an element inevitably contained in the steel material, and if it is excessively contained, coarse oxide inclusions are generated and the fatigue characteristics of the steel material are lowered. From such a viewpoint, the O content is preferably suppressed to 0.0020% or less. Preferably it is 0.0015% or less, and more preferably 0.0010% or less.

本発明の肌焼鋼における必須構成元素は以上の通りであり、残部は実質的にFeであるが、該鋼材中に上記説明したものの他、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物の混入を許容するものである。   The essential constituent elements in the case-hardened steel of the present invention are as described above, and the balance is substantially Fe, but inevitable brought into the steel material depending on the situation of raw materials, materials, manufacturing equipment, etc. in addition to those described above. Impurities are allowed to enter.

また本発明の肌焼鋼には、上記元素に加えて、必要に応じて、更に(a)Cu:1.0%以下(0%を含まない)および/またはNi:3.0%以下(0%を含まない)、(b)Mo:1.0%以下(0%を含まない)、(c)B:0.0005〜0.0030%、(d)Ca:0.010%以下(0%を含まない)、(e)Pb:0.1%以下(0%を含まない)および/またはBi:0.1%以下(0%を含まない)、(f)V:0.5%以下(0%を含まない)、Zr:0.5%以下(0%を含まない)およびW:0.5%以下(0%を含まない)よりなる群から選ばれる1種または2種以上の元素、等を含有させることも有効であり、含有させる元素の種類に応じて肌焼鋼の特性が更に改善される。これらの成分の範囲限定理由は次の通りである。   Further, in the case-hardened steel of the present invention, in addition to the above elements, if necessary, (a) Cu: 1.0% or less (not including 0%) and / or Ni: 3.0% or less ( (B) Mo: 1.0% or less (excluding 0%), (c) B: 0.0005 to 0.0030%, (d) Ca: 0.010% or less (excluding 0%) (E) Pb: 0.1% or less (not including 0%) and / or Bi: 0.1% or less (not including 0%), (f) V: 0.5 % Or less (not including 0%), Zr: 0.5% or less (not including 0%) and W: 0.5% or less (not including 0%) It is also effective to contain the above elements and the like, and the characteristics of the case-hardened steel are further improved according to the kind of elements to be contained. The reasons for limiting the ranges of these components are as follows.

[Cu:1.0%以下(0%を含まない)および/またはNi:3.0%以下(0%を含まない)]
CuはFeよりも酸化されにくい元素であるので、鋼材の耐食性を向上させる元素として用いられる。従って、耐食性が必要とされる場合には、1.0%以下の範囲で含有させることが好ましい。しかし、Cuの含有量が1.0%を超えると、鋼材の熱間延性が低下して割れ等の問題が起こり易くなる。Cu含有量のより好ましい上限は0.3%であり、更に好ましくは0.1%以下とするのが良い。
[Cu: 1.0% or less (not including 0%) and / or Ni: 3.0% or less (not including 0%)]
Since Cu is an element that is less likely to be oxidized than Fe, it is used as an element that improves the corrosion resistance of steel. Therefore, when corrosion resistance is required, it is preferable to make it contain in 1.0% or less of range. However, if the Cu content exceeds 1.0%, the hot ductility of the steel material is lowered, and problems such as cracking tend to occur. The upper limit with more preferable Cu content is 0.3%, More preferably, it is good to set it as 0.1% or less.

NiはCuと同様に鋼材の耐食性を向上させるのに有効な元素である。またNiは、鋼材の耐衝撃性を向上させるのにも有効に作用する。しかし、Niの含有量が過剰になると、コスト上昇を招くのでその上限は3.0%とすることが好ましい。Ni含有量の好ましい下限は0.1%であり、より好ましくは0.3%以上とするのが良い、またNi含有量のより好ましい上限は2.0%であり、更に好ましくは1.5%以下とするのが良い。   Ni is an element effective for improving the corrosion resistance of a steel material like Cu. Ni also acts effectively to improve the impact resistance of the steel material. However, if the Ni content is excessive, the cost increases, so the upper limit is preferably set to 3.0%. The preferable lower limit of the Ni content is 0.1%, more preferably 0.3% or more, and the more preferable upper limit of the Ni content is 2.0%, more preferably 1.5%. % Or less is good.

[Mo:1.0%以下(0%を含まない)]
Moは浸炭焼入れ時の焼入れ性を著しく向上させる効果を持つことに加え、耐衝撃強度の向上に有効であり、必要によって含有する。しかし、Mo含有量が過剰になると、素材硬さが高くなって被削性が低下するので、その含有量は1.0%以下とするのが好ましい。より好ましくは0.35%以下であるが、更に好ましくはJIS肌焼鋼(SCM 420:Mo含有量0.15〜0.30%)よりも少ない0.15%未満にするのが良い。
[Mo: 1.0% or less (excluding 0%)]
In addition to having the effect of significantly improving the hardenability during carburizing and quenching, Mo is effective in improving the impact strength and is contained as necessary. However, if the Mo content is excessive, the material hardness increases and the machinability decreases, so the content is preferably 1.0% or less. More preferably, it is 0.35% or less, but more preferably less than 0.15%, which is less than JIS case hardened steel (SCM 420: Mo content 0.15 to 0.30%).

[B:0.0005〜0.0030%]
Bは微量で鋼材の焼入性を大幅に高める作用を有しており、しかも結晶粒界を強化して衝撃特性を高める作用も有している。こうした作用は、0.0005%以上添加することで有効に発揮される。しかし、それらの効果は、含有量が0.0030%を超えると飽和する。またB含有量が0.0030%を超えて過剰になると、B窒化物が生成し易くなり、これが生成すると冷間および熱間加工が悪くなる。B含有量のより好ましい下限は0.0008%であり、更に好ましくは0.0010%以上とするのが良い。B含有量のより好ましい上限は0.0025%であり、更に好ましくは0.0020%以下にするのが良い。
[B: 0.0005 to 0.0030%]
B has the effect of significantly increasing the hardenability of the steel material in a small amount, and also has the effect of enhancing the impact characteristics by strengthening the grain boundaries. Such an effect is effectively exhibited by adding 0.0005% or more. However, these effects are saturated when the content exceeds 0.0030%. On the other hand, if the B content exceeds 0.0030% and excessive, B nitrides are likely to be produced, and if this is produced, cold and hot working will be worsened. A more preferable lower limit of the B content is 0.0008%, and more preferably 0.0010% or more. A more preferable upper limit of the B content is 0.0025%, and more preferably 0.0020% or less.

[Ca:0.010%以下(0%を含まない)]
Caは、鋼材中の硫化物の展伸を抑制して衝撃特性を向上させると共に、粗大なTi硫化物の生成を抑制して鍛造性を向上させる効果がある。しかしながら、Ca含有量が過剰になって0.010%を超えると、粗大な酸化物が生成し材料強度を却って低下させることになる。Ca含有量の好ましい下限は0.0005%であり、より好ましくは0.0008%以上にするのが良い。またCa含有量のより好ましい上限は0.0030%であり、更に好ましくは0.0020%以下にするのが良い。
[Ca: 0.010% or less (excluding 0%)]
Ca has the effect of improving the forgeability by suppressing the expansion of sulfide in the steel material and improving the impact characteristics, and suppressing the formation of coarse Ti sulfide. However, if the Ca content becomes excessive and exceeds 0.010%, a coarse oxide is generated and the material strength is reduced. A preferable lower limit of the Ca content is 0.0005%, and more preferably 0.0008% or more. Moreover, the upper limit with more preferable Ca content is 0.0030%, More preferably, it is good to set it as 0.0020% or less.

[Pb:0.1%以下(0%を含まない)および/またはBi:0.1%以下(0%を含まない)]
PbおよびBiは、いずれも鋼材の被削性を向上させるのに有効な元素であり、必要によって含有される。しかしながら、過剰に含有させると材料強度が低下するので、いずれも0.1%以下とすることが好ましい。好ましい下限はいずれも0.02%であり、より好ましくは0.03%以上にするのが良い。またより好ましい上限は、0.08%であり、更に好ましくは0.06%以下にするのが良い。
[Pb: 0.1% or less (not including 0%) and / or Bi: 0.1% or less (not including 0%)]
Pb and Bi are both effective elements for improving the machinability of the steel material, and are contained if necessary. However, since the material strength is lowered when excessively contained, it is preferable that the content is 0.1% or less. The lower limit is preferably 0.02%, more preferably 0.03% or more. Moreover, a more preferable upper limit is 0.08%, and further preferably 0.06% or less.

[V:0.5%以下(0%を含まない)、Zr:0.5%以下(0%を含まない)およびW:0.5%以下(0%を含まない)よりなる群から選ばれる1種または2種以上]
V、ZrおよびWは、いずれも炭素および窒素と活性な元素であり、微細な析出物を生成することによって、結晶粒粗大化防止特性を向上させることができるので、いずれも0.5%以下の範囲で含有させても良い。これらの元素のより好ましい上限は0.3%であり、更に好ましくは0.1%以下とするのが良い。
[V: 0.5% or less (not including 0%), Zr: 0.5% or less (not including 0%) and W: 0.5% or less (not including 0%) 1 type or 2 types or more]
V, Zr and W are all active elements such as carbon and nitrogen, and by forming fine precipitates, the crystal grain coarsening prevention property can be improved, and therefore all of 0.5% or less You may make it contain in the range of. A more preferable upper limit of these elements is 0.3%, and further preferably 0.1% or less.

ところで、NbおよびTiを含有させると、これらの元素を複合的に含む炭化物、窒化物および炭窒化物等の析出物が生成することになるが、本発明の肌焼鋼では、これら析出物のうち、特にNbとTiを含む複合窒化物に着目し、その形態および個数を規定することが重要である。これらを規定した理由は下記の通りである。   By the way, when Nb and Ti are contained, precipitates such as carbides, nitrides, and carbonitrides containing these elements in a composite form are formed. Among them, it is important to pay attention to the composite nitride containing Nb and Ti, and to define the form and number of the composite nitrides. The reasons for specifying these are as follows.

[NbおよびTiを含む複合窒化物の最大粒径が20μm以下である]
NbおよびTiを含む複合窒化物は、鋼の凝固中に溶鋼のNがNb,Tiと結合することにより、不可避的に生成する介在物である。こうした介在物のうち、粗大な介在物(複合窒化物)は鋼材の加工性(変形能力)を低下させるので、できるだけ微細に生成させることが好ましい。こうしたことから、対象とする複合窒化物の最大径を20μm以下とした。尚、析出物の最大径の測定は、光学顕微鏡を用いて、10mm2の視野面積を倍率:100倍で検鏡し、介在物の大きい順に20個抽出し、抽出した20個の平均値で表したものである。
[Maximum particle size of composite nitride containing Nb and Ti is 20 μm or less]
The composite nitride containing Nb and Ti is an inclusion that is inevitably generated when N of molten steel is combined with Nb and Ti during solidification of the steel. Of these inclusions, coarse inclusions (composite nitrides) reduce the workability (deformability) of the steel material, and are therefore preferably generated as finely as possible. For these reasons, the maximum diameter of the target composite nitride was set to 20 μm or less. The maximum diameter of the precipitates was measured using an optical microscope, and a field area of 10 mm 2 was examined at a magnification of 100 times, and 20 samples were extracted in descending order of inclusions. It is a representation.

[粒径が1μm以上、20μm以下である当該窒化物が1mm2中に平均50個以下存在する]
介在物の個数は、鋼材の加工性の観点から少ないほうが好ましく、平均個数で1mm2中に50個以下とした。尚、個数の測定は、視野面積10mm2のサンプルを用い、光学顕微鏡で、倍率100倍でランダムに1mm×1mmの視野を20視野選択して視野ごとの個数を測定し、1視野当りの平均個数を測定したものである。尚、測定対象となる複合窒化物の粒径を1μm以上としたのは、光学顕微鏡で識別できる最小限の大きさを意味する。
[An average of 50 or less of the nitride having a particle size of 1 μm or more and 20 μm or less exists in 1 mm 2 ]
The number of inclusions is preferably small from the viewpoint of workability of the steel material, and the average number is 50 or less in 1 mm 2 . In addition, the number of fields is measured by using a sample with a field of view area of 10 mm 2 , selecting 20 fields of 1 mm × 1 mm randomly with an optical microscope at a magnification of 100 times, measuring the number of fields, and calculating the average per field of view. The number is measured. In addition, the particle size of the composite nitride to be measured being 1 μm or more means a minimum size that can be identified with an optical microscope.

本発明の肌焼鋼は、真空浸炭表層部で発生する結晶粒粗大化を防止することを目的として、NbとTiを含む複合窒化物を利用するものであるが、浸炭後の部品ではこうした形態が反映して表層部にNbとTiを含む複合炭窒化物[(Nb,Ti)(C,N)]は大きさが10〜50nmの析出物を3.0個/μm2以上存在するような形態となる。尚、部品の表層部とは表面から100μm深さまでの領域を意味し、上記複合炭窒化物は、透過型電子顕微鏡(TEM)で5万倍程度によって測定できる。 The case-hardened steel of the present invention uses a composite nitride containing Nb and Ti for the purpose of preventing the coarsening of crystal grains generated in the vacuum carburized surface layer portion. Reflecting this, the composite carbonitride [(Nb, Ti) (C, N)] containing Nb and Ti in the surface layer portion seems to have 3.0 precipitates / μm 2 or more having a size of 10 to 50 nm. Form. The surface layer portion of the part means a region from the surface to a depth of 100 μm, and the composite carbonitride can be measured by a transmission electron microscope (TEM) at about 50,000 times.

上記の様な特性を備えた肌焼鋼を製造する条件については、前述した化学成分組成を満足する鋼を溶製し、常法に従って鋳造、均熱処理(溶体化処理)、熱間加工(例えば、熱圧延)すれば良いが、特に凝固開始から凝固終了までの冷却速度を2.5℃/分以上に高めれば、冷却時に晶出するTi系析出物が微細化され、粗大析出物の生成が抑制されるため、冷間加工性(特に、冷間鍛造性)を向上させることができる。前記冷却速度は、粗大なTi系介在物を抑制する上で5℃/分以上とすることが好ましく、より好ましくは7.5℃/分以上である。尚、冷却速度を速くする手段については、鋳造速度の向上、水冷の能力向上が挙げられる。連続鋳造にて鋳片を製造する場合においては、例えば鋳造速度を1.05m/分以上とし、鋳型での冷却水量を例えばノズル1本当り0.15ton/時以上とするのが良い。 Regarding the conditions for producing the case-hardened steel having the above-mentioned characteristics, the steel satisfying the above-mentioned chemical composition is melted, and casting, soaking (solution treatment), hot working (for example, according to a conventional method) , may be hot rolled) but, particularly if Takamere the cooling rate from solidification start to the solidification ended 2.5 ° C. / min or more, Ti-based precipitates crystallized during cooling are fine, the coarse precipitates Since generation is suppressed, cold workability (particularly, cold forgeability) can be improved. The cooling rate is preferably 5 ° C./min or more, more preferably 7.5 ° C./min or more, in order to suppress coarse Ti-based inclusions. As a means for increasing the cooling rate, an improvement in casting speed and an improvement in water cooling ability can be mentioned. In the case of producing a slab by continuous casting, for example, the casting speed is preferably set to 1.05 m / min or more, and the amount of cooling water in the mold is set to, for example, 0.15 ton / hour or more per nozzle.

その他の条件については限定されないが、例えば鋳造後の分塊圧延前の均熱条件(溶体化処理条件)は1200〜1350℃の温度域で5分以上とすることが好ましい。こうした処理を行なうことによって、複合炭窒化物が固溶し、後に微細に析出しやすくなるため結晶粒粗大化防止特性の向上に有用である。尚、あまりに長時間の処理を行なっても効果が飽和するため、生産性の観点から10時間以下が好ましい。   Although it does not limit about other conditions, For example, it is preferable that the soaking | uniform-heating conditions (solution treatment conditions) before the lump rolling after casting shall be 5 minutes or more in the temperature range of 1200-1350 degreeC. By performing such a treatment, the composite carbonitride is solid-dissolved and later easily finely precipitated, which is useful for improving the crystal grain coarsening prevention characteristics. In addition, since the effect is saturated even if the treatment is performed for an excessively long time, 10 hours or less is preferable from the viewpoint of productivity.

本発明者らは、上記のような肌焼鋼を製造するための有用な方法について検討してきた。その結果、上記のような化学成分組成を有する鋼材を用い、下記(1)式および(2)式の関係を満足する加熱温度T1(℃)および加熱時間t()で加熱した後分塊圧延し、引き続き800〜1050℃の温度に再加熱した後、熱間加工を行うようにすれば、上記のような性状を有する肌焼鋼が得られ、こうした肌焼鋼は鍛造性および結晶粒粗大化防止特性に優れたものであることを見出している。下記(1)式および(2)式の関係を規定した理由について説明する。
4000≦(T1+273)×log10(t)≦6000 …(1)
T1−1030×[Nb]−600×[Ti]+2052×[N]−1150≧0 …(2)
但し、[Nb],[Ti]および[N]は、夫々Nb,TiおよびNの含有量(質量%)を示す。
The present inventors have studied a useful method for producing the case-hardened steel as described above. As a result, using the steel material having the chemical composition as described above, after heating at the heating temperature T1 (° C.) and the heating time t ( seconds ) satisfying the relationship of the following formulas (1) and (2), If it is rolled and subsequently reheated to a temperature of 800 to 1050 ° C. and then hot-worked, a case-hardened steel having the above properties can be obtained. It has been found that it has excellent coarsening prevention properties. The reason why the relationship between the following expressions (1) and (2) is specified will be described.
4000 ≦ (T1 + 273) × log 10 (t) ≦ 6000 (1)
T1-1030 × [Nb] −600 × [Ti] + 2052 × [N] −1150 ≧ 0 (2)
However, [Nb], [Ti] and [N] indicate the contents (% by mass) of Nb, Ti and N, respectively.

上記 溶体化処理は、鋳造時(連続鋳造や造塊により製造)に生成した粗大な析出物を一旦固溶させ、後行程で結晶粒粗大化防止に有効な微細析出物を生成させるために必要な条件であるが、加熱温度・加熱時間が不足すると、粗大な析出物が素地に十分に溶け込まずに、結晶粒粗大化防止効果が得られないことになる。また逆に、加熱温度・加熱時間が過剰になると、非常に微細な析出物が多数生成して硬度が上昇し、冷間鍛造性を低下させることになる。こうした観点から、本発明者らは、溶体化処理時の加熱温度T1および加熱時間t(分)が結晶粒の粗大化に与える影響について検討した。   The solution treatment described above is necessary to temporarily dissolve the coarse precipitates produced during casting (manufactured by continuous casting or ingot making) and to produce fine precipitates that are effective in preventing grain coarsening in the subsequent process. However, if the heating temperature and the heating time are insufficient, the coarse precipitates are not sufficiently dissolved in the substrate, and the effect of preventing the coarsening of crystal grains cannot be obtained. Conversely, when the heating temperature and the heating time are excessive, a large number of very fine precipitates are generated, the hardness is increased, and the cold forgeability is lowered. From these viewpoints, the present inventors examined the influence of the heating temperature T1 and the heating time t (minute) during the solution treatment on the coarsening of the crystal grains.

図1は、同じ鋼種を用いて、加熱温度T1を一定とし、加熱時間tを変化させたときの加熱時間tが微細析出物(NbおよびTiを含む複合炭窒化物で大きさが10〜50nmのもの)の個数に与える影響を示したグラフである(後記実施例2の試験No.56〜61)。この結果から明らかなように、微細析出物個数は加熱時間に対数的に増加することが分かる。   FIG. 1 shows that the same steel type is used, the heating temperature T1 is kept constant, and the heating time t when the heating time t is changed is a fine precipitate (composite carbonitride containing Nb and Ti and having a size of 10 to 50 nm. Is a graph showing the influence on the number of the test samples (test Nos. 56 to 61 of Example 2 described later). As is clear from this result, it can be seen that the number of fine precipitates increases logarithmically with heating time.

図2は、同じ鋼種を用いて、加熱時間tを一定とし、加熱温度T1を変化させたときの加熱温度T1が微細析出物(NbおよびTiを含む複合炭窒化物で大きさが10〜50nmのもの)の個数に与える影響を示したグラフである(後記実施例2の試験No.59,62〜64)。この結果から明らかなように、微細析出物個数は加熱時間に正比例して増加することが分かる。   FIG. 2 shows that the same steel type is used, the heating time t is constant, and the heating temperature T1 when the heating temperature T1 is changed is a fine precipitate (composite carbonitride containing Nb and Ti and having a size of 10 to 50 nm. (No. 59, 62 to 64 in Example 2 described later). As is apparent from this result, it can be seen that the number of fine precipitates increases in direct proportion to the heating time.

これらの結果に基づいて、溶体化処理における加熱温度T1および加熱時間tが、微細析出物個数に与える影響について、データ的に整理したところ、上記(1)式の関係を満足するときに、微細析出物が適度に分散された状態となって、鍛造性を良好にできると共に、結晶粒粗大化防止効果が達成されることが判明したのである。   Based on these results, the effects of the heating temperature T1 and the heating time t in the solution treatment on the number of fine precipitates are summarized in terms of data. When the relationship of the above formula (1) is satisfied, It has been found that the precipitates are appropriately dispersed to improve the forgeability and achieve the effect of preventing grain coarsening.

上記(1)式の関係は、微細析出物の数量が加熱温度T1に線形的に、加熱時間に対数的に増加することから求められたものであるが、(T1+273)×log10(t)の値(以下、「A値」と呼ぶ)が6000を超えると、微細析出物の個数が多くなって、鋼材の硬さが大きくなって鍛造性が劣化する。また上記A値が、4000未満になると、微細析出物による結晶粒粗大化防止効果が達成されなくなる。尚、上記加熱温度T1および加熱時間の現実的な範囲は、上記したように加熱温度T1:1200〜1350℃、加熱時間:5分〜10時間程度が適切な範囲であるが、上記(1)式は、これらの加熱温度、加熱時間の範囲内で選択されることになる。 The relationship of the above formula (1) is obtained from the fact that the number of fine precipitates increases linearly with the heating temperature T1 and logarithmically with the heating time, but (T1 + 273) × log 10 (t) When the value (hereinafter referred to as “A value”) exceeds 6000, the number of fine precipitates increases, the hardness of the steel material increases, and the forgeability deteriorates. On the other hand, when the A value is less than 4000, the effect of preventing coarsening of crystal grains due to fine precipitates cannot be achieved. In addition, the realistic ranges of the heating temperature T1 and the heating time are appropriate ranges such as the heating temperature T1: 1200 to 1350 ° C. and the heating time: about 5 minutes to 10 hours, as described above. The formula will be selected within the range of these heating temperatures and heating times.

上記(1)式の関係は、粗大な析出物を一旦固溶させるために必要な加熱温度T1と加熱時間tについて規定したものである。しかしながら、Ti,NbおよびNの含有量によっては、高温で析出物が安定となり、上記(1)式の関係を満足した条件で熱処理(溶体化処理)を行っても、析出物が固溶しない場合がある。こうしたことから、Ti,NbおよびNを比較的多く含有させた鋼材では、これらの含有量に応じて加熱温度T1を上昇させる必要がある。また、TiとNの親和力が強いので、N含有量が多い場合には、TiNの生成が優先的に進行し、TiとNbを含む複合窒化物を形成するTi量が減少して、複合窒化物の安定性が低下することになる。これらの現象を考慮して、適正な加熱温度T1を設定する必要がある。本発明者らは、こうした着想に基づいて、実験によって確認したところ、上記(2)式の関係を満足するように、Ti、NbおよびNの含有量に応じて加熱温度T1を設定すれば良いことが判明した。   The relationship of the above formula (1) defines the heating temperature T1 and the heating time t necessary for once dissolving a coarse precipitate. However, depending on the contents of Ti, Nb and N, the precipitate becomes stable at a high temperature, and the precipitate does not form a solid solution even if heat treatment (solution treatment) is performed under the condition satisfying the relationship of the above formula (1). There is a case. For these reasons, in a steel material containing a relatively large amount of Ti, Nb, and N, it is necessary to increase the heating temperature T1 in accordance with these contents. In addition, since the affinity between Ti and N is strong, when the N content is large, the generation of TiN preferentially proceeds, and the amount of Ti forming the composite nitride containing Ti and Nb is reduced, so that the composite nitriding The stability of things will be reduced. Considering these phenomena, it is necessary to set an appropriate heating temperature T1. The present inventors have confirmed by experiments based on such an idea, and may set the heating temperature T1 according to the contents of Ti, Nb and N so as to satisfy the relationship of the above formula (2). It has been found.

上記(2)式は、微細析出物の高温安定性に及ぼす各元素(Nb,Ti,N)の影響を考慮して設定されたものであり、重回帰分析に基づいて求められたものである。(T1−1030×[Nb]−600×[Ti]+2052×[N]−1105)の値(以下、「B値」と呼ぶ)が0未満となると、加熱温度T1が適切な温度範囲となって、鋳造時に析出した粗大析出物が固溶してその後の工程で微細析出物が形成されることになる。例えば、加熱温度T1および加熱時間tが同一であっても、鋼材の成分に応じて、微細析出物の個数が変化(B値が大きくなると析出物個数が多くなる)ことになる(後記試験No.63,66,68,70)。   The above equation (2) is set in consideration of the influence of each element (Nb, Ti, N) on the high-temperature stability of fine precipitates, and is obtained based on multiple regression analysis. . When the value (hereinafter referred to as “B value”) of (T1-1030 × [Nb] −600 × [Ti] + 2052 × [N] −1105) is less than 0, the heating temperature T1 becomes an appropriate temperature range. Thus, the coarse precipitates deposited at the time of casting form a solid solution, and fine precipitates are formed in the subsequent steps. For example, even if the heating temperature T1 and the heating time t are the same, the number of fine precipitates changes according to the components of the steel material (the number of precipitates increases as the B value increases). 63, 66, 68, 70).

上記(1)式および(2)式の関係を満足するようにして加熱した後、分塊圧延を施し、引き続き棒鋼や線材に成形するための熱間加工(例えば熱間圧延)を行う必要がある。この熱間加工を行うに当たっては、850〜1050℃の温度に再加熱する必要がある。この工程(再加熱工程)は、上記熱処理によって固溶状態としたNbやTiを熱間加工時に粗大析出させないためのものである。   After heating so as to satisfy the relationship of the above formulas (1) and (2), it is necessary to perform block rolling and subsequently perform hot working (for example, hot rolling) to form a steel bar or wire. is there. In performing this hot working, it is necessary to reheat to a temperature of 850 to 1050 ° C. This step (reheating step) is to prevent coarse precipitation of Nb and Ti that are in a solid solution state by the heat treatment during hot working.

この再加熱温度は、微細析出物を粗大化させない、即ち結晶粒粗大化防止特性を低下させないという観点からできるだけ低温である方が好ましいのであるが、850℃未満となるとフェライト+オーステナイトの2相域となって熱間加工後の組織が混粒となって、結晶粒粗大化防止化防止特性が低下する。   The reheating temperature is preferably as low as possible from the viewpoint of not coarsening the fine precipitates, that is, not reducing the crystal grain coarsening prevention property. However, when it is less than 850 ° C., the two-phase region of ferrite + austenite Thus, the structure after hot working becomes a mixed grain, and the prevention of crystal grain coarsening is reduced.

一方、再加熱温度が1050℃を超えると、固溶状態にあるNbやTiが粗大に且つまばらに析出し、結晶粒粗大化防止効果が達成されにくくなる。この再加熱温度の好ましい下限は900℃程度であり、好ましい上限は1025℃程度である。   On the other hand, when the reheating temperature exceeds 1050 ° C., Nb and Ti in a solid solution state are coarsely and sparsely precipitated, and it is difficult to achieve the effect of preventing the coarsening of crystal grains. The preferable lower limit of the reheating temperature is about 900 ° C., and the preferable upper limit is about 1025 ° C.

以下、実施例を挙げて本発明の構成および作用効果をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and is suitable as long as it can meet the purpose described above and below. It is also possible to carry out the invention with modifications, and these are all included in the technical scope of the present invention.

[実施例1]
表1,2に示す化学組成の鋼材を溶製炉で溶製し、鋳造時の冷却速度を変えて鋳造し、引き続き1200℃に加熱し、径:50mmの棒鋼に熱間鍛造し、1280℃にて60分間の溶体化処理を行なった。鋳造時の冷却速度は、異なるサイズの鋳型を用いることで変化させた。その後、実機圧延を模擬して900℃で焼きならし処理を行なった後、球状化処理を施し、鍛造材の断面のD/4(Dは棒鋼の直径を示す)位置からφ8mm×12mmの円柱状の試験片を作成した。
[Example 1]
Steel materials having the chemical compositions shown in Tables 1 and 2 were melted in a melting furnace, cast at different cooling rates during casting, subsequently heated to 1200 ° C., hot forged into a 50 mm diameter steel bar, 1280 ° C. Solution treatment for 60 minutes. The cooling rate during casting was varied by using different size molds. Then, after performing normalizing treatment at 900 ° C. by simulating actual rolling, spheroidizing treatment was performed, and a circle of φ8 mm × 12 mm from the position of D / 4 (D represents the diameter of the bar steel) of the cross-section of the forged material A columnar specimen was prepared.

上記円柱状の試験片を用い、プレスで圧縮試験を行ない、変低抵抗および割れ限界を測定することによって冷間鍛造性を評価した。このとき、変形抵抗は70%の圧縮加工を加えた際の荷重から求めた。また、割れ限界は、50%の圧縮加工を加えた後、段階的に2.5%ずつの圧縮を加え、割れが発生するまでの加工率を求めた。尚、いずれの試験も端面拘束で行い、変形抵抗測定については3回(n=3)、割れ限界については8回(n=8)行い、その平均値を求めた。   A compression test was performed with a press using the cylindrical test piece, and the cold forgeability was evaluated by measuring the variable resistance and crack limit. At this time, the deformation resistance was determined from the load when 70% compression was applied. In addition, the crack limit was determined by applying a compression of 2.5% stepwise after applying 50% compression, and determining the processing rate until cracking occurred. Each test was performed with end face restraint, the deformation resistance measurement was performed 3 times (n = 3), and the crack limit was performed 8 times (n = 8), and the average value was obtained.

結晶粒粗大化試験については、上記円柱状試験片を加工率70%で圧縮加工した後、真空浸炭炉で900℃または1000℃にて浸炭処理[均熱時間:70分、浸炭/拡散時間:80分、浸炭ガス:アセチレン(C22)]を行なった後、熱処理を想定して880℃で40分加熱してから60℃まで油冷した後、オーステナイト結晶粒度をJIS G 0551に定めるオーステナイト結晶粒度試験方法に準じて測定し、結晶粒度番号で5番以下の粗大粒の面積率によって評価した[5%を超えるもの:不良(×)、5%以下のもの:良好(○)]。 For the grain coarsening test, the cylindrical specimen was compressed at a processing rate of 70% and then carburized at 900 ° C. or 1000 ° C. in a vacuum carburizing furnace [soaking time: 70 minutes, carburizing / diffusion time: 80 minutes, carburizing gas: acetylene (C 2 H 2 )], assuming a heat treatment, heating at 880 ° C. for 40 minutes, oil cooling to 60 ° C., and then setting the austenite grain size to JIS G 0551 Measured according to the austenite grain size test method and evaluated by the area ratio of coarse grains having a grain size number of 5 or less [exceeding 5%: defective (×), 5% or less: good (◯)] .

また上記焼きならし処理を行なった鋼材ついて、図3に示す浸炭衝撃試験片を作製した。この試験片について、真空浸炭炉で1000℃にて浸炭処理(均熱時間:70分、浸炭/拡散時間:80分)を行なった後、880℃で40分加熱してから60℃まで油冷した後、170℃×2時間の焼き戻し処理を行ない、JIS Z 2242で規定されるシャルピー衝撃試験を行ない、その際に測定される吸収エネルギーを測定することによって浸炭後衝撃強度を評価した。これらの試験結果を、鋳造時の冷却速度、前記方法によって測定される窒化物(1〜20μmのもの)のサイズ(最大粒径)・個数、炭窒化物(10〜50nmのもの)の個数等と共に、一括して下記表3、4に示す。   Further, a carburized impact test piece shown in FIG. 3 was prepared for the steel material subjected to the above normalizing treatment. The test piece was subjected to carburizing treatment at 1000 ° C. in a vacuum carburizing furnace (soaking time: 70 minutes, carburizing / diffusion time: 80 minutes), heated at 880 ° C. for 40 minutes, and then oil-cooled to 60 ° C. Thereafter, a tempering treatment at 170 ° C. for 2 hours was performed, a Charpy impact test defined by JIS Z 2242 was performed, and the impact strength after carburization was evaluated by measuring the absorbed energy measured at that time. The results of these tests are the cooling rate during casting, the size (maximum particle size) / number of nitrides (1-20 μm) measured by the above method, the number of carbonitrides (10-50 nm), etc. Together with these, Tables 3 and 4 below collectively show.

Figure 0004956146
Figure 0004956146

Figure 0004956146
Figure 0004956146

Figure 0004956146
Figure 0004956146

Figure 0004956146
Figure 0004956146

これらの結果から、次のように考察できる(以下、「No.」は、試験No.を示す)。まず、No.1,5〜36のものは(No.1と5は同じもの)、本発明で規定する要件の全て満たす実施例であり、耐結晶粒粗大化特性と冷間鍛造性のいずれも良好であることが分かる。   From these results, it can be considered as follows (hereinafter, “No.” indicates the test No.). First, no. Nos. 1 to 5 (Nos. 1 and 5 are the same) are examples that satisfy all of the requirements defined in the present invention, and both the grain coarsening resistance and cold forgeability are good. I understand that.

これらに対しNo.2〜4,37〜53,55のものでは、本発明で規定するいずれかの要件を欠くものであり、いずれかの特性が劣化しており、発明の目的が達成できていない。   No. Those of 2 to 4, 37 to 53, 55 lack any of the requirements defined in the present invention, and any of the characteristics is deteriorated, and the object of the invention cannot be achieved.

[実施例2]
表5に示す化学組成の鋼材(鋼種A〜G)を真空誘導熔解炉により150kgの鋳片を作製し、実機での分塊圧を想定した条件で溶体化処理および熱間加工を行って155mm×155mm×約500mmのビレット形状とした。このときの溶体化処理条件は下記表6に示す通りである。このときの条件は、加熱温度を1200〜1300℃、加熱時間を5〜300分の範囲で変化させた。尚、試験No.56〜61のものは、表5の鋼種Aを用いて、溶体化処理時の加熱時間tを変化させた例である(前記図2)。
[Example 2]
A steel material (steel grades A to G) having a chemical composition shown in Table 5 was produced by casting a 150 kg slab using a vacuum induction melting furnace, and subjected to solution treatment and hot working under conditions assuming a lump pressure in an actual machine. The billet shape was × 155 mm × about 500 mm. The solution treatment conditions at this time are as shown in Table 6 below. The conditions at this time were changed such that the heating temperature was 1200 to 1300 ° C. and the heating time was 5 to 300 minutes. Test No. Nos. 56 to 61 are examples in which the heating time t during the solution treatment was changed using the steel type A shown in Table 5 (FIG. 2).

引き続き、ビレット形状の試作材をダミー材と溶接して155mm×155mm×約10mのビレットとし、所定の加熱温度に保持した後、圧延ラインにおいてφ46mmの棒鋼に圧延した。このときの加熱温度は下記表6に示した通りである。尚、試験No.59,62〜64は、鋼種Aを用いて溶体化処理時の加熱温度T1を変化させたものである(前記図1参照)。   Subsequently, the billet-shaped prototype material was welded to the dummy material to form a billet of 155 mm × 155 mm × about 10 m, held at a predetermined heating temperature, and then rolled into a φ46 mm bar in a rolling line. The heating temperature at this time is as shown in Table 6 below. Test No. 59 and 62-64 change the heating temperature T1 at the time of solution treatment using the steel type A (refer said FIG. 1).

その後、圧延した棒鋼を約300mmの長さに切断した後、熱処理炉にて球状化焼鈍を行った。このときの焼鈍条件は、760℃に5時間保持した後、その温度から平均冷却速度を10℃/時として680℃まで冷却し(8時間)、その後炉冷した。球状化焼鈍後の硬さを、φ46mmの棒鋼のD/4(Dは棒鋼の直径を示す)位置で、ビッカース硬度計を用いて荷重10kgf(98N)にて3点測定し、その平均値として求めた。   Thereafter, the rolled steel bar was cut into a length of about 300 mm, and then spheroidizing annealing was performed in a heat treatment furnace. The annealing conditions at this time were maintained at 760 ° C. for 5 hours, and then cooled from that temperature to 680 ° C. at an average cooling rate of 10 ° C./hour (8 hours), and then cooled in the furnace. The hardness after spheroidizing annealing was measured at 3 points with a load of 10 kgf (98 N) using a Vickers hardness tester at a D / 4 (D represents the diameter of the steel bar) position of a φ46 mm steel bar. Asked.

次に、球状化焼鈍後の棒鋼のD/4(Dは棒鋼の直径を示す)の位置から、φ15mm×22.5mmの円柱状の試験片(冷間鍛造用試験片)を作製した。上記円柱状の試験片を用い、プレスで圧縮試験を行ない、変低抵抗を測定することによって冷間鍛造性を評価した。このとき、鋼材の冷間抵抗値を加工率10〜70%に亘って測定した。また変形抵抗は20%の圧縮加工を加えた際の荷重から求めた。他の条件は、上記実施例1と同様である。   Next, a cylindrical test piece (test piece for cold forging) of φ15 mm × 22.5 mm was produced from the position of D / 4 (D represents the diameter of the steel bar) of the steel bar after spheroidizing annealing. Using the cylindrical test piece, a compression test was performed with a press, and the cold forgeability was evaluated by measuring variable resistance. At this time, the cold resistance value of the steel material was measured over a processing rate of 10 to 70%. The deformation resistance was obtained from the load when 20% compression was applied. Other conditions are the same as in the first embodiment.

結晶粒粗大化試験については、上記円柱状試験片を加工率70%で圧縮加工した後、真空浸炭炉で900〜1050℃にて浸炭処理[均熱時間:70分、浸炭時間:38分、拡散時間:42分、浸炭ガス:アセチレン(C22)]を行なった後、熱処理を想定して880℃で40分加熱してから60℃まで油冷したものについて、結晶粒観察を行って、結晶粒粗大化状況を判定した。このときの浸炭処理温度は、900℃から1050℃の温度範囲を25℃刻みとした。また、結晶粒粗大化試験は、試験片の断面を観察し、オーステナイト結晶粒度をJIS G 0551に定めるオーステナイト結晶粒度試験方法に準じて測定し、結晶粒度番号で5番以下の粗大粒が認められた温度(粗大化温度)によって評価した(この温度が1000℃以上で粗大化防止特性が良好)。 For the crystal grain coarsening test, after compressing the cylindrical specimen at a processing rate of 70%, carburizing treatment at 900 to 1050 ° C. in a vacuum carburizing furnace [soaking time: 70 minutes, carburizing time: 38 minutes, Diffusion time: 42 minutes, carburizing gas: acetylene (C 2 H 2 )], assuming heat treatment, heated at 880 ° C. for 40 minutes, and then oil-cooled to 60 ° C. for observation of crystal grains Thus, the grain coarsening situation was judged. The carburizing temperature at this time was set in steps of 25 ° C. from 900 ° C. to 1050 ° C. In the grain coarsening test, the cross section of the test piece is observed, the austenite grain size is measured according to the austenite grain size test method defined in JIS G 0551, and coarse grains with a grain size number of 5 or less are recognized. (The coarsening temperature is good when the temperature is 1000 ° C. or higher).

これらの試験結果を、溶体化処理条件(加熱温度T1、加熱時間t)、(1)式および(2)式の値、前記方法によって測定される窒化物(1〜20μmのもの)のサイズ(最大粒径)・個数、複合炭窒化物(大きさが10〜50nmのもの)の個数等と共に、一括して下記表7に示す。   These test results are shown as solution treatment conditions (heating temperature T1, heating time t), values of equations (1) and (2), and the size of nitrides (1 to 20 μm) measured by the above method ( Table 7 below collectively shows the maximum particle size), the number, the number of composite carbonitrides (with a size of 10 to 50 nm), and the like.

Figure 0004956146
Figure 0004956146

Figure 0004956146
Figure 0004956146

Figure 0004956146
Figure 0004956146

これらの結果から、次のように考察できる。まず、試験No.57〜59,63〜65,67〜69,75のものは、本発明で規定する要件の全て満たす実施例であり、耐結晶粒粗大化特性と冷間鍛造性のいずれも良好であることが分かる。   From these results, it can be considered as follows. First, test no. Examples 57 to 59, 63 to 65, 67 to 69, and 75 are examples that satisfy all of the requirements defined in the present invention, and that both the grain coarsening resistance property and the cold forgeability are good. I understand.

これらに対しNo.56,60〜62,66,70〜74,76〜79のものでは、本発明で規定するいずれかの要件を欠くものであり、いずれかの特性が劣化しており、発明の目的が達成できていない。   No. 56, 60 to 62, 66, 70 to 74, and 76 to 79 lack any of the requirements defined in the present invention, and any of the characteristics has deteriorated, and the object of the invention can be achieved. Not.

加熱時間tが微細析出物の個数に与える影響を示したグラフである。It is the graph which showed the influence which the heating time t has on the number of fine precipitates. 加熱温度T1が微細析出物の個数に与える影響を示したグラフである。It is the graph which showed the influence which heating temperature T1 has on the number of fine precipitates. 実験で採用した衝撃試験評価用の試験片を示す図である。It is a figure which shows the test piece for impact test evaluation employ | adopted in experiment.

Claims (16)

C:0.05〜0.30%(「質量%」の意味、以下同じ)、Si:0.21%以下(0%を含まない)、Mn:1.0%以下(0%を含まない)、P:0.03%以下(0%を含む)、S:0.03%以下(0%を含む)、Cr:2.0%以下(0%を含まない)、Al:0.1%以下(0%を含まない)、Nb:0.05〜0.30%、Ti:0.05〜0.10%、N:0.0080%以下(0%を含まない)、O:0.0020%以下(0%を含む)を満たし、残部は鉄および不可避不純物からなり、且つ鋼材中のNbおよびTiを含む複合窒化物の最大粒径が20μm以下であると共に、粒径が1μm以上、20μm以下である当該窒化物が1mm2中に平均50個以下存在するものであることを特徴とする鍛造性と結晶粒粗大化防止特性に優れた肌焼鋼。 C: 0.05 to 0.30% (meaning “mass%”, the same shall apply hereinafter), Si: 0.21 % or less (not including 0%), Mn: 1.0% or less (not including 0%) ), P: 0.03% or less (including 0%), S: 0.03% or less (including 0%), Cr: 2.0% or less (not including 0%), Al: 0.1 % Or less (excluding 0%), Nb: 0.05 to 0.30%, Ti: 0.05 to 0.10%, N: 0.0080% or less (not including 0%), O: 0 .0020% or less (including 0%) is satisfied, the balance is composed of iron and inevitable impurities, and the composite nitride containing Nb and Ti in the steel material has a maximum particle size of 20 μm or less and a particle size of 1 μm or more. The forgeability and prevention of grain coarsening, characterized in that the average number of nitrides of 20 μm or less is 50 or less in 1 mm 2 Case-hardened steel with excellent stopping properties. 更に、Cu:1.0%以下(0%を含まない)および/またはNi:3.0%以下(0%を含まない)を含むものである請求項1に記載の肌焼鋼。   The case hardening steel according to claim 1, further comprising Cu: 1.0% or less (excluding 0%) and / or Ni: 3.0% or less (not including 0%). 更に、Mo:0.15%未満(0%を含まない)を含むものである請求項1または2に記載の肌焼鋼。 Furthermore, the case hardening steel of Claim 1 or 2 containing Mo: less than 0.15% (it does not contain 0%). 更に、B:0.0005〜0.0030%を含むものである請求項1〜3のいずれかに記載の肌焼鋼。   Furthermore, B: 0.0005-0.0030% is contained, The case hardening steel in any one of Claims 1-3. 更に、Ca:0.010%以下(0%を含まない)を含むものである請求項1〜4のいずれかに記載の肌焼鋼。   Furthermore, Ca: 0.010% or less (0% is not included) The case hardening steel in any one of Claims 1-4. 更に、Pb:0.1%以下(0%を含まない)および/またはBi:0.1%以下(0%を含まない)を含むものである請求項1〜5のいずれかに記載の肌焼鋼。   Further, Pb: 0.1% or less (not including 0%) and / or Bi: 0.1% or less (not including 0%), case hardening steel according to any one of claims 1 to 5 . 更に、V:0.5%以下(0%を含まない)、Zr:0.5%以下(0%を含まない)およびW:0.5%以下(0%を含まない)よりなる群から選ばれる1種または2種以上の元素を含むものである請求項1〜6のいずれかに記載の肌焼鋼。   Further, from the group consisting of V: 0.5% or less (excluding 0%), Zr: 0.5% or less (not including 0%), and W: 0.5% or less (not including 0%) The case-hardened steel according to any one of claims 1 to 6, which contains one or two or more elements selected. 請求項1〜7のいずれかに記載の肌焼鋼を用いて浸炭したものであり、浸炭後の部品の表面から100μm深さまでの表層に、NbおよびTiを含む複合炭窒化物で大きさが10〜50nmのものが3.0個/μm2以上存在するものであることを特徴とする浸炭部品。 Carburized using the case-hardened steel according to any one of claims 1 to 7, and a size of a composite carbonitride containing Nb and Ti on the surface layer from the surface of the part after carburizing to a depth of 100 µm. A carburized part having 10 to 50 nm of 3.0 pieces / μm 2 or more. C:0.05〜0.30%、Si:2.0%以下(0%を含まない)、Mn:1.0%以下(0%を含まない)、P:0.03%以下(0%を含む)、S:0.03%以下(0%を含む)、Cr:2.0%以下(0%を含まない)、Al:0.1%以下(0%を含まない)、Nb:0.05〜0.30%、Ti:0.05〜0.10%、N:0.0080%以下(0%を含まない)、O:0.0020%以下(0%を含む)を満たし、残部は鉄および不可避不純物からなる鋼材を、下記(1)式および(2)式の関係を満足する加熱温度T1(℃)および加熱時間t(秒)で加熱した後分塊圧延し、引き続き850〜1050℃の温度に再加熱した後、熱間加工を行うことを特徴とする鍛造性と結晶粒粗大化防止特性に優れた肌焼鋼の製造方法。
4000≦(T1+273)×log10(t)≦6000 …(1)
T1−1030×[Nb]−600×[Ti]+2052×[N]−1105≧0 …(2)
但し、[Nb],[Ti]および[N]は、夫々Nb,TiおよびNの含有量(質量%)を示す。
C: 0.05 to 0.30%, Si: 2.0% or less (not including 0%), Mn: 1.0% or less (not including 0%), P: 0.03% or less (0 %), S: 0.03% or less (including 0%), Cr: 2.0% or less (not including 0%), Al: 0.1% or less (not including 0%), Nb : 0.05 to 0.30%, Ti: 0.05 to 0.10%, N: 0.0080% or less (not including 0%), O: 0.0020% or less (including 0%) Satisfying, with the balance being steel and steel with inevitable impurities, heated at a heating temperature T1 (° C.) and a heating time t (seconds) satisfying the relationship of the following formulas (1) and (2), and then batch-rolled: Continuously reheating to a temperature of 850 to 1050 ° C., followed by hot working, a method for producing case-hardened steel excellent in forgeability and grain coarsening prevention characteristics .
4000 ≦ (T1 + 273) × log 10 (t) ≦ 6000 (1)
T1-1030 × [Nb] −600 × [Ti] + 2052 × [N] −1105 ≧ 0 (2)
However, [Nb], [Ti] and [N] indicate the contents (% by mass) of Nb, Ti and N, respectively.
C:0.05〜0.30%、Si:2.0%以下(0%を含まない)、Mn:1.0%以下(0%を含まない)、P:0.03%以下(0%を含む)、S:0.03%以下(0%を含む)、Cr:2.0%以下(0%を含まない)、Al:0.1%以下(0%を含まない)、Nb:0.05〜0.30%、Ti:0.05〜0.10%、N:0.0080%以下(0%を含まない)、O:0.0020%以下(0%を含む)を満たし、残部は鉄および不可避不純物からなる鋼材を、下記(2)式の関係を満足しかつ1200〜1300℃の範囲から選ばれる加熱温度T1(℃)で10〜60分間加熱した後分塊圧延し、引き続き850〜1050℃の温度に再加熱した後、熱間加工を行うことを特徴とする鍛造性と結晶粒粗大化防止特性に優れた肌焼鋼の製造方法。
T1−1030×[Nb]−600×[Ti]+2052×[N]−1105≧0 …(2)
但し、[Nb],[Ti]および[N]は、夫々Nb,TiおよびNの含有量(質量%)を示す。
C: 0.05 to 0.30%, Si: 2.0% or less (not including 0%), Mn: 1.0% or less (not including 0%), P: 0.03% or less (0 %), S: 0.03% or less (including 0%), Cr: 2.0% or less (not including 0%), Al: 0.1% or less (not including 0%), Nb : 0.05 to 0.30%, Ti: 0.05 to 0.10%, N: 0.0080% or less (not including 0%), O: 0.0020% or less (including 0%) After satisfying the relationship of the following formula (2) and heating at a heating temperature T1 (° C.) selected from the range of 1200 to 1300 ° C. for 10 to 60 minutes after the filling, the balance is rolled for 10 to 60 minutes. Then, after reheating to a temperature of 850 to 1050 ° C., it is excellent in forgeability and grain coarsening prevention characteristics, characterized by performing hot working. Method of manufacturing a hardened steel was.
T1-1030 × [Nb] −600 × [Ti] + 2052 × [N] −1105 ≧ 0 (2)
However, [Nb], [Ti] and [N] indicate the contents (% by mass) of Nb, Ti and N, respectively.
前記鋼材は、更に、Cu:1.0%以下(0%を含まない)および/またはNi:3.0%以下(0%を含まない)を含むものである請求項9または10に記載の肌焼鋼の製造方法。   The skin hardening according to claim 9 or 10, wherein the steel material further contains Cu: 1.0% or less (not including 0%) and / or Ni: 3.0% or less (not including 0%). Steel manufacturing method. 前記鋼材は、更に、Mo:1.0%以下(0%を含まない)を含むものである請求項9〜11のいずれかに記載の肌焼鋼の製造方法。   The method for producing case-hardened steel according to any one of claims 9 to 11, wherein the steel material further includes Mo: 1.0% or less (not including 0%). 前記鋼材は、更に、B:0.0005〜0.0030%を含むものである請求項9〜12のいずれかに記載の肌焼鋼の製造方法。   The method for producing case-hardened steel according to any one of claims 9 to 12, wherein the steel material further contains B: 0.0005 to 0.0030%. 前記鋼材は、更に、Ca:0.010%以下(0%を含まない)を含むものである請求項9〜13のいずれかに記載の肌焼鋼の製造方法。   The method for producing case-hardened steel according to any one of claims 9 to 13, wherein the steel material further contains Ca: 0.010% or less (not including 0%). 前記鋼材は、更にPb:0.1%以下(0%を含まない)および/またはBi:0.1%以下(0%を含まない)を含むものである請求項9〜14のいずれかに記載の肌焼鋼の製造方法。   The steel material according to any one of claims 9 to 14, further comprising Pb: 0.1% or less (not including 0%) and / or Bi: 0.1% or less (not including 0%). A method for producing case-hardened steel. 更に、V:0.5%以下(0%を含まない)、Zr:0.5%以下(0%を含まない)
およびW:0.5%以下(0%を含まない)よりなる群から選ばれる1種または2種以上の元素を含むものである請求項9〜15のいずれかに記載の肌焼鋼の製造方法。
Furthermore, V: 0.5% or less (not including 0%), Zr: 0.5% or less (not including 0%)
The method for producing a case-hardened steel according to any one of claims 9 to 15, which contains one or two or more elements selected from the group consisting of W and 0.5% or less (not including 0%).
JP2006307099A 2005-11-15 2006-11-13 Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts Active JP4956146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307099A JP4956146B2 (en) 2005-11-15 2006-11-13 Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005330122 2005-11-15
JP2005330122 2005-11-15
JP2006307099A JP4956146B2 (en) 2005-11-15 2006-11-13 Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts

Publications (3)

Publication Number Publication Date
JP2007162128A JP2007162128A (en) 2007-06-28
JP2007162128A5 JP2007162128A5 (en) 2009-05-07
JP4956146B2 true JP4956146B2 (en) 2012-06-20

Family

ID=38245371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307099A Active JP4956146B2 (en) 2005-11-15 2006-11-13 Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts

Country Status (1)

Country Link
JP (1) JP4956146B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912725B2 (en) * 2006-04-07 2012-04-11 新日本製鐵株式会社 Manufacturing method of steel sheet with excellent weld heat affected zone toughness
JP5323369B2 (en) * 2008-03-12 2013-10-23 株式会社神戸製鋼所 Case-hardened steel with excellent machinability and grain coarsening prevention properties
JP5503170B2 (en) * 2009-03-23 2014-05-28 株式会社神戸製鋼所 Case-hardened steel with excellent maximum grain reduction characteristics
JP5649838B2 (en) * 2009-03-27 2015-01-07 Jfeスチール株式会社 Case-hardened steel and method for producing the same
JP5350181B2 (en) * 2009-10-27 2013-11-27 株式会社神戸製鋼所 Case-hardened steel with excellent grain coarsening prevention properties
JP5649886B2 (en) * 2010-03-26 2015-01-07 Jfeスチール株式会社 Case-hardened steel and method for producing the same
JP5632659B2 (en) * 2010-06-17 2014-11-26 株式会社神戸製鋼所 Case-hardened steel with low heat treatment distortion
JP5432105B2 (en) 2010-09-28 2014-03-05 株式会社神戸製鋼所 Case-hardened steel and method for producing the same
JP5644483B2 (en) * 2010-12-27 2014-12-24 新日鐵住金株式会社 Hot-worked steel for surface hardening
JP5533712B2 (en) * 2011-02-03 2014-06-25 新日鐵住金株式会社 Hot-worked steel for surface hardening
JP5630392B2 (en) * 2011-07-20 2014-11-26 新日鐵住金株式会社 Low alloy steel manufacturing method
JP6205854B2 (en) * 2013-03-26 2017-10-04 大同特殊鋼株式会社 Vacuum carburizing method
KR20150126699A (en) * 2013-04-18 2015-11-12 신닛테츠스미킨 카부시키카이샤 Case-hardening steel material and case-hardening steel member
CN103422026A (en) * 2013-07-20 2013-12-04 由伟 High strength steel containing niobium and titanium
JP6055400B2 (en) * 2013-12-26 2016-12-27 株式会社神戸製鋼所 Steel material and manufacturing method thereof
JP2015140449A (en) * 2014-01-28 2015-08-03 山陽特殊製鋼株式会社 Case hardening steel excellent in crystal grain size property at high temperature
JP2015193929A (en) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 Steel component for high-temperature carburizing, excellent in spalling strength and low cycle fatigue strength
JP6401143B2 (en) * 2015-10-20 2018-10-03 トヨタ自動車株式会社 Method for producing carburized forging
JP6766362B2 (en) * 2016-01-26 2020-10-14 日本製鉄株式会社 Skin-baked steel with excellent coarse grain prevention characteristics, fatigue characteristics, and machinability during carburizing and its manufacturing method
JP6766531B2 (en) * 2016-09-01 2020-10-14 日本製鉄株式会社 Cold forging steel and its manufacturing method
KR102131523B1 (en) * 2018-11-09 2020-07-08 주식회사 포스코 Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing the same
KR102131529B1 (en) * 2018-11-27 2020-07-08 주식회사 포스코 Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing the same
KR102131530B1 (en) * 2018-11-27 2020-07-08 주식회사 포스코 Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing the same
JP7348463B2 (en) 2019-01-11 2023-09-21 日本製鉄株式会社 steel material
JP7269467B2 (en) * 2019-01-11 2023-05-09 日本製鉄株式会社 steel
WO2021125408A1 (en) * 2019-12-20 2021-06-24 주식회사 포스코 Steel wire rod having excellent spheroidizing heat treatment properties, and method for producing same
JP7530427B2 (en) * 2019-12-20 2024-08-07 ポスコホールディングス インコーポレーティッド Wire rod with excellent spheroidizing heat treatment properties and its manufacturing method
CN113549746B (en) * 2021-07-29 2022-11-18 江苏联峰能源装备有限公司 Forging and heat treatment process of steel for 20MnMo tube plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811764A (en) * 1981-07-15 1983-01-22 Sumitomo Metal Ind Ltd Case hardening boron steel or small heat treatment strain
JPS58113318A (en) * 1981-12-28 1983-07-06 Kobe Steel Ltd Manufacture of case hardening steel
JP2926725B2 (en) * 1988-11-28 1999-07-28 大同特殊鋼株式会社 Manufacturing method of case hardened steel products
JP4536327B2 (en) * 2003-02-17 2010-09-01 大同特殊鋼株式会社 Nb-containing case-hardened steel with excellent carburizing properties in a short time
JP2005163168A (en) * 2003-11-11 2005-06-23 Sanyo Special Steel Co Ltd Production method for high-temperature carburizing steel capable of omitting normalizing after hot forging
JP4347763B2 (en) * 2004-07-14 2009-10-21 株式会社神戸製鋼所 High temperature carburizing steel and method for producing the same

Also Published As

Publication number Publication date
JP2007162128A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP4956146B2 (en) Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
JP5432105B2 (en) Case-hardened steel and method for producing the same
KR101520208B1 (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JP5927868B2 (en) Carburizing steel excellent in cold forgeability and method for producing the same
WO2010116555A1 (en) Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
WO2012046779A1 (en) Case hardened steel and method for producing the same
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP4964063B2 (en) Case-hardened steel with excellent cold forgeability and grain coarsening prevention properties and machine parts obtained therefrom
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6065120B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP4384592B2 (en) Rolled steel for carburizing with excellent high-temperature carburizing characteristics and hot forgeability
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP6182489B2 (en) Case-hardened steel that has excellent cold forgeability and can suppress abnormal grain generation during carburizing.
JP2011219854A (en) Case-hardening steel and method for manufacturing the same
JP5649887B2 (en) Case-hardened steel and method for producing the same
JP5649838B2 (en) Case-hardened steel and method for producing the same
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP4488228B2 (en) Induction hardening steel
JP2006291335A (en) Steel for case hardening having excellent high temperature carburizing characteristic and workability
JP4528363B1 (en) Case-hardened steel with excellent cold workability, machinability, and fatigue characteristics after carburizing and quenching, and method for producing the same
JP5869919B2 (en) Case-hardening bar steel with excellent cold workability
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP5937852B2 (en) Case-hardening steel parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent or registration of utility model

Ref document number: 4956146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3