JP2006307270A - Case hardening steel having excellent crystal grain coarsening resistance and cold workability, and method for producing the same - Google Patents

Case hardening steel having excellent crystal grain coarsening resistance and cold workability, and method for producing the same Download PDF

Info

Publication number
JP2006307270A
JP2006307270A JP2005130187A JP2005130187A JP2006307270A JP 2006307270 A JP2006307270 A JP 2006307270A JP 2005130187 A JP2005130187 A JP 2005130187A JP 2005130187 A JP2005130187 A JP 2005130187A JP 2006307270 A JP2006307270 A JP 2006307270A
Authority
JP
Japan
Prior art keywords
steel
less
case hardening
cold workability
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005130187A
Other languages
Japanese (ja)
Other versions
JP4464861B2 (en
Inventor
Toshio Murakami
俊夫 村上
Hitoshi Hatano
等 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005130187A priority Critical patent/JP4464861B2/en
Publication of JP2006307270A publication Critical patent/JP2006307270A/en
Application granted granted Critical
Publication of JP4464861B2 publication Critical patent/JP4464861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a case hardening steel which exhibits excellent crystal grain coarsening resistance even when subjected to carburizing at a temperature higher than that in the conventional example so as to be case-hardened such as carburized and carbonitrided in a shorter period of time as the stock for rod-shaped machine parts such as a pulley for a CVT requiring carburizing depth and excellent workability and which also has excellent cold workability. <P>SOLUTION: The case hardening steel having excellent crystal grain coarsening resistance and cold workability is composed of a rolled steel in which the contents of C, Si, Mn or the like are specified, and further, the contents of N, Al and Ti are specified. The case hardening steel is characterized in that carbides and/or carbonitrides satisfying inequality (1): (Ti)/(Nb)≥0.05 are present in an amount of ≥2.0×10<SP>7</SP>pieces/mm<SP>2</SP>in the cross-section, and further, the maximum value of the standard deviation in the Vickers hardness in the cross-section is ≤10. Alternatively, the steel has a metallic structure where the area ratio of (ferrite+pearlite) is ≥80%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は自動車などの輸送機器や、建設機械その他の産業機械などにおいて、肌焼き処理して使用される機械部品用の素材となる肌焼用鋼に関し、特に、軸受やCVT用プーリー、シャフト類、歯車、軸付き歯車などの素材として肌焼き処理して使用する際に、比較的高い温度で肌焼き処理を行なった場合でも結晶粒が粗大化しない様な特性(以下、耐結晶粒粗大化特性ということがある)に優れると共に、冷間加工性に優れた肌焼用鋼と、その有用な製法に関するものである。   TECHNICAL FIELD The present invention relates to a case hardening steel used as a material for machine parts used by carrying out case hardening processing in transportation equipment such as automobiles, construction machinery and other industrial machines, and in particular, bearings, pulleys for CVT, and shafts. When used as a material for gears, gears with shafts, etc., the characteristics such that the crystal grains do not become coarse even when subjected to the case hardening treatment at a relatively high temperature (hereinafter referred to as crystal grain coarsening resistance) The present invention relates to a case hardening steel excellent in cold workability and a useful manufacturing method thereof.

自動車、建設機械、その他の各種産業機械用として用いられる機械部品において、特に高強度が要求される部品には、従来から浸炭、窒化および浸炭窒化などの表面硬化熱処理(肌焼き処理)が行なわれている。これらの用途には、通常、SCr、SCM、SNCMなどのJIS規格で定められた肌焼用鋼を使用し、鍛造・切削などの機械加工により所望の部品形状に成形した後、浸炭、浸炭窒化などの表面硬化熱処理を施し、その後、研磨などの仕上工程を経て製造される。   In machine parts used for automobiles, construction machinery, and other various industrial machines, surface hardening heat treatment (case hardening) such as carburizing, nitriding, and carbonitriding has been conventionally performed for parts that require particularly high strength. ing. For these applications, the case hardening steels defined by JIS standards such as SCr, SCM, SNCM, etc. are usually used. After forming into the desired part shape by machining such as forging and cutting, carburizing and carbonitriding It is manufactured through a finishing process such as polishing.

近年、上記の様な機械部品についても製造原価の低減、リードタイムの短縮などが望まれており、肌焼き処理を高温化することによって熱処理時間を短縮することが行なわれている。しかし、肌焼き処理温度を高めると、素材のオーステナイト(γ)結晶粒が粗大化し、機械的特性が劣化したり熱処理歪量が増大するといった問題が生じてくる。   In recent years, it has been desired to reduce the manufacturing cost and the lead time for the mechanical parts as described above, and the heat treatment time has been shortened by increasing the case baking temperature. However, when the skin baking temperature is raised, the austenite (γ) crystal grains of the raw material become coarse, resulting in problems such as deterioration of mechanical characteristics and an increase in heat treatment strain.

そこで、肌焼用鋼の耐結晶粒粗大化特性を改善したものとして、Tiを添加した肌焼きボロン鋼が提案されている(特許文献1,2,3)。これらは、鋼中に0.1〜0.2質量%程度のTiを添加することによって遊離窒素(free−N)を固定し、且つTi炭化物やTiを含む複合炭化物、Ti窒化物などを微細に析出させることで、肌焼き処理のための加熱時のγ結晶粒の粗大化を抑制するものである。   Then, the case-hardening boron steel which added Ti is proposed as what improved the crystal grain coarsening characteristic of the case-hardening steel (patent documents 1, 2, and 3). They fix free nitrogen (free-N) by adding about 0.1 to 0.2% by mass of Ti in the steel, and finely combine Ti carbide, composite carbide containing Ti, Ti nitride, etc. By precipitating, the coarsening of the γ crystal grains at the time of heating for the skin baking treatment is suppressed.

また、鋼中にNbやAlを積極的に添加し、Nb系の析出物やAl,Nb系の複合析出物[Nb(CN),AlN]を所定量析出させ、これらの析出物に結晶粒の成長を阻止する効果(ピンニング効果)を発揮させる肌焼用鋼も提案されている(特許文献4)。   In addition, Nb and Al are positively added to the steel, and a predetermined amount of Nb-based precipitates and Al and Nb-based composite precipitates [Nb (CN), AlN] are precipitated. There has also been proposed a case-hardening steel that exhibits the effect of preventing the growth (pinning effect) (Patent Document 4).

一方、肌焼用鋼は、部品形状に成形する際に冷間加工されるので、冷間加工性も重要な要求特性となる。そして、Tiが添加された肌焼用鋼においても、冷間加工性を改善した鋼材が開発されている(特許文献5〜8など)。これらの発明では、主として鋼成分中の冷間加工性に影響を及ぼす成分の種類と量を適正に調整することで、冷間加工性を改善している。また上記特許文献5,7は、更なる冷間加工性改善策として、熱間圧延後の冷却速度を適正に制御する方法を開示しており、上記特許文献6には、冷間加工性を更に改善するため、熱延材の金属組織を制御する方法も開示されている。   On the other hand, the case-hardening steel is cold worked when it is formed into a part shape, so that cold workability is also an important required characteristic. And the steel materials which improved cold workability are developed also in the steel for case hardening to which Ti was added (patent documents 5-8 etc.). In these inventions, the cold workability is improved by appropriately adjusting the types and amounts of components mainly affecting the cold workability in the steel components. In addition, Patent Documents 5 and 7 disclose a method for appropriately controlling the cooling rate after hot rolling as a further cold workability improvement measure, and Patent Document 6 discloses cold workability. For further improvement, a method for controlling the metallographic structure of the hot rolled material is also disclosed.

しかしこれら従来の肌焼用鋼は、形状が複雑であったり強加工を受けたりする部品に適用した場合、冷間加工性が必ずしも十分とは言えず、更なる改善が望まれる。
特開平10−81938号公報 特開平10−130720号公報 特開2001−303174号公報 特開平9−78184号公報 特開平6−299241号公報 特開平10−130777号公報 特開平11−43737号公報 特開2003−89818号公報
However, these conventional case-hardening steels cannot be said to have sufficient cold workability when applied to parts that have complicated shapes or undergo strong processing, and further improvements are desired.
Japanese Patent Laid-Open No. 10-81938 JP-A-10-130720 JP 2001-303174 A JP-A-9-78184 JP-A-6-299241 JP-A-10-130777 Japanese Patent Laid-Open No. 11-43737 JP 2003-89818 A

これまでに提案されている技術は、AlN,Nb(CN),Ti(CN)等をできるだけ多く微細分散させることによって結晶粒の成長を抑制するものであり、それにより、肌焼き温度(すなわち、浸炭・窒化温度)を1000℃程度にまで高めた場合でも、結晶粒のサイズをある程度小さく抑えることが可能になっている。   The technology proposed so far is to suppress the growth of crystal grains by finely dispersing AlN, Nb (CN), Ti (CN), etc. as much as possible. Even when the carburizing / nitriding temperature is increased to about 1000 ° C., the size of the crystal grains can be suppressed to some extent.

しかし肌焼き温度の高温化は、肌焼き処理時間の短縮のみならず、浸炭硬化深さをより深くする上でも重要となる。例えば、従来の歯車では0.5〜1mm程度の浸炭硬化深さで要求特性を満たすが、CVT(無断変速機)に用いられる金属ベルト巻き掛け用のプーリーなどでは、2mm程度の浸炭硬化深さが求められており、こうした要求に対処するには浸炭温度を更に高める必要がある。   However, increasing the skin baking temperature is important not only for shortening the skin baking time but also for increasing the carburization depth. For example, a conventional gear satisfies a required characteristic with a carburization depth of about 0.5 to 1 mm, but a carburizing depth of about 2 mm is used for a pulley for winding a metal belt used in a CVT (unauthorized transmission). Therefore, it is necessary to further raise the carburizing temperature in order to cope with these requirements.

しかし、前述した如くこれまでの結晶粒粗大化防止技術では、1000℃を超える高温域で浸炭窒化処理を行うと、結晶核となる前掲の析出物が固溶して結晶粒粗大化防止作用を失い、γ結晶粒の異常成長を引き起こす。   However, as described above, in the conventional grain coarsening prevention technology, when the carbonitriding treatment is performed in a high temperature range exceeding 1000 ° C., the precipitates as crystal nuclei described above are dissolved to prevent the grain coarsening. Lost, causing abnormal growth of γ grains.

更に加えてそれら従来の技術では、結晶粒粗大化防止のために生成させる析出物の析出強化作用によって鋼材が硬質化し、冷間加工性を劣化させるという問題もある。   In addition, these conventional techniques also have a problem that the steel material is hardened by the precipitation strengthening action of the precipitates generated for preventing the coarsening of the crystal grains and the cold workability is deteriorated.

本発明は上記の様な事情に着目してなされたものであって、その目的は、前掲の従来技術に開示された肌焼用鋼の特性を更に改善し、特に、優れた冷間加工性を有すると共に、肌焼き処理温度を高めた場合でも結晶粒の粗大化を効果的に抑制することができ、物理的特性や寸法精度の良好な肌焼部品を与える肌焼用鋼を提供し、更にはその様な特性を備えた肌焼用鋼を確実に得ることのできる製法を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is to further improve the characteristics of the case hardening steel disclosed in the above-mentioned prior art, and in particular, excellent cold workability. In addition to providing a case-hardening steel that can effectively suppress coarsening of crystal grains even when the case baking temperature is increased, and provides a case-hardening part with good physical characteristics and dimensional accuracy, Furthermore, it is providing the manufacturing method which can obtain the steel for case hardening provided with such a characteristic reliably.

上記課題を解決することのできた本発明に係る耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼は、質量%で、
C:0.10〜0.35%、
Si:0.03〜1.0%、
Mn:0.2〜2.0%、
S:0.1%以下(0%を含む)、
Nb:0.025〜0.20%
Ti:0.025〜0.12%、
N:0.020%以下(0%を含む)、
Al:0.13%以下(0%を含む)、
を満たし、残部は実質的にFeよりなる鋼からなり、横断面内に下記(1)式を満足する炭化物および/または炭窒化物が2.0×107個/mm2以上存在すると共に、横断面内におけるビッカース硬さの標準偏差の最大値が10以下であるところに要旨が存在する。
(Ti)/(Nb)≧0.05……(1)
[但し、(Ti)および(Nb)は、炭化物および/または炭窒化物中におけるTiおよびNbの各含有量(質量%)を表す。]
The steel for case hardening excellent in crystal grain coarsening characteristics and cold workability according to the present invention, which was able to solve the above-mentioned problems, is mass%,
C: 0.10 to 0.35%,
Si: 0.03-1.0%,
Mn: 0.2 to 2.0%,
S: 0.1% or less (including 0%),
Nb: 0.025 to 0.20%
Ti: 0.025 to 0.12%,
N: 0.020% or less (including 0%),
Al: 0.13% or less (including 0%),
The balance is made of steel substantially consisting of Fe, and there are 2.0 × 10 7 pieces / mm 2 or more of carbides and / or carbonitrides satisfying the following formula (1) in the cross section, A gist exists where the maximum value of the standard deviation of the Vickers hardness in the cross section is 10 or less.
(Ti) / (Nb) ≧ 0.05 (1)
[However, (Ti) and (Nb) represent respective contents (mass%) of Ti and Nb in the carbide and / or carbonitride. ]

本発明に係る上記肌焼用鋼において、鋼が、更に下記(2)式の関係を満たすもの、
[Ti]−47.9[N]/14≧0.0050(質量%)……(2)
{但し、[Ti]および[N]は、鋼中のTiおよびNbの各含有量(質量%)を表す。}
或いは更に、横断面内における金属組織の80%以上が「フェライト+パーライト」であるものは、一段と優れた加工性を有するものとなるので好ましい。
In the case hardening steel according to the present invention, the steel further satisfies the relationship of the following formula (2):
[Ti] -47.9 [N] /14≧0.0050 (mass%) (2)
{However, [Ti] and [N] represent each content (mass%) of Ti and Nb in steel. }
Alternatively, it is preferable that 80% or more of the metal structure in the cross section is “ferrite + pearlite” because it has further excellent workability.

更に本発明に係る上記肌焼用鋼には、求められる特性に応じて下記a)〜d)に示す群から選ばれる1種以上の元素を含有させることができる。   Further, the case hardening steel according to the present invention may contain one or more elements selected from the groups shown in the following a) to d) according to the required properties.

a)Cu:3.0%以下(0%を含まない)、Ni:3.0%以下(0%を含まない)、Cr:2.0%以下(0%を含まない)、Mo:2.0%以下(0%を含まない)よりなる群から選択される少なくとも1種の元素、
b)B:0.0005〜0.010%、
c)V:0.3%以下(0%を含まない)、Zr:0.3%以下(0%を含まない)
、Hf:0.4%以下(0%を含まない)、Ta:0.3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素、
d)REM:0.03%以下(0%を含まない)、Ca:0.03%以下(0%を含まない)、Mg:0.03%以下(0%を含まない)、Pb:0.3%以下(0%を含まない)、Bi:0.3%以下(0%を含まない)、Te:0.3%以下(0%を含まない)、Se:0.3%以下(0%を含まない)、Sn:0.3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素。
a) Cu: 3.0% or less (not including 0%), Ni: 3.0% or less (not including 0%), Cr: 2.0% or less (not including 0%), Mo: 2 At least one element selected from the group consisting of 0.0% or less (excluding 0%),
b) B: 0.0005 to 0.010%,
c) V: 0.3% or less (not including 0%), Zr: 0.3% or less (not including 0%)
Hf: 0.4% or less (not including 0%), Ta: 0.3% or less (not including 0%), at least one element selected from the group consisting of
d) REM: 0.03% or less (not including 0%), Ca: 0.03% or less (not including 0%), Mg: 0.03% or less (not including 0%), Pb: 0 .3% or less (excluding 0%), Bi: 0.3% or less (not including 0%), Te: 0.3% or less (not including 0%), Se: 0.3% or less ( At least one element selected from the group consisting of Sn: 0.3% or less (not including 0%).

また本発明の製法は、上記特性を備えた肌焼用鋼を工業的に安定して製造することのできる方法として位置付けられるもので、上記成分組成の要件を満たす鋼を溶製したのち鋳造して得た鋳片を、1250℃以上の温度に再加熱したのちAr1変態点以下の温度まで冷却し、850〜1000℃に再加熱してから圧延し、最終圧延温度を700〜850℃とするところに特徴を有している。 Further, the production method of the present invention is positioned as a method for industrially producing a case-hardening steel having the above-mentioned characteristics, and after casting the steel satisfying the requirements of the above component composition, it is cast. The slab obtained was reheated to a temperature of 1250 ° C. or higher, cooled to a temperature below the Ar 1 transformation point, reheated to 850 to 1000 ° C., and then rolled. The final rolling temperature was 700 to 850 ° C. It has a feature.

本発明によれば、鋼の化学成分を特定すると共に、特に、横断面内に存在する炭化物および/または炭窒化物中のTiとNbの含有比率を特定すると共に、それらの個数を特定し、更には、ビッカース硬さの標準偏差を抑え、より好ましくは、鋼中のTiとNの含有比率を特定範囲に制御し、更には、横断面の金属組織をフェライト+パーライト主体の組織にすることによって、複雑形状への加工や強加工に耐える優れた冷間加工性を有すると共に、表面硬化処理のための肌焼き処理温度を高めた場合でも優れた耐結晶粒粗大化特性を示し、機械的特性と寸法精度に優れた肌焼部品を与える肌焼用鋼を提供できる。   According to the present invention, the chemical composition of the steel is specified, and in particular, the content ratio of Ti and Nb in the carbide and / or carbonitride present in the cross section is specified, and the number thereof is specified, Furthermore, the standard deviation of the Vickers hardness is suppressed, more preferably, the content ratio of Ti and N in the steel is controlled to a specific range, and further, the metal structure of the cross section is made a structure mainly composed of ferrite and pearlite. Has excellent cold workability to withstand complex shapes and strong processing, and exhibits excellent grain coarsening resistance even when the case baking temperature for surface hardening treatment is increased, It is possible to provide a case hardening steel that provides case hardening parts with excellent characteristics and dimensional accuracy.

本発明者らは前述した様な従来技術の下で、耐結晶粒粗大化特性と冷間加工性を更に改善すべく、それらの性能に影響を及ぼす鋼の成分組成や析出物の存在形態、物理的特性、結晶構造などを主体にして研究を重ねてきた。その結果、上記の様に、鋼の成分組成を特定すると共に、横断面内に観察される析出物の成分やサイズと個数を特定し、更には横断面のビッカース硬さの標準偏差を少なくし、或いは更に金属組織を適正化してやれば、安定して優れた耐結晶粒粗大化特性と冷間加工性を兼ね備えた肌焼用鋼が得られることを知り、上記本発明を完成した。   Under the conventional technology as described above, the present inventors further improve the grain coarsening resistance and cold workability, and the steel composition and the presence form of precipitates that affect their performance, I have been researching mainly physical properties and crystal structures. As a result, as described above, the composition of steel is specified, the composition, size and number of precipitates observed in the cross section are specified, and the standard deviation of the Vickers hardness of the cross section is reduced. Alternatively, if the metal structure was further optimized, it was found that a steel for case hardening having stable and excellent crystal grain coarsening characteristics and cold workability could be obtained, and the present invention was completed.

以下、本発明において鋼の化学成分を定めた理由を明らかにし、引き続いて、鋼断面内の析出物の成分やサイズ、個数、更にはビッカース硬さの標準偏差や金属組織などを定めた理由を明確にしていく。   Hereinafter, the reason why the chemical composition of the steel is determined in the present invention will be clarified, and subsequently, the reason why the component, size, number of precipitates in the steel cross section, standard deviation of Vickers hardness, metal structure, etc. are determined. Make it clear.

まず、鋼の化学成分を定めた理由を説明する。   First, the reason for determining the chemical composition of steel will be described.

C:0.10〜0.35%;
Cは機械部品として必要な芯部硬さを確保する上で重要な元素であり、0.10%未満では硬さ不足により機械部品としての静的強度が不足気味となる。しかしC量が多過ぎると、硬くなり過ぎて芯部の靭性が低下すると共に冷間加工性も悪くなるので、0.40%以下に抑える必要がある。より好ましいC含量は0.15%以上、0.30%以下、更に好ましくは0.17%以上、0.25%以下である。
C: 0.10 to 0.35%;
C is an important element for securing the core hardness necessary for a machine part. If it is less than 0.10%, the static strength as a machine part becomes insufficient due to insufficient hardness. However, if the amount of C is too large, it becomes too hard and the toughness of the core part decreases and the cold workability also deteriorates, so it is necessary to keep it to 0.40% or less. The C content is more preferably 0.15% or more and 0.30% or less, still more preferably 0.17% or more and 0.25% or less.

Si:0.03〜1.0%;
Siは脱酸剤として作用し、酸化物系介在物量を低減して内部品質を高める作用を有すると共に、焼戻し処理時の硬さ低下を抑えて肌焼き部品の表層硬さを確保するのに有効な元素であり、0.03%以上の添加を必要とする。しかし、Si量が多過ぎると、素材が硬くなり過ぎて冷間加工性が低下するばかりでなく、浸炭熱処理時に粒界酸化層の形成が助長されて機械的特性を劣化させるので、これらの障害を抑えるため1.0%を上限と定めた。より好ましいSi含量は、0.05%以上、0.8%以下である。
Si: 0.03-1.0%;
Si acts as a deoxidizer, has the effect of reducing the amount of oxide inclusions and improving internal quality, and is effective in ensuring the surface hardness of case-hardened parts by suppressing the decrease in hardness during tempering. It is an element and requires addition of 0.03% or more. However, if the amount of Si is too large, not only the material becomes too hard and cold workability deteriorates, but also the formation of a grain boundary oxide layer is promoted during the carburizing heat treatment, which deteriorates the mechanical properties. In order to suppress this, 1.0% was set as the upper limit. A more preferable Si content is 0.05% or more and 0.8% or less.

Mn:0.2〜2.0%;
Mnは脱酸剤として作用し、酸化物系介在物量を低減して鋼材の内部品質を高める作用を有すると共に、浸炭焼入れ時の焼入性を著しく高める作用を有しており、こうした作用を有効に発揮させるには0.2%以上含有させる必要がある。しかし多過ぎると、冷間加工時の変形抵抗が増大して加工性が低下するばかりか、浸炭時の粒界酸化層の形成を助長して機械的特性にも悪影響を及ぼす様になるので、上限を2.0%とする。Mnのより好ましい含有量は0.4%以上、1.5%以下である。
Mn: 0.2-2.0%;
Mn acts as a deoxidizer, has the effect of reducing the amount of oxide inclusions and improving the internal quality of the steel, and also has the effect of significantly increasing the hardenability during carburizing and quenching. Therefore, it is necessary to contain 0.2% or more. However, if it is too much, not only the deformation resistance during cold working increases and the workability decreases, but also the formation of grain boundary oxide layer during carburizing is promoted, and the mechanical properties are adversely affected. The upper limit is 2.0%. A more preferable content of Mn is 0.4% or more and 1.5% or less.

S:0.1%以下;
Sは、Mnと反応してMnSを形成し被削性を高める作用を有しているが、TiSなどの介在物源となって衝撃特性や冷間加工性に悪影響を及ぼすので、なるべく少なく抑えるのがよく、多くとも0.1%以下、好ましくは0.05%以下に抑えるのがよい。
S: 0.1% or less;
S reacts with Mn to form MnS and enhances machinability. However, S acts as a source of inclusions such as TiS and adversely affects impact properties and cold workability. It is good to keep it at most 0.1% or less, preferably 0.05% or less.

Ti:0.025〜0.12%;
Tiは、微細な(Nb,Ti)(CN)となってγ結晶粒の成長を抑制し、またTiがNb(CN)中に固溶することで、浸炭時の炭窒化物の粒成長を抑えてγ結晶粒の成長を抑える効果も有しており、これらの作用を有効に発揮させるには0.025%以上含有させねばならない。しかしTi量が多過ぎると、Nb−Ti含有析出物が粗大化して冷間加工性や疲労特性に悪影響を及ぼす様になるので、0.12%を上限とする。より好ましいTi含量は0.030%以上、0.10%以下である。
Ti: 0.025 to 0.12%;
Ti becomes fine (Nb, Ti) (CN) and suppresses the growth of γ crystal grains, and Ti dissolves in Nb (CN), thereby reducing the grain growth of carbonitride during carburizing. It also has the effect of suppressing the growth of γ crystal grains, and in order to exhibit these functions effectively, it must be contained by 0.025% or more. However, if the amount of Ti is too large, the Nb—Ti-containing precipitate becomes coarse and adversely affects cold workability and fatigue characteristics, so the upper limit is made 0.12%. A more preferable Ti content is 0.030% or more and 0.10% or less.

Nb:0.025〜0.20%;
Nbは微細な(Nb,Ti)(CN)を形成し、γ結晶粒の成長を抑える作用を有しており、Tiと共に本発明において最も重要な元素の一つである。こうした作用を有効に発揮させるには、Nbを0.025%以上含有させねばならない。しかしNb含有量が0.20%を超えると、その効果が飽和するばかりか、粗大な炭化物が生成して冷間加工性や疲労特性を却って劣化させるので、0.20%を上限と定めた。Nbの好ましい下限は0.040%、より好ましくは0.050%以上で、好ましい上限は0.15%、更に好ましくは0.12%以下である。
Nb: 0.025 to 0.20%;
Nb forms fine (Nb, Ti) (CN) and has an action of suppressing the growth of γ crystal grains, and is one of the most important elements in the present invention together with Ti. In order to exhibit such an action effectively, Nb must be contained by 0.025% or more. However, when the Nb content exceeds 0.20%, not only the effect is saturated, but coarse carbides are generated and the cold workability and fatigue characteristics are deteriorated, so 0.20% was set as the upper limit. . The preferable lower limit of Nb is 0.040%, more preferably 0.050% or more, and the preferable upper limit is 0.15%, more preferably 0.12% or less.

N:0.020%以下;
Nは、Al,Tiと結合して窒化物や炭窒化物を形成し、浸炭加熱時におけるオーステナイト(γ)粒成長を抑制する作用を発揮する反面、衝撃特性や疲労特性に顕著な悪影響を及ぼすので、多くとも0.020%以下、好ましくは0.010%以下に抑えるべきである。
N: 0.020% or less;
N combines with Al and Ti to form nitrides and carbonitrides and exerts an effect of suppressing austenite (γ) grain growth during carburizing heating, but has a significant adverse effect on impact properties and fatigue properties. Therefore, it should be suppressed to 0.020% or less, preferably 0.010% or less at most.

Al:0.13%以下;
Alは鋼材の脱酸に有効な元素であり、またγ結晶粒の調整にも有効に作用する。しかしAl含量が多過ぎると、硬質で粗大な非金属介在物(Al23)が生成して衝撃特性や冷間加工性を劣化させるので、0.13%以下に抑えるべきである。Alのより好ましい含有量は0.10%以下である。
Al: 0.13% or less;
Al is an element effective for deoxidation of steel, and also acts effectively on the adjustment of γ crystal grains. However, if the Al content is too high, hard and coarse non-metallic inclusions (Al 2 O 3 ) are generated and the impact characteristics and cold workability are deteriorated, so they should be suppressed to 0.13% or less. A more preferable content of Al is 0.10% or less.

本発明で用いる鋼の必須構成元素は以上の通りであり、残部は実質的にFeである。「実質的に」とは不可避的に混入してくる元素、例えばP(リン)やO(酸素)などの不可避不純物量の混入を許容するという意味であり、それらが含まれることによる障害を極力抑えるには、Pは0.03以下、Oは0.003%以下に抑えるのがよい。   The essential constituent elements of the steel used in the present invention are as described above, and the balance is substantially Fe. “Substantially” means to allow the entry of unavoidable elements such as P (phosphorus) and O (oxygen), which are inevitably mixed. In order to suppress it, it is preferable to suppress P to 0.03 or less and O to 0.003% or less.

ちなみに、Pは結晶粒界に偏析して部品の衝撃特性や冷間加工性を低下させるので、できるだけ少なく抑えるのがよく、多くとも0.03%以下、より好ましくは0.01%以下に抑えるのがよい。またO(酸素)は鋼材の強度特性に悪影響を及ぼすので、0.003%以下、より好ましくは0.001%以下に抑えるのがよい。   By the way, P segregates at the grain boundaries and lowers the impact characteristics and cold workability of the parts. Therefore, it is preferable to keep it as small as possible, and at most 0.03% or less, more preferably 0.01% or less. It is good. Further, O (oxygen) adversely affects the strength characteristics of the steel material, so it is preferable to keep it at 0.003% or less, more preferably 0.001% or less.

また本発明で用いる鋼材には、上記必須元素に加えて、所望に応じて更なる付加的特性を与えるため、下記の様な選択元素を含有させることも有効であり、それらの元素を添加したものも本発明の技術的範囲に含まれる。   In addition to the above essential elements, the steel materials used in the present invention are also effective to contain the following selective elements in order to give further additional characteristics as desired. Are also included in the technical scope of the present invention.

Cu:3.0%以下(0%を含まない)、Ni:3.0%以下(0%を含まない)、Cr:2.0%以下(0%を含まない)、Mo:2.0%以下(0%を含まない)よりなる群から選択される少なくとも1種;
Cu,Ni,Cr,Moは、何れも焼入れ性の向上に寄与するという点では同効元素であり、且つこれらのうちCuは耐食性の向上にも寄与する。またNi,Moは鋼材の靭性向上にも寄与し、Crは浸炭硬化性を高める作用も有している。しかし、それら各元素の効果は各々上記上限値付近で飽和するので、それ以上の添加は不経済であるばかりでなく、過剰量のCrは靭性に悪影響を及ぼし、Moは靭性と冷間加工性に悪影響を及ぼすので、上限値を超える添加は避けるべきである。
Cu: 3.0% or less (not including 0%), Ni: 3.0% or less (not including 0%), Cr: 2.0% or less (not including 0%), Mo: 2.0 % Or less (excluding 0%), at least one selected from the group consisting of:
Cu, Ni, Cr, and Mo are all effective elements in that they all contribute to improvement in hardenability, and among these, Cu also contributes to improvement in corrosion resistance. Ni and Mo also contribute to improving the toughness of the steel material, and Cr also has the effect of increasing the carburizing hardenability. However, since the effects of these elements are saturated near the above upper limit values, addition beyond this is not economical, excessive amounts of Cr adversely affect toughness, Mo is toughness and cold workability Addition exceeding the upper limit value should be avoided.

また、これらの元素のうち特にCuは、単独で添加すると鋼材の熱間加工性を劣化させる傾向があるが、Cuと共に適量のNiを併用すると、こうしたCu添加による弊害を回避できるので好ましい。   Of these elements, Cu, in particular, tends to deteriorate the hot workability of the steel material when it is added alone. However, it is preferable to use an appropriate amount of Ni together with Cu, because the adverse effects of such Cu addition can be avoided.

B:0.0005〜0.010%;
Bは微量で鋼材の焼入性を大幅に高める作用を有しており、しかも結晶粒界を強化して衝撃特性を高める作用も有している。こうした作用は0.0005%以上添加することで有効に発揮される。しかし、それらの効果は約0.010%で飽和し、またB量が多過ぎると、B窒化物が生成し易くなって冷間加工性に悪影響を及ぼすので、多くとも0.010%以下に抑えるべきである。より好ましいB含量は0.0007%以上、0.0050%以下である。
B: 0.0005 to 0.010%;
B has the effect of significantly increasing the hardenability of the steel material in a small amount, and also has the effect of enhancing the impact characteristics by strengthening the grain boundaries. Such an effect is effectively exhibited by adding 0.0005% or more. However, these effects are saturated at about 0.010%, and if the amount of B is too large, B nitride is easily formed and adversely affects cold workability, so at most 0.010% or less. Should be suppressed. A more preferable B content is 0.0007% or more and 0.0050% or less.

V:0.3%以下(0%を含まない)、Zr:0.3%以下(0%を含まない)、H
f:0.4%以下(0%を含まない)よりなる群から選ばれる少なくとも1種;
V,Zr,Hfは、何れも炭化物や窒化物からなる析出物を形成してγ結晶粒の粗大化を抑える作用を有しているが、多過ぎると上記析出物量が多くなり過ぎて成形加工性に悪影響を及ぼす様になるので、夫々上限値以下に抑えるべきである。
V: 0.3% or less (not including 0%), Zr: 0.3% or less (not including 0%), H
f: at least one selected from the group consisting of 0.4% or less (not including 0%);
V, Zr, and Hf all have the effect of suppressing the coarsening of the γ crystal grains by forming precipitates made of carbides and nitrides. Since it will adversely affect sex, each should be kept below the upper limit.

REM:0.03%以下(0%を含まない)、Ca:0.03%以下(0%を含まない)、Mg:0.03%以下(0%を含まない)、Pb:0.3%以下(0%を含まない)、Bi:0.3%以下(0%を含まない)、Te:0.3%以下(0%を含まない)、Se:0.3%以下(0%を含まない)、Sn:0.3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種;
これらの元素は、何れも鋼材の被削性向上に有効に作用するが、多過ぎると靭性を著しく劣化させるので、添加するにしても夫々上限値以下に抑えるべきである。
REM: 0.03% or less (not including 0%), Ca: 0.03% or less (not including 0%), Mg: 0.03% or less (not including 0%), Pb: 0.3 % Or less (excluding 0%), Bi: 0.3% or less (not including 0%), Te: 0.3% or less (not including 0%), Se: 0.3% or less (0% At least one selected from the group consisting of Sn: 0.3% or less (not including 0%);
Any of these elements effectively works to improve the machinability of the steel material, but if it is too much, the toughness is remarkably deteriorated, so even if it is added, it should be kept below the upper limit value.

本発明では、上述した鋼成分の制限に加えて、圧延材の横断面内に前記(1)式、すなわち「(Ti)/(Nb)≧0.05」を満足する炭化物および/または炭窒化物の個数が2.0×107個/mm2以上存在すると共に、横断面内におけるビッカース硬さの標準偏差の最大値が10以下であることを必須の要件とする。 In the present invention, in addition to the above-described restriction of the steel components, carbide and / or carbonitriding satisfying the above formula (1), that is, “(Ti) / (Nb) ≧ 0.05” in the cross section of the rolled material. It is an essential requirement that the number of objects is 2.0 × 10 7 pieces / mm 2 or more and that the maximum value of the standard deviation of Vickers hardness in the cross section is 10 or less.

即ち本発明者らが、上記成分組成の要件を満たす圧延鋼材について、その冷間加工性と熱処理時の耐結晶粒粗大化特性に及ぼす影響について様々の角度から研究を進めたところ、上記2つの特性がそれらの物性を確保する上で極めて重要な要素になることをつきとめた。   That is, the present inventors have conducted research from various angles on the effect on the cold workability and the grain coarsening resistance property at the time of heat treatment of the rolled steel material satisfying the above-mentioned component composition requirements. It has been found that characteristics become a very important factor in ensuring their physical properties.

「(Ti)/(Nb)≧0.05を満足する炭化物および/または炭窒化物の個数が2.0×107個/mm2以上」;
炭化物および/または炭窒化物中のNbに対するTiの割合が多くなるほど、析出物のγ結晶粒に対する成長抑制効果が向上し、(Ti)/(Nb)の値が0.05以上であるものはその効果が有効に発揮されるが、0.05未満ではその効果が殆んど発揮されなくなる。また、炭化物や炭窒化物はできるだけ多数存在させた方がγ結晶粒は微細になり、その数が2.0×107個/mm2未満では結晶粒成長抑制効果が大幅に減退する。こうしたことから本発明では、炭化物および/または炭窒化物の個数の下限を2.0×107個/mm2と定めた。より好ましくは1.0×108個/mm2以上、更に好ましくは5.0×108個/mm2以上である。
“The number of carbides and / or carbonitrides satisfying (Ti) / (Nb) ≧ 0.05 is 2.0 × 10 7 / mm 2 or more”;
As the ratio of Ti to Nb in the carbide and / or carbonitride increases, the growth suppressing effect on the γ crystal grains of the precipitate is improved, and the value of (Ti) / (Nb) is 0.05 or more The effect is effectively exhibited, but if it is less than 0.05, the effect is hardly exhibited. Further, the presence of as many carbides and carbonitrides as possible makes the γ crystal grains finer, and if the number is less than 2.0 × 10 7 particles / mm 2 , the effect of suppressing crystal grain growth is greatly reduced. Therefore, in the present invention, the lower limit of the number of carbides and / or carbonitrides is set to 2.0 × 10 7 pieces / mm 2 . More preferably, it is 1.0 × 10 8 pieces / mm 2 or more, and further preferably 5.0 × 10 8 pieces / mm 2 or more.

本発明において更に好ましいのは、上記(Ti)/(Nb)値に加えて、鋼中のTi含量とN含量が前記(2)式、即ち、「[Ti]−47.9[N]/14≧0.0050(質量%)」の関係を満たすものである。   More preferably, in the present invention, in addition to the (Ti) / (Nb) value, the Ti content and N content in the steel are expressed by the above formula (2), that is, “[Ti] -47.9 [N] / 14 ≧ 0.0050 (mass%) ”is satisfied.

ちなみに、鋼の溶製段階でTiはNと優先的に反応するので、Nb(CN)中にTiを固溶させて浸炭時の粒成長を抑制するには、TiがNと反応した後においても所定量のTiを残存させることが必要であり、そのためには、上記関係式を満足させることが好ましい。即ち、TiがNと反応した後においても、0.050%以上のTiを残存させるのがよく、より好ましくは0.010%以上、更に好ましくは0.015%以上とするのがよい。   By the way, Ti reacts preferentially with N in the melting stage of steel. Therefore, in order to suppress grain growth during carburizing by solidly dissolving Ti in Nb (CN), after Ti reacts with N In this case, it is necessary to leave a predetermined amount of Ti. For this purpose, it is preferable to satisfy the above relational expression. That is, even after Ti reacts with N, 0.050% or more of Ti is preferably left, more preferably 0.010% or more, and further preferably 0.015% or more.

「横断面内におけるビッカース硬さの標準偏差の最大値が10以下」;
更に本発明者らが確認したところでは、供試鋼材の横断面内におけるビッカース硬さの標準偏差も、上記要求特性に顕著な影響を及ぼし、該標準偏差の最大値が10以下であるものは、安定して優れた冷間加工性を有すると共に、肌焼きのために高温で熱処理を行なった場合でも優れた耐結晶粒粗大化特性を示すことが確認された。
“Maximum standard deviation of Vickers hardness in the cross section is 10 or less”;
Further, the present inventors have confirmed that the standard deviation of Vickers hardness in the cross section of the test steel also has a significant effect on the required characteristics, and the maximum value of the standard deviation is 10 or less. It has been confirmed that it has excellent cold workability stably and exhibits excellent crystal grain coarsening characteristics even when heat treatment is performed at a high temperature for skin hardening.

この様な傾向が得られる理論的な理由は、現在のところ未だ明確にされていないが、次の様なことが考えられる。即ち、ビッカース硬さの標準偏差の最大値が大きいということは、鋼中に存在する析出物(炭化物、窒化物もしくは炭窒化物)の存在状況(分散状態、サイズなど)が不均質であることを意味しており、逆に最大値が小さいということは、上記析出状態が均質であることを意味していると思われる。従って、該最大値の小さいものは析出物の存在状態が均質であると思われることから、球状化焼鈍後の冷間加工性や熱処理時の耐結晶粒粗大化特性を高める要因になっているものと考えている。   The theoretical reason why such a tendency can be obtained has not been clarified yet, but the following can be considered. That is, when the maximum value of the standard deviation of Vickers hardness is large, the presence (dispersion state, size, etc.) of precipitates (carbide, nitride or carbonitride) present in steel is inhomogeneous. On the contrary, the fact that the maximum value is small seems to mean that the precipitation state is homogeneous. Therefore, since the state where the precipitate is present seems to be homogeneous in the case where the maximum value is small, it is a factor to improve the cold workability after spheroidizing annealing and the grain coarsening resistance property during heat treatment. I believe that.

そしてこうした傾向は、上記標準偏差の最大値が10の前後で急変し、この値が10を超えるものは明らかに冷間加工性が悪く、10以下であるもの、より好ましくは8以下であるものは優れた冷間加工性を示すことが確認された。   Such a tendency changes suddenly when the maximum value of the standard deviation is around 10, and when this value exceeds 10, the cold workability is clearly poor and it is 10 or less, more preferably 8 or less. Was confirmed to exhibit excellent cold workability.

更に、こうしたビッカース硬さの標準偏差の最大値に与える圧延鋼材の物理的特性の影響についても検討を加えた結果、圧延材断面内の金属組織に占めるフェライトとパーライトのトータル面積率が高いものほど上記標準偏差の最大値は小さくなり、該トータル面積率が少なくとも80%、好ましくは90%以上、更に好ましくは95%以上であるものは、上記標準偏差の最大値が小さくて優れた冷間加工性を示すことが確認された。ちなみに、フェライト+パーライトのトータル面積率が大きいということは、それ以外の組織、例えばベイナイトやマルテンサイトなどが少ないことを意味しており、金属組織が全体的に均質であることから、ビッカース硬さが全体的に略均等で硬さバラツキが小さくなるものと思われる。   Furthermore, as a result of examining the influence of the physical properties of the rolled steel on the maximum standard deviation of Vickers hardness, the higher the total area ratio of ferrite and pearlite in the metal structure in the rolled material cross section The maximum value of the standard deviation is small, and the total area ratio is at least 80%, preferably 90% or more, more preferably 95% or more. It was confirmed to show sex. By the way, the fact that the total area ratio of ferrite + pearlite is large means that there are few other structures such as bainite and martensite, and since the metal structure is entirely homogeneous, Vickers hardness However, it is considered that the hardness is generally uniform and the hardness variation is reduced.

上記の様に本発明によれば、鋼の成分組成を特定すると共に、横断面内に「(Ti)/(Nb)≧0.05」の関係を満たす炭化物および/または炭窒化物が2.0×107個/mm2以上存在すると共に、横断面内におけるビッカース硬さの標準偏差の最大値が10以下であり、好ましくは更に「[Ti]−47.9[N]/14≧0.0050(質量%)」の関係を満たし、横断面の金属組織をフェライト+パーライトの総和で80%以上とすることによって、優れた冷間加工性を確保しつつ、肌焼き処理のための加熱による耐結晶粒粗大化特性に優れ、強度特性と寸法精度の良好な肌焼き部品を与える肌焼用鋼を提供できる。 As described above, according to the present invention, the carbide and / or carbonitride satisfying the relationship of “(Ti) / (Nb) ≧ 0.05” is specified in the transverse section while specifying the component composition of steel. 0 × 10 7 pieces / mm 2 or more, and the maximum standard deviation of Vickers hardness in the cross section is 10 or less, preferably “[Ti] −47.9 [N] / 14 ≧ 0” .0050 (mass%) "and by making the cross-sectional metal structure 80% or more in terms of the sum of ferrite and pearlite, heat for skin hardening treatment while ensuring excellent cold workability It is possible to provide a case-hardening steel that provides a case-hardening part that has excellent crystal grain coarsening characteristics due to, and has good strength characteristics and dimensional accuracy.

次に、上記の様な特性を備えた肌焼用鋼を得るには、前述した化学成分の要件を満たす鋼材を1250℃以上の温度に再加熱した後、Ar1変態点以下の温度まで冷却し、850〜1000℃に再加熱してから圧延し、最終圧延温度を700〜850℃の範囲に制御する方法を採用するのがよい。 Next, in order to obtain a case-hardening steel having the above-described characteristics, a steel material that satisfies the above-described chemical component requirements is reheated to a temperature of 1250 ° C. or higher, and then cooled to a temperature of the Ar 1 transformation point or lower. And it is good to employ | adopt the method of rolling, after reheating to 850-1000 degreeC, and controlling the final rolling temperature in the range of 700-850 degreeC.

均熱温度を1250℃以上とするのは、鋼中に存在する粗大なNb−Ti含有析出物を一旦オーステナイト中に固溶させ、その後の工程で析出するNb−Ti含有析出物を均一且つ微細化し、肌焼き処理のための加熱時におけるオーステナイト結晶粒の粗大化を抑制すると共に、粗大なNb−Ti含有析出物による冷間加工性の劣化を抑えるためである。   The soaking temperature is 1250 ° C. or higher because the coarse Nb—Ti-containing precipitates present in the steel are once dissolved in austenite, and the Nb—Ti-containing precipitates precipitated in the subsequent steps are uniform and fine. This is to suppress the coarsening of the austenite crystal grains during heating for the case baking treatment and to suppress the deterioration of cold workability due to the coarse Nb—Ti-containing precipitates.

ちなみに、この温度(再加熱温度)が、1250℃未満、或いは再加熱せずに鋳造ままのものでは、粗大なTiNと比較的微細なNbCに分離したままで、その後の浸炭時にNbCが粗大化するのに対し、高温保持により炭窒化物を一旦固溶させると、マトリックス中のNb、Tiが再固溶し、Nb−Ti系の複合析出物が再析出し、それらは浸炭時のγ結晶粒の成長を著しく抑制するからである。   By the way, if this temperature (reheating temperature) is less than 1250 ° C or as-cast without reheating, it remains separated into coarse TiN and relatively fine NbC, and NbC becomes coarse during subsequent carburizing. On the other hand, once carbonitride is dissolved by holding at a high temperature, Nb and Ti in the matrix are re-dissolved, and Nb-Ti composite precipitates are re-precipitated. This is because grain growth is remarkably suppressed.

上記1250℃以上の温度での均熱後は、一旦Ar1変態点以下の温度にまで冷却する。その理由は、加熱時に粗大化したオーステナイトをフェライトに変態させ、その後の圧延前の加熱によってオーステナイトに逆変態させ、オーステナイト結晶粒を微細化すると共に、析出するNb−Ti含有析出物を微細化し、肌焼き処理時の耐結晶粒粗大化特性を高めるためである。その為には、均熱後Ar1変態点以下の温度にまで冷却することが必須となる。 After soaking at the temperature of 1250 ° C. or higher, it is once cooled to a temperature below the Ar 1 transformation point. The reason is that austenite coarsened at the time of heating is transformed into ferrite, then transformed back to austenite by heating before rolling, and the austenite crystal grains are refined and the precipitated Nb-Ti-containing precipitates are refined, This is for enhancing the crystal grain coarsening characteristics during the case baking treatment. For that purpose, after soaking, it is essential to cool to a temperature not higher than the Ar 1 transformation point.

その後、850〜1000℃に再加熱してから圧延し、最終圧延温度は700〜850℃の範囲内となる様に制御する。圧延前の再加熱温度を850℃以上に定めたのは、850℃未満では圧延中の変形抵抗が大き過ぎて圧延機にかかる負荷が過大となるからである。また再加熱温度を1000℃以下に抑えるのは、圧延後のオーステナイト粒を微細化し、圧延材の金属組織を微細フェライト+微細パーライト主体の組織とすることによって冷間加工性を高めるためである。圧延前のより好ましい再加熱温度は950℃以下である。   Then, after reheating to 850-1000 degreeC, it rolls and it controls so that the final rolling temperature may be in the range of 700-850 degreeC. The reason why the reheating temperature before rolling is set to 850 ° C. or more is that if it is less than 850 ° C., the deformation resistance during rolling is too large and the load on the rolling mill becomes excessive. The reason why the reheating temperature is suppressed to 1000 ° C. or less is to improve cold workability by refining the austenite grains after rolling and making the metal structure of the rolled material mainly composed of fine ferrite and fine pearlite. A more preferable reheating temperature before rolling is 950 ° C. or less.

また、再加熱後に行われる圧延時の最終圧延温度が700℃未満では、圧延工程中にフェライトの析出が起こって変形抵抗が更に高まり、圧延負荷が大きくなって実操業にそぐわなくなる。逆に最終圧延温度が850℃を超えると、圧延後のオーステナイト粒が粗大化し、冷間加工性に好適な微細フェライト+微細パーライト組織が得られ難くなる。   Moreover, if the final rolling temperature at the time of rolling performed after reheating is less than 700 ° C., precipitation of ferrite occurs during the rolling process, the deformation resistance further increases, and the rolling load becomes large, making it unsuitable for actual operation. Conversely, if the final rolling temperature exceeds 850 ° C., the austenite grains after rolling become coarse, and it becomes difficult to obtain a fine ferrite + fine pearlite structure suitable for cold workability.

その他の製造条件は特に限定されず、公知の条件範囲の中から適宜最適の条件を選択して適用すればよい。   Other manufacturing conditions are not particularly limited, and an optimum condition may be appropriately selected and applied from a known condition range.

尚、本発明の浸炭用鋼は、浸炭焼入れして用いることを想定したものであり、浸炭時における温度を比較的高温にした場合であっても結晶粒の粗大化が発生しないという効果を発揮するが、浸炭と同時に窒化を行う浸炭窒化法にも勿論適用できる。また本発明の浸炭用鋼は、上記のように再加熱した後、冷間鍛造または熱間鍛造してから浸炭処理されるが、限定された鍛造温度でのみ効果が発揮されるわけではなく、鍛造温度に関係なく、その効果を発揮する。また冷間鍛造または熱間鍛造に先立ち(即ち、再加熱の後)、組織の均一化を図るために焼きならし処理を施すことも可能である。   The carburizing steel of the present invention is assumed to be used after carburizing and quenching, and exhibits the effect that no coarsening of crystal grains occurs even when the temperature during carburizing is relatively high. However, it is of course applicable to a carbonitriding method in which nitriding is performed simultaneously with carburizing. In addition, the carburizing steel of the present invention is carburized after cold forging or hot forging after reheating as described above, but the effect is not exhibited only at a limited forging temperature, The effect is demonstrated regardless of the forging temperature. Prior to cold forging or hot forging (that is, after reheating), it is possible to perform a normalizing process in order to make the structure uniform.

以下、実施例を挙げて本発明の構成および作用効果をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and is suitable as long as it can meet the purpose described above and below. It is also possible to carry out the invention with modifications, and these are all included in the technical scope of the present invention.

実施例1
表1,2に示す化学組成の鋼材を小型溶製炉で溶製し、鋳造、均熱ののち熱間鍛造を行なって一辺が155mm角の鋼片を得た。この鋼片を使用し、表3,4に示す如く1300℃または1200℃で60分間均熱してから室温まで空冷した。各均熱材を同表に示す如く870℃から1100℃の範囲の各温度に加熱し、同表に示す最終圧延温度で圧延することによって、直径30mmの棒鋼を得た。
Example 1
Steel materials having chemical compositions shown in Tables 1 and 2 were melted in a small smelting furnace, and after casting and soaking, hot forging was performed to obtain a steel piece having a side of 155 mm square. This steel slab was used, soaked at 1300 ° C. or 1200 ° C. for 60 minutes as shown in Tables 3 and 4, and then cooled to room temperature. Each soaking material was heated to temperatures ranging from 870 ° C. to 1100 ° C. as shown in the same table, and rolled at the final rolling temperature shown in the same table to obtain a steel bar having a diameter of 30 mm.

得られた各圧延棒鋼の横断面を観察できるサンプルを切り出し、鏡面状に研磨した後、腐食液「エタノール+3%ナイタール」で処理した後、図1に示す如く、表面から深さ1mm位置、D/8位置(Dは棒鋼の直径を表す)、D/4位置、3D/8位置から任意に各4箇所を選んで合計16箇所を光学顕微鏡により倍率400倍で観察し、ポイントカウンティング法によってフェライト(α)+パーライト(P)面積率を求めた。なお残部組織は全てベイナイトであった。また上記と同じ横断面位置のビッカース硬さを各3断面で測定し、硬さの標準偏差の最大値を求めた。尚、ビッカース硬さの測定は荷重10kgで行なった。   A sample that can observe the cross section of each rolled steel bar was cut out, polished to a mirror surface, treated with a corrosive solution “ethanol + 3% nital”, and then, as shown in FIG. / 8 position (D represents the diameter of steel bar), D / 4 position, 3D / 8 position each arbitrarily selected 4 locations, a total of 16 locations were observed with an optical microscope at 400 times magnification, and the point counting method was used for ferrite (Α) + Perlite (P) area ratio was determined. All the remaining structures were bainite. Moreover, the Vickers hardness of the same cross-sectional position as the above was measured in each of three cross sections, and the maximum value of the standard deviation of hardness was obtained. The Vickers hardness was measured with a load of 10 kg.

各供試材の耐結晶粒粗大化特性は、各供試棒鋼について、圧下率70%で冷間鍛造した後、1025℃で3時間加熱した後のオースイテナイト結晶粒度をJIS G 0551に定めるオーステナイト結晶粒度試験方法に則って測定し、結晶粒度番号で5番以下の粗大粒の面積率によって評価した。5%を超えるもの:不良(×)、5%以下のもの:良好(○)。   The grain coarsening resistance characteristics of each test material are defined in JIS G 0551 for the crystal grain size of each test bar steel after cold forging at a reduction rate of 70% and heating at 1025 ° C. for 3 hours. It measured according to the austenite grain size test method, and evaluated by the area ratio of coarse grains having a grain size number of 5 or less. More than 5%: Defect (x), 5% or less: Good (◯).

また冷間加工性は、各熱延材に「770℃×5時間加熱後、15℃/sで冷却する」球状化焼鈍を施した後、直径27.5mmに引抜き加工した各供試材から、図2に示す如く長さ41.3mmのノッチ付き試験片を作製し、それぞれ5個の端面完全拘束試験を行い、圧下率30%に圧下したときに割れが発生した試験片の数によって評価した。◎:割れなし、○:割れ1個、×:割れ2個以上。   The cold workability of each hot-rolled material was determined from each sample material that had been subjected to spheroidizing annealing that was “heated at 770 ° C. × 5 hours and then cooled at 15 ° C./s” and then drawn into a diameter of 27.5 mm. As shown in FIG. 2, test pieces with notches having a length of 41.3 mm were prepared, 5 end face complete restraint tests were performed, and evaluation was performed based on the number of test pieces in which cracking occurred when the reduction was reduced to 30%. did. A: No crack, B: One crack, X: Two or more cracks.

微細炭窒化物の評価法は、900℃焼きならし材の試料から、透過型電子顕微鏡用の抽出レプリカを作製し、観察倍率10万倍で任意の炭化物/炭窒化物20個について、(Ti)/(Nb)をEDX(エネルギー分散形X線分析装置)により分析し、0.05以上となる割合を求め、その後、観察倍率15万倍で、測定面積0.75μm2の写真を20視野観察し、個数をカウントし、先に求めた(Ti)/(Nb)≧0.05となる割合を乗じることで、(Ti)/(Nb)≧0.05となる炭化物/炭窒化物の個数を求めた。 The fine carbonitride evaluation method is to produce an extraction replica for a transmission electron microscope from a sample of 900 ° C. normalizing material, and for 20 arbitrary carbides / carbonitrides at an observation magnification of 100,000 times, (Ti ) / (Nb) is analyzed by EDX (energy dispersive X-ray analyzer) to obtain a ratio of 0.05 or more, and then 20 views of a photograph with a measurement area of 0.75 μm 2 at an observation magnification of 150,000 times. Observe, count the number, and multiply by the previously obtained ratio of (Ti) / (Nb) ≧ 0.05 to obtain carbide / carbonitride of (Ti) / (Nb) ≧ 0.05. The number was determined.

結果を表3,4に一括して示す。   The results are collectively shown in Tables 3 and 4.

Figure 2006307270
Figure 2006307270

Figure 2006307270
Figure 2006307270

Figure 2006307270
Figure 2006307270

Figure 2006307270
Figure 2006307270

表1〜4より次の様に考えることができる。   From Tables 1 to 4, the following can be considered.

No.1〜8、11〜30は、本発明の規定要件を全て満たす実施例であり、耐結晶粒粗大化特性と冷間加工性のいずれも良好で、総合判定で良好の結果が得られている。   No. 1 to 8, 11 to 30 are examples that satisfy all the requirements of the present invention, both the grain coarsening resistance characteristics and the cold workability are good, and good results are obtained by comprehensive judgment. .

これらに対しNo.9は、鋼組成は適切であるが、均熱温度や圧延加熱温度が不適切で「(Ti)/(Nb)≧0.05」の析出物の個数が不足するため、耐結晶粒粗大化特性が悪い。またNo.10,11は、最終圧延温度が好適範囲を外れているためフェライト+パーライト組織分率が推奨範囲を外れているため冷鍛性に欠ける。No.31〜38は、鋼成分が規定要件を外れる比較例であり、耐結晶粒粗大化特性が不足するか加工性(冷鍛性)が不良であり、本発明の目的が達成できていない。   No. No. 9, the steel composition is appropriate, but the soaking temperature and rolling heating temperature are inappropriate, and the number of precipitates of “(Ti) / (Nb) ≧ 0.05” is insufficient. The characteristic is bad. No. Nos. 10 and 11 lack the cold forgeability because the final rolling temperature is outside the preferred range and the ferrite + pearlite structure fraction is outside the recommended range. No. Nos. 31 to 38 are comparative examples in which the steel components deviate from the prescribed requirements, and the crystal grain coarsening resistance is insufficient or the workability (cold forgeability) is poor, and the object of the present invention cannot be achieved.

圧延後の棒鋼断面の金属組織とビッカース硬さの測定位置を示す説明図である。It is explanatory drawing which shows the measurement structure of the metal structure and Vickers hardness of the steel bar cross section after rolling. 実験で採用した冷間加工性評価用の試験片を示す図である。It is a figure which shows the test piece for cold workability evaluation employ | adopted in experiment.

Claims (8)

質量%で、
C:0.10〜0.35%、
Si:0.03〜1.0%、
Mn:0.2〜2.0%、
S:0.1%以下(0%を含む)、
Nb:0.025〜0.20%
Ti:0.025〜0.12%、
N:0.020%以下(0%を含む)、
Al:0.13%以下(0%を含む)、
を満たし、残部は実質的にFeよりなる鋼からなり、横断面内に下記(1)式を満足する炭化物および/または炭窒化物が2.0×107個/mm2以上存在すると共に、横断面内におけるビッカース硬さの標準偏差の最大値が10以下であることを特徴とする耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼。
(Ti)/(Nb)≧0.05……(1)
但し、(Ti)および(Nb)は、炭化物および/または炭窒化物中におけるTiおよびNbの各含有量(質量%)を表す。
% By mass
C: 0.10 to 0.35%,
Si: 0.03-1.0%,
Mn: 0.2 to 2.0%,
S: 0.1% or less (including 0%),
Nb: 0.025 to 0.20%
Ti: 0.025 to 0.12%,
N: 0.020% or less (including 0%),
Al: 0.13% or less (including 0%),
The balance is made of steel substantially consisting of Fe, and there are 2.0 × 10 7 pieces / mm 2 or more of carbides and / or carbonitrides satisfying the following formula (1) in the cross section, A case hardening steel excellent in crystal grain coarsening characteristics and cold workability, wherein the maximum value of the standard deviation of Vickers hardness in the cross section is 10 or less.
(Ti) / (Nb) ≧ 0.05 (1)
However, (Ti) and (Nb) represent the respective contents (mass%) of Ti and Nb in the carbide and / or carbonitride.
鋼が、更に下記(2)式の関係を満たすものである請求項1に記載の肌焼用鋼。
[Ti]−47.9[N]/14≧0.0050(質量%)……(2)
但し、[Ti]および[N]は、鋼中のTiおよびNの各含有量(質量%)を表す。
The case hardening steel according to claim 1, wherein the steel further satisfies the relationship of the following formula (2).
[Ti] -47.9 [N] /14≧0.0050 (mass%) (2)
However, [Ti] and [N] represent each content (mass%) of Ti and N in steel.
横断面内における金属組織の80%以上が、フェライト+パーライトである請求項1または2に記載の肌焼用鋼。   The steel for case hardening according to claim 1 or 2, wherein 80% or more of the metal structure in the cross section is ferrite + pearlite. 鋼が、更に他の元素として、Cu:3.0%以下(0%を含まない)、Ni:3.0%以下(0%を含まない)、Cr:2.0%以下(0%を含まない)、Mo:2.0%以下(0%を含まない)よりなる群から選択される少なくとも1種の元素を含むものである請求項1〜3のいずれかに記載の肌焼用鋼。   Still other elements of steel are Cu: 3.0% or less (excluding 0%), Ni: 3.0% or less (excluding 0%), Cr: 2.0% or less (0% The steel for case hardening according to any one of claims 1 to 3, which contains at least one element selected from the group consisting of Mo: 2.0% or less (not including 0%). 鋼が、更に他の元素として、B:0.0005〜0.010%を含むものである請求項1〜4のいずれかに記載の肌焼用鋼。   The steel for case hardening according to any one of claims 1 to 4, wherein the steel further contains B: 0.0005 to 0.010% as another element. 鋼が、更に他の元素として、V:0.3%以下(0%を含まない)、Zr:0.3%以下(0%を含まない)、Hf:0.4%以下(0%を含まない)、Ta:0.3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素を含むものである請求項1〜5のいずれかに記載の肌焼用鋼。   Still other elements of steel are V: 0.3% or less (excluding 0%), Zr: 0.3% or less (excluding 0%), Hf: 0.4% or less (0% The steel for case hardening according to any one of claims 1 to 5, which contains at least one element selected from the group consisting of Ta: 0.3% or less (not including 0%). 鋼が、更に他の元素として、REM:0.03%以下(0%を含まない)、Ca:0.03%以下(0%を含まない)、Mg:0.03%以下(0%を含まない)、Pb:0.3%以下(0%を含まない)、Bi:0.3%以下(0%を含まない)、Te:0.3%以下(0%を含まない)、Se:0.3%以下(0%を含まない)、Sn:0.3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素を含むものである請求項1〜6のいずれかに記載の肌焼用鋼。   Still other elements of steel are REM: 0.03% or less (excluding 0%), Ca: 0.03% or less (not including 0%), Mg: 0.03% or less (0% Not included), Pb: not more than 0.3% (not including 0%), Bi: not more than 0.3% (not including 0%), Te: not more than 0.3% (not including 0%), Se 7: at least one element selected from the group consisting of 0.3% or less (not including 0%) and Sn: 0.3% or less (not including 0%) The steel for case hardening described in 1. 前記請求項1〜7のいずれかに記載された成分組成の要件を満たす鋼を溶製し鋳造して得た鋳片を、1250℃以上の温度に再加熱したのちAr1変態点以下の温度まで冷却し、850〜1000℃に再加熱してから圧延し、最終圧延温度を700〜850℃とすることを特徴とする耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼の製法。 A slab obtained by melting and casting steel satisfying the requirements of the component composition described in any one of claims 1 to 7 is reheated to a temperature of 1250 ° C or higher, and then a temperature not higher than the Ar 1 transformation point. The steel is cooled to 850 to 1000 ° C. and rolled, and the final rolling temperature is set to 700 to 850 ° C. The manufacturing method.
JP2005130187A 2005-04-27 2005-04-27 Case hardening steel with excellent grain coarsening resistance and cold workability Expired - Fee Related JP4464861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005130187A JP4464861B2 (en) 2005-04-27 2005-04-27 Case hardening steel with excellent grain coarsening resistance and cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005130187A JP4464861B2 (en) 2005-04-27 2005-04-27 Case hardening steel with excellent grain coarsening resistance and cold workability

Publications (2)

Publication Number Publication Date
JP2006307270A true JP2006307270A (en) 2006-11-09
JP4464861B2 JP4464861B2 (en) 2010-05-19

Family

ID=37474485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130187A Expired - Fee Related JP4464861B2 (en) 2005-04-27 2005-04-27 Case hardening steel with excellent grain coarsening resistance and cold workability

Country Status (1)

Country Link
JP (1) JP4464861B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154235A1 (en) * 2008-06-19 2009-12-23 株式会社神戸製鋼所 Steel for heat treatment
WO2012043074A1 (en) 2010-09-28 2012-04-05 株式会社神戸製鋼所 Case hardened steel and method for producing same
KR20180085787A (en) 2016-01-13 2018-07-27 가부시키가이샤 고베 세이코쇼 Carbon Nitriding Steels and Carburized Nitrided Parts
US10519536B2 (en) 2015-10-20 2019-12-31 Toyota Jidosha Kabushiki Kaisha Method of producing carburizing forging steel material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003450A1 (en) * 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154235A1 (en) * 2008-06-19 2009-12-23 株式会社神戸製鋼所 Steel for heat treatment
US9023159B2 (en) 2008-06-19 2015-05-05 Kobe Steel, Ltd. Steel for heat treatment
WO2012043074A1 (en) 2010-09-28 2012-04-05 株式会社神戸製鋼所 Case hardened steel and method for producing same
US9115415B2 (en) 2010-09-28 2015-08-25 Kobe Steel, Ltd. Case hardened steel and method for producing same
US10519536B2 (en) 2015-10-20 2019-12-31 Toyota Jidosha Kabushiki Kaisha Method of producing carburizing forging steel material
KR20180085787A (en) 2016-01-13 2018-07-27 가부시키가이샤 고베 세이코쇼 Carbon Nitriding Steels and Carburized Nitrided Parts

Also Published As

Publication number Publication date
JP4464861B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
JP4956146B2 (en) Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP4725401B2 (en) Steel parts and manufacturing method thereof
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP6737387B2 (en) Soft nitriding steel and parts
US9200354B2 (en) Rolled steel bar or wire for hot forging
CN104611623B (en) Forging quality steel
US11959177B2 (en) Steel for nitrocarburizing and nitrocarburized component, and methods of producing same
WO2019198539A1 (en) Machine component and method for producing same
JP5649886B2 (en) Case-hardened steel and method for producing the same
JP4464863B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP4384592B2 (en) Rolled steel for carburizing with excellent high-temperature carburizing characteristics and hot forgeability
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP5649887B2 (en) Case-hardened steel and method for producing the same
JP4488228B2 (en) Induction hardening steel
JP2006291335A (en) Steel for case hardening having excellent high temperature carburizing characteristic and workability
JP2012237052A (en) Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
JP2006265703A (en) Steel for case hardening having excellent crystal grain coarsening resistance and cold workability and method for producing the same
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP5869919B2 (en) Case-hardening bar steel with excellent cold workability
JP6721141B1 (en) Steel for soft nitriding, soft nitriding component, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4464861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees