JP2004027334A - Steel for induction tempering and method of producing the same - Google Patents

Steel for induction tempering and method of producing the same Download PDF

Info

Publication number
JP2004027334A
JP2004027334A JP2002189131A JP2002189131A JP2004027334A JP 2004027334 A JP2004027334 A JP 2004027334A JP 2002189131 A JP2002189131 A JP 2002189131A JP 2002189131 A JP2002189131 A JP 2002189131A JP 2004027334 A JP2004027334 A JP 2004027334A
Authority
JP
Japan
Prior art keywords
strength
torsional
steel
fatigue strength
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002189131A
Other languages
Japanese (ja)
Other versions
JP3932995B2 (en
Inventor
Tanko Omori
大森 端浩
Akihiro Matsuzaki
松崎 明博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31183634&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2004027334(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002189131A priority Critical patent/JP3932995B2/en
Publication of JP2004027334A publication Critical patent/JP2004027334A/en
Application granted granted Critical
Publication of JP3932995B2 publication Critical patent/JP3932995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for induction tempering which has excellent twisting strength and twisting fatigue strength, and is suitable for a member produced by an induction tempering process in a short time, and to provide a method of producing the same. <P>SOLUTION: The steel for induction tempering has a composition comprising, by mass, 0.35 to 0.7% C, 0.08 to 1.5% Si, 0.2 to 2.5% Mn, ≤0.020% P, ≤0.06% S, 0.005 to 0.25% Al, 0.005 to 0.1% Ti, 0.0003 to 0.0060% B, 0.002 to 0.02% N and ≤0.0030% O, and the balance Fe with inevitable impurities, and in which the structural fraction of a bainitic phase is ≥10%.In the method of producing the steel for induction tempering, a steel stock having the above composition is subjected to hot rolling at a finishing temperature of ≥900°C, and is cooled at a cooling rate of 0.2 to 10°C/s after the completion of the hot rolling to control the structural fraction of a bainitic phase to ≥10%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、焼入後の焼きもどし処理において短時間の高周波誘導加熱により焼きもどしを施すことにより製造される、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼およびその製造方法に関するものである。特に、本発明の鋼は、自動車用ドライブシャフトおよび等速ジョイント等に適用される機械構造用鋼として用いるのが好適である。
【0002】
従来、自動車用ドライブシャフトや等速ジョイント等の機械構造用部材は、熱間圧延棒鋼に熱間鍛造、あるいは切削、冷間鍛造等により所定の形状に加工した後、高周波焼入れ−炉加熱焼もどしを行い、機械構造用部材としての重要な特性であるねじり強度およびねじり疲労強度を確保しているのが一般的である。
【0003】
他方、近年環境問題から自動車部材に対して部品の軽量化の要求が強く、この点から自動車用部材のねじり強度およびねじり疲労強度の向上が要求されている。
また製造プロセスに関し近年、生産性向上の観点から従来の炉加熱による焼きもどしに替わり、高周波加熱による焼きもどしプロセスの採用が検討されつつある。高周波焼きもどしによれば、加熱時間が数秒間から長くても数分間以下と従来の炉加熱等による焼きもどしの数十分間から数時間といった加熱時間に比べ大幅に短くでき、これにより、焼きもどし処理時間の短縮が可能となり生産性向上が期待される。
【0004】
さらに後に述べるように本発明者らの検討では、高周波加熱の特徴である短時間急速加熱を活用することにより、ねじり特性向上の可能性が期待される。
例えば、特開平7−90484号公報には、特定成分の鋼を用い、これに高周波焼入れを施した部材のある特定の式で定義される断面平均硬さが560以上であることを特徴とする軸部品において、ねじり強度160kgf/mm以上が得られることが示されている。しかしながら、上掲公報には、機械構造用部材として他の重要な特性であるねじり疲労強度に関しては言及されていない。また、上掲公報においては、高周波焼入条件に関しては種々検討されているが、焼きもどし条件に関しては検討されておらず、また焼きもどし条件は170℃で1時間という記載があるのみであり、この記載からすると、焼もどしは短時間で行える高周波焼きもどしではなく、通常の炉加熱等による焼きもどしであると考えられる。
【0005】
また、ねじり疲労強度に関しては、特開平8−253842号公報に、重量比として、C:0.35〜0.65%、Si:0.35〜2.5%、Mn:1.0〜1.8%、Mo:0.05〜0.8%、S:0.01〜0.15%、Al:0.015〜0.05%、Ti:0.005〜0.05%、B:0.0005〜0.005%、N:0.002〜0.01%を含有し、またはさらに、P、Cu、O量を特定以下に制限し、またはさらに特定量のNb、Vの1種または2種を含有し、またはさらに、特定量のCr、Niの1種または2種を含有し、かつフェライトの組織分率が35%以下で、フェライト結晶粒径が20μm 以下であることを特徴とする捩り疲労強度の優れた高周波焼入れ軸部品用鋼材が開示されている。しかしながら、特開平8−253842号公報に記載によれば、実施例中の焼きもどし条件が170℃で1時間という記載のみであり、この記載からすると、短時間で行う高周波焼きもどしではなく、炉加熱等による加熱による通常の焼きもどしプロセスを前提として検討がされている。
また、特開平8−253842号公報には、ねじり疲労強度に関しても記述があり、ねじり強度とねじり疲労強度を両立した鋼材であることが示されている.しかしながら、当該鋼材では、5×10サイクルの繰り返し数におけるねじり疲労強度が最大で771MPaであり、近年の高強度化要求に対しては強度が不足する場合が生じる。
【0006】
【発明が解決しようとする課題】
本発明は、従来技術の上記したような問題を解決し、近年生産性向上の観点から従来の炉加熱焼きもどしに替わり採用が検討されつつある、短時間の高周波焼きもどしプロセスで製造される部材に好適なねじり強度およびねじり疲労強度に優れた高周波焼もどし用鋼およびその製造方法を提供することを目的としてなされたものである。
【0007】
【課題を解決するための手段】
本発明者らは、短時間の高周波焼きもどし処理を行うことを前提としたねじり強度およびねじり疲労強度の向上について鋭意検討を行った。
その結果、高周波焼きもどし処理を行うことを前提として鋼の化学組成および組織を工夫することにより、下記(1)〜(5)に示す理由によって、優れたねじり強度ならびにねじり疲労強度が得られるという知見を得た。
【0008】
すなわち、
(1)ベイナイト相を本発明で規定する組織分率で含有させることにより、ベイナイト組織がフェライト−パーライト組織に比べ炭化物が微細に分散した組織であるために、焼入加熱時に炭化物の溶解が促進され、高周波焼きもどし時の炭化物生成の核となる焼きもどし前の焼入組織(マルテンサイト組織)の粒界に残留する炭化物(以下「粒界残留炭化物」という。)が減少する結果、高周波焼きもどし時の粒内核生成数が増加する。これにより、粒界強度に悪影響を与える粒界炭化物が減少し、粒界強度が向上する結果、ねじり応力下での粒界破壊が抑制され、ねじり強度及びねじり疲労強度が増加する。
【0009】
(2)ベイナイト相を本発明で規定する組織分率で含有させることにより、高周波焼きもどし前の焼入加熱時のオーステナイト粒径が、前記組織分率が本発明範囲外の場合に比べて微細化する。その結果、粒界残留炭化物が減少する。このため高周波焼きもどし後の粒界炭化物が減少する。また、粒界面積が増加するため、P等の粒界偏析不純物量が減少する。これらのことにより、粒界強度が向上するため、ねじり応力下での粒界破壊が抑制され、ねじり強度及びねじり疲労強度が増加する。
【0010】
(3)Si、Al、さらにはMo、Cu、NiおよびCoのうちの1種または数種を適量添加することで、炭化物が不安定化し焼入加熱時に炭化物の溶解が促進され、高周波焼きもどし時の炭化物生成の核となる焼きもどし前の焼入組織(マルテンサイト組織)の粒界に残留する炭化物が減少する結果、高周波焼きもどし時の粒内核生成数が増加する。これにより、粒界強度に悪影響を与える粒界炭化物が減少し、粒界強度が向上する結果、ねじり応力下での粒界破壊が抑制され、ねじり強度及びねじり疲労強度が増加する。
【0011】
(4)Crの添加は炭化物を安定化させ、残留炭化物生成を促進するため、その添加量を規制あるいは無添加とすることで、炭化物が不安定化し焼入加熱時に炭化物の溶解が促進され、高周波焼きもどし時の炭化物生成の核となる焼きもどし前の焼入組織(マルテンサイト組織)の粒界に残留する炭化物が減少する結果、高周波焼きもどし時の粒内核生成数が増加する。これにより、粒界強度に悪影響を与える粒界炭化物が減少し、粒界強度が向上する結果、ねじり応力下での粒界破壊が抑制され、ねじり強度及びねじり疲労強度が増加する。
【0012】
(5)Ti、又はTiとNbおよび/またはVとを適量添加することで、Ti、Nb、Vの微細球状炭化物あるいは微細球状炭窒化物が生成し、これが高周波焼きもどし時の炭化物生成核となり炭化物形状が球状となる。この球状の炭化物あるいは炭窒化物は、粒内の他、(マルテンサイトの)粒界にも存在するが、通常の炉加熱焼きもどし時に一般的に生成する棒状あるいは板状のものに比べると、粒界での存在体積が小さく粒界強度に対する悪影響が小さいため、ねじり応力下における粒界破壊が抑制され、ねじり強度およびねじり疲労強度が向上する。
【0013】
本発明は以上の知見をもとになされたものであり、その要旨とするところは以下の通りである。
すなわち、本発明は
1)質量%で
C:0.35〜0.7%、
Si:0.08〜1.5%、
Mn:0.2〜2.5%、
P≦0.020%、
S≦0.06%、
Al:0.005〜0.25%、
Ti:0.005〜0.1%、
B:0.0003〜0.0060%、
N:0.002〜0.02%、および
O≦0.0030%
を含有し、残部がFe及び不可避的不純物よりなる組成を有し、かつベイナイト相の組織分率が10%以上であることを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼。
【0014】
2) 上記1)において、さらに質量%で、Cr≦0.20%を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼。
【0015】
3) 上記1)または2)において、さらに質量%で、
Mo:0.02〜1.0%、
Cu≦1.0%、
Ni:0.05〜3.5%、および
Co:0.01〜1.0%
から選ばれる1種または2種以上を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼。
【0016】
4) 上記1)乃至3)において、さらに質量%で、
Nb:0.005〜0.1%、および
V:O.01〜0.5%
から選ばれる1種または2種を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼。
【0017】
5) 質量%で
C:0.35〜0.7%、
Si:0.08〜1.5%、
Mn:0.2〜2.5%、
P≦0.020%、
S≦0.06%、
Al:0.005〜0.25%、
Ti:0.005〜0.1%、
B:0.0003〜0.0060%、
N:0.002〜0.02%、および
O≦0.0030%
を含有し、残部Fe及び不可避的不純物よりなる組成を有する鋼素材に、熱間圧延を施し、熱間圧延終了後に0.2〜10℃/sの冷却速度で冷却することにより、ベイナイト相の組織分率が10%以上であることを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼の製造方法。
【0018】
6) 上記5)記載の製造方法において、前記鋼素材がさらに質量%で、Cr≦0.20%を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼の製造方法。
【0019】
7) 上記5)または6)記載の製造方法において、前記鋼素材がさらに質量%で、
Mo:0.02〜1.0%、
Cu≦1.0%、
Ni:0.05〜3.5%、および
Co:0.01〜1.0%
から選ばれる1種または2種以上を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼の製造方法。
【0020】
8) 上記5)乃至7)記載の製造方法において、前記鋼素材がさらに質量%で、
Nb:0.005〜0.1%、および
V:O.01〜0.5%
から選ばれる1種または2種を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼の製造方法。
【0021】
【発明の実施の形態】
以下、本発明の限定理由について説明する。なお、質量%は単に%と記す。
C:0.35〜0.7%
Cは、焼入れ性への影響が最も大きい元素であり、焼入硬化層の硬さおよび深さを高めて、ねじり強度を向上させる上で有用である。しかしながら、C含有量が0.35%に満たないと、必要とされるねじり強度を確保するため焼入硬化深さを飛躍的に高めなければならず、その際、焼割れの発生が顕著になることから、C含有量は0.35%以上とする。一方、C含有量が0.7%を超えると、切削性および冷間鍛造性が低下し、また、ねじり試験時に脆性破壊を起こし、かえってねじり強度が低下する他、耐焼割れ性も低下する。したがって、C含有量は、0.35〜0.7%の範囲とし、好ましくは0.4〜0.6%の範囲とする。
【0022】
Si:0.08〜1.5%
Siは、炭化物生成を抑制し、炭化物による粒界強度の低下を抑制する。また、フェライト中に固溶して強化するほか、焼入れ後の焼もどし時の焼もどし軟化抵抗を向上させる元素であり、このことにより、ねじり強度を向上させる。さらに、Siは脱酸元素としても有用であるため、それらの効果を発揮させる観点から、Si含有量は0.08%以上とする必要がある。しかしながら、Si含有量が1.5%を超えると、フェライトの固溶硬化により硬さが上昇し、切削性および冷間鍛造性の低下を招く。したがってSi含有量は、0.08〜1.5%の範囲とし、好ましくは0.1〜1.5%の範囲とする。
【0023】
Mn:0.2〜2.5%
Mnは、焼入性を向上させ、焼入時の硬化深さを確保する上で必須の成分であり積極的に添加するが、0.2%未満の添加ではその効果に乏しく、また、2.5%を超えて添加すると、焼入後の残留オーステナイトを増加させることにより、かえって表面硬さを低下させ、ねじり強度および疲労強度を低下させることになることから、Mn含有量は0.2〜2.5%の範囲とし、好ましくは0.3〜1.5%の範囲とする。
【0024】
P:0.020%以下
Pは、オーステナイトの粒界に偏析し、粒界強度を低下させることにより、ねじり強度および疲労強度を低下させ、また、焼割れを助長する。したがって、P含有量は極力低下させるのが望ましく、具体的には、0.020%以下とする。
【0025】
S:0.06%以下
Sは、鋼中でMnSを形成し、切削性を向上させるため添加するが、0.06%を超えて添加すると粒界に偏析して粒界強度を低下させるため、Sは、0.06%以下の添加とする。
【0026】
Al:0.005〜0.25%
Alは、脱酸に有効な元素であり低酸素化のために有用な元素であるとともに、Nと結合して、AlNを形成しこれが焼入加熱時のオーステナイト粒の成長を抑制する。また、炭化物生成を抑制し、炭化物による粒界強度の低下を抑制する。これらのことにより、ねじり強度及びねじり疲労強度を向上させる元素である。しかしながら、Al含有量が0.005%未満ではその効果が小さく、また、0.25%を超えてもその向上効果は期待できないばかりか、成分コストの上昇を招くことから、Alは、0.005〜0.25%の範囲の添加とし、好ましくは0.02〜0.15%の範囲とする。
【0027】
Ti:0.005〜0.1%
Tiは、鋼中でC、Nと結合し微細球状の炭化物あるいは炭窒化物を形成し、これが高周波焼きもどし後の粒界炭化物形状を球状化することで粒界強度の低下を抑制し、ねじり強度及びねじり疲労強度を向上させる。また、TiはNと結合する事で、BがBNとなりBの焼入性向上効果が消失するのを防止するため、Bの焼入性向上効果を十分発揮させるために添加する。
Tiは、0.005%未満の添加ではその効果は小さく、また、0.1%を超えて添加すると、TiNが多量に形成される結果、これが疲労破壊の起点となってねじり疲労強度の低下が顕著となることから、Tiは、0.005〜0.1%の範囲とし、好ましくは0.01〜0.08%の範囲とする。
【0028】
B:0.0003〜0.0060%
Bは、微量の添加により焼入性を向上させ、焼入れ時の焼入深さを高めることによりねじり強度を向上させる。また、Bは、ベイナイト相の生成を促進し、焼入加熱時のオーステナイト粒径を微細化して粒界残留炭化物を減少させ粒界強度を高めて、ねじり強度およびねじり疲労強度を向上させる。さらに、Bは、粒界に優先的に偏析し、粒界に偏析するPの濃度を低減し、粒界強度を高めてねじり強度およびねじり疲労強度を向上させる。このため、Bは、ねじり強度およびねじり疲労強度を向上させるのに有効な元素であるため積極的に添加する。しかしながら、Bは、0.0003%未満の添加ではその効果が小さく、0.0060%を超えて添加しても、その向上効果は期待できないばかりか、成分コストの上昇を招くことから、Bは0.0003〜0.0060%の範囲の添加とし、好ましくは0.0005〜0.0040%の範囲の添加とする。
【0029】
N:0.002〜0.02%
Nは、Al、TiまたはNbと窒化物を形成し、あるいはAl、TiまたはNbとCとともに結合して炭窒化物を形成することにより、これが焼入加熱時のオーステナイトの成長を抑制することにより、粒界強度を高め、ねじり強度およびねじり疲労強度を向上させる元素であるので積極的に添加する。しかしながら、Nは、0.002%未満の添加ではその効果が小さく、また、0.02%を超えて添加すると熱間変形能を低下させることにより、連続鋳造時に鋳片の表面欠陥を著しく増加させることになることから、Nは、0.002〜0.02%の範囲の添加とし、好ましくは0.002〜0.015%の範囲の添加とする。
【0030】
O:0.0030%以下
Oは、硬質の酸化物系非金属介在物として存在するとともに、粒界に偏析し粒界強度を低下させる。また、O含有量の増大は、酸化物系非金属介在物のサイズを非常に粗大化させる。これらは、特にねじり疲労強度に有害であるため、O含有量は、極力低減することが望ましく、具体的には0.0030%以下に低減する必要がある。なお、O含有量は、好ましくは0.0020%以下とする。
【0031】
上記の化学組成の他に本発明においては、必要に応じて、Cr:0.20%以下を含有させることができる。
Cr:0.20%以下
Crは、焼入性向上元素であり、この目的のために添加することができる。しかしながら、Crは、炭化物を安定化させて残留炭化物生成を促進し、粒界強度を低下させるため、ねじり強度及びねじり疲労強度を劣化させることから、Cr添加量は極力低下させるべきであり、具体的には0.20%以下とし、好ましくは0.05%以下とする。
【0032】
また、本発明においては、必要に応じて、Mo:0.02〜1.0%、Cu≦1.0%、Ni:0.05〜3.5%、およびCo:0.01〜1.0%から選ばれる1種または2種以上を含有させることができる。これらの元素の添加範囲の限定理由は以下の通りである。
【0033】
Mo:0.02〜1.0%
Moは、粒界に偏析するP等の不純物元素を低減させることにより粒界強度を高め、脆性破壊を抑制することにより、ねじり強度およびねじり疲労強度を向上させる作用がある。また、Moはベイナイト相の生成を促進する効果がある。さらに、Moは焼入性向上に有用な元素であり、焼入性を調整するため必要量添加することが好ましい。加えて、Moは、焼もどし軟化抵抗を向上させるので、ねじり強度の向上にも有効な元素である。このように本目的においては、Moは好適な選択的添加元素である。しかしながら、Moは、0.02%未満の添加ではその効果が小さい。一方、Moを1.0%を超えて添加すると、圧延材の硬さが著しく増加して加工性を低下させるとともに、例えば高周波焼入のような急速短時間加熱の場合には、オーステナイト中への溶解が困難な炭化物を形成しやすくなる。このため、Moは、0.02〜1.0%の範囲の添加とすることが好ましく、より好ましくは0.05〜0.7%の範囲の添加とする。
【0034】
Cu:1.0%以下
Cuは、炭化物生成を抑制することにより炭化物による粒界強度の低下を抑制して、ねじり強度及びねじり疲労強度を向上させる元素である。また、Cuは、焼入性向上に有効な元素であり、さらに、フェライト中に固溶して鋼を強化して、ねじり強度を向上させる。しかしながら、Cuは、1.0%を超えて添加すると熱間加工性を阻害するため1.0%以下の添加とすることが好ましく、より好ましくは0.5%以下とする。
【0035】
Ni:0.05〜3.5%
Niは、炭化物生成を抑制し、炭化物による粒界強度の低下を抑制してねじり強度及びねじり疲労強度を向上させる元素である。また、Niは、焼入性を向上させる元素であるので、焼入性を調整する場合に用いることができる。しかしながら、Niは、0.05%未満の添加ではその効果が小さい。一方、Niは極めて高価な元素であるので3.5%を超えて添加すると鋼材のコストが上昇するため好ましくない。このため、Niは、0.05〜3.5%の範囲の添加とすることが好ましく、より好ましくは0.1〜1.0%の範囲とする。
【0036】
Co:0.01〜1.0%
Coは、炭化物生成を抑制することにより炭化物による粒界強度の低下を抑制し、ねじり強度及びねじり疲労強度を向上させる元素である。しかしながら、Coは、0.01%未満の添加ではその効果が小さい。一方、Coは、極めて高価な元素であるので、1.0%を超えて添加すると鋼材のコストが上昇するため好ましくない。このため、Coは、0.01〜1.0%の範囲とすることが好ましく、より好ましくは0.02〜0.5%の範囲とする。
【0037】
さらに本発明においては、必要に応じて、Nb:0.005〜0.1%およびV:O.01〜0.5%から選ばれる1種または2種を添加することができる。これらの元素の添加範囲の限定理由は以下の通りである。
【0038】
Nb:0.005〜0.1%
Nbは、鋼中でC、Nと結合し微細球状の炭化物あるいは炭窒化物を形成し、これが高周波焼きもどし後の粒界炭化物形状を球状化することで粒界強度の低下を抑制する。また、Nbは、析出強化作用の極めて強い元素であることと、焼もどし軟化抵抗を向上させる元素である。これらのことにより、ねじり強度およびねじり疲労強度を向上させる。しかしながら、Nbは、0.005%未満の添加ではその効果が小さい。一方、Nbは0.1%を超えて添加しても、その向上効果は期待できないばかりか、成分コストの上昇を招くため好ましくない。このため、Nbは、0.005〜0.1%の範囲の添加とすることが好ましく、より好ましくは0.01〜0.05%以下の範囲の添加とする。
【0039】
V:O.01〜0.5%
Vは、鋼中でC、Nと結合し微細球状の炭化物あるいは炭窒化物を形成し、これが高周波焼きもどし後の粒界炭化物形状を球状化することで粒界強度の低下を抑制する。またVは、析出強化作用の極めて強い元素であることと、焼もどし軟化抵抗を向上させる元素である。これらのことにより、ねじり強度およびねじり疲労強度を向上させる。しかしながら、Vは、0.01%未満の添加ではその効果が小さい。一方、Vは0.5%を超えて添加しても、その向上効果は期待できないばかりか、成分コストの上昇を招くため好ましくない。このため、Vは、0.01〜0.5%の範囲の添加とすることが好ましく、より好ましくは0.03〜0.3%の範囲の添加とする。
【0040】
また、本発明においてはベイナイト相の組織分率(面積率)を10%以上とする。この理由は、ベイナイト相の組織分率が10%未満の場合、焼入加熱時、特に高周波加熱のような急速短時間加熱の場合の炭化物溶解が遅くなることおよびベイナイト相の組織分率が10%以上(本発明範囲内)の場合に比べ、オーステナイト粒径が粗大化するため、高周波焼きもどし後に粒界炭化物が多数存在するようになる。さらに、オーステナイト粒径が粗大化することにより、P等の粒界偏析不純物量が増えるため粒界強度が低下する。これらのことにより、粒界強度が低下するため、ねじり強度およびねじり疲労強度が低下する。なお、ベイナイト相の組織分率は好ましくは20%以上とする。ベイナイト組織以外の残りの組織は、フェライト、パーライト等いずれでも良く特に規定はしない。
【0041】
さらに、本発明における高周波焼もどし用鋼の製造方法は、上記化学組成を満足する鋼素材、例えば鋳片に仕上温度900℃以上にて熱間圧延を施し、熱間圧延終了後に0.2〜10℃/sの冷却速度で冷却することを特徴とする。熱間圧延終了後の冷却は、0.2℃/s未満の冷却速度の場合、フェライト、パーライト等の徐冷組織が生成してベイナイト組織が得られがたくなり、ベイナイト相の組織分率を10%以上にすることができなくなる場合が生じ、かかる場合には、十分なねじり強度およびねじり疲労強度が得られなくなる。一方、冷却速度が10℃/sを超えると、マルテンサイト等の硬質相が生成促進される結果、ベイナイト相の組織分率を10%以上にすることができなくなる場合が生じ、かかる場合には、十分なねじり強度およびねじり疲労強度が得られなくなる。このため、熱間圧延終了後の冷却は、0.2〜10℃/sの冷却速度で行うことが必要である。なお、かかる冷却速度は、好ましくは0.3〜6℃/sの範囲とする。
また、熱間圧延の仕上温度は、適正組織分率のベイナイト相生成の観点から、900℃以上とする。
【0042】
【実施例】
以下、本発明を実施例に基づいて説明する。
表1に示す化学組成の鋼を転炉−連続鋳造プロセスにより溶製した。鋳造時の鋳片サイズは300mm×400mmあった。この鋳片をブレークダウン工程を経て150mm角ビレットに圧延したのち24〜60mmφの棒鋼に熱間圧延した。熱間圧延の仕上温度は、850〜960℃の範囲で行った。熱間圧延後の冷却は、0.3〜15℃/sの各種冷却速度で行った。この棒鋼を用いて、段付ねじり試験片(段底部応力集中係数1.5、段底部径20mmφ)を作製し、周波数15kHzの高周波焼入装置を用いて焼入れた後、同じく高周波焼入装置により表2に示すような条件で高周波加熱を行うことによって焼もどし処理を行った後、ねじり試験を行った。ねじり強度試験は、最大トルク4900N・mのねじり試験機を用いて、最大ねじりせん断応力を求め、ねじり強度とした。ねじり疲労強度試験は、最大トルク4900N・mのねじり試験機を用いて、両振りで応力条件を変えて行い、1×10回で寿命となる応力を疲労強度として評価した。これらの評価結果を表2に示す。
【0043】
【表1】

Figure 2004027334
【0044】
【表2】
Figure 2004027334
【0045】
表2において、試験片No.1〜No.8は本発明例であり、試験片No.9〜No.19は比較例である。
表2に示す結果から、本発明例である試験片No.1〜8はいずれも、ねじり強度が2000 MPa以上であり、かつ、ねじり疲労強度が777 MPa以上であり、ねじり強度およびねじり疲労強度に優れている。
一方、比較例である試験片No.9〜16はいずれも、鋼中の化学組成が本発明の範囲外であるため、ねじり強度およびねじり疲労強度とも本発明例に比較して低い。
比較例である試験片No.17は、鋼中の化学組成については本発明の範囲内であるが、熱間圧延終了後の冷却速度が本発明の範囲外であるため、その結果、ベイナイト相の組織分率が本発明の範囲外となり、ねじり強度およびねじり疲労強度ともに本発明例に比較して低い。
比較例である試験片No.18は、化学組成については本発明の範囲内であるが、高周波焼入後の焼もどしが本発明範囲外の炉加熱により行った場合であり、焼きもどし時間が高周波焼きもどしの場合に比べ30分間と長時間を要しており、しかも、ねじり強度およびねじり疲労強度ともに本発明例に比較して低い。
比較例である試験片No.19は、化学組成については本発明の範囲内であるが、仕上温度が低いため、結果としてベイナイト相の組織分率が低く、ねじり強度およびねじり疲労強度ともに本発明例に比較して低い。
【0046】
【発明の効果】
本発明の高周波焼もどし用鋼およびその製造方法を用いれば、その後に施される高周波焼入−高周波焼もどしプロセスによって製造される製品、すなわち、ねじり強度およびねじり疲労強度に優れた鋼材を提供することが可能であり、これは、産業上の利用価値が大である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an induction tempering steel having excellent torsional strength and torsional fatigue strength, which is produced by performing tempering by high-frequency induction heating for a short time in a tempering process after quenching, and a method for producing the steel. . In particular, the steel of the present invention is preferably used as a machine structural steel applied to a drive shaft for an automobile, a constant velocity joint, and the like.
[0002]
Conventionally, mechanical structural members such as automobile drive shafts and constant velocity joints are formed into a predetermined shape by hot forging, cutting, or cold forging of a hot-rolled steel bar, and then induction hardening-furnace heating and tempering. In general, the torsional strength and the torsional fatigue strength, which are important characteristics as a member for a machine structure, are ensured.
[0003]
On the other hand, in recent years, there has been a strong demand for weight reduction of parts for automobile members due to environmental problems, and in view of this, improvement in torsional strength and torsional fatigue strength of automobile parts has been demanded.
In addition, in recent years, the use of a tempering process by high frequency heating instead of the conventional tempering by furnace heating has been studied from the viewpoint of productivity improvement. According to the induction tempering, the heating time can be shortened from several seconds to several minutes or less at most, compared to several ten minutes to several hours of tempering by conventional furnace heating. The return processing time can be reduced, and an improvement in productivity is expected.
[0004]
As will be described later, in the study of the present inventors, the possibility of improving the torsion characteristics is expected by utilizing short-time rapid heating which is a feature of high-frequency heating.
For example, Japanese Unexamined Patent Publication No. 7-90484 is characterized in that a steel having a specific component is used and a member subjected to induction hardening has a cross-sectional average hardness defined by a specific formula of 560 or more. It is shown that a torsion strength of 160 kgf / mm 2 or more can be obtained in a shaft part. However, the above publication does not mention the torsional fatigue strength, which is another important property as a member for a machine structure. Further, in the above-mentioned publication, various studies have been made on the induction hardening conditions, but the tempering conditions have not been studied, and the tempering conditions are only described at 170 ° C. for 1 hour. According to this description, it is considered that the tempering is not the high-frequency tempering that can be performed in a short time, but the tempering by ordinary furnace heating or the like.
[0005]
Regarding the torsional fatigue strength, Japanese Patent Application Laid-Open No. 8-253842 discloses that the weight ratios of C: 0.35 to 0.65%, Si: 0.35 to 2.5%, Mn: 1.0 to 1 0.8%, Mo: 0.05 to 0.8%, S: 0.01 to 0.15%, Al: 0.015 to 0.05%, Ti: 0.005 to 0.05%, B: 0.0005 to 0.005%, N: 0.002 to 0.01%, or further, the amount of P, Cu, O is limited to a specific amount or less, or a specific amount of one of Nb and V Or contains two or more specific amounts of one or two of Cr and Ni, and has a ferrite structure fraction of 35% or less and a ferrite crystal grain size of 20 μm or less. A steel material for induction hardened shaft parts having excellent torsional fatigue strength is disclosed. However, according to the description in JP-A-8-253842, the tempering condition in the examples is only a description of 170 ° C. for one hour. Studies have been made on the premise of a normal tempering process by heating such as heating.
Further, Japanese Patent Application Laid-Open No. 8-253842 also describes a torsional fatigue strength, and indicates that the steel material has both torsional strength and torsional fatigue strength. However, in the case of the steel material, the torsional fatigue strength at the number of repetitions of 5 × 10 5 cycles is 771 MPa at the maximum, and there is a case where the strength is insufficient for recent high strength requirements.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and is being studied for use in place of the conventional furnace heating and tempering from the viewpoint of improving productivity in recent years. It is an object of the present invention to provide a high-frequency tempering steel excellent in torsional strength and torsional fatigue strength, and a method for producing the steel.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the improvement of torsional strength and torsional fatigue strength on the premise that short-time high-frequency tempering is performed.
As a result, by devising the chemical composition and structure of the steel on the assumption that the high-frequency tempering treatment is performed, excellent torsional strength and torsional fatigue strength can be obtained for the following reasons (1) to (5). Obtained knowledge.
[0008]
That is,
(1) The inclusion of the bainite phase at the structure fraction specified in the present invention promotes the dissolution of carbides during quenching heating because the bainite structure is a structure in which carbides are finely dispersed as compared with the ferrite-pearlite structure. As a result, carbide remaining at the grain boundaries of the quenched structure (martensite structure) before tempering, which is the core of carbide formation during induction tempering, (hereinafter referred to as “grain boundary residual carbide”) is reduced, and as a result, induction hardening is performed. The number of intragranular nuclei generated during reversion increases. Thereby, the grain boundary carbide which has a bad influence on the grain boundary strength is reduced, and the grain boundary strength is improved. As a result, the grain boundary fracture under torsional stress is suppressed, and the torsional strength and the torsional fatigue strength are increased.
[0009]
(2) By containing the bainite phase at the structure fraction specified in the present invention, the austenite grain size during quenching heating before induction hardening is finer than when the structure fraction is out of the range of the present invention. Become As a result, grain boundary residual carbides are reduced. For this reason, the grain boundary carbide after induction tempering is reduced. Further, since the grain boundary area increases, the amount of grain boundary segregated impurities such as P decreases. As a result, grain boundary strength is improved, so that grain boundary fracture under torsional stress is suppressed, and torsional strength and torsional fatigue strength are increased.
[0010]
(3) By adding an appropriate amount of one or more of Si, Al, and also Mo, Cu, Ni, and Co, the carbide is destabilized and the dissolution of the carbide is promoted at the time of quenching and heating. As a result, the amount of carbides remaining at the grain boundaries of the quenched structure (martensite structure) before tempering, which is the nucleus of carbide formation during tempering, is reduced, so that the number of intragranular nuclei generated during induction tempering increases. Thereby, the grain boundary carbide which has a bad influence on the grain boundary strength is reduced, and the grain boundary strength is improved. As a result, the grain boundary fracture under torsional stress is suppressed, and the torsional strength and the torsional fatigue strength are increased.
[0011]
(4) Since the addition of Cr stabilizes carbides and promotes the generation of residual carbides, the amount of Cr added is regulated or not added, so that the carbides become unstable and the dissolution of the carbides during quenching heating is accelerated, As a result of a reduction in carbide remaining at the grain boundaries of the quenched structure (martensite structure) before tempering, which serves as a nucleus for carbide formation during induction tempering, the number of intragranular nuclei generated during induction tempering increases. Thereby, the grain boundary carbide which has a bad influence on the grain boundary strength is reduced, and the grain boundary strength is improved. As a result, the grain boundary fracture under torsional stress is suppressed, and the torsional strength and the torsional fatigue strength are increased.
[0012]
(5) By adding Ti or an appropriate amount of Ti and Nb and / or V, fine spherical carbides or fine carbonitrides of Ti, Nb, and V are formed, and these become carbide forming nuclei during induction tempering. The carbide shape becomes spherical. This spherical carbide or carbonitride is present not only within the grains but also at the grain boundaries (of martensite), but compared to the rod-like or plate-like ones generally formed during normal furnace heating and tempering. Since the existing volume at the grain boundary is small and the adverse effect on the grain boundary strength is small, the grain boundary fracture under torsional stress is suppressed, and the torsional strength and the torsional fatigue strength are improved.
[0013]
The present invention has been made based on the above findings, and the gist thereof is as follows.
That is, the present invention provides 1) C: 0.35 to 0.7% by mass,
Si: 0.08 to 1.5%,
Mn: 0.2-2.5%,
P ≦ 0.020%,
S ≦ 0.06%,
Al: 0.005 to 0.25%,
Ti: 0.005 to 0.1%,
B: 0.0003-0.0060%,
N: 0.002 to 0.02%, and O ≦ 0.0030%
Induction tempering steel excellent in torsional strength and torsional fatigue strength, characterized by having a composition consisting of Fe and unavoidable impurities and having a structure fraction of bainite phase of 10% or more. .
[0014]
2) The high-frequency tempering steel having excellent torsional strength and torsional fatigue strength according to 1), further containing Cr ≦ 0.20% by mass%.
[0015]
3) In the above 1) or 2), further in mass%,
Mo: 0.02 to 1.0%,
Cu ≦ 1.0%,
Ni: 0.05 to 3.5%, and Co: 0.01 to 1.0%
Induction tempering steel excellent in torsional strength and torsional fatigue strength, characterized by containing one or more kinds selected from the group consisting of:
[0016]
4) In the above 1) to 3), further by mass%,
Nb: 0.005 to 0.1%, and V: O. 01-0.5%
Induction tempering steel excellent in torsional strength and torsional fatigue strength, characterized by containing one or two kinds selected from the group consisting of:
[0017]
5) C: 0.35 to 0.7% by mass%,
Si: 0.08 to 1.5%,
Mn: 0.2-2.5%,
P ≦ 0.020%,
S ≦ 0.06%,
Al: 0.005 to 0.25%,
Ti: 0.005 to 0.1%,
B: 0.0003-0.0060%,
N: 0.002 to 0.02%, and O ≦ 0.0030%
And hot rolling is performed on a steel material having a composition comprising the balance of Fe and unavoidable impurities, and after the completion of the hot rolling, is cooled at a cooling rate of 0.2 to 10 ° C./s. A method for producing an induction tempering steel having an excellent torsional strength and torsional fatigue strength, wherein the structural fraction is 10% or more.
[0018]
6) The production method according to 5) above, wherein the steel material further contains Cr ≦ 0.20% by mass% and is characterized by having excellent torsional strength and torsional fatigue strength. Method.
[0019]
7) The method according to 5) or 6) above, wherein the steel material further comprises
Mo: 0.02 to 1.0%,
Cu ≦ 1.0%,
Ni: 0.05 to 3.5%, and Co: 0.01 to 1.0%
A method for producing an induction tempering steel having excellent torsional strength and torsional fatigue strength, comprising one or more selected from the group consisting of:
[0020]
8) The method according to any one of the above 5) to 7), wherein the steel material further comprises
Nb: 0.005 to 0.1%, and V: O. 01-0.5%
A method for producing an induction tempering steel having excellent torsional strength and torsional fatigue strength, comprising one or two selected from the group consisting of:
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the reasons for limitation of the present invention will be described. In addition, mass% is simply described as%.
C: 0.35 to 0.7%
C is an element that has the greatest effect on hardenability, and is useful for increasing the hardness and depth of the hardened hardened layer and improving the torsional strength. However, if the C content is less than 0.35%, the quench hardening depth must be drastically increased in order to secure the required torsional strength. Therefore, the C content is set to 0.35% or more. On the other hand, if the C content exceeds 0.7%, the machinability and the cold forgeability decrease, brittle fracture occurs during the torsional test, and the torsional strength decreases, and the sintering crack resistance also decreases. Therefore, the C content is in the range of 0.35 to 0.7%, preferably in the range of 0.4 to 0.6%.
[0022]
Si: 0.08 to 1.5%
Si suppresses carbide formation and suppresses reduction in grain boundary strength due to carbide. In addition to being a solid solution in ferrite for strengthening, it is also an element for improving tempering softening resistance during tempering after quenching, thereby improving torsional strength. Furthermore, since Si is also useful as a deoxidizing element, the Si content needs to be 0.08% or more from the viewpoint of exerting those effects. However, when the Si content exceeds 1.5%, the hardness increases due to solid solution hardening of ferrite, which causes a decrease in machinability and cold forgeability. Therefore, the Si content is in the range of 0.08 to 1.5%, preferably in the range of 0.1 to 1.5%.
[0023]
Mn: 0.2-2.5%
Mn is an essential component for improving the hardenability and ensuring the hardening depth during quenching, and is positively added. However, if less than 0.2%, the effect is poor. When added in excess of 0.5%, the residual austenite after quenching is increased, which in turn lowers the surface hardness and lowers the torsional strength and the fatigue strength. To 2.5%, preferably 0.3 to 1.5%.
[0024]
P: 0.020% or less P segregates at the grain boundaries of austenite and lowers the grain boundary strength, thereby lowering the torsional strength and fatigue strength and promoting sintering cracking. Therefore, it is desirable to reduce the P content as much as possible, specifically, to 0.020% or less.
[0025]
S: 0.06% or less S is added to form MnS in steel and improve machinability, but if added in excess of 0.06%, it segregates at grain boundaries and lowers grain boundary strength. , S is added at 0.06% or less.
[0026]
Al: 0.005 to 0.25%
Al is an element effective for deoxidation and useful for reducing oxygen, and combines with N to form AlN, which suppresses the growth of austenite grains during quenching heating. In addition, the generation of carbide is suppressed, and the reduction in grain boundary strength due to carbide is suppressed. These are elements that improve torsional strength and torsional fatigue strength. However, if the Al content is less than 0.005%, the effect is small, and if the Al content exceeds 0.25%, not only the improvement effect cannot be expected, but also the cost of the component is increased, so that the Al content is limited to 0.1%. 005 to 0.25%, and preferably 0.02 to 0.15%.
[0027]
Ti: 0.005 to 0.1%
Ti combines with C and N in steel to form fine spherical carbides or carbonitrides, which suppresses a decrease in grain boundary strength by spheroidizing the grain boundary carbides after induction tempering, and torsion. Improves strength and torsional fatigue strength. Further, Ti is added in order to prevent B from becoming BN by combining with N and losing the effect of improving the hardenability of B, and to sufficiently exert the effect of improving the hardenability of B.
If the addition of Ti is less than 0.005%, the effect is small, and if the addition is more than 0.1%, a large amount of TiN is formed, which becomes a starting point of fatigue fracture and lowers the torsional fatigue strength. Is notable, Ti is in the range of 0.005 to 0.1%, preferably in the range of 0.01 to 0.08%.
[0028]
B: 0.0003-0.0060%
B improves the hardenability by adding a small amount, and improves the torsional strength by increasing the quenching depth during quenching. B promotes formation of a bainite phase, refines austenite grain size during quenching heating, reduces grain boundary residual carbides, increases grain boundary strength, and improves torsional strength and torsional fatigue strength. Further, B preferentially segregates at grain boundaries, reduces the concentration of P segregating at grain boundaries, increases grain boundary strength, and improves torsional strength and torsional fatigue strength. For this reason, B is an element effective in improving the torsional strength and the torsional fatigue strength, so that B is positively added. However, if B is added less than 0.0003%, the effect is small, and if added over 0.0060%, not only the improvement effect cannot be expected, but also the component cost rises. It is added in the range of 0.0003 to 0.0060%, preferably in the range of 0.0005 to 0.0040%.
[0029]
N: 0.002 to 0.02%
N forms a nitride with Al, Ti or Nb, or combines with Al, Ti or Nb and C to form a carbonitride, thereby suppressing the growth of austenite during quenching heating. , Is an element that increases the grain boundary strength and improves the torsional strength and torsional fatigue strength, so that it is positively added. However, when N is added less than 0.002%, the effect is small, and when N is added more than 0.02%, the hot deformability is reduced, so that the surface defects of the slab significantly increase during continuous casting. Therefore, N is added in the range of 0.002 to 0.02%, preferably in the range of 0.002 to 0.015%.
[0030]
O: 0.0030% or less O exists as hard oxide-based nonmetallic inclusions and segregates at the grain boundaries to lower the grain boundary strength. In addition, an increase in the O content greatly increases the size of the oxide-based nonmetallic inclusion. Since these are particularly harmful to the torsional fatigue strength, it is desirable to reduce the O content as much as possible, specifically, it is necessary to reduce the O content to 0.0030% or less. Note that the O content is preferably set to 0.0020% or less.
[0031]
In the present invention, in addition to the above chemical composition, Cr: 0.20% or less can be contained as necessary.
Cr: 0.20% or less Cr is an element for improving hardenability and can be added for this purpose. However, Cr stabilizes carbides, promotes the generation of residual carbides, and lowers the grain boundary strength, thereby deteriorating torsional strength and torsional fatigue strength.Therefore, the Cr addition amount should be reduced as much as possible. Specifically, the content is set to 0.20% or less, preferably 0.05% or less.
[0032]
In the present invention, Mo: 0.02 to 1.0%, Cu ≦ 1.0%, Ni: 0.05 to 3.5%, and Co: 0.01 to 1. One or more selected from 0% can be contained. The reasons for limiting the addition ranges of these elements are as follows.
[0033]
Mo: 0.02 to 1.0%
Mo has an effect of increasing the grain boundary strength by reducing impurity elements such as P segregated at the grain boundary, and improving torsional strength and torsional fatigue strength by suppressing brittle fracture. Mo has the effect of promoting the formation of the bainite phase. Further, Mo is an element useful for improving hardenability, and it is preferable to add Mo in a necessary amount in order to adjust hardenability. In addition, Mo improves the tempering softening resistance and is therefore an effective element for improving the torsional strength. Thus, for this purpose, Mo is a suitable selective additive element. However, when Mo is added in an amount of less than 0.02%, the effect is small. On the other hand, when Mo is added in excess of 1.0%, the hardness of the rolled material is significantly increased and the workability is lowered, and in the case of rapid and short-time heating such as induction quenching, for example, Easily forms carbides that are difficult to dissolve. For this reason, Mo is preferably added in the range of 0.02 to 1.0%, and more preferably in the range of 0.05 to 0.7%.
[0034]
Cu: 1.0% or less Cu is an element that suppresses the reduction of grain boundary strength due to carbides by suppressing the formation of carbides, thereby improving torsional strength and torsional fatigue strength. Further, Cu is an element effective for improving hardenability, and further, forms a solid solution in ferrite to strengthen steel, thereby improving torsional strength. However, if Cu is added in excess of 1.0%, hot workability is impaired, so it is preferable to add 1.0% or less, and more preferably 0.5% or less.
[0035]
Ni: 0.05 to 3.5%
Ni is an element that suppresses generation of carbides, suppresses reduction in grain boundary strength due to carbides, and improves torsional strength and torsional fatigue strength. Further, Ni is an element that improves hardenability, and thus can be used for adjusting hardenability. However, the effect of Ni is small when the addition is less than 0.05%. On the other hand, Ni is an extremely expensive element, so that if it exceeds 3.5%, the cost of the steel material increases, which is not preferable. Therefore, Ni is preferably added in the range of 0.05 to 3.5%, and more preferably in the range of 0.1 to 1.0%.
[0036]
Co: 0.01-1.0%
Co is an element that suppresses generation of carbides, thereby suppressing reduction in grain boundary strength due to carbides, and improving torsional strength and torsional fatigue strength. However, the effect of Co is small when added less than 0.01%. On the other hand, since Co is an extremely expensive element, it is not preferable to add Co in an amount exceeding 1.0% because the cost of the steel material increases. Therefore, Co is preferably in the range of 0.01 to 1.0%, and more preferably in the range of 0.02 to 0.5%.
[0037]
Further, in the present invention, if necessary, Nb: 0.005 to 0.1% and V: O. One or two selected from 01 to 0.5% can be added. The reasons for limiting the addition ranges of these elements are as follows.
[0038]
Nb: 0.005 to 0.1%
Nb combines with C and N in steel to form fine spherical carbides or carbonitrides, which suppresses a decrease in grain boundary strength by spheroidizing the grain boundary carbides after induction tempering. Nb is an element having an extremely strong precipitation strengthening effect and an element improving the tempering softening resistance. These improve torsional strength and torsional fatigue strength. However, the effect is small when Nb is added less than 0.005%. On the other hand, if Nb is added in excess of 0.1%, not only the improvement effect cannot be expected, but also an increase in the component cost is not preferable. Therefore, Nb is preferably added in the range of 0.005 to 0.1%, more preferably in the range of 0.01 to 0.05% or less.
[0039]
V: O. 01-0.5%
V combines with C and N in steel to form fine spherical carbides or carbonitrides, which suppresses a decrease in grain boundary strength by spheroidizing grain boundary carbides after induction tempering. V is an element having an extremely strong precipitation strengthening effect and an element improving the tempering softening resistance. These improve torsional strength and torsional fatigue strength. However, when V is added at less than 0.01%, the effect is small. On the other hand, if V is added in excess of 0.5%, not only the improvement effect cannot be expected, but also an increase in the component cost is not preferable. Therefore, V is preferably added in the range of 0.01 to 0.5%, more preferably in the range of 0.03 to 0.3%.
[0040]
In the present invention, the structure fraction (area ratio) of the bainite phase is 10% or more. The reason for this is that if the microstructure fraction of the bainite phase is less than 10%, carbide dissolution becomes slow during quenching heating, particularly in the case of rapid and short-time heating such as high-frequency heating, and the microstructure fraction of the bainite phase becomes 10%. % Or more (within the range of the present invention), the austenite grain size becomes coarser, so that a large number of grain boundary carbides are present after induction tempering. Further, the coarsening of the austenite grain size increases the amount of grain boundary segregated impurities such as P, so that the grain boundary strength decreases. As a result, the grain boundary strength decreases, and the torsional strength and the torsional fatigue strength decrease. The structure fraction of the bainite phase is preferably set to 20% or more. The remaining structure other than the bainite structure may be ferrite, pearlite, or the like, and is not particularly limited.
[0041]
Furthermore, the method for producing the steel for induction tempering in the present invention is to perform hot rolling on a steel material satisfying the above chemical composition, for example, a slab at a finishing temperature of 900 ° C. or higher, and after completion of hot rolling, 0.2 to 0.2%. It is characterized by cooling at a cooling rate of 10 ° C./s. When cooling after the completion of hot rolling is performed at a cooling rate of less than 0.2 ° C./s, a slowly cooled structure such as ferrite and pearlite is generated, so that it becomes difficult to obtain a bainite structure. In some cases, it cannot be 10% or more, and in such a case, sufficient torsional strength and torsional fatigue strength cannot be obtained. On the other hand, if the cooling rate exceeds 10 ° C./s, the formation of a hard phase such as martensite is promoted, and as a result, the structure fraction of the bainite phase may not be able to be increased to 10% or more. However, sufficient torsional strength and torsional fatigue strength cannot be obtained. For this reason, it is necessary to perform cooling after completion of hot rolling at a cooling rate of 0.2 to 10 ° C./s. The cooling rate is preferably in the range of 0.3 to 6 ° C / s.
Further, the finishing temperature of the hot rolling is set to 900 ° C. or more from the viewpoint of forming a bainite phase having an appropriate structure fraction.
[0042]
【Example】
Hereinafter, the present invention will be described based on examples.
Steels having the chemical compositions shown in Table 1 were produced by a converter-continuous casting process. The slab size at the time of casting was 300 mm × 400 mm. This slab was rolled into a 150 mm square billet through a breakdown process, and then hot rolled into a steel bar of 24 to 60 mmφ. The finishing temperature of the hot rolling was performed in a range of 850 to 960 ° C. Cooling after hot rolling was performed at various cooling rates of 0.3 to 15 ° C / s. Using this steel bar, a stepped torsion test piece (a step bottom stress concentration coefficient of 1.5 and a step bottom diameter of 20 mmφ) was prepared and quenched using an induction hardening device having a frequency of 15 kHz, and then similarly subjected to an induction hardening device. After performing a tempering treatment by performing high frequency heating under the conditions shown in Table 2, a torsion test was performed. In the torsional strength test, the maximum torsional shear stress was determined using a torsional tester with a maximum torque of 4900 N · m, and the torsional strength was determined. The torsional fatigue strength test was performed using a torsional tester with a maximum torque of 4900 N · m while changing the stress conditions in swinging, and the stress at which the life was reached after 1 × 10 5 times was evaluated as the fatigue strength. Table 2 shows the evaluation results.
[0043]
[Table 1]
Figure 2004027334
[0044]
[Table 2]
Figure 2004027334
[0045]
In Table 2, the test pieces No. 1 to No. Test piece No. 8 is an example of the present invention. 9-No. 19 is a comparative example.
From the results shown in Table 2, the test piece No. of the present invention example. All of Nos. 1 to 8 have a torsional strength of 2,000 MPa or more and a torsional fatigue strength of 777 MPa or more, and are excellent in torsional strength and torsional fatigue strength.
On the other hand, the test piece No. In all of Nos. 9 to 16, the chemical composition in steel is out of the range of the present invention, so that the torsional strength and the torsional fatigue strength are lower than those of the present invention.
Test piece No. as a comparative example. 17 is within the range of the present invention for the chemical composition in steel, but the cooling rate after the end of hot rolling is out of the range of the present invention. It is out of the range, and both the torsional strength and the torsional fatigue strength are lower than the examples of the present invention.
Test piece No. as a comparative example. 18 is the case where the tempering after induction hardening is performed by furnace heating outside the range of the present invention, although the chemical composition is within the range of the present invention, and the tempering time is 30 times as compared with the case of the induction tempering. It takes a minute and a long time, and the torsional strength and the torsional fatigue strength are both lower than those of the present invention.
Test piece No. as a comparative example. Although No. 19 is within the scope of the present invention in terms of chemical composition, since the finishing temperature is low, as a result, the structural fraction of the bainite phase is low, and both the torsional strength and the torsional fatigue strength are lower than those of the present invention.
[0046]
【The invention's effect】
By using the steel for induction hardening and the method for manufacturing the same according to the present invention, a product manufactured by an induction hardening-induction tempering process to be performed thereafter, that is, a steel material excellent in torsional strength and torsional fatigue strength is provided. This is of great industrial value.

Claims (8)

質量%で
C:0.35〜0.7%、
Si:0.08〜1.5%、
Mn:0.2〜2.5%、
P≦0.020%、
S≦0.06%、
Al:0.005〜0.25%、
Ti:0.005〜0.1%、
B:0.0003〜0.0060%、
N:0.002〜0.02%、および
O≦0.0030%
を含有し、残部がFe及び不可避的不純物よりなる組成を有し、かつベイナイト相の組織分率が10%以上であることを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼。
C: 0.35 to 0.7% by mass%,
Si: 0.08 to 1.5%,
Mn: 0.2-2.5%,
P ≦ 0.020%,
S ≦ 0.06%,
Al: 0.005 to 0.25%,
Ti: 0.005 to 0.1%,
B: 0.0003-0.0060%,
N: 0.002 to 0.02%, and O ≦ 0.0030%
Induction tempering steel excellent in torsional strength and torsional fatigue strength, characterized by having a composition consisting of Fe and unavoidable impurities and having a structure fraction of bainite phase of 10% or more. .
請求項1において、さらに質量%で、
Cr≦0.20%を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼。
2. The method of claim 1, further comprising:
Induction tempering steel excellent in torsional strength and torsional fatigue strength, characterized by containing Cr ≦ 0.20%.
請求項1または2において、さらに質量%で、
Mo:0.02〜1.0%、
Cu≦1.0%、
Ni:0.05〜3.5%、および
Co:0.01〜1.0%
から選ばれる1種または2種以上を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼。
3. The method according to claim 1, further comprising:
Mo: 0.02 to 1.0%,
Cu ≦ 1.0%,
Ni: 0.05 to 3.5%, and Co: 0.01 to 1.0%
Induction tempering steel excellent in torsional strength and torsional fatigue strength, characterized by containing one or more kinds selected from the group consisting of:
請求項1乃至3において、さらに質量%で、
Nb:0.005〜0.1%、および
V:O.01〜0.5%
から選ばれる1種または2種を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼。
4. The method according to claim 1, further comprising:
Nb: 0.005 to 0.1%, and V: O. 01-0.5%
Induction tempering steel excellent in torsional strength and torsional fatigue strength, characterized by containing one or two kinds selected from the group consisting of:
質量%で
C:0.35〜0.7%、
Si:0.08〜1.5%、
Mn:0.2〜2.5%、
P≦0.020%、
S≦0.06%、
Al:0.005〜0.25%、
Ti:0.005〜0.1%、
B:0.0003〜0.0060%、
N:0.002〜0.02%、および
O≦0.0030%
を含有し、残部Fe及び不可避的不純物よりなる組成を有する鋼素材に、仕上温度900℃以上で熱間圧延を施し、熱間圧延終了後に0.2〜10℃/sの冷却速度で冷却することにより、ベイナイト相の組織分率が10%以上であることを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼の製造方法。
C: 0.35 to 0.7% by mass%,
Si: 0.08 to 1.5%,
Mn: 0.2-2.5%,
P ≦ 0.020%,
S ≦ 0.06%,
Al: 0.005 to 0.25%,
Ti: 0.005 to 0.1%,
B: 0.0003-0.0060%,
N: 0.002 to 0.02%, and O ≦ 0.0030%
Is subjected to hot rolling at a finishing temperature of 900 ° C. or higher, and is cooled at a cooling rate of 0.2 to 10 ° C./s after completion of the hot rolling. A method for producing induction hardening steel having excellent torsional strength and torsional fatigue strength, characterized in that the structure fraction of the bainite phase is 10% or more.
請求項5記載の製造方法において、前記鋼素材がさらに質量%で、Cr≦0.20%を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼の製造方法。The method according to claim 5, wherein the steel material further contains Cr ≦ 0.20% by mass in mass%, wherein the steel for induction tempering is excellent in torsional strength and torsional fatigue strength. 請求項5または6記載の製造方法において、前記鋼素材がさらに質量%で、
Mo:0.02〜1.0%、
Cu≦1.0%、
Ni:0.05〜3.5%、および
Co:0.01〜1.0%
から選ばれる1種または2種以上を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼の製造方法。
The manufacturing method according to claim 5 or 6, wherein the steel material further comprises:
Mo: 0.02 to 1.0%,
Cu ≦ 1.0%,
Ni: 0.05 to 3.5%, and Co: 0.01 to 1.0%
A method for producing an induction tempering steel having excellent torsional strength and torsional fatigue strength, comprising one or more selected from the group consisting of:
請求項5乃至7記載の製造方法において、前記鋼素材がさらに質量%で、
Nb:0.005〜0.1%、および
V:O.01〜0.5%
から選ばれる1種または2種を含有することを特徴とする、ねじり強度およびねじり疲労強度に優れる高周波焼もどし用鋼の製造方法。
The manufacturing method according to claim 5, wherein the steel material further includes
Nb: 0.005 to 0.1%, and V: O. 01-0.5%
A method for producing an induction tempering steel having excellent torsional strength and torsional fatigue strength, comprising one or two selected from the group consisting of:
JP2002189131A 2002-06-28 2002-06-28 Induction tempering steel and method for producing the same Expired - Lifetime JP3932995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189131A JP3932995B2 (en) 2002-06-28 2002-06-28 Induction tempering steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189131A JP3932995B2 (en) 2002-06-28 2002-06-28 Induction tempering steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004027334A true JP2004027334A (en) 2004-01-29
JP3932995B2 JP3932995B2 (en) 2007-06-20

Family

ID=31183634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189131A Expired - Lifetime JP3932995B2 (en) 2002-06-28 2002-06-28 Induction tempering steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3932995B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065646A1 (en) * 2003-01-17 2004-08-05 Jfe Steel Corporation Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
EP1647608A1 (en) * 2004-10-13 2006-04-19 Nippon Steel Corporation Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JP2007246975A (en) * 2006-03-15 2007-09-27 Komatsu Ltd Method of manufacturing steel shaft
KR100764253B1 (en) * 2005-01-28 2007-10-05 가부시키가이샤 고베 세이코쇼 High-strength steel used for spring having excellent hydrogen embrittlement resistance
WO2009104805A1 (en) * 2008-02-22 2009-08-27 Jfeスチール株式会社 Steel products and process for production thereof
JP2009197287A (en) * 2008-02-22 2009-09-03 Jfe Steel Corp Steel member having excellent skin outer periphery turnable property and twisting strength
JP2009263766A (en) * 2008-03-31 2009-11-12 Jfe Steel Corp Method for manufacturing steel excellent in mill scale circumferential machinability, and torsional fatigue strength
JP2012201983A (en) * 2011-03-28 2012-10-22 Kobe Steel Ltd Steel for induction hardening excellent in torsional strength and toughness, and method of manufacturing the same
CN106029925A (en) * 2014-02-24 2016-10-12 新日铁住金株式会社 Steel material for induction hardening
WO2018056332A1 (en) * 2016-09-20 2018-03-29 新日鐵住金株式会社 Shaft component
CN109518096A (en) * 2018-12-27 2019-03-26 沈阳大学 A kind of method of spontaneity porous enhancing potassium steel fatigue resistance
JPWO2018056333A1 (en) * 2016-09-20 2019-06-24 日本製鉄株式会社 Carburized shaft parts
CN110062984A (en) * 2016-12-08 2019-07-26 哈廷电子有限公司及两合公司 Plug-in connector with locker

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065646A1 (en) * 2003-01-17 2004-08-05 Jfe Steel Corporation Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
EP1647608A1 (en) * 2004-10-13 2006-04-19 Nippon Steel Corporation Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
KR100764253B1 (en) * 2005-01-28 2007-10-05 가부시키가이샤 고베 세이코쇼 High-strength steel used for spring having excellent hydrogen embrittlement resistance
JP2007246975A (en) * 2006-03-15 2007-09-27 Komatsu Ltd Method of manufacturing steel shaft
WO2009104805A1 (en) * 2008-02-22 2009-08-27 Jfeスチール株式会社 Steel products and process for production thereof
JP2009197287A (en) * 2008-02-22 2009-09-03 Jfe Steel Corp Steel member having excellent skin outer periphery turnable property and twisting strength
JP2009263766A (en) * 2008-03-31 2009-11-12 Jfe Steel Corp Method for manufacturing steel excellent in mill scale circumferential machinability, and torsional fatigue strength
JP2012201983A (en) * 2011-03-28 2012-10-22 Kobe Steel Ltd Steel for induction hardening excellent in torsional strength and toughness, and method of manufacturing the same
CN106029925A (en) * 2014-02-24 2016-10-12 新日铁住金株式会社 Steel material for induction hardening
US10793937B2 (en) 2014-02-24 2020-10-06 Nippon Steel Corporation Steel for induction hardening
WO2018056332A1 (en) * 2016-09-20 2018-03-29 新日鐵住金株式会社 Shaft component
KR20190029658A (en) * 2016-09-20 2019-03-20 신닛테츠스미킨 카부시키카이샤 Shaft parts
JPWO2018056332A1 (en) * 2016-09-20 2019-06-24 日本製鉄株式会社 Shaft parts
JPWO2018056333A1 (en) * 2016-09-20 2019-06-24 日本製鉄株式会社 Carburized shaft parts
KR102142894B1 (en) 2016-09-20 2020-08-10 닛폰세이테츠 가부시키가이샤 Shaft parts
CN109715839B (en) * 2016-09-20 2021-02-09 日本制铁株式会社 Shaft component
US11345982B2 (en) 2016-09-20 2022-05-31 Nippon Steel Corporation Shaft part
CN110062984A (en) * 2016-12-08 2019-07-26 哈廷电子有限公司及两合公司 Plug-in connector with locker
CN109518096A (en) * 2018-12-27 2019-03-26 沈阳大学 A kind of method of spontaneity porous enhancing potassium steel fatigue resistance

Also Published As

Publication number Publication date
JP3932995B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
JP2013108129A (en) Rolled steel bar for hot forging
JP2007023310A (en) Steel for machine structural use
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JP2012214832A (en) Steel for machine structure and method for producing the same
JP3932995B2 (en) Induction tempering steel and method for producing the same
JP4983099B2 (en) Steel shaft parts with excellent impact and fatigue properties and manufacturing method thereof
JPH10195589A (en) Induction hardened steel material with high torsional fatigue strength
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
KR20050061476A (en) Steel product for induction hardening, induction-hardened member using the same and methods for producing them
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP3733967B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP3978111B2 (en) Carburizing steel with excellent torsional fatigue properties
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP2005048211A (en) Method for producing steel excellent in fatigue characteristic
JP2008240129A (en) Non-heat treated steel material
JPH11269541A (en) Manufacture of high strength steel excellent in fatigue characteristic
JPH09111401A (en) Steel for machine structural use, excellent in machinability and quenching crack resistance, and its production
JP2006045678A (en) Steel product having excellent fatigue property after induction hardening, and production method therefor
JP4196766B2 (en) Steel material excellent in delayed fracture resistance and fatigue characteristics and method for producing the same
JP2007107046A (en) Steel material to be induction-hardened

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Ref document number: 3932995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7