JP2011094169A - Case hardening steel having excellent crystal grain coarsening prevention characteristic - Google Patents

Case hardening steel having excellent crystal grain coarsening prevention characteristic Download PDF

Info

Publication number
JP2011094169A
JP2011094169A JP2009246760A JP2009246760A JP2011094169A JP 2011094169 A JP2011094169 A JP 2011094169A JP 2009246760 A JP2009246760 A JP 2009246760A JP 2009246760 A JP2009246760 A JP 2009246760A JP 2011094169 A JP2011094169 A JP 2011094169A
Authority
JP
Japan
Prior art keywords
less
amount
excluding
precipitates
case hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009246760A
Other languages
Japanese (ja)
Other versions
JP5350181B2 (en
Inventor
Mutsuhisa Nagahama
睦久 永濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009246760A priority Critical patent/JP5350181B2/en
Publication of JP2011094169A publication Critical patent/JP2011094169A/en
Application granted granted Critical
Publication of JP5350181B2 publication Critical patent/JP5350181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a case hardening steel in which the coarsening of crystal grains can be prevented even if surface hardening treatment is performed at ≥1,050°C after working such as warm forging and cold forging. <P>SOLUTION: The case hardening steel contains, by mass, 0.1 to 0.3% C, ≤2.5% (not including 0%) Si, 0.1 to 2.0% Mn, ≤0.03% (not including 0%) P, ≤0.1% (not including 0%) S, 0.30 to 2.0% Cr, 0.05 to 1.5% Mo, ≤0.1% (not including 0%) Al, 0.055 to 0.09% Nb, 0.055 to 0.09% Ti, ≤0.008% (not including 0%) N and ≤0.003% (not including 0%) O, and the balance iron with inevitable impurities, wherein carbide, nitride and carbonitride containing Ti, Nb and Mo with a diameter of the equivalent circle of ≤100 nm satisfy inequality (1) by the average composition, and further, the above carbide, nitride and carbonitride a with diameter of the equivalent circle of ≤100 nm are present in an amount of ≥1×10<SP>8</SP>pieces/mm<SP>2</SP>: 0.05≤[Mo]/([Nb]+[Ti])≤1.0...(1). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車などの輸送機器、建設機械、その他産業機械などにおいて、疲労特性等を改善するために浸炭(ガス浸炭、プラズマ浸炭、真空浸炭、高濃度浸炭など)や浸炭窒化などの表面硬化処理を施して表層部の硬度を高めることが必要な機械構造部品、特に歯車(軸付き歯車など)、シャフト、軸受、動力伝達用プーリ、等速ジョイントなどの素材として有用な結晶粒粗大化防止特性に優れた肌焼鋼、および機械構造部品に関するものである。   The present invention provides surface hardening such as carburizing (gas carburizing, plasma carburizing, vacuum carburizing, high-concentration carburizing, etc.) and carbonitriding to improve fatigue characteristics etc. in transportation equipment such as automobiles, construction machinery, and other industrial machinery. Preventing grain coarsening that is useful as a material for mechanical structural parts that need to be treated to increase the hardness of the surface layer, especially gears (shaft gears, etc.), shafts, bearings, power transmission pulleys, constant velocity joints, etc. The present invention relates to case-hardened steel having excellent characteristics and machine structural parts.

自動車、建設機械、その他各種産業機械に用いられる機械部品のうち、例えば歯車のように耐磨耗性や高疲労強度が要求される部品は、JIS規格で定められたSCr、SCM、SNCMなどの肌焼鋼を鍛造・切削などの機械加工により所望の部品形状に成形した後、浸炭や浸炭窒化処理などの表面硬化処理を施し、仕上げ工程(切削や研磨など)を経て製造される。   Among machine parts used in automobiles, construction machines, and other various industrial machines, parts that require wear resistance and high fatigue strength such as gears, such as SCr, SCM, SNCM, etc. defined by JIS standards. After the case-hardened steel is formed into a desired part shape by machining such as forging and cutting, surface hardening treatment such as carburizing and carbonitriding is performed, and then it is manufactured through a finishing process (cutting, polishing, etc.).

近年、部品の製造コストを低減する取り組みとして、機械加工にかかるコストを低減するため切削加工から鍛造に変更するとともに、鍛造加工でも寸法精度が高く鍛造後の切削コストを抑えることのできる温間鍛造や冷間鍛造が適用される傾向がある。しかし、温間鍛造や冷間鍛造は、鍛造中に蓄積された加工歪によって、表面硬化処理時に結晶粒の粗大化が起こるという問題がある。また、表面硬化処理については浸炭時間を短縮して生産性を向上させるため、より高温での浸炭が望まれており、従来のガス浸炭に代わって真空浸炭が用いられるようになっている。真空浸炭は950℃を超える高温処理が可能であるため、浸炭時間を短縮できる上に部品表面に浸炭異常層が発生しにくいという利点がある反面、浸炭時に結晶粒の粗大化が起こりやすく機械的性質の低下や焼入れ歪が大きくなるという問題を有している。   In recent years, as an effort to reduce the cost of manufacturing parts, we have changed from cutting to forging in order to reduce the cost of machining, and warm forging that has high dimensional accuracy even in forging and can reduce cutting costs after forging And cold forging tends to be applied. However, warm forging and cold forging have a problem that crystal grains are coarsened during surface hardening treatment due to processing strain accumulated during forging. Further, for the surface hardening treatment, carburizing at a higher temperature is desired in order to shorten the carburizing time and improve productivity, and vacuum carburizing is used instead of conventional gas carburizing. Since vacuum carburizing can be performed at a high temperature exceeding 950 ° C, it has the advantage of shortening the carburizing time and preventing the occurrence of an abnormal carburizing layer on the surface of the part. There is a problem that the properties are deteriorated and the quenching strain is increased.

このような背景下、温間鍛造や冷間鍛造のような鍛造加工をした後に、高温の表面硬化処理(真空浸炭処理など)を行っても結晶粒の粗大化が生じ難い鋼材が強く望まれている。   Against such a background, steel materials that are not prone to crystal grain coarsening even after performing high-temperature surface hardening treatment (vacuum carburizing treatment, etc.) after forging such as warm forging and cold forging are strongly desired. ing.

従来、浸炭時の結晶粒の粗大化を防止する技術として、例えば特許文献1〜6には、主にAl、Nb、Tiなどの元素を添加し、これらの析出物を微細に分散させる技術が提案されている。特許文献1〜2はいずれもB(ボロン)を必須成分として、特許文献1ではNbの析出物、NbとAlの複合析出物を分散させ、特許文献2ではTi炭化物、Ti複合炭化物、Ti窒化物を分散させることにより結晶粒を微細化できる旨を開示している。特許文献3ではピンニング効果を発揮する元素としてMoやTiを用い、Mo系炭化物、Ti系炭化物、Ti−Mo系炭化物を析出させている。特許文献4ではTiとNbを同時に含む炭化物や炭窒化物、特許文献5〜6では(Nb、Ti)(CN)を析出させて結晶粒の粗大化を防止できる旨が開示されている。   Conventionally, as a technique for preventing coarsening of crystal grains during carburization, for example, Patent Documents 1 to 6 mainly include elements such as Al, Nb, and Ti, and finely disperse these precipitates. Proposed. Patent Documents 1 and 2 all have B (boron) as an essential component, Patent Document 1 disperses Nb precipitates, Nb and Al composite precipitates, and Patent Document 2 Ti carbides, Ti composite carbides, and Ti nitrides. It is disclosed that crystal grains can be refined by dispersing a product. In Patent Document 3, Mo or Ti is used as an element that exhibits a pinning effect, and Mo carbide, Ti carbide, or Ti—Mo carbide is precipitated. Patent Document 4 discloses that carbides and carbonitrides containing Ti and Nb at the same time and Patent Documents 5 to 6 can precipitate (Nb, Ti) (CN) to prevent coarsening of crystal grains.

特許第3480630号公報Japanese Patent No. 3480630 特開平10−81938号公報Japanese Patent Laid-Open No. 10-81938 特開2006−9150号公報JP 2006-9150 A 特開2006−28568号公報JP 2006-28568 A 特開2006−307270号公報JP 2006-307270 A 特開2006−307271号公報JP 2006-307271 A

本発明は、上記事情に鑑みてなされたものであり、その目的は温間鍛造や冷間鍛造等の加工後、従来よりも高温の1050℃以上で表面硬化処理を行っても結晶粒の粗大化が防止できる肌焼鋼を提供することにある。   The present invention has been made in view of the above circumstances, and the purpose thereof is to make crystal grains coarse even if surface hardening is performed at a temperature higher than 1050 ° C., which is higher than before, after processing such as warm forging and cold forging. An object of the present invention is to provide a case-hardened steel that can be prevented.

従来はピンニング効果を有する析出物として、上述した特許文献1〜6に示されるようなAl、Nb、Ti系の析出物が用いられていた。しかし、本発明者が検討を重ねたところ、従来提案されてきた析出物は1050℃以上もの高温で表面硬化処理を行うと、析出物自体が溶けてなくなったり、また大きい析出物が小さい析出物を取り込んで粗大化してしまう、いわゆるオストワルド成長をする結果、十分な結晶粒粗大化防止効果が発揮できないことが判明した。   Conventionally, as a precipitate having a pinning effect, Al, Nb, and Ti-based precipitates as shown in Patent Documents 1 to 6 described above have been used. However, as a result of repeated studies by the inventor, the conventionally proposed precipitate is not dissolved when the surface hardening treatment is performed at a high temperature of 1050 ° C. or higher, and a large precipitate is a small precipitate. As a result of so-called Ostwald growth that takes in and coarsens, it has been found that a sufficient effect of preventing coarsening of crystal grains cannot be exhibited.

しかし近年では精度の高いニアネット成形が望まれているため冷間強加工と高温での表面硬化処理のニーズが強く、より高度な結晶粒粗大化防止特性が要求されている。そこで本発明者が検討を重ねた結果、微細なTi、Nb、およびMoを含有する炭化物、窒化物、および炭窒化物であって、前記析出物中のTi、Nb、およびMoの含有量を適切に制御したもの(以下では、「Ti−Nb−Mo系析出物」と呼ぶ。)を析出させれば、温間鍛造や冷間鍛造の後に高温で表面硬化処理を行っても析出物自体が溶けたり、オストワルド成長をしたりすることがなく、結晶粒粗大化防止効果が十分に発揮できることを見出した。またTi−Nb−Mo系析出物を形成させるためには、鋼中のTi、Nb、およびMoの含有量を適切に制御するとともに、鋳造段階の冷却速度を遅くしてTi−Nb−Mo系析出物を析出させ、その後の加熱(分塊圧延前の加熱、熱間圧延前の加熱など)では温度を上げず、加熱時間を短くすることが有効であることも明らかとなった。   In recent years, however, high-precision near-net forming has been desired, and thus there is a strong need for cold strong working and high-temperature surface hardening treatment, and more advanced crystal grain coarsening prevention characteristics are required. Therefore, as a result of repeated studies by the present inventors, fine Ti, Nb, and Mo-containing carbides, nitrides, and carbonitrides, and the contents of Ti, Nb, and Mo in the precipitates are determined. If appropriately controlled ones (hereinafter referred to as “Ti—Nb—Mo-based precipitates”) are deposited, the precipitates themselves even when subjected to surface hardening treatment at a high temperature after warm forging or cold forging. It has been found that the effect of preventing the coarsening of crystal grains can be sufficiently exerted without melting or causing Ostwald growth. In addition, in order to form Ti—Nb—Mo based precipitates, the Ti, Nb, and Mo contents in the steel are appropriately controlled, and the cooling rate in the casting stage is slowed to reduce the Ti—Nb—Mo type. It was also revealed that it is effective to shorten the heating time without depositing the precipitate and heating it after that (heating before mass rolling, heating before hot rolling, etc.).

特許文献1、4〜6において、Ti、Nb、およびMoのいずれも添加したものは、Ti量が少量であり、最大でも0.049%であり、特に特許文献4では鋳造時の冷却速度が速く、鋳片の再加熱温度も高い。特許文献2では、Tiを0.1wt%超と多く用いており加工性(温間鍛造性、冷間鍛造性、切削性など)が劣化する上、Ti、Nb、およびMoのいずれも添加したものではNb量が少量となっている。特許文献3においてTi、Nb、およびMoを添加したものは、Nb量が少量であり、また熱間加工前の加熱温度を1100℃以上に高めて炭化物を十分に固溶させ、その後の冷却過程で微細析出物を析出させている。   In Patent Documents 1 and 4 to 6, when all of Ti, Nb, and Mo are added, the amount of Ti is small and 0.049% at the maximum. In Patent Document 4, the cooling rate during casting is particularly high. It is fast and the reheating temperature of the slab is high. In Patent Document 2, Ti is used in excess of 0.1 wt%, and workability (warm forgeability, cold forgeability, machinability, etc.) deteriorates, and all of Ti, Nb, and Mo are added. In the case, the amount of Nb is small. In Patent Document 3, to which Ti, Nb, and Mo are added, the amount of Nb is small, and the heating temperature before hot working is increased to 1100 ° C. or more to sufficiently dissolve the carbide, and the subsequent cooling process With this, fine precipitates are deposited.

上記課題を達成した本発明の結晶粒粗大化防止特性に優れた肌焼鋼は、C:0.1〜0.3%(質量%の意味。以下、同じ。)、Si:2.5%以下(0%を含まない)、Mn:0.1〜2.0%、P:0.03%以下(0%を含まない)、S:0.1%以下(0%を含まない)、Cr:0.30〜2.0%、Mo:0.05〜1.5%、Al:0.1%以下(0%を含まない)、Nb:0.055〜0.09%、Ti:0.055〜0.09%、N:0.008%以下(0%を含まない)、O:0.003%以下(0%を含まない)を含有し、残部は鉄および不可避不純物であり、円相当径100nm以下の、Ti、Nb、およびMoを含有する炭化物、窒化物、および炭窒化物が平均組成で下記(1)式を満たすとともに、円相当径100nm以下の前記炭化物、窒化物、および炭窒化物の個数が1×108個/mm2以上存在することを特徴とする。
0.05≦[Mo]/([Nb]+[Ti])≦1.0 ・・・(1)
(但し、[Mo]、[Nb]、[Ti]は夫々、前記炭化物、窒化物、および炭窒化物中のMo、Nb、Tiの含有量(質量%)を示す。)
The case-hardened steel excellent in crystal grain coarsening prevention characteristics of the present invention that has achieved the above-mentioned problems is C: 0.1 to 0.3% (meaning mass%, hereinafter the same), Si: 2.5%. Or less (excluding 0%), Mn: 0.1 to 2.0%, P: 0.03% or less (not including 0%), S: 0.1% or less (not including 0%), Cr: 0.30 to 2.0%, Mo: 0.05 to 1.5%, Al: 0.1% or less (excluding 0%), Nb: 0.055 to 0.09%, Ti: 0.055-0.09%, N: 0.008% or less (not including 0%), O: 0.003% or less (not including 0%), the balance being iron and inevitable impurities The carbide, nitride, and carbonitride containing Ti, Nb, and Mo having an equivalent circle diameter of 100 nm or less satisfy the following formula (1) with an average composition, and the equivalent circle diameter of 10 nm below the carbide, the number of nitrides, and carbonitrides are characterized by the presence 1 × 10 8 pieces / mm 2 or more.
0.05 ≦ [Mo] / ([Nb] + [Ti]) ≦ 1.0 (1)
(However, [Mo], [Nb], and [Ti] indicate the contents (mass%) of Mo, Nb, and Ti in the carbide, nitride, and carbonitride, respectively.)

本発明の肌焼鋼は、必要に応じて(a)Cu:0.3%以下(0%を含まない)および/またはNi:1.0%以下(0%を含まない)、(b)Zr:0.20%以下(0%を含まない)および/またはV:0.20%以下(0%を含まない)、(c)Pb:0.10%以下(0%を含まない)、Bi:0.10%以下(0%を含まない)、およびCa:0.010%以下(0%を含まない)よりなる群から選ばれる少なくとも1種、を含有していても良い。   The case-hardened steel according to the present invention has, as necessary, (a) Cu: 0.3% or less (not including 0%) and / or Ni: 1.0% or less (not including 0%), (b) Zr: 0.20% or less (not including 0%) and / or V: 0.20% or less (not including 0%), (c) Pb: 0.10% or less (not including 0%), Bi: 0.10% or less (excluding 0%) and Ca: at least one selected from the group consisting of 0.010% or less (not including 0%) may be included.

本発明は、上記した肌焼鋼から得られる機械構造部品も包含する。   The present invention also includes a machine structural component obtained from the above case-hardened steel.

本発明によれば、組成を適切に制御した微細なTi−Nb−Mo系析出物を析出させているため、温間鍛造や冷間鍛造の後に1050℃以上もの高温で表面硬化処理を行った場合でも析出物自体の溶解やオストワルド成長を抑制することができ、表面硬化処理時の結晶粒粗大化を防止することができる。   According to the present invention, fine Ti—Nb—Mo-based precipitates whose composition is appropriately controlled are deposited, and thus surface hardening treatment was performed at a high temperature of 1050 ° C. or higher after warm forging or cold forging. Even in this case, dissolution of the precipitate itself and Ostwald growth can be suppressed, and crystal grain coarsening during the surface hardening treatment can be prevented.

図1は、後述する実施例における900℃焼きならし材の透過型電子顕微鏡写真である。FIG. 1 is a transmission electron micrograph of a 900 ° C. normalized material in an example described later. 図2は、前記図1で観察された100nm以下の析出物について、EDX(エネルギー分散型X線分析装置)によって特性X線の強度を測定したグラフである。FIG. 2 is a graph in which the intensity of characteristic X-rays is measured by EDX (energy dispersive X-ray analyzer) for the precipitates of 100 nm or less observed in FIG.

本発明では、微細なTi−Nb−Mo系析出物を析出させているところに特徴を有している。以下では、Ti−Nb−Mo系析出物の組成、大きさ、および個数について説明する。   The present invention is characterized in that fine Ti—Nb—Mo based precipitates are deposited. Hereinafter, the composition, size, and number of Ti—Nb—Mo based precipitates will be described.

本発明におけるTi−Nb−Mo系析出物は、Ti、Nb、およびMoを含有する炭化物、窒化物、および炭窒化物であり、該析出物中のTi、Nb、およびMoの含有量が下記(1)式を満たすものである。より詳細には、後記する実施例で述べるように、析出物の組成を分析した際に、CおよびNの少なくともいずれか一方と、Ti、Nb、およびMoのいずれもが検出され、析出物中のTi、Nb、Moの含有量が下記(1)式を満たすものを言う。
0.05≦[Mo]/([Nb]+[Ti])≦1.0 ・・・(1)
(但し、[Mo]、[Nb]、[Ti]は夫々、前記炭化物、窒化物、および炭窒化物中のMo、Nb、Tiの含有量(質量%)を示す。)
Ti-Nb-Mo-based precipitates in the present invention are carbides, nitrides, and carbonitrides containing Ti, Nb, and Mo, and the contents of Ti, Nb, and Mo in the precipitates are as follows. (1) The expression is satisfied. More specifically, as will be described in the examples described later, when the composition of the precipitate is analyzed, at least one of C and N and all of Ti, Nb, and Mo are detected, and the precipitate is The Ti, Nb, and Mo contents satisfy the following formula (1).
0.05 ≦ [Mo] / ([Nb] + [Ti]) ≦ 1.0 (1)
(However, [Mo], [Nb], and [Ti] indicate the contents (mass%) of Mo, Nb, and Ti in the carbide, nitride, and carbonitride, respectively.)

本発明におけるTi−Nb−Mo系析出物は、従来提案されてきたTi−Nb系析出物に比べて、高温下における析出物のオストワルド成長が起こりにくいため、高温での表面硬化処理時にも結晶粒粗大化防止効果が有効に発揮される。これはMoの鋼中での拡散速度が、TiおよびNbに比べて遅いことが原因であると考えられる。鋼中の拡散速度は、Tiが10-52/sのオーダー、Nbが10-42/sのオーダーであるのに対し、Moは10-62/sのオーダーであり、Moの拡散速度が遅いためにMoによるドラッグ効果を引き起こす。ドラッグ効果とは、TiやNbが拡散しようとする場合にMoも平衡状態を取り戻そうと拡散するが、TiやNbがMoを引きずって拡散するに際して拡散速度の遅いMoがTiやNbの動きの抵抗となることを言う。このようなMoによるドラッグ効果により、Ti−Nb−Mo系析出物のオストワルド成長を抑制することができるものと考えられる。 Since the Ti—Nb—Mo based precipitate in the present invention is less likely to cause Ostwald growth of the precipitate at a high temperature than the conventionally proposed Ti—Nb based precipitate, The effect of preventing grain coarsening is exhibited effectively. This is considered to be because the diffusion rate of Mo in steel is slower than that of Ti and Nb. The diffusion rate in steel is Ti on the order of 10 −5 m 2 / s and Nb on the order of 10 −4 m 2 / s, whereas Mo is on the order of 10 −6 m 2 / s. Since the diffusion rate of Mo is slow, a drag effect due to Mo is caused. The drag effect is that when Ti or Nb is about to diffuse, Mo also diffuses to restore the equilibrium state. However, when Ti or Nb diffuses by dragging Mo, Mo having a low diffusion rate is resistant to the movement of Ti or Nb. Say that. It is considered that the Ostwald growth of Ti—Nb—Mo based precipitates can be suppressed by such a drag effect by Mo.

上記(1)式中の[Mo]/([Nb]+[Ti])の値が、0.05未満であると、上記したMoのドラッグ効果が十分でないため、高温下でのTi−Nb−Mo系析出物のオストワルド成長を防止することができない。一方、[Mo]/([Nb]+[Ti])の値が1.0を超えると、Ti−Nb−Mo系析出物の融点が低いものとなり、高温下でのTi−Nb−Mo系析出物の素地への溶け込みが起こりやすくなる。[Mo]/([Nb]+[Ti])の好ましい下限は0.10であり、より好ましい下限は0.15であり、また好ましい上限は0.90である。   When the value of [Mo] / ([Nb] + [Ti]) in the above formula (1) is less than 0.05, the above-described drag effect of Mo is not sufficient, so Ti—Nb at high temperatures. -Ostwald growth of Mo-based precipitates cannot be prevented. On the other hand, when the value of [Mo] / ([Nb] + [Ti]) exceeds 1.0, the melting point of the Ti—Nb—Mo based precipitate becomes low, and the Ti—Nb—Mo based at a high temperature. It becomes easy for the precipitate to dissolve into the substrate. The preferable lower limit of [Mo] / ([Nb] + [Ti]) is 0.10, the more preferable lower limit is 0.15, and the preferable upper limit is 0.90.

本発明では析出物のサイズについて円相当径100nm以下を対象とした。円相当径とは、各析出物について同一の面積となる真円の直径を意味する。円相当径100nm(以下、単に「100nm」と示す。)を超える析出物は結晶粒粗大化防止効果が十分でないためである。本発明で対象とするTi−Nb−Mo系析出物のサイズの下限は特に限定されないが、透過型電子顕微鏡(TEM)の解像度およびTEM写真の倍率の観点から、およそ5nmである。   In the present invention, the size of the precipitate is targeted for an equivalent circle diameter of 100 nm or less. The equivalent circle diameter means the diameter of a perfect circle having the same area for each precipitate. This is because precipitates exceeding the equivalent circle diameter of 100 nm (hereinafter simply referred to as “100 nm”) are insufficient in preventing the grain coarsening. The lower limit of the size of the Ti—Nb—Mo-based precipitate targeted in the present invention is not particularly limited, but is about 5 nm from the viewpoint of the transmission electron microscope (TEM) resolution and the magnification of the TEM photograph.

本発明では円相当径100nm以下のTi−Nb−Mo系析出物の個数が1×108個/mm2以上である。上記析出物の個数が1×108個/mm2未満であると、結晶粒粗大化防止効果が十分に発揮されない。上記析出物の個数は、好ましく5×108個/mm2以上であり、より好ましくは2×109個/mm2以上である。上記析出物の個数の上限は特に限定されないが、通常1×1010個/mm2程度である。 In the present invention, the number of Ti—Nb—Mo based precipitates having an equivalent circle diameter of 100 nm or less is 1 × 10 8 pieces / mm 2 or more. When the number of the precipitates is less than 1 × 10 8 pieces / mm 2 , the effect of preventing the coarsening of crystal grains is not sufficiently exhibited. The number of the precipitates is preferably 5 × 10 8 pieces / mm 2 or more, more preferably 2 × 10 9 pieces / mm 2 or more. The upper limit of the number of precipitates is not particularly limited, but is usually about 1 × 10 10 pieces / mm 2 .

以下では、本発明に係る肌焼鋼の化学成分組成について述べる。   Below, the chemical component composition of the case hardening steel which concerns on this invention is described.

C:0.1〜0.3%
Cは機械構造部品の芯部硬さを確保するのに必要な元素であるため、C量を0.1%以上と定めた。C量は好ましくは0.13%以上、より好ましくは0.15%以上である。一方、C量が過剰になると鋼材の硬さが必要以上に高くなり、被削性や冷間鍛造性が低下するため、C量は0.3%以下と定めた。C量は好ましくは0.25%以下であり、より好ましくは0.22%以下である。
C: 0.1 to 0.3%
Since C is an element necessary for ensuring the core hardness of the mechanical structural component, the C content is set to 0.1% or more. The amount of C is preferably 0.13% or more, more preferably 0.15% or more. On the other hand, when the amount of C is excessive, the hardness of the steel material becomes higher than necessary, and the machinability and cold forgeability are lowered. Therefore, the amount of C is determined to be 0.3% or less. The amount of C is preferably 0.25% or less, more preferably 0.22% or less.

Si:2.5%以下(0%を含まない)
Siは表面硬化層の軟化抵抗性の向上に大きく寄与する元素である。このような作用を有効に発揮するため、Si量は0.03%以上とすることが好ましく、より好ましくは0.1%以上である。一方、Si量が過剰になると機械加工時の被削性や冷間鍛造性が著しく劣化するため、Si量は2.5%以下と定めた。Si量は好ましくは2%以下であり、より好ましくは1.5%以下である。
Si: 2.5% or less (excluding 0%)
Si is an element that greatly contributes to improving the softening resistance of the surface hardened layer. In order to effectively exhibit such action, the Si content is preferably 0.03% or more, more preferably 0.1% or more. On the other hand, if the amount of Si becomes excessive, the machinability and cold forgeability at the time of machining are remarkably deteriorated, so the Si amount is determined to be 2.5% or less. The amount of Si is preferably 2% or less, and more preferably 1.5% or less.

Mn:0.1〜2.0%
Mnは溶製時の脱酸剤として作用し、酸化物系介在物を低減して鋼部品の内部品質を高めるとともに、焼入れ性を向上させて鋼部品の芯部硬さや硬化層深さを高め、部品の強度を確保するために有効な元素である。このような作用を有効に発揮させるため、Mnを0.1%以上と定めた。Mn量は好ましくは0.3%以上であり、より好ましくは0.5%以上である。一方、Mn量が過剰になるとPが粒界へ偏析するのを助長して粒界強度を下げ、その結果として低サイクル疲労強度を低下させるため、Mn量は2.0%以下と定めた。Mn量は好ましくは1.5%以下であり、より好ましくは1.0%以下である。
Mn: 0.1 to 2.0%
Mn acts as a deoxidizer during melting, reduces oxide inclusions and improves the internal quality of steel parts, and improves hardenability and increases the core hardness and hardened layer depth of steel parts. It is an effective element for ensuring the strength of parts. In order to exhibit such an action effectively, Mn was determined to be 0.1% or more. The amount of Mn is preferably 0.3% or more, more preferably 0.5% or more. On the other hand, when the amount of Mn becomes excessive, the amount of Mn is set to 2.0% or less in order to promote the segregation of P to the grain boundary to lower the grain boundary strength and consequently lower the low cycle fatigue strength. The amount of Mn is preferably 1.5% or less, more preferably 1.0% or less.

P:0.03%以下(0%を含まない)
Pは熱間加工時の割れを助長する元素であるため、P量は0.03%以下と定めた。P量は好ましくは0.02%以下であり、より好ましくは0.015%以下である。P量は少なければ少ない程好ましいが、鋼材の製造コストの増加を招くため0%とすることは難しく、0.001%程度の残存は許容される。
P: 0.03% or less (excluding 0%)
Since P is an element that promotes cracking during hot working, the amount of P is determined to be 0.03% or less. The amount of P is preferably 0.02% or less, and more preferably 0.015% or less. The smaller the amount of P, the better. However, since it causes an increase in the manufacturing cost of the steel material, it is difficult to make it 0%, and a residual of about 0.001% is allowed.

S:0.1%以下(0%を含まない)
Sは鋼中介在物であるMnSを形成することによって、衝撃強度の異方性を誘発する。そこでS量は0.1%以下と定めた。S量は好ましくは0.05%以下であり、より好ましくは0.03%以下である。S量は少なければ少ない程好ましいが、鋼材の製造コストの増加を招くため0%とすることは難しく、0.001%程度の残存は許容される。
S: 0.1% or less (excluding 0%)
S induces anisotropy of impact strength by forming MnS which is an inclusion in steel. Therefore, the S amount is set to 0.1% or less. The amount of S is preferably 0.05% or less, more preferably 0.03% or less. The smaller the amount of S, the better. However, since it causes an increase in the manufacturing cost of the steel material, it is difficult to make it 0%, and a residual of about 0.001% is allowed.

Cr:0.30〜2.0%
Crは鋼材の焼入れ性を高め、安定した硬化層深さや芯部硬さを十分に確保する作用を有し、歯車などの構造用部材としての静的強度および疲労強度を確保する上で重要な元素である。このような作用を有効に発揮するため、Cr量は0.30%以上と定めた。Cr量は好ましくは0.60%以上であり、より好ましくは0.80%以上である。一方、Cr量が過剰になると旧オーステナイト粒界に偏析して炭化物を形成するため、低サイクル疲労強度が低下する。そこでCr量を2.0%以下と定めた。Cr量は好ましくは1.8%以下であり、より好ましくは1.3%以下である。
Cr: 0.30 to 2.0%
Cr has the effect of enhancing the hardenability of the steel material and sufficiently securing a stable hardened layer depth and core hardness, and is important for ensuring static strength and fatigue strength as a structural member such as gears. It is an element. In order to effectively exhibit such an action, the Cr content is determined to be 0.30% or more. The amount of Cr is preferably 0.60% or more, and more preferably 0.80% or more. On the other hand, when the amount of Cr becomes excessive, segregation occurs at the prior austenite grain boundaries to form carbides, so that the low cycle fatigue strength decreases. Therefore, the Cr amount is set to 2.0% or less. The amount of Cr is preferably 1.8% or less, and more preferably 1.3% or less.

Mo:0.05〜1.5%
Moは本発明において最も重要な元素の一つであり、Ti、Nbとともに炭化物、窒化物、炭窒化物を形成してピンニング粒子として作用するとともに、鋼材の焼入れ性を確保して不完全焼入れ組織の生成を抑制する作用を有する。このような作用を有効に発揮させるため、Mo量は0.05%以上と定めた。Mo量は好ましくは0.1%以上であり、より好ましくは0.15%以上である。一方、Mo量が過剰になると鋼部品の芯部硬さが必要以上に高くなり、機械加工時における被削性や冷間鍛造性が劣化するため、Mo量は1.5%以下と定めた。Mo量は好ましくは1%以下であり、より好ましくは0.5%以下である。
Mo: 0.05-1.5%
Mo is one of the most important elements in the present invention, and forms carbides, nitrides, carbonitrides together with Ti and Nb to act as pinning particles, and also ensures the hardenability of the steel material and an incompletely quenched structure. It has the effect | action which suppresses the production | generation of. In order to effectively exhibit such an action, the Mo amount is determined to be 0.05% or more. The amount of Mo is preferably 0.1% or more, and more preferably 0.15% or more. On the other hand, if the Mo amount becomes excessive, the core hardness of the steel part becomes higher than necessary, and the machinability and cold forgeability during machining deteriorate, so the Mo amount is set to 1.5% or less. . The amount of Mo is preferably 1% or less, and more preferably 0.5% or less.

Al:0.1%以下(0%を含まない)
Alは溶製時に脱酸剤として有効に作用し、また微細な窒化物を形成して浸炭焼入れ時の結晶粒の粗大化を防止する作用を有する。このような作用を有効に発揮させるため、Al量は好ましくは0.01%以上であり、より好ましくは0.02%以上である。一方、Al量が過剰になると酸化物などの非金属介在物が増大し靭性や切削性を劣化させる。そこでAl量を0.1%以下と定めた。Al量は好ましくは0.08%以下であり、より好ましくは0.05%以下である。
Al: 0.1% or less (excluding 0%)
Al effectively acts as a deoxidizer during melting, and also has a function of preventing the coarsening of crystal grains during carburizing and quenching by forming fine nitrides. In order to effectively exhibit such an action, the Al amount is preferably 0.01% or more, and more preferably 0.02% or more. On the other hand, when the amount of Al becomes excessive, non-metallic inclusions such as oxides increase and deteriorate toughness and machinability. Therefore, the Al content is set to 0.1% or less. The amount of Al is preferably 0.08% or less, and more preferably 0.05% or less.

Nb:0.055〜0.09%
Nbは、単独またはTi、Moと共に炭化物、窒化物、および炭窒化物を形成することにより、高温での表面硬化処理時の結晶粒粗大化を防止する作用を有する。このような作用を有効に発揮させるため、Nb量を0.055%以上と定めた。Nb量は好ましくは0.060%以上、より好ましくは0.065%以上である。一方、Nb量が過剰になると、鋳造時に粗大なNb炭窒化物が生成し、鋳造割れや圧延割れの原因となる。そこでNb量は0.09%以下と定めた。Nb量は好ましくは0.080%以下であり、より好ましくは0.075%以下である。
Nb: 0.055-0.09%
Nb has the effect of preventing crystal grain coarsening during surface hardening at high temperatures by forming carbides, nitrides, and carbonitrides alone or together with Ti and Mo. In order to effectively exhibit such an action, the Nb amount is set to 0.055% or more. The Nb amount is preferably 0.060% or more, more preferably 0.065% or more. On the other hand, when the amount of Nb is excessive, coarse Nb carbonitride is generated during casting, which causes casting cracks and rolling cracks. Therefore, the Nb amount is set to 0.09% or less. The amount of Nb is preferably 0.080% or less, more preferably 0.075% or less.

Ti:0.055〜0.09%
Tiは、単独またはNb、Moと共に炭化物、窒化物、および炭窒化物を形成することにより、高温での表面硬化処理時の結晶粒粗大化を防止する作用を有する。このような作用を有効に発揮させるため、Ti量は0.055%以上と定めた。Ti量は好ましくは0.060%以上であり、より好ましくは0.065%以上である。一方、Ti量が過剰になると粗大なTiN介在物が生成して、転動疲労特性や切削性を低下させる。そこでTi量は0.09%以下と定めた。Ti量は好ましくは0.080%以下であり、より好ましくは0.075%以下である。
Ti: 0.055-0.09%
Ti forms a carbide, nitride, and carbonitride alone or together with Nb and Mo, thereby preventing the grain coarsening during the surface hardening treatment at a high temperature. In order to effectively exhibit such an action, the Ti content is determined to be 0.055% or more. The amount of Ti is preferably 0.060% or more, and more preferably 0.065% or more. On the other hand, when the amount of Ti is excessive, coarse TiN inclusions are generated, and rolling fatigue characteristics and machinability are deteriorated. Therefore, the Ti amount is determined to be 0.09% or less. The amount of Ti is preferably 0.080% or less, and more preferably 0.075% or less.

N:0.008%以下(0%を含まない)
Nは他の元素(Al、Ti、Nb、Moなど)と窒化物を形成し、結晶粒の微細化に寄与する元素であり、N量は好ましくは0.003%以上である。一方、N量が過剰になると熱間加工性および延性に悪影響を及ぼすためN量は0.008%以下と定めた。N量は好ましくは0.006%以下である。
N: 0.008% or less (excluding 0%)
N is an element that forms nitrides with other elements (Al, Ti, Nb, Mo, etc.) and contributes to the refinement of crystal grains, and the N amount is preferably 0.003% or more. On the other hand, if the amount of N is excessive, the hot workability and ductility are adversely affected, so the amount of N is set to 0.008% or less. The amount of N is preferably 0.006% or less.

O:0.003%以下(0%を含まない)
Oは硬質な酸化物を形成し、切削性を大幅に劣化させるため、0.003%以下と定めた。O量は好ましくは0.002%以下であり、より好ましくは0.001%以下である。
O: 0.003% or less (excluding 0%)
O forms a hard oxide and greatly degrades the machinability, so it was determined to be 0.003% or less. The amount of O is preferably 0.002% or less, and more preferably 0.001% or less.

本発明に係る肌焼鋼の基本成分は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物(Mg、As、Sb、Sn、Te、Se、W、Ta、Co、希土類元素など)が、各成分元素の作用効果や部品の特性を阻害しない範囲で鋼中に含まれることは当然に許容される。さらに本発明の肌焼鋼は、必要に応じて以下の任意元素を含有していても良い。   The basic components of the case-hardened steel according to the present invention are as described above, and the balance is substantially iron. However, inevitable impurities (Mg, As, Sb, Sn, Te, Se, W, Ta, Co, rare earth elements, etc.) brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. As a matter of course, it is allowed to be contained in steel as long as the properties are not impaired. Furthermore, the case hardening steel of this invention may contain the following arbitrary elements as needed.

Cu:0.3%以下(0%を含まない)
Ni:1.0%以下(0%を含まない)
CuおよびNiはいずれも耐候性を向上させるのに有効な元素であり、Niはさらにマトリックスに固溶して靭性を向上させる作用も有する。このような作用を有効に発揮するため、Cu量、Ni量はいずれも0.1%以上が好ましい。一方、Cu量が過剰になると熱間加工時(圧延など)の鋼表面に割れや疵が発生するため、Cu量は0.3%以下が好ましく、より好ましくは0.25%以下である。また、Ni量が過剰になると圧延時にベイナイトやマルテンサイト組織が発生して靭延性が低下するため、Ni量は1.0%以下が好ましく、より好ましくは0.8%以下である。Cu、Niは単独で添加しても良いし、併用しても良い。
Cu: 0.3% or less (excluding 0%)
Ni: 1.0% or less (excluding 0%)
Both Cu and Ni are effective elements for improving the weather resistance, and Ni also has an action of improving the toughness by solid solution in the matrix. In order to effectively exhibit such an action, both the Cu content and the Ni content are preferably 0.1% or more. On the other hand, if the amount of Cu becomes excessive, cracks and wrinkles occur on the steel surface during hot working (rolling, etc.), so the amount of Cu is preferably 0.3% or less, more preferably 0.25% or less. Further, when the amount of Ni becomes excessive, a bainite or martensite structure is generated during rolling and the toughness deteriorates, so the amount of Ni is preferably 1.0% or less, more preferably 0.8% or less. Cu and Ni may be added alone or in combination.

Zr:0.20%以下(0%を含まない)
V:0.20%以下(0%を含まない)
Zr、Vはいずれも炭素および窒素と活性な元素であり、微細な析出物を生成することによって結晶粒粗大化防止特性を向上できる。このような作用を有効に発揮させるため、Zr量、V量はいずれも0.03%以上が好ましく、より好ましくは0.05%以上である。一方、Zr量、V量が過剰になると熱間加工(例えば、熱間圧延)時の鋼表面に割れや疵が発生するため、Zr量、V量はいずれも0.20%以下とすることが好ましく、より好ましくは0.15%以下である。Zr、Vは単独で添加しても良いし、併用しても良い。
Zr: 0.20% or less (excluding 0%)
V: 0.20% or less (excluding 0%)
Both Zr and V are active elements such as carbon and nitrogen, and the crystal grain coarsening preventing property can be improved by forming fine precipitates. In order to effectively exhibit such an action, both the Zr amount and the V amount are preferably 0.03% or more, and more preferably 0.05% or more. On the other hand, if the Zr amount and V amount are excessive, cracks and wrinkles occur on the steel surface during hot working (for example, hot rolling), so both the Zr amount and V amount should be 0.20% or less. Is more preferable, and 0.15% or less is more preferable. Zr and V may be added alone or in combination.

Pb:0.10%以下(0%を含まない)
Bi:0.10%以下(0%を含まない)
Ca:0.010%以下(0%を含まない)
Pb、Bi、Caはいずれも鋼材の被削性を向上させる元素である。さらに、Caについては鋼材中の硫化物の展伸を抑制して衝撃特性を向上させるとともに、粗大なTi硫化物の生成を抑制して鍛造性を向上させる作用を有する。このような効果を有効に発揮させるため、Pb量、Bi量はいずれも0.02%以上とすることが好ましく、より好ましくは0.05%以上である。Ca量は0.0005%以上が好ましく、より好ましくは0.001%以上である。一方、Pb量、Bi量が過剰になると強度が低下し、Ca量が過剰になると粗大なCa酸化物が生成することによって却って強度が低下する。Pb量、Bi量はいずれも0.10%以下が好ましく、より好ましくは0.09%以下、さらに好ましくは0.05%以下である。Ca量は0.010%以下が好ましく、0.005%以下が好ましい。Pb、Bi、およびCaは単独で添加しても良いし、2種以上を併用しても良い。
Pb: 0.10% or less (excluding 0%)
Bi: 0.10% or less (excluding 0%)
Ca: 0.010% or less (excluding 0%)
Pb, Bi, and Ca are all elements that improve the machinability of the steel material. Furthermore, about Ca, it suppresses the expansion | extension of the sulfide in steel materials, improves an impact characteristic, and has the effect | action which suppresses the production | generation of coarse Ti sulfide and improves forgeability. In order to effectively exhibit such effects, the Pb amount and Bi amount are both preferably 0.02% or more, and more preferably 0.05% or more. The Ca content is preferably 0.0005% or more, and more preferably 0.001% or more. On the other hand, when the amount of Pb and Bi is excessive, the strength is reduced, and when the amount of Ca is excessive, coarse Ca oxide is generated, thereby reducing the strength. The Pb content and Bi content are both preferably 0.10% or less, more preferably 0.09% or less, and still more preferably 0.05% or less. The Ca content is preferably 0.010% or less, and preferably 0.005% or less. Pb, Bi, and Ca may be added alone or in combination of two or more.

本発明の範囲にTi−Nb−Mo系析出物の量を制御するためには、溶製−鋳造−分塊圧延−熱間圧延という一連の製造工程において、特に鋳造時の冷却速度、およびその後の加熱条件を制御することが好ましい。より詳細には、鋳造時の1000〜700℃(鋳片の表面中央温度)の間の冷却速度を遅くし、その後の加熱過程(例えば分塊圧延前の加熱、熱間圧延前の加熱)では加熱温度を低くし、保持時間を短くすることが有効である。各工程の好ましい条件は以下の通りである。   In order to control the amount of Ti-Nb-Mo-based precipitate within the scope of the present invention, in the series of manufacturing processes of melting, casting, block rolling, and hot rolling, particularly the cooling rate during casting, and thereafter It is preferable to control the heating conditions. More specifically, the cooling rate between 1000 to 700 ° C. (the surface center temperature of the slab) during casting is slowed down, and in the subsequent heating process (for example, heating before mass rolling, heating before hot rolling) It is effective to lower the heating temperature and shorten the holding time. Preferred conditions for each step are as follows.

鋳造時の1000〜700℃(鋳片の表面中央温度)の間の冷却速度:15℃/分以下
1000〜700℃の間の冷却速度を制御するのは、該温度範囲でTi−Nb−Mo系析出物が析出するためである。該冷却速度が15℃/分を超えると、Ti−Nb−Mo系析出物中の[Mo]/([Nb]+[Ti])の値が0.05未満となり、Ti−Nb−Mo系析出物による結晶粒粗大化防止特性を有効に発揮することができない。該冷却速度は好ましくは13℃/分以下、より好ましくは10℃/分以下である。冷却速度の下限は特に限定されないが、実操業上5℃/分程度である。
Cooling rate between 1000 and 700 ° C. during casting (surface center temperature of slab): 15 ° C./min or less The cooling rate between 1000 and 700 ° C. is controlled by Ti—Nb—Mo in this temperature range. This is because system precipitates are deposited. When the cooling rate exceeds 15 ° C./min, the value of [Mo] / ([Nb] + [Ti]) in the Ti—Nb—Mo system precipitate becomes less than 0.05, and the Ti—Nb—Mo system The crystal grain coarsening preventing property due to the precipitate cannot be effectively exhibited. The cooling rate is preferably 13 ° C./min or less, more preferably 10 ° C./min or less. The lower limit of the cooling rate is not particularly limited, but is about 5 ° C./min in actual operation.

分塊圧延前の加熱温度1200℃以下、保持時間:1時間以下
分塊圧延前の加熱温度が1200℃を超え、また加熱時間が1時間を超えると、鋳造時の冷却の際に生成させた微細なTi−Nb−Mo系析出物が溶解したり、オストワルド成長したりする結果、微細なTi−Nb−Mo系析出物の個数が不足することとなり、表面硬化処理時の結晶粒粗大化防止効果を有効に発揮することができない。分塊圧延前の加熱温度の下限は、分塊圧延の際の変形能の観点から1100℃程度である。
Heating temperature before split rolling 1200 ° C or less, holding time: 1 hour or less When heating temperature before split rolling exceeds 1200 ° C, and heating time exceeds 1 hour, it was generated during cooling during casting. As a result of the dissolution of fine Ti-Nb-Mo-based precipitates and the Ostwald growth, the number of fine Ti-Nb-Mo-based precipitates is insufficient, preventing grain coarsening during surface hardening treatment. The effect cannot be exhibited effectively. The lower limit of the heating temperature before the partial rolling is about 1100 ° C. from the viewpoint of deformability during the partial rolling.

熱間圧延前の加熱温度:1000℃以下
熱間圧延前の加熱温度が1000℃を超えると、鋳造時の冷却の際に生成させたTi−Nb−Mo系析出物がオストワルド成長し、粗大な析出物によって圧延時の鋼材割れや鍛造時の割れの原因となるとともに、微細なTi−Nb−Mo系析出物の個数が不足する結果、表面硬化処理時の結晶粒粗大化防止効果を有効に発揮することができない。また熱間圧延前の加熱温度の下限は、圧延性、および圧延材の表面品質の観点から、850℃程度とすることが好ましい。
Heating temperature before hot rolling: 1000 ° C. or less When the heating temperature before hot rolling exceeds 1000 ° C., Ti—Nb—Mo-based precipitates generated during cooling during casting grow Ostwald and are coarse. Precipitates cause steel material cracking during rolling and cracking during forging, and as a result of insufficient number of fine Ti-Nb-Mo-based precipitates, effectively preventing grain coarsening during surface hardening treatment I can't demonstrate it. The lower limit of the heating temperature before hot rolling is preferably about 850 ° C. from the viewpoints of rollability and surface quality of the rolled material.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

表1に示す化学成分の鋼を通常の溶製法に従って溶製し、鋳造時の1000〜700℃(鋳片の表面中央温度)の間を表2に示す冷却速度で冷却した後、鋳片を表2に示す分塊圧延加熱相当温度に再加熱して1時間保持し、φ30mmの棒鋼に鍛伸した。次に、熱間圧延前の加熱を模擬するため、900℃の温度で焼きならしし、760℃で球状化焼鈍した後、前記棒鋼からφ12mm×18mmの円柱圧縮試験片を削り出した。   The steel of chemical composition shown in Table 1 was melted in accordance with a normal melting method, and after cooling at 1000 to 700 ° C. (surface center temperature of the slab) at the time of casting at the cooling rate shown in Table 2, the slab was It was reheated to the temperature equivalent to the partial rolling heating shown in Table 2, held for 1 hour, and forged into a 30 mm diameter steel bar. Next, in order to simulate the heating before hot rolling, after normalizing at a temperature of 900 ° C. and spheroidizing annealing at 760 ° C., a cylindrical compression test piece of φ12 mm × 18 mm was cut out from the steel bar.

(1)結晶粒度の測定
前記円柱圧縮試験片を室温で高さ方向に圧縮し(圧縮率:60%、高さ:7.2mm)、その後以下に示す浸炭条件で真空浸炭処理を行い、結晶粒度を測定した。結晶粒度の測定は、真空浸炭処理をした試験片断面の、相当歪1.2となる箇所の浸炭層を検鏡位置としてエッチングを行った後、光学顕微鏡で観察し(倍率:200倍)、JIS G0551に従って旧オーステナイト粒の粒度番号を求めた。結晶粒度番号は7番以上を合格とした。
(1) Measurement of crystal grain size The cylindrical compression test piece was compressed in the height direction at room temperature (compression rate: 60%, height: 7.2 mm), and then subjected to vacuum carburization under the carburizing conditions shown below. The particle size was measured. The crystal grain size is measured by etching with the carburized layer of the cross section of the test piece subjected to vacuum carburizing treatment at the location where the equivalent strain is 1.2, and observing with an optical microscope (magnification: 200 times), The particle size number of the prior austenite grains was determined according to JIS G0551. A grain size number of 7 or more was considered acceptable.

浸炭条件
浸炭期 温度:1050℃
時間:10分
ガス:アセチレン
拡散期 温度:1050℃
時間:10分
ガス:アセチレン
Carburizing conditions Carburizing period Temperature: 1050 ° C
Time: 10 minutes
Gas: Acetylene Diffusion period Temperature: 1050 ° C
Time: 10 minutes
Gas: Acetylene

(2)Ti−Nb−Mo析出物の測定
Ti−Nb−Mo析出物の測定について、図1〜2を参照しつつ説明する。図1は上記した900℃での焼きならし材の透過型電子顕微鏡写真であり、図2は前記透過型電子顕微鏡写真において観察された100nm以下の析出物についてEDX(エネルギー分散型X線分析装置)分析を行ったグラフである。上記の900℃焼きならし材の軸心に垂直な断面のD/4位置(Dは直径)から、透過型電子顕微鏡用の試料を作製し、観察倍率10万倍で観察した(図1)。100nm以下の析出物について任意の5個を選択して、EDX(エネルギー分散型X線分析装置)で特性X線強度を測定し(図2)、前記5個それぞれについて、特性X線の強度比を、含有する合金元素で質量%に半定量化して析出物中のC、N、Ti、Nb、およびMoの含有量を算出した。その結果、表2の実験No.17を除いていずれの実験例においても、選択した5個の析出物全てからCまたはNの少なくともいずれかが検出された。さらに[Mo]/([Nb]+[Ti])を算出して前記5個の析出物の平均値を求めた。本発明における100nm以下の析出物の平均組成は、経験的に100nm以下の任意の5個の析出物の平均組成で代表させることができる。従って、[Mo]/([Nb]+[Ti])の値についても、前記5個の析出物の平均値を、本発明における円相当径100nm以下のTi−Nb−Mo系析出物の[Mo]/([Nb]+[Ti])の値の平均値とした。
(2) Measurement of Ti—Nb—Mo precipitate The measurement of the Ti—Nb—Mo precipitate will be described with reference to FIGS. FIG. 1 is a transmission electron micrograph of the above-mentioned normalizing material at 900 ° C., and FIG. 2 is an EDX (energy dispersive X-ray analyzer) for precipitates of 100 nm or less observed in the transmission electron micrograph. ) It is the graph which analyzed. A sample for a transmission electron microscope was prepared from a D / 4 position (D is a diameter) in a cross section perpendicular to the axis of the above-mentioned 900 ° C. normalizing material, and observed at an observation magnification of 100,000 times (FIG. 1). . Arbitrary five of the precipitates of 100 nm or less are selected and the characteristic X-ray intensity is measured with an EDX (energy dispersive X-ray analyzer) (FIG. 2). Was semi-quantified to mass% with the alloying elements contained, and the contents of C, N, Ti, Nb, and Mo in the precipitate were calculated. As a result, the experiment No. In any of the experimental examples except 17, at least one of C and N was detected from all the five selected precipitates. Furthermore, [Mo] / ([Nb] + [Ti]) was calculated to determine the average value of the five precipitates. The average composition of precipitates of 100 nm or less in the present invention can be empirically represented by the average composition of any five precipitates of 100 nm or less. Therefore, for the value of [Mo] / ([Nb] + [Ti]), the average value of the five precipitates is the same as that of the Ti—Nb—Mo based precipitate having an equivalent circle diameter of 100 nm or less in the present invention. The average value of Mo] / ([Nb] + [Ti]) was used.

次に円相当径100nm以下の析出物の個数は、測定視野0.81μm2を観察倍率10万倍で3視野観察して測定し、3視野の平均を100nm以下の析出物の個数とした。ここで、上述したように本発明における100nm以下の析出物の平均組成は、100nm以下の任意の5個の析出物の組成で代表できることから、ここで測定される100nm以下の析出物の個数は、上記した任意の5個から算出される平均組成を有する析出物の個数であるとみなせる。 Next, the number of precipitates having a circle-equivalent diameter of 100 nm or less was measured by observing three fields of view with a measurement field of view 0.81 μm 2 at an observation magnification of 100,000, and the average of the three fields was defined as the number of precipitates of 100 nm or less. Here, as described above, since the average composition of precipitates of 100 nm or less in the present invention can be represented by the composition of any five precipitates of 100 nm or less, the number of precipitates of 100 nm or less measured here is , The number of precipitates having an average composition calculated from any of the above five.

結果を表2に示す。   The results are shown in Table 2.

表2における実験No.1〜16は、鋼の化学成分および製造条件が適切に制御されているため、100nm以下のTi−Nb−Mo系析出物の[Mo]/([Nb]+[Ti])の値、および個数が本発明で規定する要件を満たすものとなり、高温浸炭後の結晶粒を微細なものとすることができた。   Experiment No. 2 in Table 2 1 to 16, since the chemical composition and production conditions of steel are appropriately controlled, the value of [Mo] / ([Nb] + [Ti]) of a Ti—Nb—Mo based precipitate of 100 nm or less, and The number satisfies the requirements defined in the present invention, and the crystal grains after high-temperature carburization can be made fine.

一方、実験No.17〜25は、鋼の化学成分および製造条件のいずれかが不適切であったため、高温浸炭後の結晶粒が粗大化した例である。   On the other hand, Experiment No. Examples 17 to 25 are examples in which the crystal grains after high-temperature carburization are coarsened because either the chemical components of steel or the production conditions are inappropriate.

実験No.17は、Ti、Nbが含有されていない例であり、Ti−Nb−Mo系析出物が生成されないため浸炭後の結晶粒が粗大となった。なお、実験No.17ではTiおよびNbが含有されていないため、Ti−Nb−Mo系析出物は存在しえないことから、析出物の個数はカウントしていない。   Experiment No. No. 17 is an example in which Ti and Nb are not contained, and Ti—Nb—Mo-based precipitates are not generated, so that the crystal grains after carburization become coarse. Experiment No. In No. 17, since Ti and Nb are not contained, Ti—Nb—Mo-based precipitates cannot exist, so the number of precipitates is not counted.

実験No.18はMo量が少なかった例であり、100nm以下のTi−Nb−Mo系析出物中の[Mo]/([Nb]+[Ti])の値が小さくなり、Moによるドラッグ効果が十分でなかったために、浸炭後の結晶粒が粗大となった。   Experiment No. 18 is an example in which the amount of Mo was small, and the value of [Mo] / ([Nb] + [Ti]) in a Ti—Nb—Mo based precipitate of 100 nm or less was small, and the drag effect by Mo was sufficient. As a result, the crystal grains after carburization became coarse.

実験No.19はNb量およびTi量が少なかった例であり、100nm以下のTi−Nb−Mo系析出物の個数が不足したため、浸炭後の結晶粒が粗大となった。   Experiment No. No. 19 is an example in which the amount of Nb and Ti was small, and the number of Ti—Nb—Mo-based precipitates of 100 nm or less was insufficient, so that the crystal grains after carburization became coarse.

実験No.20はTi量が少なかった例であり、[Mo]/([Nb]+[Ti])の値が大きくなり、浸炭時にTi−Nb−Mo系析出物が溶け析出物個数が不足したため、浸炭後の結晶粒が粗大となった。   Experiment No. No. 20 is an example in which the amount of Ti was small, and the value of [Mo] / ([Nb] + [Ti]) was increased, and the Ti—Nb—Mo based precipitates melted during carburizing, so the number of precipitates was insufficient. Later crystal grains became coarse.

実験No.21はMo量が多かった例であり、100nm以下のTi−Nb−Mo系析出物中の[Mo]/([Nb]+[Ti])の値が大きくなり、浸炭時にTi−Nb−Mo系析出物が素地へ溶け込んでしまったため、浸炭後の結晶粒が粗大となった。   Experiment No. No. 21 is an example in which the amount of Mo was large, and the value of [Mo] / ([Nb] + [Ti]) in the Ti—Nb—Mo-based precipitates of 100 nm or less was increased, and Ti—Nb—Mo during carburization. Since the system precipitates were dissolved in the substrate, the crystal grains after carburization became coarse.

実験No.22は、鋳片の冷却速度が速かった例であり、100nm以下のTi−Nb−Mo系析出物中の[Mo]/([Nb]+[Ti])の値が小さくなり、浸炭後の結晶粒が粗大となった。   Experiment No. No. 22 is an example in which the cooling rate of the slab was high, and the value of [Mo] / ([Nb] + [Ti]) in the Ti—Nb—Mo-based precipitates of 100 nm or less became small, and after carburizing The crystal grains became coarse.

実験No.23は、分解圧延加熱相当温度が高かった例であり、100nm以下のTi−Nb−Mo系析出物の個数が不足したため、浸炭後の結晶粒が粗大となった。   Experiment No. No. 23 is an example in which the temperature corresponding to cracking and heating was high, and the number of Ti—Nb—Mo-based precipitates of 100 nm or less was insufficient, so that the crystal grains after carburization became coarse.

実験No.24、25はNb量またはTi量が多かった例であり、100nm以下のTi−Nb−Mo系析出物中の[Mo]/([Nb]+[Ti])の値が小さくなり、浸炭後の結晶粒が粗大となった。   Experiment No. 24 and 25 are examples in which the amount of Nb or Ti was large, and the value of [Mo] / ([Nb] + [Ti]) in the Ti—Nb—Mo-based precipitates of 100 nm or less became small, and after carburizing The crystal grains became coarse.

Claims (5)

C :0.1〜0.3%(質量%の意味。以下、同じ。)、
Si:2.5%以下(0%を含まない)、
Mn:0.1〜2.0%、
P :0.03%以下(0%を含まない)、
S :0.1%以下(0%を含まない)、
Cr:0.30〜2.0%、
Mo:0.05〜1.5%、
Al:0.1%以下(0%を含まない)、
Nb:0.055〜0.09%、
Ti:0.055〜0.09%、
N :0.008%以下(0%を含まない)、
O :0.003%以下(0%を含まない)を含有し、残部は鉄および不可避不純物であり、
円相当径100nm以下の、Ti、Nb、およびMoを含有する炭化物、窒化物、および炭窒化物が平均組成で下記(1)式を満たすとともに、
円相当径100nm以下の前記炭化物、窒化物、および炭窒化物の個数が1×108個/mm2以上存在することを特徴とする結晶粒粗大化防止特性に優れた肌焼鋼。
0.05≦[Mo]/([Nb]+[Ti])≦1.0 ・・・(1)
(但し、[Mo]、[Nb]、[Ti]は夫々、前記炭化物、窒化物、および炭窒化物中のMo、Nb、Tiの含有量(質量%)を示す。)
C: 0.1 to 0.3% (meaning mass%; hereinafter the same),
Si: 2.5% or less (excluding 0%),
Mn: 0.1 to 2.0%,
P: 0.03% or less (excluding 0%),
S: 0.1% or less (excluding 0%),
Cr: 0.30 to 2.0%,
Mo: 0.05-1.5%,
Al: 0.1% or less (excluding 0%),
Nb: 0.055 to 0.09%,
Ti: 0.055-0.09%,
N: 0.008% or less (excluding 0%),
O: 0.003% or less (excluding 0%), the balance being iron and inevitable impurities,
The carbide, nitride, and carbonitride containing Ti, Nb, and Mo having an equivalent circle diameter of 100 nm or less satisfy the following formula (1) with an average composition,
A case hardening steel excellent in crystal grain coarsening prevention characteristics, wherein the number of carbides, nitrides, and carbonitrides having an equivalent circle diameter of 100 nm or less is 1 × 10 8 pieces / mm 2 or more.
0.05 ≦ [Mo] / ([Nb] + [Ti]) ≦ 1.0 (1)
(However, [Mo], [Nb], and [Ti] indicate the contents (mass%) of Mo, Nb, and Ti in the carbide, nitride, and carbonitride, respectively.)
更に、
Cu:0.3%以下(0%を含まない)および/またはNi:1.0%以下(0%を含まない)を含有する請求項1に記載の肌焼鋼。
Furthermore,
The case hardening steel according to claim 1, containing Cu: 0.3% or less (not including 0%) and / or Ni: 1.0% or less (not including 0%).
更に、
Zr:0.20%以下(0%を含まない)および/またはV:0.20%以下(0%を含まない)を含有する請求項1または2に記載の肌焼鋼。
Furthermore,
The case hardening steel according to claim 1 or 2, containing Zr: 0.20% or less (not including 0%) and / or V: 0.20% or less (not including 0%).
更に、
Pb:0.10%以下(0%を含まない)、
Bi:0.10%以下(0%を含まない)、および
Ca:0.010%以下(0%を含まない)
よりなる群から選ばれる少なくとも1種を含有する請求項1〜3のいずれかに記載の肌焼鋼。
Furthermore,
Pb: 0.10% or less (excluding 0%),
Bi: 0.10% or less (not including 0%), and Ca: 0.010% or less (not including 0%)
The case hardening steel in any one of Claims 1-3 containing the at least 1 sort (s) chosen from the group which consists of.
請求項1〜4のいずれかに記載の肌焼鋼から得られる機械構造部品。   A machine structural component obtained from the case-hardened steel according to any one of claims 1 to 4.
JP2009246760A 2009-10-27 2009-10-27 Case-hardened steel with excellent grain coarsening prevention properties Active JP5350181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246760A JP5350181B2 (en) 2009-10-27 2009-10-27 Case-hardened steel with excellent grain coarsening prevention properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246760A JP5350181B2 (en) 2009-10-27 2009-10-27 Case-hardened steel with excellent grain coarsening prevention properties

Publications (2)

Publication Number Publication Date
JP2011094169A true JP2011094169A (en) 2011-05-12
JP5350181B2 JP5350181B2 (en) 2013-11-27

Family

ID=44111408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246760A Active JP5350181B2 (en) 2009-10-27 2009-10-27 Case-hardened steel with excellent grain coarsening prevention properties

Country Status (1)

Country Link
JP (1) JP5350181B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179048A (en) * 2010-02-26 2011-09-15 Jfe Steel Corp Steel for carburizing having excellent cold workability
JP2011219854A (en) * 2010-03-26 2011-11-04 Jfe Steel Corp Case-hardening steel and method for manufacturing the same
JP2012062536A (en) * 2010-09-16 2012-03-29 Jfe Steel Corp Case-hardening steel and method for producing the same
JP2014047419A (en) * 2012-09-04 2014-03-17 Sanyo Special Steel Co Ltd Steel material having small heat treatment deformation for machine structural use
JP2014208867A (en) * 2013-03-26 2014-11-06 大同特殊鋼株式会社 Vacuum carburization method
WO2015129402A1 (en) * 2014-02-27 2015-09-03 株式会社神戸製鋼所 Case-hardened steel capable of minimizing occurrence of abnormal grains during carburizing, and mechanical structural component using same
JP2017210656A (en) * 2016-05-26 2017-11-30 高周波熱錬株式会社 Method of manufacturing steel for carburization
JP2019035126A (en) * 2017-08-18 2019-03-07 大同特殊鋼株式会社 Steel for machine structure use
WO2019142947A1 (en) * 2018-01-22 2019-07-25 日本製鉄株式会社 Carburized bearing steel component, and steel bar for carburized bearing steel component
WO2020221812A1 (en) 2019-04-30 2020-11-05 Voestalpine Böhler Edelstahl Gmbh & Co Kg Steel material in powder form and process for producing said steel material
WO2023195495A1 (en) * 2022-04-06 2023-10-12 日本製鉄株式会社 Steel material
WO2023195494A1 (en) * 2022-04-06 2023-10-12 日本製鉄株式会社 Steel material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113318A (en) * 1981-12-28 1983-07-06 Kobe Steel Ltd Manufacture of case hardening steel
JP2004002990A (en) * 2002-03-29 2004-01-08 Nippon Steel Corp High-strength steel for fireproof building structure having yield stress at room temperature of above 455n/mm2 and superior in high-temperature property at 800 °c, and method for manufacturing thick steel plate thereof
JP2007162128A (en) * 2005-11-15 2007-06-28 Kobe Steel Ltd Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JP2007321211A (en) * 2006-06-01 2007-12-13 Kobe Steel Ltd Hot-rolled material having superior properties of preventing crystal grain from coarsening when carburized at high temperature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113318A (en) * 1981-12-28 1983-07-06 Kobe Steel Ltd Manufacture of case hardening steel
JP2004002990A (en) * 2002-03-29 2004-01-08 Nippon Steel Corp High-strength steel for fireproof building structure having yield stress at room temperature of above 455n/mm2 and superior in high-temperature property at 800 °c, and method for manufacturing thick steel plate thereof
JP2007162128A (en) * 2005-11-15 2007-06-28 Kobe Steel Ltd Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JP2007321211A (en) * 2006-06-01 2007-12-13 Kobe Steel Ltd Hot-rolled material having superior properties of preventing crystal grain from coarsening when carburized at high temperature

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179048A (en) * 2010-02-26 2011-09-15 Jfe Steel Corp Steel for carburizing having excellent cold workability
JP2011219854A (en) * 2010-03-26 2011-11-04 Jfe Steel Corp Case-hardening steel and method for manufacturing the same
JP2012062536A (en) * 2010-09-16 2012-03-29 Jfe Steel Corp Case-hardening steel and method for producing the same
JP2014047419A (en) * 2012-09-04 2014-03-17 Sanyo Special Steel Co Ltd Steel material having small heat treatment deformation for machine structural use
JP2014208867A (en) * 2013-03-26 2014-11-06 大同特殊鋼株式会社 Vacuum carburization method
WO2015129402A1 (en) * 2014-02-27 2015-09-03 株式会社神戸製鋼所 Case-hardened steel capable of minimizing occurrence of abnormal grains during carburizing, and mechanical structural component using same
JP2015160979A (en) * 2014-02-27 2015-09-07 株式会社神戸製鋼所 Case-hardening steel in which generation of abnormal grain in carburizing treatment can be suppressed and machine structure component using the same
JP2017210656A (en) * 2016-05-26 2017-11-30 高周波熱錬株式会社 Method of manufacturing steel for carburization
JP2019035126A (en) * 2017-08-18 2019-03-07 大同特殊鋼株式会社 Steel for machine structure use
WO2019142947A1 (en) * 2018-01-22 2019-07-25 日本製鉄株式会社 Carburized bearing steel component, and steel bar for carburized bearing steel component
JPWO2019142947A1 (en) * 2018-01-22 2021-01-28 日本製鉄株式会社 Carburized bearing steel parts and steel bars for carburized bearing steel parts
WO2020221812A1 (en) 2019-04-30 2020-11-05 Voestalpine Böhler Edelstahl Gmbh & Co Kg Steel material in powder form and process for producing said steel material
WO2023195495A1 (en) * 2022-04-06 2023-10-12 日本製鉄株式会社 Steel material
WO2023195494A1 (en) * 2022-04-06 2023-10-12 日本製鉄株式会社 Steel material
JP7417180B1 (en) 2022-04-06 2024-01-18 日本製鉄株式会社 steel material
JP7417181B1 (en) 2022-04-06 2024-01-18 日本製鉄株式会社 steel material

Also Published As

Publication number Publication date
JP5350181B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5350181B2 (en) Case-hardened steel with excellent grain coarsening prevention properties
JP4725401B2 (en) Steel parts and manufacturing method thereof
JP5862802B2 (en) Carburizing steel
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP4964063B2 (en) Case-hardened steel with excellent cold forgeability and grain coarsening prevention properties and machine parts obtained therefrom
JP5260460B2 (en) Case-hardened steel parts and manufacturing method thereof
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP5503170B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP2011219854A (en) Case-hardening steel and method for manufacturing the same
JP5649838B2 (en) Case-hardened steel and method for producing the same
JP5600502B2 (en) Steel for bolts, bolts and methods for producing bolts
JP5649887B2 (en) Case-hardened steel and method for producing the same
JP4347763B2 (en) High temperature carburizing steel and method for producing the same
JP4073860B2 (en) Manufacturing method of carburized steel with excellent coarsening resistance after high-temperature carburizing
JP6182489B2 (en) Case-hardened steel that has excellent cold forgeability and can suppress abnormal grain generation during carburizing.
JP6301145B2 (en) Sleeve dog gear
JP4569961B2 (en) Manufacturing method of parts for ball screw or one-way clutch
JP2005200667A (en) Steel for high temperature carburizing, and manufacturing method therefor
JP6029950B2 (en) After hot forging, normalizing can be omitted, and a method for producing case-hardened steel and parts with excellent high-temperature carburizing properties
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP2006176863A (en) Steel for rolling bearing
JP5976581B2 (en) Steel material for bearings and bearing parts with excellent rolling fatigue characteristics
JP2021028414A (en) Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP5937852B2 (en) Case-hardening steel parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Ref document number: 5350181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150