JP2007031787A - Case-hardened steel having superior grain coarsening resistance, fatigue characteristic and machinability, and manufacturing method therefor - Google Patents

Case-hardened steel having superior grain coarsening resistance, fatigue characteristic and machinability, and manufacturing method therefor Download PDF

Info

Publication number
JP2007031787A
JP2007031787A JP2005217453A JP2005217453A JP2007031787A JP 2007031787 A JP2007031787 A JP 2007031787A JP 2005217453 A JP2005217453 A JP 2005217453A JP 2005217453 A JP2005217453 A JP 2005217453A JP 2007031787 A JP2007031787 A JP 2007031787A
Authority
JP
Japan
Prior art keywords
less
steel
case
machinability
hardened steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005217453A
Other languages
Japanese (ja)
Other versions
JP4440845B2 (en
Inventor
Toshio Murakami
俊夫 村上
琢哉 ▲高▼知
Takuya Kochi
Shogo Murakami
昌吾 村上
Hitoshi Hatano
等 畑野
Hiroshi Yaguchi
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005217453A priority Critical patent/JP4440845B2/en
Publication of JP2007031787A publication Critical patent/JP2007031787A/en
Application granted granted Critical
Publication of JP4440845B2 publication Critical patent/JP4440845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Abstract

<P>PROBLEM TO BE SOLVED: To provide a case-hardened steel which has all of superior grain coarsening resistance, fatigue characteristics and excellent machinability, and to provide a preferable manufacturing method therefor. <P>SOLUTION: The case-hardened steel comprises, by mass%, 0.10-0.35% C, 0.03-1.0% Si, 0.20-2.0% Mn, 0.030% or less P, 0.010-0.10% S, 0.2% or less Al, 0.03-0.30% Ti, 0.020% or less N, and the balance Fe with unavoidable impurities; has Ti-based carbonitrides finely dispersed in the steel; and contains Ti-based sulfides with an average diameter of 1.0 to 5.0 μm existing at a density of 10 pieces/mm<SP>2</SP>or more, and Ti-based sulfides with an average diameter of larger than 5.0 μm existing at a density of 10 pieces/mm<SP>2</SP>or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐結晶粒粗大化特性及び疲労特性に優れ、しかも優れた被削性を兼備した肌焼鋼、及びその製造方法に関する。   The present invention relates to a case-hardened steel excellent in crystal grain coarsening characteristics and fatigue characteristics, and also having excellent machinability, and a method for producing the same.

機械構造用部品には、歯車などのように部品表面を硬化させるものがあり、そのような部品の素材として肌焼鋼が用いられる。肌焼鋼は、熱間鍛造や冷間鍛造などによって目標形状に近似した中間部品に成形され、さらに切削加工が施されて目標形状の部品に製作される。この部品は、浸炭処理や浸炭窒化処理などの表面硬化処理が施され、必要に応じて仕上加工されて完成品とされる。
このように肌焼鋼は、部品製造過程で浸炭処理や浸炭窒化処理などの表面硬化処理が施されるが、これらの処理は高温での加熱を伴うため、結晶粒が粗大化し、疲労特性などの機械的性質が低下する傾向がある。
Some mechanical structural components, such as gears, harden the surface of the component, and case-hardened steel is used as a material for such components. The case-hardened steel is formed into an intermediate part that approximates the target shape by hot forging, cold forging, and the like, and is further cut to be manufactured into a target-shaped part. This part is subjected to a surface hardening process such as a carburizing process or a carbonitriding process, and is finished as necessary to be a finished product.
In this way, the case hardening steel is subjected to surface hardening treatment such as carburizing and carbonitriding in the part manufacturing process, but these treatments involve heating at high temperatures, resulting in coarsening of crystal grains, fatigue characteristics, etc. There is a tendency for the mechanical properties of to decrease.

このような肌焼鋼の結晶粒粗大化を改善するために、特開平10−81938号公報(特許文献1)や特開平10−130720号公報(特許文献2)には、Tiを添加した肌焼ボロン鋼が提案されている。この鋼は、Tiを0.1%超〜0.2%添加することにより、鋼中に固溶したNを固定し、かつTi炭化物、Tiを含有する複合炭化物、Ti窒化物を微細に析出させることにより、浸炭時のオーステナイト結晶粒の粗大化を抑制したものである。さらに、特開平11−92824号公報(特許文献3)や特開平11−92863号公報(特許文献4)には、Ti炭化物を微細分散させることにより、転動疲労中の組織変化を抑制すし、転動疲労寿命を向上させた肌焼鋼も提案されている。   In order to improve the grain coarsening of such case-hardened steel, Japanese Patent Application Laid-Open No. 10-813838 (Patent Document 1) and Japanese Patent Application Laid-Open No. 10-130720 (Patent Document 2) describe a skin to which Ti is added. Hardened boron steel has been proposed. By adding more than 0.1% to 0.2% Ti, this steel fixes N dissolved in the steel, and finely precipitates Ti carbide, Ti-containing composite carbide, and Ti nitride. By doing so, coarsening of austenite crystal grains during carburization is suppressed. Furthermore, in Japanese Patent Laid-Open No. 11-92824 (Patent Document 3) and Japanese Patent Laid-Open No. 11-92863 (Patent Document 4), the Ti carbide is finely dispersed to suppress the structural change during rolling fatigue, Case-hardened steel with improved rolling fatigue life has also been proposed.

一方、上記のとおり、肌焼鋼は、部品に近似した形状に成形加工された後、各種切削加工が施されるため、被削性も求められる。高温処理によるオーステナイト粒の粗大化を抑制しつつ、被削性を改善した肌焼鋼として、特開平10−152752号公報(特許文献5)や特開平11−236646号公報(特許文献6)には、TiS、NdSやTi炭硫化物、Zr炭硫化物を鋼中に分散させた肌焼鋼が開示されている。また、特開2003−34843号公報(特許文献7)には、浸炭後、再焼入れして旧オーステナイト粒を超微細化して高強度化する肌焼鋼において、S,Pb,Biなどの元素を適量添加して被削性を改善することが開示されている。   On the other hand, as described above, the case-hardened steel is formed into a shape approximate to a part and then subjected to various cutting processes, so that machinability is also required. JP-A-10-152756 (Patent Document 5) and JP-A-11-236646 (Patent Document 6) disclose case-hardened steel with improved machinability while suppressing the coarsening of austenite grains due to high-temperature treatment. Discloses a case-hardened steel in which TiS, NdS, Ti carbosulfide, and Zr carbosulfide are dispersed in the steel. JP 2003-34843 A (Patent Document 7) discloses an element such as S, Pb, Bi, etc. in case-hardened steel that is re-quenched and ultra-finely refined prior austenite grains after carburizing. It is disclosed that an appropriate amount is added to improve machinability.

特開平10−81938号公報Japanese Patent Laid-Open No. 10-81938 特開平10−130720号公報JP-A-10-130720 特開平11−92824号公報JP-A-11-92824 特開平11−92863号公報JP-A-11-92863 特開平10−152752号公報Japanese Patent Laid-Open No. 10-152752 特開平11−236646号公報Japanese Patent Laid-Open No. 11-236646 特開2003−34843号公報JP 2003-34843 A

上記特許文献1〜4の肌焼鋼は疲労特性、転動疲労特性が改善されたものの十分な被削性を備えているとは言えず、一方特許文献5〜7の肌焼鋼は被削性が改善されたものの、耐結晶粒粗大化特性が不十分であり、十分な疲労特性や転動疲労特性が得られていない。
本発明はかかる問題に鑑みなされたもので、耐結晶粒粗大化特性及び疲労特性に優れ、しかも優れた被削性を兼備した肌焼鋼、及びその好適な製造方法を提供することを目的とする。
Although the case-hardened steels of Patent Documents 1 to 4 have improved fatigue characteristics and rolling fatigue characteristics, it cannot be said that they have sufficient machinability, while those of Patent Documents 5 to 7 are machined. However, the crystal grain coarsening characteristics are insufficient, and sufficient fatigue characteristics and rolling fatigue characteristics are not obtained.
The present invention has been made in view of such problems, and an object thereof is to provide a case-hardened steel excellent in crystal grain coarsening characteristics and fatigue characteristics, and also having excellent machinability, and a suitable manufacturing method thereof. To do.

本発明者は、Sを適量添加したTi添加肌焼鋼において、Ti系硫化物の粒径分布に着目し、これについて鋭意研究を重ねた結果、疲労特性を劣化させる過大なTi系硫化物の個数を抑制すると共に疲労特性を劣化させることなく切削性を向上させる大きさのTi系硫化物の個数を制御し、鋼中のTi系硫化物の粒径分布を適正化することにより、耐結晶粒粗大化特性を損なうことなく、疲労特性及び被削性が改善されることを知見し、本発明を完成するに至った。
すなわち、本発明の肌焼鋼は、その化学成分が、mass%(以下、単に「%」と表示する。)で、C:0.10〜0.35%、Si:0.03〜1.0%、Mn:0.20〜2.0%、P:0.030%以下、S:0.010〜0.10%、Al:0.2%以下、Ti:0.03〜0.30%、N:0.020%以下を含有し、残部Fe及び不可避不純物からなり、鋼中にTi系炭窒化物が微細分散し、かつ平均直径が1.0〜5.0μm のTi系硫化物が10個/mm2 以上、平均直径が5.0μm を超えるTi系硫化物が10個/mm2 以下を含有するものである。
The present inventor has focused on the particle size distribution of Ti-based sulfides in Ti-added case-hardened steel to which S is added in an appropriate amount, and as a result of earnest research on this, as a result of excessive Ti-based sulfides that deteriorate fatigue characteristics, By controlling the number of Ti-based sulfides with a size that improves machinability without degrading fatigue properties and optimizing the particle size distribution of Ti-based sulfides in steel, The inventors have found that fatigue characteristics and machinability are improved without impairing the grain coarsening characteristics, and have completed the present invention.
That is, the case-hardened steel of the present invention has a chemical composition of mass% (hereinafter simply referred to as “%”), C: 0.10 to 0.35%, Si: 0.03 to 1. 0%, Mn: 0.20 to 2.0%, P: 0.030% or less, S: 0.010 to 0.10%, Al: 0.2% or less, Ti: 0.03 to 0.30 %, N: 0.020% or less, the balance being Fe and inevitable impurities, Ti carbonitride is finely dispersed in the steel, and the average diameter is 1.0 to 5.0 μm Ti sulfide Is 10 pieces / mm 2 or more, and Ti-based sulfides having an average diameter exceeding 5.0 μm contain 10 pieces / mm 2 or less.

前記肌焼鋼において、前記化学成分のほか、さらに下記の(1) から(3) の元素群から1種以上の元素を含有することができる。
(1) Cu:3%以下、Ni:3%以下、Cr:2%以下、Mo:2%以下、B:0.005%以下
(2) Nb:0.2%以下、V:0.3%以下、Zr:0.3%以下
(3) REM(希土類元素):0.03%以下、Ca:0.03%以下、Mg:0.03%以下、Pb:0.3%以下、Bi:0.3%以下、Te:0.3%以下、Se:0.3%以下、Sn:0.3%以下
The case-hardened steel may further contain one or more elements from the following element groups (1) to (3) in addition to the chemical components.
(1) Cu: 3% or less, Ni: 3% or less, Cr: 2% or less, Mo: 2% or less, B: 0.005% or less
(2) Nb: 0.2% or less, V: 0.3% or less, Zr: 0.3% or less
(3) REM (rare earth element): 0.03% or less, Ca: 0.03% or less, Mg: 0.03% or less, Pb: 0.3% or less, Bi: 0.3% or less, Te: 0 .3% or less, Se: 0.3% or less, Sn: 0.3% or less

また、本発明の肌焼鋼の製造方法は、上記化学成分の鋼を溶製し、その鋳片に均熱処理を施した後、加工率が30%以上の粗塑性加工を施し、得られた鋼片を1250℃以上で保持する再均熱処理を施した後、終了温度を700〜1000℃として仕上塑性加工を施すものである。前記加工率とは、加工後の断面積をA、加工前の断面積をA0 としたとき、下記式で表される割合(百分率)を意味する。
加工率(%)=(1−A/A0 )×100
In addition, the method for producing the case-hardened steel according to the present invention was obtained by melting steel having the above chemical components, subjecting the slab to soaking treatment, and then performing rough plastic working with a processing rate of 30% or more. After re-homogenizing heat treatment for holding the steel slab at 1250 ° C. or higher, finish plastic working is performed at an end temperature of 700 to 1000 ° C. The processing rate means a ratio (percentage) represented by the following formula, where A is the cross-sectional area after processing, and A 0 is the cross-sectional area before processing.
Processing rate (%) = (1−A / A 0 ) × 100

本発明の肌焼鋼によれば、Sを0.010〜0.10%、Tiを0.03〜0.30%、Cを0.10〜0.35%、Nを0.020%以下含有する特定化学成分を有し、Ti系炭窒化物を鋼中に微細分散させたので、耐結晶粒粗大化特性に優れ、またTi系硫化物の粒径分布について、平均粒径が1.0〜5.0μm のものを10個/mm2 以上とすると共に平均粒径が1.0〜5.0μm のものを10個/mm2 以上としたので、優れた疲労特性と被削性を備える。また、本発明の製造方法によれば、前記肌焼鋼を容易に製造することができる。 According to the case hardening steel of the present invention, S is 0.010 to 0.10%, Ti is 0.03 to 0.30%, C is 0.10 to 0.35%, and N is 0.020% or less. Since the Ti-based carbonitride has a specific chemical component and is finely dispersed in the steel, it has excellent crystal grain coarsening characteristics, and the particle size distribution of the Ti-based sulfide has an average particle size of 1. the average particle size with 0~5.0μm of ones and 10 / mm 2 or more was those 1.0 to 5.0 m 10 pieces / mm 2 or more, the machinability and excellent fatigue properties Prepare. Moreover, according to the manufacturing method of this invention, the said case hardening steel can be manufactured easily.

本発明の肌焼鋼の化学成分は、C:0.10〜0.35%、Si:0.03〜1.0%、Mn:0.20〜2.0%、P:0.030%以下、S:0.010〜0.10%、Al:0.2%以下、Ti:0.03〜0.30%、N:0.020%以下を含有し、残部Fe及び不可避不純物からなる。以下、成分限定理由について説明する。   The chemical components of the case hardening steel of the present invention are: C: 0.10 to 0.35%, Si: 0.03 to 1.0%, Mn: 0.20 to 2.0%, P: 0.030% Hereinafter, S: 0.010 to 0.10%, Al: 0.2% or less, Ti: 0.03 to 0.30%, N: 0.020% or less are contained, and the balance is Fe and inevitable impurities. . Hereinafter, the reason for component limitation will be described.

C:0.10〜0.35%
Cは肌焼鋼の浸炭処理後の芯部強度を確保するために必要な元素であり、0.10%未満では強度が十分得られず、0.35%を超えると芯部の靭性が低下するとともに、冷間加工性が低下する。このため、C量の下限を0.10%、その上限を0.35%とする。
C: 0.10 to 0.35%
C is an element necessary for ensuring the strength of the core after carburizing treatment of case-hardened steel. If it is less than 0.10%, sufficient strength cannot be obtained, and if it exceeds 0.35%, the toughness of the core decreases. In addition, cold workability is reduced. For this reason, the lower limit of the C amount is 0.10%, and the upper limit is 0.35%.

Si:0.03〜1.0%
Siは脱酸元素として必要であり、0.03%未満では脱酸効果が十分得られず、1.0%を超えると冷間加工時の変形抵抗を増大させるとともに、浸炭時の粒界酸化層の形成を助長し、疲労特性を低下させる。このため、Si量の下限を0.03%、その上限を1.0%とする。
Si: 0.03-1.0%
Si is necessary as a deoxidizing element, and if it is less than 0.03%, a sufficient deoxidation effect cannot be obtained. If it exceeds 1.0%, deformation resistance during cold working increases and grain boundary oxidation during carburizing occurs. Promotes layer formation and reduces fatigue properties. For this reason, the lower limit of the Si amount is 0.03%, and the upper limit is 1.0%.

Mn:0.20〜2.0%
Mnは焼入れ性を確保するために必要な元素であり、そのために0.20%以上の添加が必要であるが、2.0%を超える過剰な添加は冷間加工時の変形抵抗を増大させるとともに、浸炭時の粒界酸化層の形成を助長し、疲労特性を低下させる。このため、Mn量の下限を0.20%、その上限を2.0%とする。
Mn: 0.20 to 2.0%
Mn is an element necessary for ensuring hardenability. Therefore, addition of 0.20% or more is necessary, but excessive addition exceeding 2.0% increases deformation resistance during cold working. At the same time, it promotes the formation of a grain boundary oxide layer during carburizing and reduces fatigue properties. For this reason, the lower limit of the amount of Mn is 0.20%, and the upper limit is 2.0%.

P:0.030%以下
Pは粒界に偏析して粒界強度の低下を招くため、0.03%以下に止める。
P: 0.030% or less P is segregated at the grain boundary to cause a decrease in grain boundary strength.

S:0.010〜0.10%
Sは本発明では被削性を改善するために重要な元素であり、Ti系硫化物やMnSを形成して被削性を向上させる。S量が0.010%未満ではかかる作用が過少となり、一方0.10%を超えると冷間加工性が低下するようになる、このため、S量の下限を0.010%、好ましくは0.015%とし、その上限を0.10%、好ましくは0.05%とする。
S: 0.010 to 0.10%
S is an important element for improving the machinability in the present invention, and improves the machinability by forming a Ti-based sulfide or MnS. If the amount of S is less than 0.010%, the effect is too small. On the other hand, if it exceeds 0.10%, the cold workability deteriorates. For this reason, the lower limit of the amount of S is 0.010%, preferably 0. 0.015%, and the upper limit is 0.10%, preferably 0.05%.

Al:0.2%以下
Alは脱酸元素として必要であるが、0.2%を超えるとアルミナ系酸化物が増加し、疲労特性や冷間加工性を低下させるようになるので、0.2%以下に止める。
Al: 0.2% or less Al is necessary as a deoxidizing element. However, if it exceeds 0.2%, alumina-based oxides increase and fatigue characteristics and cold workability are deteriorated. Stop below 2%.

Ti:0.03〜0.30%
Tiは固溶Nを固定し、かつTi炭化物、Tiを含有する複合炭化物、Ti窒化物を微細に析出させることにより、浸炭時のオーステナイト結晶粒の粗大化を抑制するために必要な元素であるとともに、Ti系硫化物を析出させ被削性を改善するためにも必要な元素である。0.03%未満ではかかる作用が過少となり、一方0.30%を超えると析出物の量が過剰となって冷間加工性が劣化するようになる。このため、Ti量の下限を0.03%、好ましくは0.05%とし、その上限を0.30%、好ましくは0.28%とする。
Ti: 0.03-0.30%
Ti is an element necessary for fixing solid solution N and suppressing the coarsening of austenite crystal grains during carburization by finely depositing Ti carbide, composite carbide containing Ti, and Ti nitride. At the same time, it is an element necessary for precipitating Ti sulfide and improving machinability. If it is less than 0.03%, such an action is insufficient. On the other hand, if it exceeds 0.30%, the amount of precipitates becomes excessive and cold workability deteriorates. For this reason, the lower limit of the Ti amount is 0.03%, preferably 0.05%, and the upper limit is 0.30%, preferably 0.28%.

N:0.020%以下
NはTiと結合してTiNを形成し、疲労強度を低下させる。0.020%を超えて添加するとTiN量が増加してその影響が著しくなる。このため、N量の上限を0.020%、好ましくは0.010%、よりに好ましくは0.008%とする。
N: 0.020% or less N combines with Ti to form TiN, and reduces fatigue strength. If added over 0.020%, the amount of TiN increases and the effect becomes significant. For this reason, the upper limit of the N amount is 0.020%, preferably 0.010%, and more preferably 0.008%.

本発明の肌焼鋼は、典型的には上記基本成分の他、残部Fe及び不可避不純物で形成されるが、Feの一部に代えて、下記(1) から(3) のいずれかのグループより選択された元素の1種又は2種以上を各グループ単独で、あるいは複合して添加することができる。これによって、肌焼鋼の機械的特性をより向上させることがきる。以下、これらの特性向上元素の限定理由について説明する。
(1) Cu:3%以下、Ni:3%以下、Cr:2%以下、Mo:2%以下、B:0.005%以下
(2) Nb:0.2%以下、V:0.3%以下、Zr:0.3%以下
(3) REM:0.03%以下、Ca:0.03%以下、Mg:0.03%以下、Pb:0.3%以下、Bi:0.3%以下、Te:0.3%以下、Se:0.3%以下、Sn:0.3%以下
The case-hardened steel of the present invention is typically formed with the balance of Fe and unavoidable impurities in addition to the basic components described above, but instead of part of Fe, any one of the following groups (1) to (3) One or two or more selected elements can be added alone or in combination. As a result, the mechanical properties of the case hardening steel can be further improved. Hereinafter, the reasons for limiting these characteristic improving elements will be described.
(1) Cu: 3% or less, Ni: 3% or less, Cr: 2% or less, Mo: 2% or less, B: 0.005% or less
(2) Nb: 0.2% or less, V: 0.3% or less, Zr: 0.3% or less
(3) REM: 0.03% or less, Ca: 0.03% or less, Mg: 0.03% or less, Pb: 0.3% or less, Bi: 0.3% or less, Te: 0.3% or less , Se: 0.3% or less, Sn: 0.3% or less

(1) グループ
Cu:3%以下
Cuは焼入れ性を向上させ、また耐食性を向上させる元素である。このため、0.2%以上添加することが好ましいが、3%を超えて添加するとその効果が飽和するので、Cu量の上限を3%とする。なお、Cuを単独で含有させると、鋼材の熱間加工性が悪くなる傾向があるので、この弊害を回避するには、熱間加工性向上効果を有するNiを併用することが望ましい。
(1) Group Cu: 3% or less Cu is an element that improves hardenability and corrosion resistance. For this reason, it is preferable to add 0.2% or more, but if the addition exceeds 3%, the effect is saturated, so the upper limit of the amount of Cu is made 3%. If Cu is contained alone, the hot workability of the steel tends to deteriorate. Therefore, in order to avoid this adverse effect, it is desirable to use Ni having an effect of improving the hot workability.

Ni:3%以下
Niは焼入れ性を向上させ、また靭性を向上させる元素であり、0.2%以上添加することが好ましいが、3%を超えて添加するとその効果が飽和するので、Ni量の上限を3%とする。
Ni: 3% or less Ni is an element that improves hardenability and toughness, and is preferably added in an amount of 0.2% or more, but if added over 3%, the effect is saturated, so the amount of Ni Is 3%.

Cr:2%以下
Crは焼入れ性を向上させ、また浸炭性を向上させる作用を有する。このため、0.2%以上添加することが好ましいが、2%を超えて添加すると靭性が低下するので、Cr量の上限を3%とする。
Cr: 2% or less Cr has an effect of improving hardenability and improving carburization. For this reason, it is preferable to add 0.2% or more, but if added over 2%, the toughness decreases, so the upper limit of the Cr content is made 3%.

Mo:2%以下
Moは焼入れ性を向上させ、また靭性を向上させる元素である。このため、0.05%以上添加することが好ましいが、2%を超えて添加すると加工性が低下するとともに靭性も低下するので、Mo量の上限を2%とする。
Mo: 2% or less Mo is an element that improves hardenability and improves toughness. For this reason, it is preferable to add 0.05% or more, but if added over 2%, the workability is lowered and the toughness is also lowered, so the upper limit of the Mo amount is made 2%.

B:0.005%以下
Bは微量の添加で焼入れ性を向上させる元素である。このため、0.0003%以上添加することが好ましいが、0.005%を超えて添加すると逆に焼入れ性が低下するようになるので、B量の上限を3%とする。
B: 0.005% or less B is an element that improves hardenability by adding a small amount. For this reason, it is preferable to add 0.0003% or more, but if added over 0.005%, the hardenability is lowered, so the upper limit of the amount of B is made 3%.

(2) グループ
Nb、V、Zrは炭化物、窒化物を形成し、オーステナイト結晶粒の粗大化を防止する効果がある。このため、各々0.005%以上添加することが好ましいが、Nb:0.2%、V:0.3%、Zr:0.3%を超えて添加すると析出物の量が過剰となり、加工性が低下するので、Nb量の上限を2%とし、VあるいはZrの上限を0.3%とする。
(2) Group Nb, V, and Zr form carbides and nitrides and have an effect of preventing coarsening of austenite crystal grains. For this reason, it is preferable to add 0.005% or more for each, but if Nb: 0.2%, V: 0.3%, Zr: 0.3% is added, the amount of precipitates becomes excessive, and the processing Therefore, the upper limit of the amount of Nb is set to 2%, and the upper limit of V or Zr is set to 0.3%.

(3) グループ
REM、Ca、Mg、Pb、Bi、Te、Se、Snは被削性を改善する元素である。このため、各々0.005%以上添加することが好ましいが、REM:0.03%、Ca:0.03%、Mg:0.03%、Pb:0.3%、Bi:0.3%、Te:0.3%、Se:0.3%、Sn:0.3%を超えて添加すると靭性が低下するので、REM,CaあるいはMgの添加量の上限を0.03%とし、Pb,Bi,Te,Se,SnVあるいはSnの添加量の上限を0.3%とする。
(3) Group REM, Ca, Mg, Pb, Bi, Te, Se, and Sn are elements that improve machinability. For this reason, it is preferable to add 0.005% or more of each, but REM: 0.03%, Ca: 0.03%, Mg: 0.03%, Pb: 0.3%, Bi: 0.3% , Te: 0.3%, Se: 0.3%, Sn: If added over 0.3%, the toughness decreases, so the upper limit of the amount of REM, Ca or Mg added is 0.03%, Pb , Bi, Te, Se, SnV or Sn is added to 0.3%.

本発明の肌焼鋼は上記化学成分を有し、鋼中にTi系炭窒化物が微細分散し、かつ平均直径が1.0〜5.0μm のTi系硫化物が10個/mm2 以上、平均直径が5.0μm を超えるTi系硫化物が10個/mm2 以下を含有するものである。
本発明者により被削性に有効に働くTi系硫化物の大きさが調査された結果、被削性に有効に働くTi系硫化物はその大きさが平均直径で1.0μm 以上であることが知見された。一方、平均直径が5.0μm を超えるTi系硫化物は疲労特性に悪影響を及ぼすことがわかった。このため、本発明では、被削性確保の観点から平均直径が1.0〜5.0μm のTi系硫化物の個数を規定した。当該Ti系硫化物の個数が10個/mm2 未満では被削性改善に有効でないので、10個/mm2 以上、好ましくは15個/mm2 以上とする。上限は特に定めないが、実際上、多くて300個/mm2 程度である。一方、平均直径が5.0μm を超えるTi系硫化物の個数が10個/mm2 を超えると疲労特性の劣化が著しくなるので、その上限を10個/mm2 、好ましくは5個/mm2 とする。
The case-hardened steel of the present invention has the above chemical components, Ti-based carbonitride is finely dispersed in the steel, and Ti-based sulfides having an average diameter of 1.0 to 5.0 μm are 10 pieces / mm 2 or more. The Ti-based sulfide having an average diameter exceeding 5.0 μm contains 10 pieces / mm 2 or less.
As a result of investigating the size of the Ti-based sulfide that works effectively on the machinability by the present inventor, the size of the Ti-based sulfide that works effectively on the machinability is 1.0 μm or more in average diameter. Was discovered. On the other hand, it was found that Ti-based sulfides having an average diameter exceeding 5.0 μm adversely affect fatigue characteristics. Therefore, in the present invention, the number of Ti-based sulfides having an average diameter of 1.0 to 5.0 μm is defined from the viewpoint of ensuring machinability. If the number of Ti-based sulfides is less than 10 pieces / mm 2, it is not effective for improving machinability, so the number is 10 pieces / mm 2 or more, preferably 15 pieces / mm 2 or more. Although the upper limit is not particularly defined, it is practically about 300 / mm 2 at the most. On the other hand, if the number of Ti-based sulfides having an average diameter exceeding 5.0 μm exceeds 10 pieces / mm 2 , the fatigue characteristics deteriorate significantly, so the upper limit is 10 pieces / mm 2 , preferably 5 pieces / mm 2. And

次に、本発明の肌焼鋼の好適な製造方法について説明する。
本発明の肌焼鋼は、前記化学成分の鋼を溶製し、図1に示すように、その鋳片に1250〜1400℃程度で保持する均熱処理(均質化処理)Aを施して、Ti炭化物を完全に固溶させた後、加工率が30%以上の粗塑性加工Bを施し、得られた鋼片を1250℃以上で保持する再均熱処理Cを施した後、終了温度を700〜1000℃とする仕上塑性加工Dを施し、冷却することによって製造される。
Next, the suitable manufacturing method of the case hardening steel of this invention is demonstrated.
The case-hardened steel of the present invention is obtained by melting steel having the above chemical components, and applying a soaking treatment (homogenization treatment) A that holds the cast slab at about 1250 to 1400 ° C. as shown in FIG. After completely dissolving the carbide, after performing the rough plastic processing B with a processing rate of 30% or more, after performing the re-uniform heat treatment C for holding the obtained steel piece at 1250 ° C. or higher, the end temperature is set to 700 to Manufactured by applying finish plastic processing D of 1000 ° C. and cooling.

前記粗塑性加工としては、通常、加工性の良好な熱間加工、例えば熱間鍛造や熱間圧延が適用される。この粗塑性加工によって、Ti系硫化物を展伸、分断して所定のサイズに整える。粗塑性加工の加工率が30%未満では、Ti系硫化物の展伸、分断が不十分になり、平均直径が1.0〜5.0μm の大きさのTi系硫化物を10個/mm2 以上得られないようになる。このため、再均熱前に加工率が30%以上、好ましくは40%以上の粗塑性加工を施す。 As the rough plastic working, hot working with good workability, for example, hot forging or hot rolling is usually applied. By this rough plastic working, the Ti-based sulfide is stretched and divided to prepare a predetermined size. When the processing rate of the rough plastic working is less than 30%, the Ti-based sulfide is insufficiently expanded and divided, and 10 Ti / sulfide having an average diameter of 1.0 to 5.0 μm is 10 pieces / mm. You won't get more than 2 . For this reason, a rough plastic working with a processing rate of 30% or more, preferably 40% or more, is performed before reheating.

前記粗塑性加工後、鋼片を1250℃以上の温度で再均熱する必要がある。
その理由は、まず第1にTi系硫化物をさらに分断するためである。再均熱温度が1250℃未満では、前記加工率で塑性加工を施しても、平均直径が1.0〜5.0μm のTi系硫化物が10個/mm2 以上得られず、また平均直径が5.0μm を超えるTi系硫化物が10個/mm2 を超えるようになるためである。第2の理由として、鋼中に存在する粗大なTi系炭窒化物をオーステナイト中に固溶させ、その後の工程でTi系炭窒化物を均一微細に析出させるためである。Ti系炭窒化物を鋼中に微細分散させることで、浸炭処理時のオーステナイト結晶粒の粗大化を防止することができる。さらに、1250℃以上で再均熱することで、偏析を低減することができ、粗大なTi系炭窒化物の低減と相まって冷間加工性を向上させることができる。再均熱温度は、1250℃以上であればよく、1500℃までは高ければ高い程良いが、設備上の制約から実際には1350℃程度が限度となろう。また、再均熱の際の保持時間は、5.0μm を超える粗大なTi系炭窒化物の生成数を抑制しつつ、Ti系硫化物の分断を促進するには、10min 以上、20hr未満が好ましい。
After the rough plastic working, it is necessary to reheat the steel slab at a temperature of 1250 ° C. or higher.
The reason is to first further divide the Ti-based sulfide. In SaiHitoshinetsu temperature is lower than 1250 ° C., be subjected to plastic working at the working ratio, the average diameter is not obtained Ti-based sulfides 1.0~5.0μm has 10 / mm 2 or more, the average diameter This is because Ti sulfide exceeding 5.0 μm exceeds 10 pieces / mm 2 . The second reason is that coarse Ti-based carbonitrides present in steel are dissolved in austenite and Ti-based carbonitrides are uniformly and finely precipitated in the subsequent steps. By finely dispersing Ti-based carbonitride in steel, it is possible to prevent coarsening of austenite crystal grains during carburizing treatment. Furthermore, by performing re-soaking at 1250 ° C. or higher, segregation can be reduced, and cold workability can be improved in combination with the reduction of coarse Ti-based carbonitrides. The reheating temperature should be 1250 ° C. or higher, and the higher it is, the higher it is up to 1500 ° C., but in practice it will be limited to about 1350 ° C. due to restrictions on equipment. In addition, the holding time during re-uniform heating is 10 min or more and less than 20 hr in order to promote the division of Ti sulfide while suppressing the number of coarse Ti carbonitrides exceeding 5.0 μm. preferable.

再均熱した後、一旦、室温まで空冷した後、5.0μm を超える粗大なTi系炭窒化物の生成数を抑制しつつ、仕上加工温度を確保するため、800〜1350℃程度に加熱し、あるいは再均熱後から引き続いて前記温度域に冷却し、仕上塑性加工(仕上圧延あるいは仕上鍛造)を施し、空冷する。仕上塑性加工の終了温度は特に規定されないが、700〜1200℃程度とすることが好ましい。700℃未満では変形抵抗が過大なり、また1200℃を超えると焼入れ性が過度に向上し、加工材に割れが発生し易くなるからである。
以上のようにして製造された鋼は、鋼中にTi系硫化物が前記粒度分布で分散するとともに、Ti系炭窒化物が微細分散した組織となる。
After reheating, once air-cooled to room temperature, heated to about 800-1350 ° C to secure the finishing temperature while suppressing the number of coarse Ti-based carbonitrides exceeding 5.0 µm. Alternatively, after reheating, the temperature is continuously cooled to the above temperature range, and finish plastic working (finish rolling or finish forging) is performed, followed by air cooling. The finishing temperature of finish plastic working is not particularly defined, but is preferably about 700 to 1200 ° C. This is because if the temperature is lower than 700 ° C., the deformation resistance becomes excessive, and if it exceeds 1200 ° C., the hardenability is excessively improved and cracks are likely to occur in the processed material.
The steel produced as described above has a structure in which Ti-based sulfides are dispersed in the steel with the particle size distribution and Ti-carbonitrides are finely dispersed.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はかかる実施例により限定的に解釈されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not interpreted limitedly by this Example.

表1に示す化学成分の鋼を真空溶解し、150kgの鋼塊を1300℃、3hr保持する均熱処理を施した後、表2及び表3に示す加工率で熱間鍛造により155mm角の鋼片を得た。続いて、同表に示した温度で3hr保持する再均熱処理を施し、室温まで空冷した。その後、再均熱した鋼片を1000℃に加熱し、仕上圧延終了温度を900℃として熱間圧延を終了し、直径65mmの棒鋼を得た。   Steel of chemical composition shown in Table 1 is melted in vacuum, 150 kg steel ingot is subjected to soaking treatment for 1300 ° C. and 3 hours, and then 155 mm square steel slab by hot forging at the processing rates shown in Table 2 and Table 3. Got. Subsequently, re-homogenization heat treatment was performed for 3 hours at the temperature shown in the same table, and air cooling was performed to room temperature. Thereafter, the reheated steel slab was heated to 1000 ° C., the finish rolling finish temperature was set to 900 ° C., and the hot rolling was finished to obtain a steel bar having a diameter of 65 mm.

前記棒鋼を用いて、下記の要領にて、鋼中のTi系硫化物介在物(以下、単に「介在物」という。)の1mm2 当たり個数を測定すると共に、耐結晶粗大化特性、被削性及び疲労特性を調べた。その結果を表2、表3に併せて示す。 Using the steel bar, the number of Ti-based sulfide inclusions (hereinafter simply referred to as “inclusions”) in the steel is measured per 1 mm 2 in the following manner, and the crystal coarsening resistance and machining are also measured. The properties and fatigue properties were investigated. The results are also shown in Tables 2 and 3.

鋼中介在物の個数は、EPMA(日本電子製のJCMA−733)の反射検出器で検出された画像を、画像解析装置(NORAN社製VOYAGER)により下記の基準により介在物の判定を行い、サイズを測定し、円相当径1〜5μm 及び円相当径5μm 超のTi系硫化物の密度(1mm2 当たりの個数)を測定した。測定面積は100mm2 とした。介在物の判定は、先ず同装置に附属のEDS装置にてAl、Si、Mn、Ti、Sの化学分析を行い、Ti系硫化物は成分分析結果から、Ti>Al、Ti>Si、Ti>Mn、かつS/(Al+Si+Mn+Ti)>5となるもの(元素記号はその濃度を示す。)を介在物とした。 The number of inclusions in the steel is determined by detecting the image detected by the reflection detector of EPMA (JCMA-733 manufactured by JEOL Ltd.) using an image analysis device (NORAN VOYAGER) according to the following criteria. The size was measured, and the density (number per 1 mm 2 ) of Ti-based sulfides having an equivalent circle diameter of 1 to 5 μm and an equivalent circle diameter of more than 5 μm was measured. The measurement area was 100 mm 2 . To determine inclusions, first, chemical analysis of Al, Si, Mn, Ti, S is performed with the EDS apparatus attached to the apparatus, and Ti-based sulfides are determined as Ti> Al, Ti> Si, Ti from component analysis results. > Mn and S / (Al + Si + Mn + Ti)> 5 (element symbol indicates the concentration) were used as inclusions.

耐結晶粗大化特性は、前記棒鋼を加工率70%で冷間鍛造した後、1000℃で3hr保持した後、焼入れを行い、前記温度での加熱時のオーステナイト結晶粒を調べ、粒度5番以下の粗大粒の面積率を調べ、粗大粒の面積率が5%以下を合格、5%超を不合格と評価した。前記加熱処理は浸炭処理を模擬したものである。   The crystal coarsening resistance was obtained by cold forging the steel bar at a processing rate of 70%, holding at 1000 ° C. for 3 hours, quenching, examining the austenite crystal grains when heated at the temperature, and the grain size of 5 or less The area ratio of coarse grains was examined, and the area ratio of coarse grains passed 5% or less, and more than 5% was evaluated as failed. The heat treatment simulates a carburizing treatment.

被削性は、前記棒鋼を925℃で1hr保持後空冷した試験片を、超硬工具(P10)を用いて旋削試験を行い、工具寿命で評価した。前記熱処理は、熱間鍛造後に通常行われる焼鈍処理を想定したものである。旋削条件は、切削速度200m/min 、切り込み量1.5mm、送り量0.25mm/rev 、切削油なしとした。超硬工具の逃げ面摩耗量(VB)が0.2mmとなる時間が20min 以上の場合を合格、20min 未満の場合を不合格と評価した。   The machinability was evaluated based on the tool life by performing a turning test on a test piece obtained by holding the steel bar at 925 ° C. for 1 hour and then air cooling, using a carbide tool (P10). The said heat processing assumes the annealing process normally performed after hot forging. Turning conditions were a cutting speed of 200 m / min, a cutting amount of 1.5 mm, a feed amount of 0.25 mm / rev, and no cutting oil. The time when the flank wear amount (VB) of the cemented carbide tool was 0.2 mm was evaluated as pass when the time was 20 min or more, and rejected when the time was less than 20 min.

疲労特性は、前記棒鋼から直径60mm、厚さ5mmの円盤状試験片を採取し、この試験片を930℃で6hr保持後、浸炭焼入れし、焼もどし処理後、試験片にラッピング加工を施して表面平均粗さ(Ra)を40μm 以下とし、下記の条件で転動疲労試験を行い、転動疲労寿命によって評価した。試験条件は、面圧最大ヘルツ応力5.16GPa、回転数1800rpm、鋼球数6個、潤滑油新日本石油製タービン油#68、試験数10個とした。破損確率が10%以下となる寿命(L10寿命)として転勤疲労寿命(平均)が5×106 回以上を合格とした。 Fatigue characteristics were obtained by taking a disk-shaped test piece having a diameter of 60 mm and a thickness of 5 mm from the steel bar, holding the test piece at 930 ° C. for 6 hours, carburizing and quenching, tempering, and then lapping the test piece. The surface roughness (Ra) was 40 μm or less, a rolling fatigue test was performed under the following conditions, and the rolling fatigue life was evaluated. The test conditions were a surface pressure maximum hertz stress of 5.16 GPa, a rotation speed of 1800 rpm, a steel ball number of 6, turbine oil # 68 of lubricating oil Nippon Oil Co., Ltd., and a test number of 10. Transfer fatigue life (average) of 5 × 10 6 times or more was regarded as acceptable as the life (L10 life) at which the failure probability was 10% or less.

表2及び表3より、試料No. 30〜37は鋼の化学成分が本発明の規定範囲外の比較例であり、製造条件が適正であるものの、Ti系硫化物のサイズ分布が本発明範囲外の試料No. 32,33,35,36は、被削性と転動疲労特性が兼備せず、またサイズ分布が本発明の範囲内の試料No. 30,31,34,37でも転動疲労特性が劣化している。なお、試料No. 30,31,33,36では、耐結晶粗大化特性を評価する際に行った冷間鍛造に対して冷鍛性も良くなかった。
また、化学成分が発明範囲内でも、製造条件が不適正な試料No. 3〜5及び38もTi系硫化物のサイズ分布が本発明範囲外となり、耐結晶粗大化特性、被削性及び転動疲労特性が兼備されていない。
これらに対して、化学成分、製造条件が適正な試料No. 1,2,6〜29の発明例では、Ti系硫化物のサイズ分布が本発明範囲を満足し、耐結晶粗大化特性、被削性及び転動疲労特性を兼備した肌焼鋼が得られた。
From Tables 2 and 3, Sample Nos. 30 to 37 are comparative examples in which the chemical composition of the steel is outside the specified range of the present invention, and the manufacturing conditions are appropriate, but the size distribution of the Ti-based sulfide is within the range of the present invention. The other sample Nos. 32, 33, 35 and 36 do not have both machinability and rolling fatigue characteristics, and the sample Nos. 30, 31, 34 and 37 whose size distribution is within the scope of the present invention are also rolling. The fatigue characteristics are degraded. In Sample Nos. 30, 31, 33, and 36, the cold forgeability was not good as compared with the cold forging performed when evaluating the coarsening resistance characteristics.
In addition, even when the chemical composition is within the scope of the invention, Sample Nos. 3 to 5 and 38 with inadequate production conditions also have a Ti-based sulfide size distribution that is outside the scope of the present invention. It has no dynamic fatigue characteristics.
On the other hand, in the inventive examples of Sample Nos. 1, 2, 6 to 29 with appropriate chemical components and manufacturing conditions, the size distribution of the Ti-based sulfide satisfies the scope of the present invention, and the crystal coarsening resistance, A case-hardened steel having both machinability and rolling fatigue characteristics was obtained.

Figure 2007031787
Figure 2007031787

Figure 2007031787
Figure 2007031787

Figure 2007031787
Figure 2007031787

本発明の肌焼鋼の製造工程を示す、加工熱処理線図である。It is a thermomechanical diagram which shows the manufacturing process of the case hardening steel of this invention.

Claims (5)

mass%で、
C:0.10〜0.35%、
Si:0.03〜1.0%、
Mn:0.20〜2.0%、
P:0.030%以下、
S:0.010〜0.10%、
Al:0.2%以下、
Ti:0.03〜0.30%、
N:0.020%以下
を含有し、残部Fe及び不可避不純物からなり、鋼中にTi系炭窒化物が微細分散し、かつ平均直径が1.0〜5.0μm のTi系硫化物が10個/mm2 以上、平均直径が5.0μm を超えるTi系硫化物が10個/mm2 以下を含有する、耐結晶粒粗大化特性、疲労特性及び被削性に優れた肌焼鋼。
mass%
C: 0.10 to 0.35%,
Si: 0.03-1.0%,
Mn: 0.20 to 2.0%,
P: 0.030% or less,
S: 0.010 to 0.10%,
Al: 0.2% or less,
Ti: 0.03 to 0.30%,
N: 0.020% or less, consisting of the balance Fe and inevitable impurities, Ti-based carbonitride is finely dispersed in steel, and Ti-based sulfide having an average diameter of 1.0 to 5.0 μm is 10 pieces / mm 2 or more, Ti-based sulfide average diameter exceeds 5.0μm contains 10 / mm 2 or less, resistance to grain growth characteristics, fatigue characteristics and machinability with excellent hardening steel.
さらにCu:3%以下、Ni:3%以下、Cr:2%以下、Mo:2%以下、B:0.005%以下の1種または2種以上を含有する、請求項1に記載した肌焼鋼。   The skin according to claim 1, further comprising one or more of Cu: 3% or less, Ni: 3% or less, Cr: 2% or less, Mo: 2% or less, and B: 0.005% or less. Burnt steel. さらにNb:0.2%以下、V:0.3%以下、Zr:0.3%以下の1種または2種以上を含有する、請求項1又は2に記載した肌焼鋼。   The case hardening steel according to claim 1 or 2, further comprising one or more of Nb: 0.2% or less, V: 0.3% or less, and Zr: 0.3% or less. さらにREM:0.03%以下、Ca:0.03%以下、Mg:0.03%以下、Pb:0.3%以下、Bi:0.3%以下、Te:0.3%以下、Se:0.3%以下、Sn:0.3%以下の1種または2種以上を含有する、請求項1から3のいずれか1項に記載した肌焼鋼。   Furthermore, REM: 0.03% or less, Ca: 0.03% or less, Mg: 0.03% or less, Pb: 0.3% or less, Bi: 0.3% or less, Te: 0.3% or less, Se The case hardening steel according to any one of claims 1 to 3, containing one or more of 0.3% or less and Sn of 0.3% or less. 請求項1から4のいずれか1項に記載した鋼を溶製し、その鋳片に均熱処理を施した後、加工率が30%以上の粗塑性加工を施し、得られた鋼片を1250℃以上で保持する再均熱処理を施した後、仕上塑性加工を施し、冷却する、耐結晶粒粗大化特性、疲労特性及び被削性に優れた肌焼鋼の製造方法。   The steel according to any one of claims 1 to 4 is melted and subjected to soaking treatment on the slab, and then subjected to rough plastic working with a processing rate of 30% or more. A method for producing a case-hardening steel excellent in crystal grain coarsening properties, fatigue properties, and machinability, which is subjected to re-homogenization heat treatment that is maintained at or above C, and then subjected to finish plastic working and cooling.
JP2005217453A 2005-07-27 2005-07-27 Case-hardened steel excellent in grain coarsening resistance, fatigue characteristics and machinability and method for producing the same Expired - Fee Related JP4440845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005217453A JP4440845B2 (en) 2005-07-27 2005-07-27 Case-hardened steel excellent in grain coarsening resistance, fatigue characteristics and machinability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005217453A JP4440845B2 (en) 2005-07-27 2005-07-27 Case-hardened steel excellent in grain coarsening resistance, fatigue characteristics and machinability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007031787A true JP2007031787A (en) 2007-02-08
JP4440845B2 JP4440845B2 (en) 2010-03-24

Family

ID=37791392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217453A Expired - Fee Related JP4440845B2 (en) 2005-07-27 2005-07-27 Case-hardened steel excellent in grain coarsening resistance, fatigue characteristics and machinability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4440845B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082481A1 (en) * 2009-01-16 2010-07-22 新日本製鐵株式会社 Case hardening steel, carburized component, and method for producing case hardening steel
JP4528363B1 (en) * 2009-04-06 2010-08-18 新日本製鐵株式会社 Case-hardened steel with excellent cold workability, machinability, and fatigue characteristics after carburizing and quenching, and method for producing the same
WO2010116555A1 (en) * 2009-04-06 2010-10-14 新日本製鐵株式会社 Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
JP2010229508A (en) * 2009-03-27 2010-10-14 Kobe Steel Ltd Case hardening steel having excellent size-reduction property of maximum crystal grain
JP2011231375A (en) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd Hot-working steel for case hardening
JP2015124406A (en) * 2013-12-26 2015-07-06 株式会社神戸製鋼所 Steel material and method of producing the same
JP2015140482A (en) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 Case hardened steel and carburized part using the same
WO2017115842A1 (en) * 2015-12-28 2017-07-06 新日鐵住金株式会社 Case-hardened steel, carburized component, and process for producing case-hardened steel
US10287668B2 (en) 2013-06-26 2019-05-14 Daido Steel Co., Ltd. Case hardening steel
US10428414B2 (en) 2013-06-26 2019-10-01 Daido Steel Co., Ltd. Carburized component
US11111568B2 (en) * 2016-09-30 2021-09-07 Nippon Steel Corporation Steel for cold forging and manufacturing method thereof
CN114686773A (en) * 2022-04-14 2022-07-01 中南大学 High-wear-resistance high-strength-toughness rare earth-containing Cr-Mo alloy and preparation method thereof
CN114908216A (en) * 2022-04-26 2022-08-16 东风商用车有限公司 Bismuth and tellurium adding method of free-cutting steel, free-cutting carburizing steel and application thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709944B2 (en) * 2009-01-16 2011-06-29 新日本製鐵株式会社 Case-hardened steel, carburized parts, and method for producing case-hardened steel
KR101363845B1 (en) 2009-01-16 2014-02-17 신닛테츠스미킨 카부시키카이샤 Case hardening steel, carburized component, and method for producing case hardening steel
US8980022B2 (en) 2009-01-16 2015-03-17 Nippon Steel & Sumitomo Metal Corporation Case hardening steel, carburized component, and manufacturing method of case hardening steel
WO2010082481A1 (en) * 2009-01-16 2010-07-22 新日本製鐵株式会社 Case hardening steel, carburized component, and method for producing case hardening steel
JP2010229508A (en) * 2009-03-27 2010-10-14 Kobe Steel Ltd Case hardening steel having excellent size-reduction property of maximum crystal grain
EP2418296A4 (en) * 2009-04-06 2017-05-17 Nippon Steel & Sumitomo Metal Corporation Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
JP4528363B1 (en) * 2009-04-06 2010-08-18 新日本製鐵株式会社 Case-hardened steel with excellent cold workability, machinability, and fatigue characteristics after carburizing and quenching, and method for producing the same
WO2010116555A1 (en) * 2009-04-06 2010-10-14 新日本製鐵株式会社 Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
CN102378822B (en) * 2009-04-06 2014-05-14 新日铁住金株式会社 Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
JP2011231375A (en) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd Hot-working steel for case hardening
US10428414B2 (en) 2013-06-26 2019-10-01 Daido Steel Co., Ltd. Carburized component
US10287668B2 (en) 2013-06-26 2019-05-14 Daido Steel Co., Ltd. Case hardening steel
JP2015124406A (en) * 2013-12-26 2015-07-06 株式会社神戸製鋼所 Steel material and method of producing the same
WO2015115336A1 (en) * 2014-01-30 2015-08-06 大同特殊鋼株式会社 Case hardening steel and carburized component obtained therefrom
JP2015140482A (en) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 Case hardened steel and carburized part using the same
US10689721B2 (en) 2014-01-30 2020-06-23 Daido Steel Co., Ltd. Case hardening steel and carburized component obtained therefrom
WO2017115842A1 (en) * 2015-12-28 2017-07-06 新日鐵住金株式会社 Case-hardened steel, carburized component, and process for producing case-hardened steel
US11111568B2 (en) * 2016-09-30 2021-09-07 Nippon Steel Corporation Steel for cold forging and manufacturing method thereof
CN114686773A (en) * 2022-04-14 2022-07-01 中南大学 High-wear-resistance high-strength-toughness rare earth-containing Cr-Mo alloy and preparation method thereof
CN114908216A (en) * 2022-04-26 2022-08-16 东风商用车有限公司 Bismuth and tellurium adding method of free-cutting steel, free-cutting carburizing steel and application thereof
CN114908216B (en) * 2022-04-26 2023-09-01 东风商用车有限公司 Bismuth tellurium adding method for free cutting steel, free cutting carburizing steel and application thereof

Also Published As

Publication number Publication date
JP4440845B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4440845B2 (en) Case-hardened steel excellent in grain coarsening resistance, fatigue characteristics and machinability and method for producing the same
JP4659139B2 (en) Induction hardening steel
JP4725401B2 (en) Steel parts and manufacturing method thereof
JP5432105B2 (en) Case-hardened steel and method for producing the same
JP4688727B2 (en) Carburized parts and manufacturing method thereof
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP5567747B2 (en) Soft nitriding steel, soft nitriding component and manufacturing method thereof
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
WO2019244503A1 (en) Mechanical component
JP4688691B2 (en) Case-hardened steel with excellent low cycle fatigue strength
JP5206271B2 (en) Carbonitriding parts made of steel
JP2011080099A (en) Case hardened steel component, and method for manufacturing the same
JP5528082B2 (en) Soft nitriding gear
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP2006307272A (en) Case hardening steel having excellent crystal grain coarsening resistance and cold workability, and method for producing the same
JP2017133052A (en) Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP2002212672A (en) Steel member
JP6431456B2 (en) Soft nitriding steel and parts, and methods for producing them
JP4608979B2 (en) Steel materials with excellent fatigue characteristics and steel materials for induction hardening
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP6029950B2 (en) After hot forging, normalizing can be omitted, and a method for producing case-hardened steel and parts with excellent high-temperature carburizing properties
JP5272609B2 (en) Carbonitriding parts made of steel
JP6721141B1 (en) Steel for soft nitriding, soft nitriding component, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4440845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees