JP2007016271A - Steel for induction hardening for pinion having excellent machinability, method for producing the same, and pinion having excellent bending fatigue property - Google Patents

Steel for induction hardening for pinion having excellent machinability, method for producing the same, and pinion having excellent bending fatigue property Download PDF

Info

Publication number
JP2007016271A
JP2007016271A JP2005198101A JP2005198101A JP2007016271A JP 2007016271 A JP2007016271 A JP 2007016271A JP 2005198101 A JP2005198101 A JP 2005198101A JP 2005198101 A JP2005198101 A JP 2005198101A JP 2007016271 A JP2007016271 A JP 2007016271A
Authority
JP
Japan
Prior art keywords
bending fatigue
steel
less
pinion
induction hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005198101A
Other languages
Japanese (ja)
Other versions
JP4502892B2 (en
Inventor
Goro Anami
吾郎 阿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005198101A priority Critical patent/JP4502892B2/en
Publication of JP2007016271A publication Critical patent/JP2007016271A/en
Application granted granted Critical
Publication of JP4502892B2 publication Critical patent/JP4502892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for induction hardening for a pinion having excellent machinability for efficiently obtaining a pinion having excellent fatigue properties, and to provide a pinion having excellent bending fatigue properties obtained by subjecting the steel to induction hardening. <P>SOLUTION: The steel for induction hardening for a pinion having excellent machinability has a composition essentially consisting of prescribed amounts of Cr, B and Ti, containing prescribed amounts of C, Si, Mn, S, Al, P, N and Total oxygen, and comprising a prescribed amount(s) of one or more kinds selected from the group consisting of Te, Ca, Zr, Mg, Y and rare earth metals as inclusion form controlling elements, and the balance iron with inevitable impurities, and in which the average aspect ratio of MnS-containing inclusions is ≤10. Also, when high frequency heat treatment is performed under prescribed conditions, the steel exhibits prescribed bending fatigue properties. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被削性に優れたピニオン用高周波焼入れ用鋼及びその製造方法、並びに曲げ疲労特性に優れたピニオンに関するものである。   The present invention relates to a steel for induction hardening for pinions excellent in machinability, a manufacturing method thereof, and a pinion excellent in bending fatigue characteristics.

高周波焼入れを行って得られる各種歯車類の中で、自動車のステアリング装置を構成する自動車部品:ピニオンは、近年の自動車エンジンの高出力化や環境規制対応に伴い、高強度化の指向が強くなっている。しかし、浸炭処理を施す場合と比べて表層の炭素濃度が低いため、同等の硬さは確保できるが耐摩耗性に劣る場合が多い。このため、鋼材の更なる高炭素化が要望されているが、高炭素化すると、被削性の低下や靭性劣化による疲労寿命の低下を招く等の問題が生じ得る。上記被削性を改善すべくSを積極的に添加した場合には、疲労寿命が低下するといった問題もある。   Among the various gears obtained by induction hardening, automotive components that make up the steering system of automobiles: Pinion has become more strongly oriented in recent years due to higher output of automobile engines and compliance with environmental regulations. ing. However, since the carbon concentration of the surface layer is lower than when carburizing is performed, the equivalent hardness can be ensured, but the wear resistance is often poor. For this reason, although higher carbonization of steel materials is requested | required, problems, such as causing the fall of the fatigue life by a machinability fall or toughness degradation, may arise when it raises carbon. When S is positively added to improve the machinability, there is a problem that the fatigue life is lowered.

ピニオンは、稼動時にステアリング装置内のラック(歯を刻んだ丸棒)上を回転するが、この時ピニオンには非常に高い負荷がかかるため、歯元損傷等の疲労破壊を確実に防止する必要があり、高い曲げ疲労特性を発揮することが要求されている。特にピニオンは、安全上重要な鋼部品でもあることから、上記高い曲げ疲労特性を確実に発揮させる必要がある。   The pinion rotates on the rack (a round bar with teeth) during operation. At this time, the pinion is subjected to a very high load, so it is necessary to reliably prevent fatigue damage such as tooth root damage. Therefore, it is required to exhibit high bending fatigue characteristics. In particular, the pinion is also a steel part important for safety, so it is necessary to reliably exhibit the high bending fatigue characteristics.

よって、該ピニオンの製造に供する鋼素材の特性として、高周波熱処理後に高強度を示し、高い曲げ疲労特性を確実に発揮すると共に、製造過程において優れた被削性を発揮することが求められる。   Therefore, as a characteristic of the steel material used for the production of the pinion, it is required to exhibit high strength after high-frequency heat treatment, reliably exhibit high bending fatigue characteristics, and exhibit excellent machinability in the manufacturing process.

高周波焼入れ用鋼の疲労特性を高めた技術として、例えば特許文献1には、伸長MnSの生成を抑制し、MnSの粒状化・微細化を図ると共に、フェライト分率を規制し、フェライト粒を微細化する旨が示されている。フェライト粒が粗大であると、高周波焼入れ後、フェライト部分が低炭素マルテンサイトとなり硬さムラを生じ、疲労特性の低下を招くからである。しかし該技術で考慮しているのは、ドライブシャフト等の様な棒状部材における捻り疲労特性のみであって、上記ピニオンの様に歯先に高負荷の加わる場合を想定した曲げ疲労特性については検討されていない。   As a technique for improving the fatigue characteristics of induction hardening steel, for example, Patent Document 1 discloses that the generation of elongated MnS is suppressed, the MnS is granulated and refined, the ferrite fraction is regulated, and the ferrite grains are refined. It is shown that If the ferrite grains are coarse, the ferrite portion becomes low carbon martensite after induction hardening, causing hardness unevenness and reducing fatigue characteristics. However, this technology considers only the torsional fatigue characteristics of rod-like members such as drive shafts, and considers the bending fatigue characteristics assuming the case where a high load is applied to the tooth tip like the above pinion. It has not been.

特許文献2にも、高周波焼入れ用鋼の疲労特性を高めた技術が示されている。該技術は、線状または棒状圧延材の軸心を通る縦断面において、該軸心と平行でかつ該軸心から1/4・D(Dは圧延材の直径を表す)離れた仮想線を中心線として含む被検面積100mm中に存在する、酸化物系と硫化物系からなる直径10μm以上の複合介在物を20個以下とすることによって、高周波焼入れ用鋼の曲げ疲労強度と転動疲労強度を高めることが示されている。 Patent Document 2 also shows a technique that improves the fatigue characteristics of steel for induction hardening. In the longitudinal cross section passing through the axis of a linear or rod-shaped rolled material, the technique uses an imaginary line parallel to the axis and separated from the axis by 1/4 · D (D represents the diameter of the rolled material). Bending fatigue strength and rolling of induction hardening steel by reducing the number of oxide inclusions and sulfide composite inclusions with a diameter of 10 μm or more present in the test area 100 mm 2 included as the center line to 20 or less. It has been shown to increase fatigue strength.

しかし、上記ピニオンといった特に高度の曲げ疲労特性の要求される場合については更なる改善が必要であると考えられる。また、高精度の要求されるピニオンの様な鋼部品を製造するには、優れた被削性と上記疲労特性を兼備させることが必要となる。   However, it is considered that further improvement is necessary in the case where particularly high bending fatigue properties such as the pinion are required. Moreover, in order to manufacture a steel part such as a pinion that requires high accuracy, it is necessary to combine excellent machinability and the above fatigue characteristics.

特許文献3には、被削性、疲労特性、及び冷間鍛造性を改善した機械構造用鋼材が開示されている。該技術では、回転曲げ疲労試験機による試験結果が示されているが、高周波焼入れを行なわない場合の結果であり、高周波焼入れを行なった場合に、高強度が確保されかつ良好な曲げ疲労特性が発揮されるとは言い難い。即ち、上記ピニオンの様な高周波熱処理後の曲げ疲労特性を高めることについて検討されたものでない。
特開2002−69566号公報 特開平11−1749号公報 特開2004−52099号公報
Patent Document 3 discloses a steel material for machine structure with improved machinability, fatigue characteristics, and cold forgeability. In this technique, the test result by a rotating bending fatigue tester is shown, but it is a result when induction hardening is not performed. When induction hardening is performed, high strength is ensured and good bending fatigue characteristics are obtained. It is hard to say that it is demonstrated. That is, it has not been studied to improve the bending fatigue characteristics after the high-frequency heat treatment like the above-described pinion.
JP 2002-69566 A Japanese Patent Laid-Open No. 11-1749 JP 2004-52099 A

本発明はこの様な事情に鑑みてなされたものであって、その目的は、曲げ疲労特性に優れたピニオンを効率良く得るための被削性に優れたピニオン用高周波焼入れ用鋼及びその製造方法、並びに、該鋼を用い、高周波焼入れを施して得られる曲げ疲労特性に優れたピニオンを提供することにある。   The present invention has been made in view of such circumstances, and the object thereof is a steel for induction hardening for a pinion excellent in machinability and a method for producing the same for efficiently obtaining a pinion excellent in bending fatigue characteristics. And it is providing the pinion excellent in the bending fatigue property obtained by performing induction hardening using this steel.

本発明に係るピニオン用高周波焼入れ用鋼とは、
C:0.3〜0.60%(質量%の意味、以下同じ)、
Si:0.01〜1.0%、
Mn:0.2〜2.0%、
Cr:0.50〜2.0%、
S :0.010〜0.08%、
B :0.0005〜0.005%、
Al:0.001〜0.1%、
Ti:0.005〜0.05%、
P :0.025%以下(0%を含まない)、
N :0.007%以下(0%を含まない)、
Total 酸素:15ppm以下(0%を含まない)
を含むと共に、
Te:0.0005〜0.02%、
Ca:0.0005〜0.02%、
Zr:0.01〜0.50%、
Mg:0.0001〜0.0055%、
Y :0.001〜0.1%、及び
REM:0.001〜0.15%よりなる群から選択される1種以上を含有し、
残部が鉄及び不可避的不純物からなるものであって、
MnS含有介在物の平均アスペクト比が10以下であり、かつ
下記条件で高周波焼入れを行なったときに、下記曲げ疲労特性を示すところに特徴を有している。
With the steel for induction hardening for pinions according to the present invention,
C: 0.3 to 0.60% (meaning mass%, the same shall apply hereinafter)
Si: 0.01 to 1.0%,
Mn: 0.2 to 2.0%,
Cr: 0.50 to 2.0%,
S: 0.010 to 0.08%,
B: 0.0005 to 0.005%,
Al: 0.001 to 0.1%,
Ti: 0.005 to 0.05%,
P: 0.025% or less (excluding 0%),
N: 0.007% or less (excluding 0%),
Total oxygen: 15 ppm or less (excluding 0%)
Including
Te: 0.0005 to 0.02%,
Ca: 0.0005 to 0.02%,
Zr: 0.01 to 0.50%,
Mg: 0.0001 to 0.0055%,
Y: 0.001 to 0.1%, and REM: one or more selected from the group consisting of 0.001 to 0.15%,
The balance consists of iron and inevitable impurities,
The MnS-containing inclusions have an average aspect ratio of 10 or less, and have the following bending fatigue characteristics when induction hardening is performed under the following conditions.

<高周波熱処理条件>
高周波熱処理機にて、下記条件で試験片の中心部が硬化するまで焼入れ後、150℃×1時間で焼戻す。
試験片:D:12mm、D:10mm、R:16mm
α=2.0のキリカキ付き回転曲げ試験片
周波数:20kHz
出力:6.0kV
送り速度:5.0mm/sec
焼入れ温度:850℃
ソリュブル液使用
<曲げ疲労特性>
・曲げ疲労試験条件:回転曲げ応力280MPa
(ノッチ底径の平滑な試験片での応力)
・曲げ疲労寿命:1.0×10回以上
<High-frequency heat treatment conditions>
In a high-frequency heat treatment machine, after quenching until the center of the test piece is cured under the following conditions, temper at 150 ° C. for 1 hour.
Test piece: D 0 : 12 mm, D: 10 mm, R: 16 mm
Rotating bend test piece with a crack of α = 2.0 Frequency: 20 kHz
Output: 6.0 kV
Feeding speed: 5.0mm / sec
Quenching temperature: 850 ° C
Use of soluble liquid <Bending fatigue characteristics>
Bending fatigue test conditions: Rotational bending stress 280 MPa
(Stress on a test piece with a smooth notch bottom diameter)
・ Bending fatigue life: 1.0 × 10 5 times or more

特に、前記Ca:0.0005〜0.02%と前記Mg:0.0001〜0.0055%を併せて含むものは、前記MnS含有介在物の平均アスペクト比が3以下とより小さく、高周波熱処理後の曲げ疲労特性に優れるので好ましい。   In particular, those containing both Ca: 0.0005-0.02% and Mg: 0.0001-0.0055% have a smaller average aspect ratio of the MnS-containing inclusions of 3 or less, and high-frequency heat treatment It is preferable because it is excellent in later bending fatigue characteristics.

本発明は、曲げ疲労特性に優れたピニオンも規定するものであって、該ピニオンは、前記成分組成を有する鋼材を用い、高周波焼入れを施して得られるものであって、MnS含有介在物の平均アスペクト比が10以下であると共に、下記曲げ疲労特性を示すところに特徴を有している。
<曲げ疲労特性>
・曲げ疲労試験片:D:12mm、D:10mm、R:16mm
α=2.0のキリカキ付き回転曲げ試験片
・曲げ疲労試験条件:回転曲げ応力280MPa
(ノッチ底径の平滑な試験片での応力)
・曲げ疲労寿命:1.0×10回以上
The present invention also defines a pinion having excellent bending fatigue characteristics, and the pinion is obtained by induction-quenching using a steel material having the above component composition, and is an average of MnS-containing inclusions. The aspect ratio is 10 or less, and the following bending fatigue characteristics are shown.
<Bending fatigue properties>
Bending fatigue test piece: D 0 : 12 mm, D: 10 mm, R: 16 mm
α = 2.0 Rotating Bending Specimen with Crevice ・ Bending fatigue test condition: Rotating bending stress 280 MPa
(Stress on a test piece with a smooth notch bottom diameter)
・ Bending fatigue life: 1.0 × 10 5 times or more

また本発明は、前記ピニオン用高周波焼入れ用鋼の製造方法も規定するものであって、該方法は、溶鋼の溶存酸素量を20ppm以下に低減してからTe、Ca、Zr、Mg、Y、及びREMよりなる群から選択される1種以上の元素を添加して、前記成分組成に調整したのち鋳造を行うと共に、熱間圧延に際して鋼材を900℃以上に加熱するところに特徴を有している。   The present invention also provides a method for producing the steel for induction hardening for pinions, wherein the method reduces Te, Ca, Zr, Mg, Y, And adding one or more elements selected from the group consisting of REM, adjusting to the above component composition, performing casting, and heating the steel material to 900 ° C. or higher during hot rolling. Yes.

尚、上記アスペクト比は、後述する実施例に示す通り、圧延材のD/4(D:圧延材の直径)部の圧延方向断面にて、合計0.64mmをSEM観察(分解能:1μm)し、面積(長径×短径)が5μm以上のMnS含有介在物を対象に、長径/短径の平均値を算出して求めたものである。 The aspect ratio is 0.64 mm 2 in total in the rolling direction cross section of the D / 4 (D: diameter of the rolled material) portion of the rolled material, as shown in the examples to be described later (resolution: 1 μm). The average value of the major axis / minor axis was calculated and obtained for MnS-containing inclusions having an area (major axis × minor axis) of 5 μm 2 or more.

本発明によれば、高い曲げ疲労特性を示し、歯元損傷等の疲労破壊の確実に抑制された信頼性の高いピニオンを実現できる。また、該特性を発揮するピニオンを得るための鋼材として、被削性が高められ、かつ高周波焼入れ後に優れた曲げ疲労特性を発揮する鋼材を実現できる。   According to the present invention, it is possible to realize a highly reliable pinion that exhibits high bending fatigue characteristics and is reliably suppressed from fatigue fracture such as tooth root damage. In addition, as a steel material for obtaining a pinion that exhibits the above characteristics, a steel material with improved machinability and excellent bending fatigue characteristics after induction hardening can be realized.

本発明者は、高周波焼入れ後に優れた曲げ疲労特性を示し、信頼性の高いピニオンを実現すると共に、該ピニオン製造における機械加工時に、優れた被削性を示す鋼材を得るべく鋭意研究を行なった。その結果、被削性を確保すべく所定量のSを含有させることを前提に、上記曲げ疲労特性を高めるには、
(a)規定量のCr、Ti及びBを必須とし、かつ
(b)MnS含有介在物のアスペクト比を10以下とすること
が重要であることを見出した。
The present inventor has conducted excellent research to obtain a steel material exhibiting excellent bending fatigue characteristics after induction hardening, realizing a highly reliable pinion, and exhibiting excellent machinability during machining in the production of the pinion. . As a result, on the premise that a predetermined amount of S is included to ensure machinability, to improve the bending fatigue characteristics,
It has been found that it is important that (a) the specified amounts of Cr, Ti and B are essential, and (b) the aspect ratio of the MnS-containing inclusions is 10 or less.

まず上記(a)の通り、規定量のCr、Ti及びBを必須とする。棒状鋼部品の場合、疲労特性は、鋼部品表面の硬度確保よりも、鋼部品内部に残留応力を如何に発生させるかがポイントとなる。これに対し、ピニオンの様な歯車の場合、該歯車の疲労特性(曲げ疲労特性)は硬度によるところが非常に大きい。そこで本発明では、これらの元素を含有させることで、歯元部の強度を、被削性等の製造過程で必要なその他の特性を損なわない範囲で高めて、曲げ疲労特性を確実に向上させることとした。   First, as described in (a) above, prescribed amounts of Cr, Ti, and B are essential. In the case of a rod-shaped steel part, the fatigue characteristic is how to generate a residual stress inside the steel part rather than ensuring the hardness of the surface of the steel part. On the other hand, in the case of a gear such as a pinion, the fatigue characteristics (bending fatigue characteristics) of the gear depend on the hardness. Therefore, in the present invention, by including these elements, the strength of the tooth root portion is increased within a range that does not impair other characteristics necessary in the manufacturing process such as machinability, and the bending fatigue characteristics are reliably improved. It was decided.

上記効果を十分に発揮させるには、Crを0.50%以上含有させる必要がある。しかし、Cr量が過剰になると、効果が飽和する上、圧延のままでは切断性や被削性といった機械加工性が劣化し、生産性や精度が低下するので2.0%以下に抑える。好ましくは1.0%以下である。   In order to fully exhibit the said effect, it is necessary to contain Cr 0.50% or more. However, if the amount of Cr is excessive, the effect is saturated, and if it is rolled, the machinability such as cutting property and machinability is deteriorated, and the productivity and accuracy are lowered. Preferably it is 1.0% or less.

Bは、鋼に焼入れ性を付与すると共に焼入れ材の粒界強度を向上させることによって、上記疲労強度と衝撃強度を向上させる。該効果を発揮させるには、Bを0.0005%以上含有させる。好ましくは0.001%以上、より好ましくは0.002%以上である。しかしB量が過剰となってもその効果は飽和し、溶製時に疵が発生する要因となるので0.005%以下に抑える。好ましくは0.003%以下である。   B improves the fatigue strength and impact strength by imparting hardenability to the steel and improving the grain boundary strength of the hardened material. In order to exhibit this effect, 0.0005% or more of B is contained. Preferably it is 0.001% or more, More preferably, it is 0.002% or more. However, even if the amount of B becomes excessive, the effect is saturated, and it becomes a factor in generating wrinkles during melting, so it is suppressed to 0.005% or less. Preferably it is 0.003% or less.

Tiは、固溶NをTiNとして固定し、固溶Bによる高い焼入れ性を付与するのに必要な元素である。また固溶Nによるその他の悪影響の無害化にも有用である。更には、脱酸作用を有する元素でもある。よって0.005%以上、好ましくは0.010%以上含有させる。しかしTi量が過剰になると、TiCによる析出硬化が顕著になり、被削性が著しく劣化する。よって、Ti量の上限を0.05%とする。好ましくは0.030%以下である。   Ti is an element necessary for fixing solute N as TiN and imparting high hardenability by solute B. It is also useful for detoxifying other adverse effects caused by solute N. Furthermore, it is also an element having a deoxidizing action. Therefore, 0.005% or more, preferably 0.010% or more is contained. However, when the amount of Ti becomes excessive, precipitation hardening by TiC becomes remarkable, and machinability deteriorates remarkably. Therefore, the upper limit of Ti amount is set to 0.05%. Preferably it is 0.030% or less.

更に本発明では、上記(b)の通り、MnS含有介在物のアスペクト比(MnS含有介在物の長径/短径)を10以下とする。被削性を高めるべくSを添加すると、後述する実施例、及び鋼中S量と曲げ疲労寿命の関係を示した図1に示す通り、S量の増加に伴い曲げ疲労特性が低下する傾向にある。しかし切削して高精度のピニオンを形成するにはSの添加が不可欠であり、一定量のS量を含有させることを前提に、曲げ疲労特性を向上させる必要がある。   Furthermore, in the present invention, as described in (b) above, the aspect ratio of the MnS-containing inclusions (major axis / minor axis of the MnS-containing inclusions) is 10 or less. When S is added to improve machinability, bending fatigue characteristics tend to decrease with increasing S amount, as shown in FIG. 1, which shows the relationship between the amount of S in steel and the bending fatigue life, as will be described later. is there. However, addition of S is indispensable for cutting to form a highly accurate pinion, and it is necessary to improve the bending fatigue characteristics on the assumption that a certain amount of S is contained.

本発明者は、上記の通り規定量のCr、Ti及びBを必須とすると共に、MnS含有介在物のアスペクト比を10以下とすれば、優れた被削性と曲げ疲労特性の両立を実現できることを見出した。図2は、S量を0.015%含む鋼材と、S量を0.060%含むものであってMnS含有介在物のアスペクト比を変化させた鋼材を、後述する実施例に示す通り、高周波熱処理を施し、その後に曲げ疲労寿命を測定した結果を整理したものである。この図2から、被削性を高めるべくS量を0.060%と多く含有させる場合であっても、MnS含有介在物のアスペクト比を低減することで、S量:0.015%の鋼材並みの曲げ疲労特性を確保できることがわかる。   As described above, the inventor makes the specified amounts of Cr, Ti, and B essential, and can achieve both excellent machinability and bending fatigue characteristics when the aspect ratio of the inclusion containing MnS is 10 or less. I found. FIG. 2 shows a steel material containing 0.015% of S and a steel material containing 0.060% of S and changing the aspect ratio of MnS-containing inclusions, as shown in the examples described later. The results of heat treatment and subsequent measurement of bending fatigue life are organized. From FIG. 2, even in the case where the S content is as large as 0.060% in order to improve the machinability, by reducing the aspect ratio of the MnS-containing inclusions, the steel content of S content: 0.015% It can be seen that the same bending fatigue characteristics can be secured.

上記アスペクト比は、好ましくは5以下、より好ましくは3以下であるものがよい。   The aspect ratio is preferably 5 or less, more preferably 3 or less.

尚、上記MnS含有介在物としては、MnSの他、該MnSと後述するTe、Ca、Zr、Mg、Y及びREMよりなる群から選択される1種以上の元素の酸化物との複合化合物が挙げられる。   As the MnS-containing inclusions, in addition to MnS, a composite compound of MnS and an oxide of one or more elements selected from the group consisting of Te, Ca, Zr, Mg, Y, and REM described later is included. Can be mentioned.

本発明は、特に上記Cr、Ti及びBの含有量とMnS含有介在物のアスペクト比を制御することによって、ピニオンにおける曲げ疲労特性を高めると共に、該ピニオン製造時に要求される被削性の両立を達成できたものであるが、該作用効果を確実に発揮させるには、その他の成分を下記の通り制御する必要がある。   In particular, the present invention improves the bending fatigue characteristics of the pinion by controlling the content of Cr, Ti and B and the aspect ratio of the MnS-containing inclusion, and at the same time, achieves both the machinability required at the time of manufacturing the pinion. Although it has been achieved, in order to reliably exhibit the effects, it is necessary to control other components as follows.

〈C:0.3〜0.60%〉
Cは、高周波焼入れ後の強度確保に必要な元素であり、本発明では0.3%以上含有させる。好ましくは0.4%以上である。一方、C量が過剰になると、必要以上に硬度が上昇し被削性が劣化する。また脆くなり疲労特性も確保し難くなるので0.60%以下に抑える。好ましくは0.55%以下、より好ましくは0.50%以下に抑える。
<C: 0.3 to 0.60%>
C is an element necessary for securing the strength after induction hardening, and is contained in an amount of 0.3% or more in the present invention. Preferably it is 0.4% or more. On the other hand, when the amount of C becomes excessive, the hardness increases more than necessary and the machinability deteriorates. Moreover, since it becomes brittle and it becomes difficult to ensure fatigue characteristics, it is suppressed to 0.60% or less. Preferably it is 0.55% or less, more preferably 0.50% or less.

〈Si:0.01〜1.0%〉
Siは、鋼の脱酸に有効な元素であると共に、鋼に必要な強度、焼入れ性を与え、焼戻し軟化抵抗を向上させるのに有効な元素であるが、0.01%未満ではその効果が不十分である。一方、1.0%を超えると硬さの上昇を招き被削性が劣化する。好ましくは0.5%以下であり、より好ましくは0.15%以下である。
<Si: 0.01 to 1.0%>
Si is an element effective for deoxidation of steel, and is an element effective for imparting necessary strength and hardenability to steel and improving temper softening resistance. It is insufficient. On the other hand, if it exceeds 1.0%, the hardness increases and the machinability deteriorates. Preferably it is 0.5% or less, More preferably, it is 0.15% or less.

〈Mn:0.2〜2.0%〉
Mnは、高周波焼入れ性の向上に有効な元素であり、該効果を発揮させるには、Mnを0.2%以上含有させる必要がある。しかしMn量が過剰になると、硬質のベイナイト組織が多量に形成されて被削性を劣化させるので、2.0%以下に抑える。好ましくは0.5%以下である。
<Mn: 0.2 to 2.0%>
Mn is an element effective for improving the induction hardenability, and in order to exhibit this effect, it is necessary to contain 0.2% or more of Mn. However, when the amount of Mn becomes excessive, a large amount of hard bainite structure is formed and the machinability is deteriorated. Preferably it is 0.5% or less.

〈S:0.010〜0.08%〉
Sは、鋼中でMnSを形成し、これによる被削性の向上を図るのに有用な元素である。該効果を十分に発揮させるには、Sを0.010%以上含有させる必要がある。好ましくは0.015%以上である。しかしS量が過剰になると、曲げ疲労特性の劣化を招くので0.08%以下に抑える。好ましくは0.04%以下、より好ましくは0.030%以下である。
<S: 0.010 to 0.08%>
S is an element useful for forming MnS in steel and thereby improving machinability. In order to fully exhibit this effect, it is necessary to contain S 0.010% or more. Preferably it is 0.015% or more. However, when the amount of S is excessive, the bending fatigue characteristics are deteriorated, so the amount is suppressed to 0.08% or less. Preferably it is 0.04% or less, More preferably, it is 0.030% or less.

〈Al:0.001〜0.1%〉
Alは、脱酸剤として有用であると共に、鋼中に存在する固溶NをAlNとして固定し、固溶Bを確保するのに有用である。該効果を十分発揮させるには、Alを0.001%以上、好ましくは0.01%以上含有させる。しかしAl量が過剰になると、硬質のAlが過度に生成し、被削性を劣化させる。よってAl量は0.1%以下、好ましくは0.04%以下とする。
<Al: 0.001 to 0.1%>
Al is useful as a deoxidizer and is useful for securing solid solution B by fixing solid solution N existing in steel as AlN. In order to exhibit the effect sufficiently, Al is contained in an amount of 0.001% or more, preferably 0.01% or more. However, when the amount of Al is excessive, hard Al 2 O 3 is excessively generated and machinability is deteriorated. Therefore, the Al content is 0.1% or less, preferably 0.04% or less.

〈P:0.025%以下(0%を含まない)〉
Pは、切削時に生じる切屑を折れ易くして切屑処理性の改善に寄与する元素である。しかし、高周波焼入れ・焼戻し後の部品の結晶粒界を脆化させて、最終製品の疲労強度を劣化させるので、可能な限り低減させるのがよく、本発明では0.025%以下に抑える。好ましくは0.015%以下である。
<P: 0.025% or less (excluding 0%)>
P is an element that contributes to improvement of chip disposal by making chips generated during cutting easy to break. However, since the grain boundaries of the parts after induction hardening and tempering are embrittled and the fatigue strength of the final product is deteriorated, it should be reduced as much as possible. In the present invention, it is suppressed to 0.025% or less. Preferably it is 0.015% or less.

〈N:0.007%以下(0%を含まない)〉
Nは、Bと結合して、固溶Bによる焼入れ性付与の効果を抑制するため、極力少ない方が好ましい。上記の通りTiを添加して固溶Nを固定し、固溶Bの上記効果を確保するが、N量が多いとその分Tiも多量に添加する必要がありコストが上昇する。また、硬質であるTiNが増加し、被削性にも悪影響を及ぼす。よって、N量は0.007%以下に抑える。好ましくは0.005%以下である。
<N: 0.007% or less (excluding 0%)>
Since N combines with B and suppresses the effect of imparting hardenability by solute B, it is preferable that N is as small as possible. As described above, Ti is added to fix the solid solution N, and the above effect of the solid solution B is ensured. However, if the amount of N is large, it is necessary to add a large amount of Ti and the cost increases. In addition, hard TiN increases, which adversely affects machinability. Therefore, the N content is suppressed to 0.007% or less. Preferably it is 0.005% or less.

〈Te:0.0005〜0.02%、
Ca:0.0005〜0.02%、
Zr:0.01〜0.50%、
Mg:0.0001〜0.0055%、
Y :0.001〜0.1%、及び
REM(希土類元素):0.001〜0.15%
よりなる群から選択される1種以上〉
これらの元素を添加すると、各々酸化物を形成してMnSの生成核となると共に、MnSが例えば(Mn,Ca)Sや(Mn,Mg)S等に組成改質される。そして、この様な改質により、熱間圧延時に上記MnS含有介在物の延伸性が改善され、粒状のMnS含有介在物が微細分散するため、上記の通りアスペクト比を10以下とすることができ、高周波焼入れ後の曲げ疲労寿命を向上させることができる。
<Te: 0.0005 to 0.02%,
Ca: 0.0005 to 0.02%,
Zr: 0.01 to 0.50%,
Mg: 0.0001 to 0.0055%,
Y: 0.001 to 0.1%, and REM (rare earth element): 0.001 to 0.15%
One or more selected from the group consisting of>
When these elements are added, oxides are formed to form nuclei of MnS, and MnS is compositionally modified to, for example, (Mn, Ca) S or (Mn, Mg) S. Such modification improves the stretchability of the MnS-containing inclusions during hot rolling and finely disperses the granular MnS-containing inclusions, so that the aspect ratio can be 10 or less as described above. The bending fatigue life after induction hardening can be improved.

上記効果を確実に発揮させるには、Teを添加する場合は0.0005%以上(好ましくは0.0050%以上)、Caの場合は0.0005%以上(好ましくは0.0015%以上)、Zrの場合は0.01%以上(好ましくは0.05%以上)、Mgの場合は0.0001%以上(好ましくは0.0005%以上)、Yの場合は0.001%以上(好ましくは0.002%以上)、REMの場合は0.001%以上(好ましくは0.002%以上)含有させる。   In order to reliably exhibit the above effect, 0.0005% or more (preferably 0.0050% or more) is added when Te is added, 0.0005% or more (preferably 0.0015% or more) in the case of Ca, In the case of Zr, 0.01% or more (preferably 0.05% or more), in the case of Mg, 0.0001% or more (preferably 0.0005% or more), in the case of Y, 0.001% or more (preferably 0.002% or more), and in the case of REM, 0.001% or more (preferably 0.002% or more) is contained.

しかしこれらの元素が過剰に存在しても、上記効果は飽和し、CaO、MgO等の粗大酸化物やそのクラスターが形成されたり、ZrN等の硬質析出物が多量に生成して被削性の劣化を招く。よって、Teは0.02%以下(好ましくは0.01%以下)、Caは0.02%以下(好ましくは0.0050%以下)、Zrは0.50%以下(好ましくは0.15%以下)、Mgは0.0055%以下(好ましくは0.0030%以下)、Yは0.1%以下(好ましくは0.05%以下)、REMは0.15%以下(好ましくは0.05%以下)とする。   However, even if these elements are present in excess, the above effects are saturated, coarse oxides such as CaO and MgO and clusters thereof are formed, and a large amount of hard precipitates such as ZrN are formed, resulting in machinability. It causes deterioration. Therefore, Te is 0.02% or less (preferably 0.01% or less), Ca is 0.02% or less (preferably 0.0050% or less), and Zr is 0.50% or less (preferably 0.15%). Or less), Mg is 0.0055% or less (preferably 0.0030% or less), Y is 0.1% or less (preferably 0.05% or less), and REM is 0.15% or less (preferably 0.05). % Or less).

尚、本発明でいうREM(希土類元素)とは、原子番号57〜71番の元素を指す。   In addition, REM (rare earth element) as used in the field of this invention refers to the element of atomic number 57-71.

〈Total 酸素:15ppm以下(0%を含まない)〉
MnS含有介在物のアスペクト比を小さくするには、上記の通りTe、Ca、Zr、Mg、Y、及びREMよりなる群から選択される1種以上の元素の添加が有効であるが、アスペクト比の低減を実現させるには、MnS中に上記Te等を固溶または化合させる必要がある。しかし鋼材溶製時の溶鋼中溶存酸素濃度が高いと、上記元素のほとんどが酸化物となりMnS中へ固溶または化合し難くなるため、上述した介在物の改質が不十分となる。よって、上記元素の添加に際し、予め溶存酸素濃度を30ppm以下、好ましくは20ppm以下、より好ましくは10ppm以下に抑える必要がある。この際、溶存酸素濃度と鋼材のTotal酸素量には相関があり、Total 酸素が15ppm以下、より好ましくは10ppm以下であれば、溶存酸素濃度が上記範囲内に低減されており、MnS中に上記元素を固溶または化合させてMnS含有介在物のアスペクト比を小さくすることができる。
<Total oxygen: 15 ppm or less (excluding 0%)>
In order to reduce the aspect ratio of the MnS-containing inclusion, it is effective to add one or more elements selected from the group consisting of Te, Ca, Zr, Mg, Y, and REM as described above. In order to realize the reduction of Te, it is necessary to dissolve or combine the above Te and the like in MnS. However, when the dissolved oxygen concentration in the molten steel at the time of melting the steel material is high, most of the above elements become oxides, and it becomes difficult to form a solid solution or compound in MnS, so that the above-described modification of the inclusions becomes insufficient. Therefore, it is necessary to suppress the dissolved oxygen concentration to 30 ppm or less, preferably 20 ppm or less, more preferably 10 ppm or less in advance when the above elements are added. At this time, there is a correlation between the dissolved oxygen concentration and the total oxygen amount of the steel material. If the total oxygen is 15 ppm or less, more preferably 10 ppm or less, the dissolved oxygen concentration is reduced within the above range, The aspect ratio of the MnS-containing inclusions can be reduced by dissolving or combining the elements.

本発明で規定する含有元素は上記の通りであって、残部は鉄及び不可避不純物であり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。   The contained elements defined in the present invention are as described above, and the balance is iron and unavoidable impurities. As the unavoidable impurities, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed.

上記の通りMnS含有介在物のアスペクト比を制御するには、鋳造前に、上述の通り溶存酸素濃度を30ppm以下、好ましくは20ppm以下、より好ましくは10ppm以下としてから(具体的な方法としてはAl脱酸)、上記Te、Ca、Zr、Mg、Y、及びREMよりなる群から選択される1種以上の元素を添加し、上記成分組成に調整したのち鋳造する必要がある。また、圧延時の加熱温度の制御も重要であり、900℃以上、好ましくは1000℃以上(加熱炉から出てきた鋼材の温度を放射温度計で測定した温度)に加熱してから圧延する必要がある。   In order to control the aspect ratio of the MnS-containing inclusions as described above, the dissolved oxygen concentration is set to 30 ppm or less, preferably 20 ppm or less, more preferably 10 ppm or less as described above (as a specific method, as described above) before casting. Deoxidation), one or more elements selected from the group consisting of Te, Ca, Zr, Mg, Y, and REM must be added and adjusted to the above component composition before casting. It is also important to control the heating temperature at the time of rolling, and it is necessary to perform rolling after heating to 900 ° C or higher, preferably 1000 ° C or higher (temperature measured by a radiation thermometer of the steel material coming out of the heating furnace). There is.

本発明のピニオンは、上記鋼材を用いて、熱間圧延後、熱間鍛造してから機械加工(切削)を施して歯車とし、その後、高周波熱処理を行って得ることができる。その後、必要に応じて焼戻し、ショットピーニングや仕上げ研磨を施してもよい。   The pinion of the present invention can be obtained by using the above steel material, hot rolling, hot forging, then machining (cutting) into a gear, and then performing high frequency heat treatment. Thereafter, tempering, shot peening or finish polishing may be performed as necessary.

高周波熱処理の条件は、ピニオン(鋼部品)の大きさにもよるが、例えば高周波焼入機で出力:150kW、周波数:200kHz、移動速度:1.15mm/secの条件で、歯底での焼入れ深さ:0.5〜1.5mmとなるよう焼入れ(水冷却)を行い、その後、適宜焼戻しを行うことが挙げられる。   The condition of induction heat treatment depends on the size of the pinion (steel part), but for example, quenching at the root of the tooth under the conditions of output: 150 kW, frequency: 200 kHz, moving speed: 1.15 mm / sec with an induction hardening machine Depth: quenching (water cooling) to 0.5 to 1.5 mm, followed by tempering as appropriate.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

表1,2に記載の成分組成からなる供試鋼を溶製して得た鋼材を、表1,2に示す温度で加熱してから熱間圧延を行い、圧延材(直径:35mm)を得た。尚、溶製時は、後述する表2のJ3以外は、鋳造前にAlを添加して溶鋼の溶存酸素量を20ppm以下に低減してから、Te、Ca、Zr、Mg、Y、及びREMよりなる群から選択される1種以上の元素を添加した。またJ3については、溶製時に、溶存酸素を十分下げずにMg、Caを添加した。   The steel materials obtained by melting the test steels having the composition shown in Tables 1 and 2 were heated at the temperatures shown in Tables 1 and 2 and then hot-rolled to obtain a rolled material (diameter: 35 mm). Obtained. At the time of melting, except for J3 in Table 2 described later, Al is added before casting to reduce the dissolved oxygen content of the molten steel to 20 ppm or less, and then Te, Ca, Zr, Mg, Y, and REM One or more elements selected from the group consisting of: For J3, Mg and Ca were added at the time of melting without sufficiently lowering dissolved oxygen.

上記表1,2に示す加熱温度は、加熱炉から出した時点で鋼片の温度を放射温度計で測定したものである。   The heating temperatures shown in Tables 1 and 2 are obtained by measuring the temperature of the steel slab with a radiation thermometer at the time of removal from the heating furnace.

そして、上記圧延材を用いて、MnS含有介在物のアスペクト比を次の様に測定した。即ち、圧延材のD/4(D:圧延材の直径)部の圧延方向断面にて、測定視野:0.16mmをSEM観察(分解能1μm)し、長径×短径が5μm以上のMnS含有介在物を対象に、アスペクト比(長径/短径)を測定し、合計4視野(0.64mm)で平均値を求めた。 And the aspect ratio of the MnS containing inclusion was measured as follows using the said rolling material. That is, in the cross section in the rolling direction of the D / 4 (D: diameter of the rolled material) part of the rolled material, the measurement visual field: 0.16 mm 2 is observed by SEM (resolution: 1 μm), and MnS whose major axis × minor axis is 5 μm 2 or more. The aspect ratio (major axis / minor axis) was measured for the inclusions included, and the average value was obtained with a total of four fields (0.64 mm 2 ).

また曲げ疲労特性は、次の様にして評価した。即ち、上記圧延材から小野式ミニ回転曲げ試験片(図3に示す試験片)を作成し、中心部が硬化するまで高周波焼入れ(IHQ)を行い、その後150℃×1時間で焼き戻した。   The bending fatigue characteristics were evaluated as follows. That is, an Ono-type mini-rotation bending test piece (test piece shown in FIG. 3) was prepared from the rolled material, induction hardening (IHQ) was performed until the center portion was cured, and then tempered at 150 ° C. for 1 hour.

そして該試験片を用いて小野式回転曲げ試験を行なった。該試験では、曲げ応力:280MPaを負荷した状態で回転させ、破損までの回転数(曲げ疲労寿命)を測定し、曲げ疲労寿命が1.0×10回以上のものを曲げ疲労特性に優れると評価した。これらの結果を表1,2に併記する。 And the Ono type | formula rotation bending test was done using this test piece. In this test, the sample was rotated under a bending stress of 280 MPa, the number of rotations until failure (bending fatigue life) was measured, and a bending fatigue life of 1.0 × 10 5 or more was excellent in bending fatigue characteristics. It was evaluated. These results are also shown in Tables 1 and 2.

被削性は、後述する表1,2のA1、C1、C2及びI3の鋼材を用いて下記条件で切削試験を行い、A1のドリル摩耗量を1.0とした場合のドリル摩耗指数を求めた。その結果、C1では1.5、C2では2.0、またI3では3.0であった。
<切削試験条件>
・工具:SKH9,10mmφストレートドリル
・切削速度:15m/min
・送り:0.33mm/rev
・乾式
・被削材:焼ならし処理(850℃×2hr→AC)
・測定項目:穴深さ30mm×4切削時の摩耗量
For machinability, a cutting test was performed using the steel materials A1, C1, C2, and I3 in Tables 1 and 2 described later under the following conditions, and the drill wear index was obtained when the drill wear amount of A1 was 1.0. It was. As a result, it was 1.5 for C1, 2.0 for C2, and 3.0 for I3.
<Cutting test conditions>
・ Tool: SKH9, 10mmφ straight drill ・ Cutting speed: 15m / min
・ Feed: 0.33mm / rev
・ Dry type ・ Work material: Normalizing treatment (850 ° C. × 2 hr → AC)
・ Measurement item: Hole depth 30mm × 4 Wear during cutting

Figure 2007016271
Figure 2007016271

Figure 2007016271
Figure 2007016271

表1、2より次の様に考察できる(尚、下記記号は、表1、2中の記号を示す)。   The following can be considered from Tables 1 and 2 (note that the following symbols indicate the symbols in Tables 1 and 2).

A1〜A7は、成分組成が本発明の規定範囲内にある鋼材を用い、製造条件を変えて鋼部品を製造した例である。この中でA6,A7は、推奨される温度で加熱せずに圧延を行ったため、MnS含有介在物のアスペクト比が高くなり、曲げ疲労特性に劣る結果となった。   A1 to A7 are examples in which steel parts are manufactured by changing the manufacturing conditions using steel materials whose component composition is within the specified range of the present invention. Among them, A6 and A7 were rolled without being heated at the recommended temperature, so that the aspect ratio of the MnS-containing inclusions was increased, resulting in poor bending fatigue characteristics.

B1〜B4は、C量の影響を確認した例であるが、B4の結果から、C量が過剰であると優れた曲げ疲労特性を確保することができないことがわかる。これは過剰のCにより鋼材が脆くなったためと推察される。   B1 to B4 are examples in which the influence of the C amount is confirmed. From the result of B4, it is understood that if the C amount is excessive, excellent bending fatigue characteristics cannot be ensured. This is presumably because the steel material became brittle due to excess C.

C1,C2は、Si量を比較的高めにした例であるが、優れた曲げ疲労特性を示すことがわかる。   C1 and C2 are examples in which the Si amount is relatively high, but it is understood that excellent bending fatigue characteristics are exhibited.

またD1,D2は、Mn量を比較的高めにした例であるが、この場合も優れた曲げ疲労特性を確保できることがわかる。   D1 and D2 are examples in which the amount of Mn is relatively high, but it is understood that excellent bending fatigue characteristics can be secured in this case as well.

E1,E2は、P量が少し高い例であるが、規定の範囲内であれば、優れた曲げ疲労特性を確保できることがわかる。   E1 and E2 are examples in which the amount of P is slightly high, but it can be seen that excellent bending fatigue characteristics can be ensured if within the specified range.

F1〜F6は、S量の影響を確認した例である。これらの例から、S量が過剰であるとMnSのアスペクト比を小さくしても、優れた曲げ疲労特性の確保が困難となることがわかる。   F1 to F6 are examples in which the influence of the S amount is confirmed. From these examples, it can be seen that if the amount of S is excessive, it is difficult to ensure excellent bending fatigue characteristics even if the aspect ratio of MnS is reduced.

G1〜G4は、Cr量の影響を確認した例である。G1の結果から、Cr量が不足すると曲げ疲労寿命が短くなることがわかる。これは焼入れ性が不十分であるためと推察される。   G1 to G4 are examples in which the influence of the Cr amount is confirmed. From the result of G1, it is understood that the bending fatigue life is shortened when the Cr amount is insufficient. This is probably because the hardenability is insufficient.

H1,H2は、Al量の比較的少ない例と比較的多い例であるが、この場合も優れた曲げ疲労特性を確保できることがわかる。   H1 and H2 are an example in which the amount of Al is relatively small and an example in which the amount of Al is relatively large.

I1〜I6は、Ti量、B量の影響を確認した例であるが、I2,I6の結果から、Ti量が少なすぎる場合には、Bの粒界強化機構が働かず疲労寿命が短くなっている。I3はTi量が過剰であるため、必要以上に硬度が増して、上述の通り被削性に劣っている。I4はB量が少なすぎるため、疲労寿命が短くなっている。またI5から、B量が過剰の場合には、溶製時に疵が生じやすくなった。   I1 to I6 are examples in which the effects of Ti amount and B amount are confirmed. From the results of I2 and I6, when the Ti amount is too small, the grain boundary strengthening mechanism of B does not work and the fatigue life is shortened. ing. Since the amount of Ti in I3 is excessive, the hardness is increased more than necessary and the machinability is inferior as described above. Since the amount of B in I4 is too small, the fatigue life is shortened. Also, from I5, when the amount of B was excessive, wrinkles were likely to occur during melting.

J1〜J3は、トータル酸素量の影響を確認したものである。J3の様にトータル酸素量が高いと、MnSのアスペクト比が高くなり優れた曲げ疲労特性を確保できない。これは、トータル酸素が高いことが溶製時の溶存酸素濃度の高いことを意味しており、溶存酸素濃度が高いと、MnS含有介在物の球状化のために添加したMg、Caがほとんど酸化物となり、有効に作用しなかったためと推察される。   J1 to J3 confirm the influence of the total oxygen amount. If the total oxygen content is high as in J3, the aspect ratio of MnS becomes high and excellent bending fatigue characteristics cannot be ensured. This means that a high total oxygen means a high dissolved oxygen concentration at the time of melting. When the dissolved oxygen concentration is high, Mg and Ca added to spheroidize MnS-containing inclusions are almost oxidized. Presumably because it was a product and did not work effectively.

K1〜K6は、Te等の介在物形態制御元素の影響を調べた例であるが、K1の様にTe等の介在物形態制御元素を添加しない場合には、加熱温度等の他の因子を制御してもMnS含有介在物のアスペクト比が大きくなることがわかる。またK2〜K6から、Mg以外のZr、Y、REM、Ca、Teといった元素を添加した場合でも、Mgと同様の効果が得られることがわかる。   K1 to K6 are examples in which the influence of inclusion form control elements such as Te is examined. However, when no inclusion form control element such as Te is added as in K1, other factors such as heating temperature are set. It can be seen that the aspect ratio of the MnS-containing inclusions is increased even if controlled. Further, from K2 to K6, it is understood that the same effect as Mg can be obtained even when elements such as Zr, Y, REM, Ca, Te other than Mg are added.

鋼中S量と曲げ疲労寿命の関係を示したグラフである。It is the graph which showed the relationship between the amount of S in steel, and a bending fatigue life. MnS含有介在物のアスペクト比と曲げ疲労寿命の関係をS量別に示したグラフである。It is the graph which showed the relationship between the aspect ratio of a MnS containing inclusion, and a bending fatigue life according to S amount. 実施例で用いた回転曲げ試験片を模式的に示した側面図である。It is the side view which showed typically the rotation bending test piece used in the Example.

Claims (4)

C:0.3〜0.60%(質量%の意味、以下同じ)、
Si:0.01〜1.0%、
Mn:0.2〜2.0%、
Cr:0.50〜2.0%、
S :0.010〜0.08%、
B :0.0005〜0.005%、
Al:0.001〜0.1%、
Ti:0.005〜0.05%、
P :0.025%以下(0%を含まない)、
N :0.007%以下(0%を含まない)、
Total 酸素:15ppm以下(0%を含まない)
を含むと共に、
Te:0.0005〜0.02%、
Ca:0.0005〜0.02%、
Zr:0.01〜0.50%、
Mg:0.0001〜0.0055%、
Y :0.001〜0.1%、及び
REM:0.001〜0.15%よりなる群から選択される1種以上を含有し、
残部が鉄及び不可避的不純物からなるものであって、
MnS含有介在物の平均アスペクト比が10以下であり、かつ
下記条件で高周波熱処理を行ったときに、下記曲げ疲労特性を示すことを特徴とする被削性に優れたピニオン用高周波焼入れ用鋼。
<高周波熱処理条件>
高周波熱処理機にて、下記条件で試験片の中心部が硬化するまで焼入れ後、150℃×1時間で焼戻す。
試験片:D:12mm、D:10mm、R:16mm
α=2.0のキリカキ付き回転曲げ試験片
周波数:20kHz
出力:6.0kV
送り速度:5.0mm/sec
焼入れ温度:850℃
ソリュブル液使用
<曲げ疲労特性>
・曲げ疲労試験条件:回転曲げ応力280MPa
・曲げ疲労寿命:1.0×10回以上
C: 0.3 to 0.60% (meaning mass%, the same shall apply hereinafter)
Si: 0.01 to 1.0%,
Mn: 0.2 to 2.0%,
Cr: 0.50 to 2.0%,
S: 0.010 to 0.08%,
B: 0.0005 to 0.005%,
Al: 0.001 to 0.1%,
Ti: 0.005 to 0.05%,
P: 0.025% or less (excluding 0%),
N: 0.007% or less (excluding 0%),
Total oxygen: 15 ppm or less (excluding 0%)
Including
Te: 0.0005 to 0.02%,
Ca: 0.0005 to 0.02%,
Zr: 0.01 to 0.50%,
Mg: 0.0001 to 0.0055%,
Y: 0.001 to 0.1%, and REM: one or more selected from the group consisting of 0.001 to 0.15%,
The balance consists of iron and inevitable impurities,
A steel for induction hardening for pinions having excellent machinability, wherein the MnS-containing inclusions have an average aspect ratio of 10 or less and exhibit the following bending fatigue characteristics when subjected to induction heat treatment under the following conditions.
<High-frequency heat treatment conditions>
In a high-frequency heat treatment machine, after quenching until the center of the test piece is cured under the following conditions, temper at 150 ° C. for 1 hour.
Test piece: D 0 : 12 mm, D: 10 mm, R: 16 mm
Rotating bend test piece with a crack of α = 2.0 Frequency: 20 kHz
Output: 6.0 kV
Feeding speed: 5.0mm / sec
Quenching temperature: 850 ° C
Use of soluble liquid <Bending fatigue characteristics>
Bending fatigue test conditions: Rotational bending stress 280 MPa
・ Bending fatigue life: 1.0 × 10 5 times or more
前記Caを0.0005〜0.02%、及び前記Mgを0.0001〜0.0055%含み、前記MnS含有介在物の平均アスペクト比が3以下である請求項1に記載のピニオン用高周波焼入れ用鋼。   2. The induction hardening for pinions according to claim 1, comprising 0.0005 to 0.02% of Ca and 0.0001 to 0.0055% of Mg, and an average aspect ratio of the MnS-containing inclusions being 3 or less. Steel. 前記請求項1又は2に記載の成分組成を有する鋼材を用い、高周波焼入れを施して得られるものであって、
MnS含有介在物の平均アスペクト比が10以下であると共に、
下記曲げ疲労特性を示すことを特徴とする曲げ疲労特性に優れたピニオン。
<曲げ疲労特性>
・曲げ疲労試験片:D:12mm、D:10mm、R:16mm
α=2.0のキリカキ付き回転曲げ試験片
・曲げ疲労試験条件:回転曲げ応力280MPa
・曲げ疲労寿命:1.0×10回以上
Using a steel material having the component composition according to claim 1 or 2, obtained by induction hardening,
The average aspect ratio of the MnS-containing inclusion is 10 or less,
A pinion excellent in bending fatigue characteristics characterized by exhibiting the following bending fatigue characteristics.
<Bending fatigue properties>
Bending fatigue test piece: D 0 : 12 mm, D: 10 mm, R: 16 mm
α = 2.0 Rotating Bending Specimen with Crevice ・ Bending fatigue test condition: Rotating bending stress 280 MPa
・ Bending fatigue life: 1.0 × 10 5 times or more
前記請求項1または2に記載のピニオン用高周波焼入れ用鋼を製造する方法であって、溶鋼の溶存酸素量を20ppm以下に低減してからTe、Ca、Zr、Mg、Y、及びREMよりなる群から選択される1種以上の元素を添加して、前記請求項1又は2に記載の成分組成に調整したのち鋳造を行うと共に、熱間圧延に際して鋼材を900℃以上に加熱することを特徴とするピニオン用高周波焼入れ用鋼の製造方法。   A method for producing an induction-quenched steel for pinions according to claim 1 or 2, comprising a Te, Ca, Zr, Mg, Y, and REM after the dissolved oxygen content of the molten steel is reduced to 20 ppm or less. One or more elements selected from the group are added to adjust the component composition according to claim 1 or 2 to perform casting, and the steel is heated to 900 ° C. or higher during hot rolling. A method for producing steel for induction hardening for pinions.
JP2005198101A 2005-07-06 2005-07-06 Steel for induction hardening for pinions with excellent machinability, manufacturing method thereof, and pinion with excellent bending fatigue characteristics Active JP4502892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198101A JP4502892B2 (en) 2005-07-06 2005-07-06 Steel for induction hardening for pinions with excellent machinability, manufacturing method thereof, and pinion with excellent bending fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198101A JP4502892B2 (en) 2005-07-06 2005-07-06 Steel for induction hardening for pinions with excellent machinability, manufacturing method thereof, and pinion with excellent bending fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2007016271A true JP2007016271A (en) 2007-01-25
JP4502892B2 JP4502892B2 (en) 2010-07-14

Family

ID=37753688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198101A Active JP4502892B2 (en) 2005-07-06 2005-07-06 Steel for induction hardening for pinions with excellent machinability, manufacturing method thereof, and pinion with excellent bending fatigue characteristics

Country Status (1)

Country Link
JP (1) JP4502892B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082454A1 (en) 2009-01-16 2010-07-22 新日本製鐵株式会社 Steel for high-frequency hardening
US9139894B2 (en) 2010-07-14 2015-09-22 Nippon Steel & Sumitomo Metal Corporation Steel for machine structure exhibiting excellent machinability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069577A (en) * 2000-08-30 2002-03-08 Nippon Steel Corp Cold-warm forging steel having excellent forgeability and product toughness, and its production method
JP2002194484A (en) * 2000-10-02 2002-07-10 Sumitomo Metals (Kokura) Ltd Steel for machine structure
JP2003034843A (en) * 2001-05-14 2003-02-07 Sanyo Special Steel Co Ltd High-strength case hardened steel and parts thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069577A (en) * 2000-08-30 2002-03-08 Nippon Steel Corp Cold-warm forging steel having excellent forgeability and product toughness, and its production method
JP2002194484A (en) * 2000-10-02 2002-07-10 Sumitomo Metals (Kokura) Ltd Steel for machine structure
JP2003034843A (en) * 2001-05-14 2003-02-07 Sanyo Special Steel Co Ltd High-strength case hardened steel and parts thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082454A1 (en) 2009-01-16 2010-07-22 新日本製鐵株式会社 Steel for high-frequency hardening
US9139894B2 (en) 2010-07-14 2015-09-22 Nippon Steel & Sumitomo Metal Corporation Steel for machine structure exhibiting excellent machinability

Also Published As

Publication number Publication date
JP4502892B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
KR101340729B1 (en) Steel for high-frequency hardening
JP5114689B2 (en) Case-hardened steel and method for producing the same
CN105492644B (en) Rolled round steel material for steering rack bar, and steering rack bar
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
WO2001048257A1 (en) Bar or wire product for use in cold forging and method for producing the same
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
WO2019244503A1 (en) Mechanical component
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP2015166495A (en) Case hardening steel excellent in cold forgeability and crystal grain coarsening suppression performance
JP5405325B2 (en) Differential gear and manufacturing method thereof
JP2004225102A (en) High strength steel for pinion shaft, and production method therefor
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP4502892B2 (en) Steel for induction hardening for pinions with excellent machinability, manufacturing method thereof, and pinion with excellent bending fatigue characteristics
JP4488228B2 (en) Induction hardening steel
JP5912778B2 (en) Gears with excellent peel resistance and impact fatigue resistance
JP5445345B2 (en) Steel bar for steering rack bar and manufacturing method thereof
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP6043080B2 (en) Steel for high frequency heat treatment gears excellent in peeling resistance and gear cutting workability, and gears and methods for producing the same
JP3428282B2 (en) Gear steel for induction hardening and method of manufacturing the same
JPWO2004035848A1 (en) Steel for machine structures and drive shafts with excellent rolling, fire cracking resistance and torsional properties
JP5287183B2 (en) Manufacturing method of carburizing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Ref document number: 4502892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4