JP6182489B2 - Case-hardened steel that has excellent cold forgeability and can suppress abnormal grain generation during carburizing. - Google Patents
Case-hardened steel that has excellent cold forgeability and can suppress abnormal grain generation during carburizing. Download PDFInfo
- Publication number
- JP6182489B2 JP6182489B2 JP2014066098A JP2014066098A JP6182489B2 JP 6182489 B2 JP6182489 B2 JP 6182489B2 JP 2014066098 A JP2014066098 A JP 2014066098A JP 2014066098 A JP2014066098 A JP 2014066098A JP 6182489 B2 JP6182489 B2 JP 6182489B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- pearlite
- density
- carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/28—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/30—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/32—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/40—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/20—Carburising
- C23C8/22—Carburising of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/28—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
- C23C8/30—Carbo-nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、自動車等の輸送機器、建設機械、その他の産業機械等において、冷間鍛造後の浸炭処理や浸炭窒化処理(以下、これらをまとめて「浸炭処理」と呼ぶ場合がある)等の表面硬化熱処理をして製造される機械構造部品の素材となる肌焼鋼に関する。より詳細には、優れた冷間鍛造性を有し、浸炭処理時の異常粒発生が抑制可能な肌焼鋼に関する。 The present invention relates to carburizing treatment and carbonitriding treatment after cold forging (hereinafter, these may be collectively referred to as “carburizing treatment”) in transportation equipment such as automobiles, construction machinery, and other industrial machines. The present invention relates to a case-hardened steel which is a material for machine structural parts manufactured by surface hardening heat treatment. More specifically, the present invention relates to a case hardening steel that has excellent cold forgeability and can suppress the occurrence of abnormal grains during carburizing.
輸送機器、建設機械、その他の産業機械等において、高強度が要求される機械構造部品の素材には、JIS規格で定められたSCr、SCM、SNCM等の機械構造用合金鋼鋼材、いわゆる、肌焼鋼が使用されるのが一般的である。この肌焼鋼を、冷間鍛造や切削等の機械加工により所望の部品形状に成形した後、浸炭処理や浸炭窒化処理等の表面硬化熱処理を施し、その後研磨等を行うことによって機械構造部品が製造される。 The material of machine structural parts that require high strength in transportation equipment, construction machinery, other industrial machines, etc., is an alloy steel material for mechanical structures such as SCr, SCM, SNCM, etc. defined by JIS standards, so-called skin Generally, hardened steel is used. After this case-hardened steel is formed into a desired part shape by machining such as cold forging or cutting, it is subjected to surface hardening heat treatment such as carburizing treatment or carbonitriding treatment, followed by polishing, etc. Manufactured.
上記のような表面硬化熱処理においては、製造時のリードタイムを短縮するため、高温化を図ることによって、熱処理時間の短縮化等が行われている。しかしながら、表面硬化熱処理を高温化すると、機械構造部品の結晶粒が粗大化し、機械的特性が劣化するという問題が生じる。 In the surface hardening heat treatment as described above, in order to shorten the lead time at the time of manufacture, the heat treatment time is shortened by increasing the temperature. However, when the temperature of the surface hardening heat treatment is increased, there is a problem that the crystal grains of the mechanical structural component are coarsened and the mechanical characteristics are deteriorated.
このような結晶粒粗大化を防止する技術として、例えば特許文献1、2が提案されている。これらの技術では、AlN、Nb(CN)、TiC等の析出物を鋼中に分散させることによってピンニング効果を発揮させ、結晶粒の粗大化を防止している。 For example, Patent Documents 1 and 2 have been proposed as techniques for preventing such coarsening of crystal grains. In these techniques, precipitates such as AlN, Nb (CN), TiC and the like are dispersed in steel to exert a pinning effect and prevent coarsening of crystal grains.
これまで提案されている技術のように、析出物によるピンニング効果を利用した結晶粒粗大化防止技術では、10nm以上の微細析出物を利用していると考えられる。しかしながら、本発明者らが調査したところ、これまで提案されてきたピンニング効果を利用した技術では、近年の高温化する浸炭条件においては、析出物密度が不足し、部分的に結晶粒が粗大化して異常粒が発生することが判明した。従来技術では高温化する近年の浸炭条件においては析出物密度が不足し、旧オーステナイト(以下、「旧γ」ということがある)粒の粗大化が発生することや、加熱速度が遅い浸炭条件においてはパーライトがフェライトに先んじてオーステナイト(以下、「γ」ということがある)変態するために、過度にパーライトが凝集する部位では部分的な旧γ粒成長である異常粒成長が生じやすくなることが判明した。 Like the technologies proposed so far, it is considered that the crystal grain coarsening prevention technology using the pinning effect by the precipitates uses fine precipitates of 10 nm or more. However, as a result of investigations by the present inventors, in the technology using the pinning effect that has been proposed so far, the density of precipitates is insufficient and the crystal grains are partially coarsened under the recent carburizing conditions at high temperatures. It was found that abnormal grains were generated. In the prior art, the density of precipitates is insufficient under recent carburizing conditions where the temperature is increased, and coarsening of prior austenite (hereinafter sometimes referred to as “old γ”) occurs, or under carburizing conditions where the heating rate is slow. Since pearlite undergoes austenite transformation (hereinafter sometimes referred to as “γ”) prior to ferrite, abnormal grain growth, which is partial old γ grain growth, is likely to occur at sites where pearlite aggregates excessively. found.
本発明は上記のような事情に鑑みてなされたものであり、その目的は、冷間鍛造性に優れており、かつ浸炭処理や浸炭窒化処理等の表面硬化熱処理において結晶粒粗大化を抑制して異常粒発生を防止できる肌焼鋼を提供することにある。 The present invention has been made in view of the circumstances as described above, and the object thereof is excellent in cold forgeability, and suppresses grain coarsening in surface hardening heat treatment such as carburizing and carbonitriding. It is to provide a case-hardened steel that can prevent the occurrence of abnormal grains.
上記課題を解決することのできた本発明に係る肌焼鋼は、C:0.10〜0.30%(質量%の意味。以下、同じ。)、Si:0.01〜0.50%、Mn:0.30〜0.80%、P:0%超〜0.030%、S:0%超〜0.020%、Cr:0.80〜2.00%、Al:0.01〜0.10%、N:0%超〜0.005%、Ti:0.040〜0.200%、B:0.0005〜0.0050%を含有し、残部が鉄、および不可避的不純物であって、Tiを含有する円相当直径10nm以上200nm未満の炭化物、および炭窒化物の密度が10個/μm2以上、Ti、およびSを含有する円相当直径200nm以上の析出物の密度が0.2個/μm2以下であり、金属組織が、パーライトフェライト混合組織であり、該混合組織の面積率が80%以上であって、パーライトの面積率が金属組織全体に対して25%以下であり、かつ円相当直径が100μm以上のパーライトの面積率が金属組織全体に対して10%以下であることに要旨を有する。 The case-hardened steel according to the present invention, which has been able to solve the above problems, is C: 0.10 to 0.30% (meaning mass%, hereinafter the same), Si: 0.01 to 0.50%, Mn: 0.30 to 0.80%, P: more than 0% to 0.030%, S: more than 0% to 0.020%, Cr: 0.80 to 2.00%, Al: 0.01 to 0.10%, N: more than 0% to 0.005%, Ti: 0.040 to 0.200%, B: 0.0005 to 0.0050%, the balance being iron, and inevitable impurities The density of the equivalent circle diameter Ti containing 10 nm or more and less than 200 nm and the density of carbonitride is 10 pieces / μm 2 or more, and the density of precipitates containing the equivalent circle diameter 200 nm or more containing Ti and S is 0. .2 pieces / [mu] m 2 or less, the metal structure is a pearlite ferrite mixed structure, the surface of the mixed structure The area ratio of pearlite is 25% or less with respect to the entire metal structure, and the area ratio of pearlite with an equivalent circle diameter of 100 μm or more is 10% or less with respect to the entire metal structure. In particular.
本発明の肌焼鋼は、必要に応じて、更に他の元素として、(I)Mo:0%超〜2.0%、(II)Cu:0%超〜0.10%およびNi:0%超〜3.0の少なくとも1種、等を含有することも有用であり、含有される元素の種類に応じて肌焼鋼の特性が更に改善される。 The case-hardened steel of the present invention may further contain, as necessary, other elements: (I) Mo: more than 0% to 2.0%, (II) Cu: more than 0% to 0.10% and Ni: 0 It is also useful to contain at least one of more than% to 3.0, etc., and the characteristics of the case-hardened steel are further improved according to the type of element contained.
本発明によれば、化学組成を適切に調整し、Tiを含有する炭化物、および炭窒化物のうち、円相当直径10nm以上200nm未満の密度を所定量以上確保するとともに、TiおよびSを含有する粗大な析出物の密度を抑制し、更に金属組織をパーライトフェライト混合組織を主体とし、パーライトを所定の面積率に制御すると共に粗大なパーライトの面積率を抑制しているため、優れた冷間鍛造性を有し、また浸炭処理時の異常粒発生を防止できる。 According to the present invention, the chemical composition is appropriately adjusted, and among the carbides and carbonitrides containing Ti, a density equivalent to a circle equivalent diameter of 10 nm or more and less than 200 nm is ensured in a predetermined amount or more, and Ti and S are contained. Excellent cold forging because it suppresses the density of coarse precipitates, and further controls the pearlite to a predetermined area ratio and suppresses the area ratio of coarse pearlite while the metal structure is mainly composed of pearlite ferrite mixed structure. And can prevent the generation of abnormal particles during carburization.
上記特許文献1、2に開示されているように、Tiを含有する微細析出物は結晶粒粗大化防止に有効であるが、その密度が不足すると、不足した部分で結晶粒の粗大化が生じ、異常粒が発生した状態となる。特に近年の浸炭温度の高温化により、従来までに提案されてきた微細析出物によるピンニング効果では、異常粒発生を十分に抑制することができなかった。 As disclosed in Patent Documents 1 and 2 above, fine precipitates containing Ti are effective in preventing crystal grain coarsening, but when the density is insufficient, the crystal grains are coarsened in the insufficient portion. In this state, abnormal particles are generated. In particular, due to the recent increase in carburizing temperature, the pinning effect by fine precipitates that has been proposed so far has not been able to sufficiently suppress the occurrence of abnormal grains.
そこで本発明者らは、微細析出物、および金属組織が異常粒発生に与える影響を検討し、異常粒発生を抑制できる微細析出物の析出状態、および金属組織について鋭意検討を重ねた。その結果、(i)微細析出物のうち、結晶粒の粗大化を防止して異常粒発生を抑制するのに有効に作用するのは、Tiを含有する炭化物、および炭窒化物のうち、円相当直径10nm以上、200nm未満のものであること(以下、「10nm以上のTi炭化物等」ということがある)、また上記(i)の10nm以上のTi炭化物等を所定量確保するためには、(ii)Ti、およびSを含有する円相当直径200nm以上の粗大な析出物(以下、「粗大なTi−S析出物」ということがある)を抑制することが重要であること、(iii)また更に金属組織を適切に制御して上記(i)の10nm以上のTi炭化物等の固溶量を低減することにより、浸炭処理時の異常粒発生を抑制できることを見出し、本発明を完成した。 Therefore, the present inventors have studied the influence of fine precipitates and metal structures on the generation of abnormal grains, and have made extensive studies on the precipitation state of fine precipitates and metal structures that can suppress the generation of abnormal grains. As a result, among the fine precipitates, it is effective to prevent the coarsening of the crystal grains and suppress the generation of abnormal grains, among the carbides containing Ti and the carbonitrides, In order to secure a predetermined amount of the equivalent diameter of 10 nm or more and less than 200 nm (hereinafter sometimes referred to as “10 nm or more of Ti carbide and the like”) and (i) 10 nm or more of Ti carbide and the like, (Ii) It is important to suppress coarse precipitates having an equivalent circle diameter of 200 nm or more containing Ti and S (hereinafter sometimes referred to as “coarse Ti—S precipitates”), (iii) Furthermore, the present inventors have found that by controlling the metal structure appropriately to reduce the solid solution amount of Ti carbide of 10 nm or more in (i) above, the occurrence of abnormal particles during carburizing treatment can be suppressed, and the present invention has been completed.
本発明者らは、浸炭処理時における異常粒発生が起こる原因について、図1のように考えた。図1は浸炭処理時の熱処理パターンと浸炭処理前後の析出物と組織の挙動の概念を示した模式図である。浸炭前の状態、すなわち熱処理パターンのSTAGE1において金属組織には塊状パーライト、すなわち、円相当直径100μm以上のパーライト(以下、「パーライト凝集部」ということがある)が存在する場合、浸炭加熱期の2相域、すなわち熱処理パターンのSTAGE2では、パーライトがオーステナイト変態し、フェライト+オーステナイトの状態となる。この間STAGE1で析出していた10nm未満のTi炭化物、もしくはTi炭窒化物(以下、(「10nm未満のTi炭化物等」ということがある)は固溶限の上昇とともにマトリックス中に徐々に固溶する。この際、加熱速度が不十分で2相域の滞在時間が長くなるとパーライト凝集部はフェライトよりも固溶限が高いオーステナイトへと変態するため、異常粒発生抑制に有効な10nm以上のTi炭化物等がマトリックス中へ固溶し、ピンニング効果が失われ局所的な結晶粒が粗大化して異常粒が発生しやすくなる。さらにγ単相域、すなわち熱処理パターンのSTAGE3まで温度を上昇させて保持するとマトリックスの固溶限が更に上昇するため、より多くの10nm以上のTi炭化物等がマトリックス中に固溶し、異常粒が生じやすくなる。 The present inventors considered the cause of occurrence of abnormal grains during carburization as shown in FIG. FIG. 1 is a schematic diagram showing the concept of the heat treatment pattern during carburizing treatment and the behavior of precipitates and structures before and after carburizing treatment. In the state before carburization, that is, in the heat treatment pattern STAGE 1, when there is massive pearlite in the metal structure, that is, pearlite having an equivalent circle diameter of 100 μm or more (hereinafter sometimes referred to as “pearlite agglomerated part”), 2 in the carburizing heating period. In the phase region, that is, in the heat treatment pattern STAGE 2, the pearlite undergoes austenite transformation and becomes a state of ferrite + austenite. During this time, Ti carbide of less than 10 nm or Ti carbonitride (hereinafter sometimes referred to as “Ti carbide of less than 10 nm”) precipitated in STAGE 1 gradually dissolves in the matrix as the solid solubility limit increases. At this time, if the heating rate is insufficient and the residence time in the two-phase region is increased, the pearlite aggregate part transforms into austenite having a higher solid solubility limit than ferrite, so that Ti carbide of 10 nm or more effective in suppressing abnormal grain generation. Etc. are dissolved in the matrix, the pinning effect is lost and the local crystal grains become coarse and abnormal grains are likely to be generated.In addition, when the temperature is raised to STAGE 3 in the heat treatment pattern, the temperature is maintained. As the solid solubility limit of the matrix is further increased, more Ti carbide of 10 nm or more is dissolved in the matrix and abnormal grains are generated. It becomes easier.
以上の過程のように結晶粒成長はパーライトの凝集と微細なTi炭化物等の固溶が深く関与しており、結晶粒粗大化を防止するためにはパーライト凝集部の低減と浸炭過程におけるピンニング効果を発揮する10nm以上のTi炭化物等のマトリックスへの固溶を低減することが有効であると考えられる。特にピンニング効果を発揮する10nm以上のTi炭化物等のマトリックスへの固溶を低減するためには、添加したTiをより有効利用することが重要である。そこで、ピンニング効果に有効ではない粗大なTi−S析出物の密度を低減しなければならない。 As described above, the growth of crystal grains is deeply related to the aggregation of pearlite and the solid solution of fine Ti carbide, etc. In order to prevent grain coarsening, the reduction of pearlite aggregation and the pinning effect in the carburizing process It is considered effective to reduce solid solution in a matrix of 10 nm or more Ti carbide or the like that exhibits the above. In particular, it is important to make more effective use of the added Ti in order to reduce solid solution in a matrix of Ti carbide of 10 nm or more that exhibits a pinning effect. Therefore, the density of coarse Ti—S precipitates that are not effective for the pinning effect must be reduced.
本発明者らが更に検討を重ねた結果、以下の3要件を満たすことにより、優れた冷間鍛造性を確保しつつ、浸炭処理時の異常粒発生を抑制できることが判明した。
(a)Tiを含有する円相当直径10nm以上200nm未満の炭化物、および炭窒化物、すなわち、10nm以上のTi炭窒化物の密度が10個/μm2以上
(b)Ti、およびSを含有する円相当直径200nm以上の析出物、すなわち、粗大なTi−S析出物の密度が0.2個/μm2以下
(c)(c−1)金属組織が、パーライトフェライト混合組織であって、該混合組織の面積率が80%以上であり、(c−2)パーライトの面積率が金属組織全体に対して25%以下であり、かつ(c−3)円相当直径が100μm以上のパーライト、すなわち、パーライト凝集部の面積率が金属組織全体に対して10%以下
As a result of further studies by the present inventors, it has been found that, by satisfying the following three requirements, generation of abnormal grains during carburizing treatment can be suppressed while ensuring excellent cold forgeability.
(A) Carbide with a circle equivalent diameter of 10 nm or more and less than 200 nm containing Ti and carbonitride, that is, a density of Ti carbonitride of 10 nm or more is 10 pieces / μm 2 or more. (B) Contains Ti and S Precipitates having an equivalent circle diameter of 200 nm or more, that is, the density of coarse Ti—S precipitates is 0.2 pieces / μm 2 or less. (C) (c-1) The metal structure is a pearlite ferrite mixed structure, The area ratio of the mixed structure is 80% or more, (c-2) the area ratio of pearlite is 25% or less with respect to the entire metal structure, and (c-3) the pearlite having an equivalent circle diameter of 100 μm or more, The area ratio of pearlite aggregates is 10% or less with respect to the entire metal structure.
以下、各要件について説明する。 Hereinafter, each requirement will be described.
(a)10nm以上のTi炭化物等の密度が10個/μm2以上
10nm以上のTi炭化物等は、浸炭処理時の結晶粒粗大化防止に有効に働き、異常粒発生を抑制できる。このような効果を有効に発揮させるため、その密度は10個/μm2以上、好ましくは15個/μm2以上、さらに好ましくは20個/μm2以上である。10nm以上のTi炭化物等の密度の上限は特に限定されないが、通常は150個/μm2以下であり、好ましくは120個/μm2以下、より好ましくは100個/μm2以下である。
(A) Ti carbide having a density of Ti carbide of 10 nm or more is 10 pieces / μm 2 or more Ti carbide having a density of 10 nm or more works effectively for preventing grain coarsening during carburizing treatment, and can suppress generation of abnormal grains. In order to effectively exhibit such an effect, the density is 10 pieces / μm 2 or more, preferably 15 pieces / μm 2 or more, and more preferably 20 pieces / μm 2 or more. The upper limit of the density of Ti carbide of 10 nm or more is not particularly limited, but is usually 150 pieces / μm 2 or less, preferably 120 pieces / μm 2 or less, more preferably 100 pieces / μm 2 or less.
なお、浸炭処理時に上記10nm以上のTi炭化物等がマトリックス中に固溶することなく、より有効にピンニング効果を発揮して異常粒発生を抑制するためには、10nm未満のTi炭化物等を所定量確保することも有効である。したがって10nm未満のTi炭化物等の密度は、好ましくは10個/μm2以上、より好ましくは15個/μm2以上である。10nm未満のTi炭化物等の密度の上限は特に限定されないが、通常300個/μm2程度である。なお、10nm未満のTi炭化物のサイズの下限は特に限定されないが、電子顕微鏡等の測定装置の測定限界があるため、通常2nm程度である。 In addition, a predetermined amount of Ti carbide or the like of less than 10 nm is used in order to more effectively exhibit the pinning effect and suppress the occurrence of abnormal particles without causing solid dissolution of the Ti carbide or the like of 10 nm or more in the matrix during the carburizing process. It is also effective to secure. Therefore, the density of Ti carbide or the like of less than 10 nm is preferably 10 pieces / μm 2 or more, more preferably 15 pieces / μm 2 or more. The upper limit of the density of Ti carbide or the like less than 10 nm is not particularly limited, but is usually about 300 pieces / μm 2 . In addition, although the minimum of the size of Ti carbide | carbonized_material less than 10 nm is not specifically limited, Since there exists a measurement limit of measuring apparatuses, such as an electron microscope, it is about 2 nm normally.
本発明におけるTi炭化物等は、エネルギー分散型X線分光法(Energy Dispersive X−ray Spectroscopy、EDX)等を用いた元素分析により、C又はNを示すピークが検出されるとともに、Tiのピークが検出される析出物を意味する。 Ti carbides and the like in the present invention detect a peak indicating C or N and a Ti peak by elemental analysis using energy dispersive X-ray spectroscopy (EDX) or the like. Means precipitates.
(b)粗大なTi−S析出物の密度が0.2個/μm2以下
粗大なTi−S析出物の密度が多くなりすぎると、異常粒発生の抑制に有効な上記(a)10nm以上のTi炭化物等の個数を確保することができない。そこで粗大なTi−S析出物の密度は0.2個/μm2以下、好ましくは0.15個/μm2以下、より好ましくは0.10個/μm2以下である。粗大なTi−S析出物は少なければ少ない程よいが、通常は0個/μm2を超える値である。本発明における粗大なTi−S析出物は、EDX等を用いた元素分析により、Ti、およびSのピークが検出される析出物を意味する。
(B) Density of coarse Ti—S precipitates is 0.2 pieces / μm 2 or less When the density of coarse Ti—S precipitates is too large, the above (a) 10 nm or more effective in suppressing abnormal grain generation The number of Ti carbides and the like cannot be ensured. Therefore, the density of coarse Ti—S precipitates is 0.2 pieces / μm 2 or less, preferably 0.15 pieces / μm 2 or less, more preferably 0.10 pieces / μm 2 or less. The smaller the amount of coarse Ti—S precipitates, the better. However, it is usually a value exceeding 0 / μm 2 . The coarse Ti—S precipitate in the present invention means a precipitate from which Ti and S peaks are detected by elemental analysis using EDX or the like.
(c)(c−1)金属組織が、パーライトフェライト混合組織であって、該混合組織の面積率が80%以上
冷間鍛造に供する肌焼鋼の組織は、ベイナイトやマルテンサイトを多く含んでいる場合、冷間鍛造時の変形抵抗が増すことや、その後の浸炭時に結晶粒の粗粒化を生じやすくなることから、パーライトフェライト混合組織を主体とする必要がある。具体的にはパーライトフェライト混合組織の面積率は全金属組織の80%以上、より好ましくは90%以上、更に好ましくは100%である。なお、パーライトフェライト混合組織以外の組織は、特に限定されないが、例えばベイナイトやマルテンサイトの単相またはこれらの複合組織である。
(c−2)パーライトの面積率が金属組織全体に対して25%以下
また冷間鍛造時の変形抵抗低減のために、パーライトの面積率は金属組織全体に対して25%以下、好ましくは23%以下、より好ましくは20%以下である。
(c−3)パーライト凝集部の面積率が金属組織全体に対して10%以下
パーライト凝集部が多すぎると、異常粒発生抑制に有効な上記(a)10nm以上のTi炭化物等のマトリックス中への固溶量が増大し、ピンニング効果が失われる。したがって、パーライト凝集部の面積率は金属組織全体に対して10%以下、好ましくは8%以下、より好ましくは5%以下である。
(C) (c-1) The metal structure is a pearlite ferrite mixed structure, and the area ratio of the mixed structure is 80% or more. The structure of the case hardening steel subjected to cold forging contains a lot of bainite and martensite. If it is, deformation resistance at the time of cold forging increases and coarsening of crystal grains is likely to occur at the time of subsequent carburizing, so it is necessary to mainly use a pearlite ferrite mixed structure. Specifically, the area ratio of the pearlite ferrite mixed structure is 80% or more of the total metal structure, more preferably 90% or more, and still more preferably 100%. The structure other than the pearlite ferrite mixed structure is not particularly limited, and is, for example, a single phase of bainite or martensite or a composite structure thereof.
(C-2) The area ratio of pearlite is 25% or less with respect to the entire metal structure. In order to reduce deformation resistance during cold forging, the area ratio of pearlite is 25% or less with respect to the entire metal structure, preferably 23 % Or less, more preferably 20% or less.
(C-3) The area ratio of the pearlite aggregated portion is 10% or less with respect to the entire metal structure. When there are too many pearlite aggregated portions, the above (a) a matrix of Ti carbides of 10 nm or more which is effective in suppressing abnormal grain generation As a result, the pinning effect is lost. Therefore, the area ratio of the pearlite aggregate part is 10% or less, preferably 8% or less, more preferably 5% or less with respect to the entire metal structure.
本発明では上述したように、鋼中における10nm以上のTi炭化物等を確保するために、粗大なTi−S析出物を抑制すると共に、金属組織に制御することに加えて、肌焼鋼としての基本的な特性を発揮させるため、その化学組成も適切に調整する必要がある。以下に説明する。 In the present invention, as described above, in order to ensure Ti carbide of 10 nm or more in the steel, in addition to suppressing coarse Ti-S precipitates and controlling the metal structure, In order to exhibit basic characteristics, it is necessary to adjust the chemical composition appropriately. This will be described below.
C:0.10〜0.30%
Cは、浸炭部品として必要な芯部硬さを確保するために必要な元素である。C含有量が0.10%未満では、硬さ不足により浸炭部品としての静的強度が不足する。こうした効果を有効に発揮させるには、C含有量は0.10%以上、好ましくは0.12%以上、より好ましくは0.15%以上である。しかしながら、Cを過剰に含有させると、パーライト量が増大し冷間鍛造性を悪化させる。したがって、C含有量は0.30%以下、好ましくは0.28%以下、より好ましくは0.25%以下である。
C: 0.10 to 0.30%
C is an element necessary for ensuring the core hardness necessary for carburized parts. If the C content is less than 0.10%, the static strength as a carburized part is insufficient due to insufficient hardness. In order to effectively exert such effects, the C content is 0.10% or more, preferably 0.12% or more, more preferably 0.15% or more. However, when C is contained excessively, the amount of pearlite increases and the cold forgeability deteriorates. Therefore, the C content is 0.30% or less, preferably 0.28% or less, more preferably 0.25% or less.
Si:0.01〜0.50%
Siは、焼戻し硬さの低下を抑えて機械構造部品の面疲労特性を改善するのに作用する元素である。こうした効果を有効に発揮させるには、Si含有量は0.01%以上、好ましくは0.03%以上、より好ましくは0.05%以上である。しかしながら、Siを過剰に含有させると、被削性や鍛造性等の部品成形性に悪影響を及ぼす。したがって、Si含有量は0.50%以下、好ましくは0.45%以下、より好ましくは0.40%以下である。
Si: 0.01 to 0.50%
Si is an element that acts to improve the surface fatigue characteristics of mechanical structural parts by suppressing the decrease in tempering hardness. In order to effectively exhibit such effects, the Si content is 0.01% or more, preferably 0.03% or more, more preferably 0.05% or more. However, if Si is contained excessively, it adversely affects the part formability such as machinability and forgeability. Therefore, the Si content is 0.50% or less, preferably 0.45% or less, more preferably 0.40% or less.
Mn:0.30〜0.80%
Mnは、浸炭処理時の焼入性を高めるのに有効な元素である。またMnは、脱酸剤としても作用し、鋼中の酸化物系介在物量を低減して内部品質を高める作用を有する元素である。更に、Mnは赤熱脆性を防止する作用も有する。こうした作用を有効に発揮させるには、Mn含有量は0.30%以上、好ましくは0.35%以上、より好ましくは0.400%以上である。しかしながら、Mnを過剰に含有させると、冷間鍛造性が悪化しやすくなると共に、材質のばらつきが大きくなる。したがって、Mn含有量は0.80%、好ましくは0.70%以下、より好ましくは0.60%以下である。
Mn: 0.30 to 0.80%
Mn is an element effective for enhancing the hardenability during the carburizing process. Mn also acts as a deoxidizer, and is an element that has the effect of increasing the internal quality by reducing the amount of oxide inclusions in the steel. Furthermore, Mn also has an effect of preventing red heat embrittlement. In order to exhibit such an action effectively, the Mn content is 0.30% or more, preferably 0.35% or more, more preferably 0.400% or more. However, when Mn is contained excessively, the cold forgeability tends to be deteriorated and the variation of the material becomes large. Therefore, the Mn content is 0.80%, preferably 0.70% or less, more preferably 0.60% or less.
P:0%超〜0.030%
Pは、鋼中に不可避不純物として含まれる元素であり、結晶粒界に偏析して機械構造部品の衝撃疲労特性を劣化させる。したがって、P含有量は0.030%以下、好ましくは0.025%以下、より好ましくは0.020%以下である。P含有量は少なければ少ない程好ましいが、製造工程の制約上0%とすることは難しく、したがってP含有量は0%超であり、通常は少なくとも0.0001%程度は含まれる。
P: Over 0% to 0.030%
P is an element contained in the steel as an inevitable impurity, and segregates at the grain boundary to deteriorate the impact fatigue characteristics of the mechanical structural component. Therefore, the P content is 0.030% or less, preferably 0.025% or less, more preferably 0.020% or less. The smaller the P content, the better. However, it is difficult to make it 0% due to the limitation of the manufacturing process. Therefore, the P content is more than 0%, and usually at least about 0.0001% is included.
S:0%超〜0.020%
Sは、Mnと結合してMnSを形成し、切削加工するときの被削性を改善する元素である。こうした作用を有効に発揮させるには、S含有量は0%超、好ましくは0.0001%以上、より好ましくは0.0003%以上である。しかしながら、Sを過剰に含有させると、粗大なTi−S析出物密度の増大や、10nm以上のTi炭化物等の密度の低下によって結晶粒が粗大化することがある。したがって、S含有量は0.020%以下、好ましくは0.015%以下、より好ましくは0.013%以下、さらに好ましくは0.010%以下である。
S: Over 0% to 0.020%
S is an element that combines with Mn to form MnS and improves machinability when cutting. In order to effectively exert such effects, the S content is more than 0%, preferably 0.0001% or more, more preferably 0.0003% or more. However, when S is contained excessively, crystal grains may be coarsened due to an increase in the density of coarse Ti-S precipitates or a decrease in the density of Ti carbides of 10 nm or more. Therefore, the S content is 0.020% or less, preferably 0.015% or less, more preferably 0.013% or less, and still more preferably 0.010% or less.
Cr:0.80〜2.00%
Crは、浸炭を促進し、鋼の表面に硬化層を形成するために必要な元素である。こうした作用を有効に発揮させるには、Cr含有量は0.80%以上、好ましくは0.90%以上、より好ましくは1.00%以上である。しかしながら、Crを過剰に含有させると、過剰浸炭を引き起こし、機械構造部品の強度を低下させる。したがって、Cr含有量は2.00%以下、好ましくは1.95%以下、より好ましくは1.90%以下、さらに好ましくは1.80%以下である。
Cr: 0.80 to 2.00%
Cr is an element necessary for promoting carburization and forming a hardened layer on the steel surface. In order to effectively exert such effects, the Cr content is 0.80% or more, preferably 0.90% or more, and more preferably 1.00% or more. However, when Cr is excessively contained, excessive carburization is caused and the strength of the mechanical structural component is lowered. Therefore, the Cr content is 2.00% or less, preferably 1.95% or less, more preferably 1.90% or less, and still more preferably 1.80% or less.
Al:0.01〜0.10%
Alは、脱酸剤として作用する元素であり、こうした作用を有効に発揮させるには、Al含有量は0.01%以上、好ましくは0.015%以上、より好ましくは0.020%以上である。しかしながら、Alを過剰に含有させると鋼の変形抵抗が増大し、冷間鍛造性が劣化する。したがって、Al含有量は0.10%以下、好ましくは0.080%以下、より好ましくは0.060%以下である。
Al: 0.01-0.10%
Al is an element that acts as a deoxidizer, and in order to effectively exert such an effect, the Al content is 0.01% or more, preferably 0.015% or more, more preferably 0.020% or more. is there. However, if Al is contained excessively, the deformation resistance of the steel increases and the cold forgeability deteriorates. Therefore, the Al content is 0.10% or less, preferably 0.080% or less, more preferably 0.060% or less.
N:0%超〜0.005%
Nは、機械構造部品の結晶粒度を適切に調整するために作用する10nm以上のTi炭化物等を形成するために必要な元素である。こうした効果を発揮させるためには、N含有量は0%超、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。しかしながら、Nを過剰に含有させると、鋼中にAlN、TiNなどの窒化物が多量に形成され、切削性や冷間鍛造性を劣化させる。したがって、N含有量は0.005%以下、好ましくは0.0045%以下、より好ましくは0.0040%以下である。
N: Over 0% to 0.005%
N is an element necessary for forming Ti carbide or the like of 10 nm or more that acts to appropriately adjust the crystal grain size of the mechanical structural component. In order to exert such effects, the N content is more than 0%, preferably 0.0001% or more, more preferably 0.0005% or more, and further preferably 0.0010% or more. However, when N is contained excessively, a large amount of nitrides such as AlN and TiN are formed in the steel, and the machinability and cold forgeability are deteriorated. Therefore, the N content is 0.005% or less, preferably 0.0045% or less, more preferably 0.0040% or less.
Ti:0.040〜0.200%
Tiは、機械構造部品の結晶粒度を適切に調整するために作用する10nm以上のTi炭化物等を形成するために必要な元素である。こうした効果を発揮させるためには、Ti含有量は0.040%以上、好ましくは0.045%以上、より好ましくは0.050%以上である。しかしながら、Tiを過剰に含有させると、鋼中に過剰にTiNを形成し、切削性や冷間鍛造性を劣化させる。したがって、Ti含有量は0.200%以下、好ましくは0.180%以下、より好ましくは0.150%以下である。
Ti: 0.040 to 0.200%
Ti is an element necessary for forming Ti carbide or the like of 10 nm or more that acts to appropriately adjust the crystal grain size of the mechanical structural component. In order to exert such an effect, the Ti content is 0.040% or more, preferably 0.045% or more, more preferably 0.050% or more. However, when Ti is excessively contained, TiN is excessively formed in the steel, and the machinability and cold forgeability are deteriorated. Therefore, the Ti content is 0.200% or less, preferably 0.180% or less, more preferably 0.150% or less.
B:0.0005〜0.0050%
Bは、微量でも浸炭処理における焼入性向上に特に有効に作用する元素であり、また結晶粒界を強化し衝撃強度向上に有効に作用する元素である。こうした作用を有効に発揮させるには、B含有量は0.0005%以上、好ましくは0.0007%以上、より好ましくは0.0010%以上である。しかしながら、Bを過剰に含有させても上記効果は飽和すると共に、B窒化物が生成されて冷間鍛造性を劣化させる。したがってB含有量は0.0050%以下、好ましくは0.0040%以下、より好ましくは0.0030%以下である。
B: 0.0005 to 0.0050%
B is an element that works particularly effectively to improve the hardenability in carburizing treatment even in a small amount, and is an element that strengthens the grain boundary and effectively works to improve impact strength. In order to effectively exert such effects, the B content is 0.0005% or more, preferably 0.0007% or more, more preferably 0.0010% or more. However, even if B is contained excessively, the above effect is saturated, and B nitride is generated to deteriorate the cold forgeability. Therefore, the B content is 0.0050% or less, preferably 0.0040% or less, more preferably 0.0030% or less.
本発明に係る肌焼鋼の基本成分は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避的不純物が鋼中に含まれることは当然に許容される。 The basic components of the case-hardened steel according to the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that steel contains inevitable impurities brought in depending on the situation of raw materials, materials, manufacturing equipment, and the like.
更に本発明では、必要に応じて、更に(a)Mo:0%超〜2.0%、(b)Cu:0%超〜0.10%、およびNi:0%超〜3.0%の少なくとも1種を含有することも有用であり、含有される元素の種類に応じて肌焼鋼の特性が更に改善される。 Furthermore, in the present invention, if necessary, (a) Mo: more than 0% to 2.0%, (b) Cu: more than 0% to 0.10%, and Ni: more than 0% to 3.0% It is also useful to contain at least one of the above, and the characteristics of the case-hardened steel are further improved according to the type of element contained.
Mo:0%超〜2.0%
Moは、浸炭処理における焼入性向上に有効に作用する元素である。こうした作用を有効に発揮させるには、Mo含有量は好ましくは0.05%以上、より好ましくは0.08%以上、さらに好ましくは0.10%以上である。しかしながら、Moを過剰に含有させると、切削性や鍛造性を劣化させる。したがって、Mo含有量は好ましくは2.0%以下、より好ましくは1.5%以下、さらに好ましくは1.2%以下である。
Mo: more than 0% to 2.0%
Mo is an element that effectively acts to improve the hardenability in the carburizing process. In order to effectively exert such effects, the Mo content is preferably 0.05% or more, more preferably 0.08% or more, and further preferably 0.10% or more. However, when Mo is contained excessively, machinability and forgeability are deteriorated. Therefore, the Mo content is preferably 2.0% or less, more preferably 1.5% or less, and still more preferably 1.2% or less.
Cu:0%超〜0.10%、およびNi:0%超〜3.0%の少なくとも1種
Cu、およびNiは、上記Moと同様に、浸炭処理における焼入性向上に有効に作用する元素である。またCuとNiは、Feよりも酸化され難い元素であるため、機械構造部品の耐食性改善にも有効に作用する元素である。これらの作用を有効に発揮させるには、Cu含有量は0%超、好ましくは0.03%以上、より好ましくは0.04%以上、さらに好ましくは0.05%以上である。Ni含有量は0%超、好ましくは0.03%以上、より好ましくは0.05%以上、さらに好ましくは0.08%以上である。しかしながら、Cuを過剰に含有させると、熱間鍛造性が低下し、割れなどの問題が発生しやすくなる。したがって、Cu含有量は好ましくは0.10%以下、より好ましくは0.08%以下である。またNiを過剰に含有させると、コスト高となるため、Ni含有量は好ましくは3.0%以下、より好ましくは2.5%以下、さらに好ましくは2.0%以下である。CuとNiは、何れか一方を含有してもよいし、両方を含有してもよい。
Cu: More than 0% to 0.10%, and Ni: More than 0% to 3.0% Cu and Ni, as in the case of Mo, are effective in improving the hardenability in the carburizing process. It is an element. Further, Cu and Ni are elements that are less likely to be oxidized than Fe, and thus are effective elements for improving the corrosion resistance of mechanical structural parts. In order to effectively exhibit these actions, the Cu content is more than 0%, preferably 0.03% or more, more preferably 0.04% or more, and further preferably 0.05% or more. The Ni content is more than 0%, preferably 0.03% or more, more preferably 0.05% or more, and further preferably 0.08% or more. However, when Cu is excessively contained, hot forgeability is lowered, and problems such as cracking are likely to occur. Therefore, the Cu content is preferably 0.10% or less, more preferably 0.08% or less. Moreover, since it will become expensive if Ni is contained excessively, Ni content becomes like this. Preferably it is 3.0% or less, More preferably, it is 2.5% or less, More preferably, it is 2.0% or less. Cu and Ni may contain either one or both.
本発明の肌焼鋼を製造するためには、所定の化学組成の鋼を通常の溶製法に従って溶製し、鋳造、分塊圧延した後、棒鋼圧延するという一連の工程において、特に分塊圧延時、および棒鋼圧延時の加熱温度と加熱保持時間、並びに棒鋼圧延後の冷却速度を適切に調整することが好ましい。具体的には、まず600〜750℃未満で予備加熱した後、分塊時の加熱は1150〜1250℃で0.5〜1.0時間とし、棒鋼圧延時の加熱は800〜1100℃で0.5〜1.5時間とする。また棒鋼圧延後の平均冷却速度は40℃/時間以下とする。 In order to produce the case-hardened steel of the present invention, a steel having a predetermined chemical composition is melted in accordance with a normal melting method, cast, split-rolled, and then subjected to bar rolling, in particular, in the series of rolling. It is preferable to appropriately adjust the heating temperature and heating holding time during the rolling of the steel bar and the cooling rate after the steel bar rolling. Specifically, after preheating at 600 to less than 750 ° C., heating at the time of lump is 1150 to 1250 ° C. for 0.5 to 1.0 hour, and heating at the time of rolling the steel bar is 0 to 800 to 1100 ° C. .5 to 1.5 hours. The average cooling rate after rolling the steel bar is 40 ° C./hour or less.
本発明において、分塊圧延では、粗大なTi−S析出物の生成を抑制すると共に、鋳造段階で生成したTi炭化物等をできるだけマトリックス中に固溶させず、異常粒発生抑制に有効な10nm以上のTi炭化物等の核となる析出物を確保する。 In the present invention, the bulk rolling suppresses the generation of coarse Ti-S precipitates, and at the same time, suppresses the generation of abnormal grains by not dissolving Ti carbides generated in the casting stage as much as possible in the matrix. Precipitates serving as nuclei such as Ti carbides are secured.
また棒鋼圧延では、分塊圧延にて残存させたTi炭化物等をオストワルド成長させ、異常粒成長に有効な10nm以上のTi炭化物等を上記密度に到達させると共に、その冷却過程では異常粒成長の抑制ならびに冷間鍛造性の確保のためパーライト制御を行う。 Also, in steel bar rolling, Ti carbide remaining in the split rolling is Ostwald-grown, and Ti carbide of 10 nm or more effective for abnormal grain growth reaches the above density, and the abnormal grain growth is suppressed during the cooling process. In addition, pearlite control is performed to ensure cold forgeability.
従来の分塊圧延では、鋼材を本加熱炉へ挿入した後、室温から分塊圧延温度まで加熱しているが、Ti炭化物等の固溶量が多くなる750℃以上での滞在時間が長いため、10nm以上のTi炭化物等がマトリックス中に固溶していた。ところが分塊圧延温度に到達するまでに所定の温度で予備加熱を行って鋼材の温度を均一にしてから、分塊圧延温度に加熱することで10nm以上のTi炭化物等の固溶を抑制できる。このような効果を発揮するためには、予備加熱温度は好ましくは600℃以上、より好ましくは630℃以上である。しかしながら予備加熱温度が高すぎると10nm以上のTi炭化物等の固溶量が多くなる。したがって予備加熱温度は好ましくは750℃未満、より好ましくは730℃以下である。予備加熱時間は特に限定されず、鋼材の温度が均一となるように調整すればよいが、予備加熱時間が短すぎると鋼材の温度にバラツキが生じるため、予備加熱時間は好ましくは0.5時間以上、より好ましくは1.0時間以上である。一方、予備加熱時間が長すぎると、10nm未満のTi炭化物等がマトリックス中へ固溶するため、好ましくは5.0時間以下、より好ましくは3.0時間以下である。予備加熱を行う場合は、あらかじめ予備加熱炉で所定の温度で加熱保持した後、本加熱炉で所定の分塊圧延温度まで加熱すればよい。 In the conventional partial rolling, after the steel material is inserted into the main heating furnace, it is heated from room temperature to the partial rolling temperature, but because the residence time at 750 ° C. or higher where the amount of solid solution of Ti carbide or the like increases is long. Ti carbides of 10 nm or more were dissolved in the matrix. However, by preheating at a predetermined temperature to reach the partial rolling temperature to make the temperature of the steel material uniform, heating to the partial rolling temperature can suppress solid solution of Ti carbide or the like of 10 nm or more. In order to exhibit such an effect, the preheating temperature is preferably 600 ° C. or higher, more preferably 630 ° C. or higher. However, if the preheating temperature is too high, the amount of solid solution such as Ti carbide of 10 nm or more increases. Accordingly, the preheating temperature is preferably less than 750 ° C, more preferably 730 ° C or less. The preheating time is not particularly limited, and may be adjusted so that the temperature of the steel material is uniform. However, if the preheating time is too short, the temperature of the steel material varies, so the preheating time is preferably 0.5 hour. As mentioned above, More preferably, it is 1.0 hour or more. On the other hand, if the preheating time is too long, Ti carbide or the like of less than 10 nm is dissolved in the matrix, so that it is preferably 5.0 hours or less, more preferably 3.0 hours or less. When preheating is performed, after heating and holding in advance in a preheating furnace at a predetermined temperature, heating to a predetermined block rolling temperature in the main heating furnace may be performed.
分塊圧延時の加熱温度が1150℃を下回ると、分塊圧延時の圧延機への負荷が大きくなり、所望形状への圧延が困難になる。このため、加熱温度は好ましくは1150℃以上、より好ましくは1160℃以上、さらに好ましくは1170℃以上である。しかしながら、加熱温度が高くなり過ぎると、鋳造段階で生成した10nm以上のTi炭化物等がマトリックス中へ固溶すると共に、粗大なTi−S析出物の密度が増大する。したがって分塊圧延時の加熱温度は好ましくは1250℃以下、より好ましくは1230℃以下、さらに好ましくは1200℃以下である。また前記温度範囲での加熱保持時間が長すぎると、鋳造段階で生成した10nm以上のTi炭化物等がマトリックス中へ固溶する。したがって加熱保持時間は、好ましくは1時間以下、より好ましくは50分以下である。一方、加熱保持時間が短すぎると鋼材の温度ムラができ、材質のばらつきにつながるため、加熱保持時間は好ましくは30分以上、より好ましくは35分以上である。 When the heating temperature at the time of the block rolling is below 1150 ° C., the load on the rolling mill at the time of the block rolling becomes large, and rolling to a desired shape becomes difficult. For this reason, heating temperature becomes like this. Preferably it is 1150 degreeC or more, More preferably, it is 1160 degreeC or more, More preferably, it is 1170 degreeC or more. However, if the heating temperature becomes too high, Ti carbides of 10 nm or more generated in the casting stage are dissolved in the matrix, and the density of coarse Ti—S precipitates increases. Therefore, the heating temperature at the time of the block rolling is preferably 1250 ° C. or less, more preferably 1230 ° C. or less, and further preferably 1200 ° C. or less. If the heating and holding time in the temperature range is too long, Ti carbide of 10 nm or more generated in the casting stage is dissolved in the matrix. Therefore, the heating and holding time is preferably 1 hour or less, more preferably 50 minutes or less. On the other hand, if the heating and holding time is too short, the temperature of the steel material is uneven, leading to variations in material quality. Therefore, the heating and holding time is preferably 30 minutes or more, more preferably 35 minutes or more.
上記棒鋼圧延時の加熱温度が800℃を下回ると、棒鋼圧延機への負荷が大きくなり、所望形状への圧延が困難になる。このため棒鋼圧延時の加熱温度は好ましくは800℃以上、より好ましくは820℃以上、さらに好ましくは850℃以上である。しかしながら、棒鋼圧延時の加熱温度が1100℃を超えると、10nm以上のTi炭化物等の密度が低下する。このため、加熱温度は好ましくは1100℃以下、より好ましくは1050℃以下、更に好ましくは1000℃以下である。また前記温度範囲での加熱保持時間が長すぎると、10nm未満のTi炭化物等の密度が低下する。このため加熱保持時間は好ましくは1.5時間以下、より好ましくは1.25時間以下である。一方、加熱保持時間が短すぎると鋼材の温度ムラがあり、材質のばらつきにつながるため、加熱保持時間は好ましくは0.5時間以上、より好ましくは0.75時間以上である。 When the heating temperature at the time of rolling the steel bar is less than 800 ° C., the load on the steel bar rolling machine becomes large, and rolling to a desired shape becomes difficult. For this reason, the heating temperature at the time of steel bar rolling is preferably 800 ° C. or higher, more preferably 820 ° C. or higher, and further preferably 850 ° C. or higher. However, when the heating temperature at the time of steel bar rolling exceeds 1100 ° C., the density of Ti carbide or the like of 10 nm or more decreases. For this reason, heating temperature becomes like this. Preferably it is 1100 degrees C or less, More preferably, it is 1050 degrees C or less, More preferably, it is 1000 degrees C or less. On the other hand, if the heating and holding time in the above temperature range is too long, the density of Ti carbide or the like of less than 10 nm decreases. For this reason, the heat holding time is preferably 1.5 hours or less, more preferably 1.25 hours or less. On the other hand, if the heating and holding time is too short, there will be temperature irregularities in the steel material, leading to variations in material quality. Therefore, the heating and holding time is preferably 0.5 hours or more, more preferably 0.75 hours or more.
棒鋼圧延後、室温まで冷却するが、棒鋼圧延後の冷却速度が速すぎると、パーライト、およびパーライト凝集部が過剰に生成し、それぞれ冷間鍛造性の悪化、異常粒成長の発生を引起す要因となる。このため平均冷却速度は好ましくは40℃/時間以下、より好ましくは30℃/時間以下、さらに好ましくは25℃/時間以下である。 After steel bar rolling, it is cooled to room temperature. However, if the cooling rate after steel bar rolling is too fast, excessive pearlite and pearlite agglomerates will be generated, causing deterioration of cold forgeability and abnormal grain growth, respectively. It becomes. For this reason, an average cooling rate becomes like this. Preferably it is 40 degrees C / hour or less, More preferably, it is 30 degrees C / hour or less, More preferably, it is 25 degrees C / hour or less.
上記のように分塊圧延時、および棒鋼圧延時の加熱温度と加熱保持時間、並びに棒鋼圧延後の冷却速度の条件を満足させることによって、上記本発明の肌焼鋼が得られる。 As described above, the case-hardened steel of the present invention can be obtained by satisfying the conditions of the heating temperature and heating holding time at the time of the block rolling and the steel bar rolling and the cooling rate after the steel bar rolling.
本発明の肌焼鋼の形状は特に限定されないが、例えばφ10〜150mmの棒鋼である。このような要件を満足する本発明の肌焼鋼に、浸炭処理を施して得られる、すなわち表面が浸炭処理されている機械構造部品は、異常粒発生を抑制でき、また冷間鍛造性に優れたものとなる。 Although the shape of the case hardening steel of this invention is not specifically limited, For example, it is a bar steel of (phi) 10-150mm. Machine structural parts obtained by carburizing the case-hardened steel of the present invention that satisfies these requirements, that is, the surface of which is carburized, can suppress the occurrence of abnormal grains and have excellent cold forgeability. It will be.
本発明の肌焼鋼を用いた機械構造部品としては、具体的に、歯車、シャフト類、無段変速機(Continuously Variable Transmission、CVT)プーリ、等速ジョイント(Constant Velocity Joint、CVJ)、軸受等が挙げられる。 Specific examples of mechanical structural parts using the case-hardened steel of the present invention include gears, shafts, continuously variable transmission (CVT) pulleys, constant velocity joints (CVJ), bearings, and the like. Is mentioned.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
下記表1に示す化学組成を満たす鋼を、通常の溶製法に従って溶製炉で溶製し、鋼片を製造した。 Steel satisfying the chemical composition shown in Table 1 below was melted in a melting furnace in accordance with a normal melting method to produce a steel piece.
得られた各種鋼片を用い、下記表2に示す分塊圧延温度、および加熱保持時間で加熱した後、分塊圧延を行い、室温まで冷却した。なお、条件Aでは700℃で1時間の予備加熱を行ってから分塊圧延温度まで加熱した。次いで、下記表2に示す棒鋼圧延温度、及び加熱保持時間で加熱して棒鋼圧延を行い、直径:23mmの棒鋼を製造した。 Using the obtained various steel pieces, after heating at the partial rolling temperature shown in Table 2 below and the heating and holding time, the partial rolling was performed and cooled to room temperature. In condition A, preheating was performed at 700 ° C. for 1 hour, and then heated to the block rolling temperature. Subsequently, the steel bar was rolled by heating at a steel bar rolling temperature and a heating and holding time shown in Table 2 below, thereby manufacturing a steel bar having a diameter of 23 mm.
10nm未満のTi炭化物等、10nm以上のTi炭化物等、および粗大なTi−S析出物の 観察を次の手順で行った。 Observations of Ti carbides of less than 10 nm, Ti carbides of 10 nm or more, and coarse Ti—S precipitates were made by the following procedure.
(1)各析出物の密度の測定
得られた棒鋼の横断面、すなわち、棒鋼の軸心と垂直な断面を機械研磨した後、電解研磨を行い、ナイタール液、すなわちエタノールと3%硝酸との混合液によるエッチングの後、カーボン蒸着を行う抽出レプリカ法によりレプリカ膜を作製した。析出物の観察は、前記横断面の棒鋼直径D/4位置を、日立製作所製の透過電子顕微鏡H−800を用いて75000倍で観察することにより行った。観察された析出物の構成元素は、堀場製作所製EDX分析装置EMAX−7000による点分析により測定した。C又はNを示すピークが検出されるとともに、Tiのピークが検出される析出物を「Tiを含有する炭化物及び炭窒化物」と判断し、Ti及びSのピークが検出される析出物を「Ti及びSを含有する析出物」と判断した。なお、透過画像にて同様の様相を呈する析出物は同一の構成元素と判定することにより析出物の判定を行った。また、各析出物の密度は、住友金属テクノロジー社製粒子解析Ver.3.0により測定した。測定視野は1.35μm×1.60μmとして、5視野観察し、その算術平均値を各析出物の密度とした。結果を下記表3に示す。なお、表中、Tiを含有する炭化物及び炭窒化物の個数密度は円相当直径に応じて「Ti炭(窒)化物密度(個/μm2)」の各欄、Ti及びSを含有する円相当直径200nm以上の析出物の個数密度は「Ti、S析出物密度(個/μm2)」に記載した。
(1) Measurement of the density of each precipitate The cross section of the obtained steel bar, that is, the cross section perpendicular to the axis of the steel bar, is mechanically polished and then electropolished to form a nital solution, ie, ethanol and 3% nitric acid. After etching with the mixed solution, a replica film was prepared by an extraction replica method in which carbon deposition was performed. The precipitate was observed by observing the steel bar diameter D / 4 position in the transverse section at 75,000 times using a transmission electron microscope H-800 manufactured by Hitachi, Ltd. The constituent elements of the observed deposits were measured by point analysis using an EDX analyzer EMAX-7000 manufactured by Horiba. A peak indicating C or N is detected, and a precipitate in which a peak of Ti is detected is determined as “a carbide and carbonitride containing Ti”, and a precipitate in which a peak of Ti and S is detected is “ It was judged as “precipitate containing Ti and S”. In addition, the precipitate which showed the same aspect in a transmission image determined the precipitate by determining with the same structural element. In addition, the density of each precipitate was measured by Sumitomo Metal Technology's Particle Analysis Ver. Measured by 3.0. The measurement visual field was 1.35 μm × 1.60 μm, and five visual fields were observed. The arithmetic average value was defined as the density of each precipitate. The results are shown in Table 3 below. In the table, the number density of carbides and carbonitrides containing Ti is each column of “Ti charcoal (nitride) density (pieces / μm 2 )” according to the equivalent circle diameter, circles containing Ti and S. The number density of precipitates having an equivalent diameter of 200 nm or more is described in “Ti, S precipitate density (pieces / μm 2 )”.
(パーライト面積率(%)、フェライト面積率(%)、および円相当直径100μm以上のパーライト面積率(%)の測定)
次に、得られた棒鋼のD/4位置において、棒鋼の横断面を機械研磨した後、ピクラル液によりエッチングを行い、光学顕微鏡により100倍で観察を行った。金属組織分率の判定は住友金属テクノロジー社製粒子解析Ver.3.0により行った。さらに円相当直径が100μm以上のパーライトの視野内における面積率を測定し、「パーライト凝集部面積率(%)」欄に記入した。
(Measurement of pearlite area ratio (%), ferrite area ratio (%), and pearlite area ratio (%) with an equivalent circle diameter of 100 μm or more)
Next, at the D / 4 position of the obtained steel bar, the cross section of the steel bar was mechanically polished, etched with a picral solution, and observed with an optical microscope at 100 times. The metal structure fraction was determined by Sumitomo Metal Technology's Particle Analysis Ver. 3.0. Furthermore, the area ratio in the visual field of pearlite having an equivalent circle diameter of 100 μm or more was measured and entered in the “perlite aggregate part area ratio (%)” column.
次に、得られた棒鋼のD/4位置を中心として、試験片の長手方向が圧延方向と並行になるようにφ20mm×30mmの円柱試験片を作製し、円柱試験片の長手方向に50%の冷間圧縮、すなわち冷間鍛造を行った。この際、割れが発生した試験片については表中に「冷鍛時 割れ発生」と記入すると共に、下記結晶粒度番号の判定は行わなかった。一方、冷間鍛造時に割れが発生しなかった試験片は図2で示すとおり、CP(カーボンポテンシャル)0.8%、温度930℃、950℃、980℃の各温度で6時間浸炭して100℃の油浴に浸漬した後、170℃で120分間の焼戻し処理を行って、結晶粒度測定用の試験片とした。結晶粒度測定の手順は以下の通りである。 Next, centering on the D / 4 position of the obtained steel bar, a cylindrical specimen having a diameter of 20 mm × 30 mm is prepared so that the longitudinal direction of the specimen is parallel to the rolling direction, and 50% in the longitudinal direction of the cylindrical specimen. Was subjected to cold compression, that is, cold forging. At this time, for the test piece in which cracking occurred, “cracking during cold forging” was entered in the table, and the following grain size number was not determined. On the other hand, as shown in FIG. 2, the test piece in which cracking did not occur during cold forging was carburized for 6 hours at CP (carbon potential) 0.8%, temperatures 930 ° C., 950 ° C., and 980 ° C. for 100 hours. After immersing in an oil bath at 0 ° C., a tempering treatment was performed at 170 ° C. for 120 minutes to obtain a test piece for measuring crystal grain size. The procedure for measuring the grain size is as follows.
(2)旧オーステナイト粒の結晶粒度番号の判定
前記した結晶粒度測定用の試験片の、圧縮方向に平行な面を切出し、ナイタール液でエッチングした後、光学顕微鏡を用いて倍率100倍で観察し、JIS G0551(2005)に従って旧オーステナイト粒の粒度番号を測定した。粒度番号の測定は、圧縮端部の表層部、すなわち表面から2mmの深さで行い、結晶粒が最も大きくなった部分の粒度番号を測定し、最大γ粒度とした。そして最大γ粒度が6.0以上であるものを、異常粒の「発生なし」と評価した。結果を表3に示す。
(2) Judgment of grain size number of prior austenite grains After cutting out the plane parallel to the compression direction of the above test piece for grain size measurement and etching it with a nital solution, it was observed at a magnification of 100 using an optical microscope. The particle size number of the prior austenite grains was measured according to JIS G0551 (2005). The particle size number was measured at the surface layer portion at the compression end, that is, at a depth of 2 mm from the surface, and the particle size number of the portion where the crystal grains were the largest was measured to obtain the maximum γ particle size. Those having a maximum γ particle size of 6.0 or more were evaluated as “no occurrence” of abnormal particles. The results are shown in Table 3.
表3の試験No.1〜43は、本発明で規定する化学組成を満足する鋼を、適切な製造条件で製造したため、10nm以上のTi炭化物等、粗大なTi−S析出物の密度、および金属組織を本発明の要件を満足するように調整でき、浸炭処理時の異常粒発生を抑制できた。 Test No. in Table 3 Nos. 1 to 43 are steels that satisfy the chemical composition defined in the present invention under appropriate manufacturing conditions. Therefore, the density of coarse Ti-S precipitates such as Ti carbide of 10 nm or more, and the metal structure of the present invention are determined. It can be adjusted to meet the requirements, and abnormal grain generation during carburizing can be suppressed.
一方、表3の試験No.44〜60は、鋼の化学組成または製造条件が不適切だったため10nm以上のTi炭化物等や粗大なTi−S析出物の密度、金属組織を、本発明で規定する範囲に調整することができず、冷間鍛造時に割れが発生、あるいは浸炭処理時に異常粒が発生した。 On the other hand, test No. 44-60, the chemical composition or manufacturing conditions of the steel were inappropriate, so the density and metal structure of Ti carbides and coarse Ti-S precipitates of 10 nm or more and coarse Ti-S precipitates can be adjusted to the ranges specified in the present invention. However, cracks occurred during cold forging, or abnormal grains occurred during carburizing.
No.44は、C量が多い鋼Z1を用いた例であり、パーライト面積率が高くなり、冷間鍛造性が悪化した。 No. No. 44 is an example using steel Z1 with a large amount of C, and the pearlite area ratio increased, and the cold forgeability deteriorated.
No.45は、Si量が多い鋼Z2を用いた例であり、冷間鍛造時に割れが発生した。 No. 45 is an example using steel Z2 with a large amount of Si, and cracking occurred during cold forging.
No.46は、Mn量が多い鋼Z3を用いた例であり、冷間鍛造時に割れが発生した。 No. No. 46 is an example using steel Z3 with a large amount of Mn, and cracking occurred during cold forging.
No.47は、S量が多い鋼Z4を用いた例であり、粗大なTi−S析出物が増加し、10nm以上のTi炭化物等の密度を確保できず、異常粒が発生した。 No. No. 47 is an example using steel Z4 with a large amount of S. Coarse Ti—S precipitates increased, the density of Ti carbides of 10 nm or more could not be secured, and abnormal grains were generated.
No.48は、Al量が多い鋼Z5を用いた例であり、鋼の変形抵抗が増大し、冷間鍛造時に割れが発生した。 No. No. 48 is an example using steel Z5 with a large amount of Al. The deformation resistance of the steel increased, and cracking occurred during cold forging.
No.49は、N量が多い鋼Z6を用いた例であり、冷間鍛造時に割れが発生した。これは鋼中にAlNやTiNなどの窒化物が過剰に形成されたためと考えられる。 No. No. 49 is an example using steel Z6 with a large amount of N, and cracking occurred during cold forging. This is probably because nitrides such as AlN and TiN were excessively formed in the steel.
No.50はTi量が少ない鋼Z7を用いた例であり、10nm以上のTi炭化物等の密度を確保できず、異常粒が発生した。 No. 50 is an example using steel Z7 with a small amount of Ti, and the density of Ti carbide of 10 nm or more could not be secured, and abnormal particles were generated.
No.51はTi量が多い鋼Z8を用いた例であり、冷間鍛造時に割れが発生した。これは鋼中に過剰なTiNが析出したためと考えられる。 No. 51 is an example using steel Z8 with a large amount of Ti, and cracking occurred during cold forging. This is presumably because excess TiN precipitated in the steel.
No.52〜54は、分塊圧延時に予備加熱を行わなかった製造条件Bを採用した例であり、10nm以上のTi炭化物等の密度を確保できず、異常粒が発生した。 No. 52 to 54 are examples in which the production condition B in which preheating was not performed at the time of the block rolling was adopted, and the density of Ti carbide or the like of 10 nm or more could not be secured, and abnormal particles were generated.
No.55〜57は、予備加熱を行わず、また分塊圧延時の加熱保持時間が長く、所定の温度で棒鋼圧延を行わなかった製造条件Cを採用した例であり、10nm以上のTi炭化物等の密度を確保することができず、異常粒が発生した。 No. 55 to 57 is an example in which the preheating is not performed, the heating and holding time at the time of the ingot rolling is long, and the production condition C in which the steel bar rolling is not performed at a predetermined temperature is adopted. The density could not be secured and abnormal particles were generated.
No.58〜60は、予備加熱を行わず、また分塊圧延時の加熱温度が高いとともに加熱保持時間が長く、さらに棒鋼圧延後の冷却速度が速い製造条件Dを採用した例であり、10nm以上のTi炭化物等の密度を確保することができず、またパーライト凝集部の面積率が高く、異常粒が発生した。 No. Nos. 58 to 60 are examples in which the production condition D is used, in which preheating is not performed, the heating temperature at the time of the ingot rolling is high, the heating and holding time is long, and the cooling rate after the steel bar rolling is fast. The density of Ti carbide or the like could not be ensured, and the area ratio of the pearlite aggregation portion was high, and abnormal particles were generated.
Claims (3)
Si:0.01〜0.50%、
Mn:0.30〜0.80%、
P :0%超〜0.030%、
S :0%超〜0.020%、
Cr:0.80〜2.00%、
Al:0.01〜0.10%、
N :0%超〜0.005%、
Ti:0.040〜0.200%、
B :0.0005〜0.0050%
を含有し、残部が鉄、および不可避的不純物であって、
Tiを含有する円相当直径10nm以上200nm未満の炭化物、および炭窒化物の密度が10個/μm2以上、
Ti、およびSを含有する円相当直径200nm以上の析出物の密度が0.2個/μm2以下であり、
金属組織が、パーライトフェライト混合組織であって、該混合組織の面積率が80%以上であり、
パーライトの面積率が金属組織全体に対して25%以下であり、かつ
円相当直径が100μm以上のパーライトの面積率が金属組織全体に対して10%以下であることを特徴とする優れた冷間鍛造性を有し、浸炭処理時の異常粒発生が抑制可能な肌焼鋼。 C: 0.10 to 0.30% (meaning mass%, hereinafter the same),
Si: 0.01 to 0.50%,
Mn: 0.30 to 0.80%,
P: more than 0% to 0.030%,
S: more than 0% to 0.020%,
Cr: 0.80 to 2.00%,
Al: 0.01 to 0.10%,
N: more than 0% to 0.005%,
Ti: 0.040 to 0.200%,
B: 0.0005 to 0.0050%
The balance is iron, and inevitable impurities,
Carbide having a circle-equivalent diameter of 10 nm or more and less than 200 nm containing Ti, and a density of carbonitride of 10 / μm 2 or more
The density of precipitates having an equivalent circle diameter of 200 nm or more containing Ti and S is 0.2 pieces / μm 2 or less,
The metal structure is a pearlite ferrite mixed structure, and the area ratio of the mixed structure is 80% or more,
Excellent cold, characterized in that the area ratio of pearlite is 25% or less with respect to the entire metal structure, and the area ratio of pearlite with an equivalent circle diameter of 100 μm or more is 10% or less with respect to the entire metal structure. Case-hardened steel that has forgeability and can suppress the occurrence of abnormal grains during carburizing.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014066098A JP6182489B2 (en) | 2014-03-27 | 2014-03-27 | Case-hardened steel that has excellent cold forgeability and can suppress abnormal grain generation during carburizing. |
PCT/JP2015/058513 WO2015146837A1 (en) | 2014-03-27 | 2015-03-20 | Case-hardened steel having excellent cold forgeability and capable of suppressing abnormal grain growth during carburizing treatment |
TW104109763A TWI544090B (en) | 2014-03-27 | 2015-03-26 | A surface hardened steel having excellent cold forging and capable of suppressing the occurrence of abnormal particles in the carburizing treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014066098A JP6182489B2 (en) | 2014-03-27 | 2014-03-27 | Case-hardened steel that has excellent cold forgeability and can suppress abnormal grain generation during carburizing. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015189987A JP2015189987A (en) | 2015-11-02 |
JP6182489B2 true JP6182489B2 (en) | 2017-08-16 |
Family
ID=54195355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014066098A Expired - Fee Related JP6182489B2 (en) | 2014-03-27 | 2014-03-27 | Case-hardened steel that has excellent cold forgeability and can suppress abnormal grain generation during carburizing. |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6182489B2 (en) |
TW (1) | TWI544090B (en) |
WO (1) | WO2015146837A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102099767B1 (en) * | 2015-11-27 | 2020-04-10 | 닛폰세이테츠 가부시키가이샤 | Steel, carburized steel parts and manufacturing method of carburized steel parts |
CN108291284A (en) * | 2015-12-04 | 2018-07-17 | 新日铁住金株式会社 | High-strength bolt |
WO2017094870A1 (en) * | 2015-12-04 | 2017-06-08 | 新日鐵住金株式会社 | Rolling rod for cold-forged thermally refined article |
CN109609838A (en) * | 2018-11-15 | 2019-04-12 | 邯郸钢铁集团有限责任公司 | A kind of high intensity torsional shear type bolt Alloy Cold Heading Steel and its production method |
JP7545949B2 (en) | 2021-12-16 | 2024-09-05 | 株式会社神戸製鋼所 | Steel material, steel part, and manufacturing method of steel part |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3490293B2 (en) * | 1997-07-23 | 2004-01-26 | 新日本製鐵株式会社 | Cold forging steel excellent in crystal grain coarsening prevention property and delayed fracture resistance, and its manufacturing method |
JP4146271B2 (en) * | 2003-04-21 | 2008-09-10 | 新日本製鐵株式会社 | High strength PC steel wire with excellent delayed fracture resistance and method for producing the same |
JP4073860B2 (en) * | 2003-11-11 | 2008-04-09 | 山陽特殊製鋼株式会社 | Manufacturing method of carburized steel with excellent coarsening resistance after high-temperature carburizing |
JP4423253B2 (en) * | 2005-11-02 | 2010-03-03 | 株式会社神戸製鋼所 | Spring steel excellent in hydrogen embrittlement resistance, and steel wire and spring obtained from the steel |
JP4964063B2 (en) * | 2006-08-28 | 2012-06-27 | 株式会社神戸製鋼所 | Case-hardened steel with excellent cold forgeability and grain coarsening prevention properties and machine parts obtained therefrom |
JP5385656B2 (en) * | 2009-03-27 | 2014-01-08 | 株式会社神戸製鋼所 | Case-hardened steel with excellent maximum grain reduction characteristics |
KR20110075319A (en) * | 2009-12-28 | 2011-07-06 | 주식회사 포스코 | Ultra high strength steel wire rod having high resistance of delayed fracture, and method for manufacturing the same |
JP5432105B2 (en) * | 2010-09-28 | 2014-03-05 | 株式会社神戸製鋼所 | Case-hardened steel and method for producing the same |
JP5458048B2 (en) * | 2011-03-29 | 2014-04-02 | 株式会社神戸製鋼所 | Case-hardened steel, its manufacturing method, and machine structural parts using case-hardened steel |
EP2803742B1 (en) * | 2012-01-11 | 2019-12-25 | Kabushiki Kaisha Kobe Seiko Sho | Bolt and method for manufacturing bolt |
JP5833485B2 (en) * | 2012-03-27 | 2015-12-16 | 株式会社神戸製鋼所 | Wire rod and steel wire using the same |
-
2014
- 2014-03-27 JP JP2014066098A patent/JP6182489B2/en not_active Expired - Fee Related
-
2015
- 2015-03-20 WO PCT/JP2015/058513 patent/WO2015146837A1/en active Application Filing
- 2015-03-26 TW TW104109763A patent/TWI544090B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2015146837A1 (en) | 2015-10-01 |
TW201606096A (en) | 2016-02-16 |
TWI544090B (en) | 2016-08-01 |
JP2015189987A (en) | 2015-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4956146B2 (en) | Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts | |
JP4725401B2 (en) | Steel parts and manufacturing method thereof | |
JP6479527B2 (en) | Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt | |
JP5458048B2 (en) | Case-hardened steel, its manufacturing method, and machine structural parts using case-hardened steel | |
WO2012046779A1 (en) | Case hardened steel and method for producing the same | |
WO2011040587A1 (en) | Steel for machine structural use, manufacturing method for same, case hardened steel components, and manufacturing method for same | |
JP5385656B2 (en) | Case-hardened steel with excellent maximum grain reduction characteristics | |
JP6109729B2 (en) | Case-hardened steel with excellent grain coarsening prevention characteristics during carburizing | |
JP4464862B2 (en) | Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing. | |
JP6182489B2 (en) | Case-hardened steel that has excellent cold forgeability and can suppress abnormal grain generation during carburizing. | |
JP6401143B2 (en) | Method for producing carburized forging | |
JP5260460B2 (en) | Case-hardened steel parts and manufacturing method thereof | |
JP5649886B2 (en) | Case-hardened steel and method for producing the same | |
JP4384592B2 (en) | Rolled steel for carburizing with excellent high-temperature carburizing characteristics and hot forgeability | |
JP6029949B2 (en) | Normalizing process after hot forging can be omitted, and a method for manufacturing case-hardened steel and parts excellent in high-temperature carburizing properties | |
JP5649887B2 (en) | Case-hardened steel and method for producing the same | |
JP5649838B2 (en) | Case-hardened steel and method for producing the same | |
JP6186289B2 (en) | Case-hardened steel capable of suppressing the occurrence of abnormal grains during carburizing treatment and machine structural parts using the same | |
JP2017133052A (en) | Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor | |
JP4464861B2 (en) | Case hardening steel with excellent grain coarsening resistance and cold workability | |
JP6029950B2 (en) | After hot forging, normalizing can be omitted, and a method for producing case-hardened steel and parts with excellent high-temperature carburizing properties | |
JP2016188421A (en) | Carburized component | |
JP6705344B2 (en) | Case-hardening steel excellent in coarse grain prevention characteristics and fatigue characteristics during carburization and its manufacturing method | |
JP6172378B2 (en) | Case-hardened steel wire | |
JP2019031745A (en) | Carburized component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160901 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20170210 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170718 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6182489 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |