JP2004176177A - Steel superior in machinability - Google Patents

Steel superior in machinability Download PDF

Info

Publication number
JP2004176177A
JP2004176177A JP2003374517A JP2003374517A JP2004176177A JP 2004176177 A JP2004176177 A JP 2004176177A JP 2003374517 A JP2003374517 A JP 2003374517A JP 2003374517 A JP2003374517 A JP 2003374517A JP 2004176177 A JP2004176177 A JP 2004176177A
Authority
JP
Japan
Prior art keywords
steel
machinability
mns
less
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003374517A
Other languages
Japanese (ja)
Other versions
JP4348164B2 (en
Inventor
Masayuki Hashimura
雅之 橋村
Atsushi Mizuno
水野  淳
Koichi Isobe
浩一 磯部
Kenichiro Naito
賢一郎 内藤
Hiroshi Hagiwara
博 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003374517A priority Critical patent/JP4348164B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to TW092132048A priority patent/TWI249579B/en
Priority to KR1020057008721A priority patent/KR100708430B1/en
Priority to DE60318745T priority patent/DE60318745T2/en
Priority to US10/534,858 priority patent/US7488396B2/en
Priority to CN2007101960130A priority patent/CN101215665B/en
Priority to EP03772791A priority patent/EP1580287B1/en
Priority to PCT/JP2003/014547 priority patent/WO2004050932A1/en
Publication of JP2004176177A publication Critical patent/JP2004176177A/en
Priority to US12/288,542 priority patent/US8137484B2/en
Application granted granted Critical
Publication of JP4348164B2 publication Critical patent/JP4348164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel superior in machinability which not only gives a tool a long life, but also has satisfactory properties of a cut surface. <P>SOLUTION: The steel superior in machinability comprises 0.005-0.2% C, 0.001-0.5% Si, 0.5-3.0% Mn, 0.001-0.2% P, 0.003-1.0% S, more than 0.005% but 0.05% or less B, 0.002-0.02% total N, 0.0005-0.035% total O and the balance Fe with unavoidable impurities; and has a pearlite area rate of 5% or less in a microstructure. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、自動車や一般機械などに用いられる鋼に関するもので、特に切削時の工具寿命と切削表面粗さおよび切り屑処理性に優れた被削性に優れた鋼に関する。   The present invention relates to steel used for automobiles, general machines, and the like, and more particularly to steel excellent in machinability, which is excellent in tool life, cutting surface roughness, and chip disposal during cutting.

一般機械や自動車は多種の部品を組み合わせて製造されているが、その部品は要求精度と製造効率の観点から、多くの場合、切削工程を経て製造されている。その際、コスト低減と生産能率の向上が求められ、鋼にも被削性の向上が求められている。特に従来SUM23やSUM24Lは被削性を重要視して開発されてきた。これまで被削性を向上させるためにS,Pbなどの被削性向上元素を添加するのが有効であることが知られている。しかし需要家によってはPbは環境負荷として使用を避ける場合も有り、その使用量を低減する方向にある。   General machines and automobiles are manufactured by combining various types of parts, and the parts are often manufactured through a cutting process from the viewpoint of required accuracy and manufacturing efficiency. At that time, cost reduction and improvement in production efficiency are required, and steel is also required to have improved machinability. In particular, conventionally, SUM23 and SUM24L have been developed with emphasis on machinability. It has been known that it is effective to add a machinability improving element such as S or Pb in order to improve machinability. However, some consumers avoid using Pb as an environmental load, and the amount of Pb used is being reduced.

これまでもPbを添加しない場合にはSのようにMnSのような切削環境下で軟質となる介在物を形成して被削性を向上させる手法が使われている。しかしいわゆる低炭鉛快削鋼SUM24Lには低炭硫黄快削鋼SUM23と同量のSが添加されている。従って従来以上のS量を添加する必要がある。しかし、多量のS添加ではMnSを単に粗大にするだけで、被削性向上に有効なMnS分布にならないだけでなく、圧延、鍛造等において破壊起点になって圧延疵等の製造上の問題を多く引き起こす。さらに、SUM23をベースとする硫黄快削鋼では構成刃先が付着しやすく、構成刃先の脱落および切り屑分離現象に伴う、切削表面に凹凸が生じ、表面粗さが劣化する。従って、被削性の観点からも表面粗さが劣化による精度低下が問題である。切り屑処理性においても、切り屑が短く分断しやすい方が良好とされているが、単なるS添加だけではマトリックスの延性が大きいため、十分に分断されず、大きく改善できなかった。   Until now, when Pb is not added, a method of forming inclusions that are soft under a cutting environment such as MnS like S and improving machinability has been used. However, so-called low-carbon lead free-cutting steel SUM24L contains the same amount of S as low-carbon sulfur free-cutting steel SUM23. Therefore, it is necessary to add a higher S amount than before. However, when a large amount of S is added, merely making MnS coarse does not only result in MnS distribution effective for improving machinability, but also causes a problem in production such as rolling flaws as a starting point of fracture in rolling and forging. Cause a lot. Further, in the case of the sulfur free-cutting steel based on SUM23, the component cutting edge easily adheres, and the cutting surface becomes uneven due to the falling of the component cutting edge and the chip separation phenomenon, and the surface roughness deteriorates. Therefore, from the viewpoint of machinability, there is a problem that accuracy is reduced due to deterioration of surface roughness. In terms of chip controllability as well, it is considered better if the chips are short and easy to separate, but the simple addition of S has a large ductility of the matrix, so that the matrix is not sufficiently separated and cannot be significantly improved.

さらにS以外の元素、Te,Bi,P等も被削性向上元素として知られているが、ある程度被削性を向上させることができても、圧延や熱間鍛造時に割れを生じ易くなるため、極力少ない方が望ましいとされている。(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照。)。   Further, elements other than S, such as Te, Bi, and P, are also known as machinability improving elements. However, even if machinability can be improved to some extent, cracks easily occur during rolling or hot forging. It is said that it is desirable to have as little as possible. (For example, see Patent Literature 1, Patent Literature 2, Patent Literature 3, and Patent Literature 4.)

特開平9−71840号公報JP-A-9-71840 特願2000−160284号公報Japanese Patent Application No. 2000-160284

本発明は、圧延や熱間鍛造における不具合を避けつつ工具寿命と表面粗さの両者を改善し、従来の低炭鉛快削鋼と同等以上の被削性を有する鋼を提供する。   The present invention provides a steel which has both improved tool life and surface roughness while avoiding problems in rolling and hot forging, and has machinability equal to or higher than that of a conventional low-carbon lead free-cutting steel.

切削は切り屑を分離する破壊現象であり、それを促進させることが一つのポイントとなる。この効果はSを単純に増量するだけでは限界がある。本発明者らは、Sを増量するだけでなく、マトリックスを脆化させることで破壊を容易にして工具寿命を延長するとともに切削表面の凹凸を抑制することで被削性が向上することを知見した。   Cutting is a breaking phenomenon that separates chips, and promoting it is one point. This effect is limited by simply increasing S. The present inventors have found that not only increasing the amount of S, but also enhancing the machinability by suppressing the unevenness of the cutting surface by extending the tool life by making the matrix brittle and facilitating fracture. did.

本発明は上記知見に基づいてなされたもので、その要旨は次のとおりである。   The present invention has been made based on the above findings, and the gist is as follows.

(1)質量%で、C:0.005〜0.2%、S:0.5〜1.0%、B:0.005超〜0.05%を含み、かつMn/S:1.2〜2.8で、ミクロ組織においてパーライト面積率が5%以下であることを特徴とする被削性に優れる鋼。   (1) By mass%, C: 0.005 to 0.2%, S: 0.5 to 1.0%, B: more than 0.005 to 0.05%, and Mn / S: 1. A steel excellent in machinability, having a pearlite area ratio of 5% or less in a microstructure of 2 to 2.8.

(2)C:0.005〜0.2%、Si:0.001〜0.5%、Mn:0.5〜3.0%、P:0.001〜0.2%、S:0.5〜1.0%、B:0.005超〜0.05%、total−N:0.002〜0.02%、total−O:0.0005〜0.035%を含有し、残部がFeおよび不可避的不純物よりなることを特徴とする被削性に優れる鋼。   (2) C: 0.005 to 0.2%, Si: 0.001 to 0.5%, Mn: 0.5 to 3.0%, P: 0.001 to 0.2%, S: 0 0.5 to 1.0%, B: more than 0.005 to 0.05%, total-N: 0.002 to 0.02%, total-O: 0.0005 to 0.035%, with the balance being the balance Is excellent in machinability, characterized by being composed of Fe and unavoidable impurities.

(3)前記鋼が、ミクロ組織においてパーライト面積率が5%以下であることを特徴とする(2)記載の被削性に優れる鋼。   (3) The steel according to (2), wherein the steel has a pearlite area ratio of 5% or less in a microstructure.

(4)前記鋼において、質量%で、鋼中のMnとSの比Mn/S:1.2〜2.8であることを特徴とする(2)または(3)記載の被削性に優れる鋼。   (4) The machinability according to (2) or (3), wherein, in the steel, the ratio of Mn to S in the steel is Mn / S: 1.2 to 2.8 in mass%. Excellent steel.

(5)前記鋼が、質量%で、さらに、V:0.05〜1.0%、Nb:0.005〜0.2%、Cr:0.01〜2.0%、Mo:0.05〜1.0%、W:0.05〜1.0%の1種または2種以上を含有することを特徴とする(1)〜(4)のいずれかの項に記載の被削性に優れる鋼。   (5) The steel is, in mass%, V: 0.05 to 1.0%, Nb: 0.005 to 0.2%, Cr: 0.01 to 2.0%, Mo: 0. Machinability according to any one of (1) to (4), wherein one or more of 0.05 to 1.0% and W: 0.05 to 1.0% are contained. Excellent steel.

(6)前記鋼が、質量%で、さらに、Ni:0.05〜2.0%、Cu:0.01〜2.0%の1種または2種を含有することを特徴とする(1)〜(5)のいずれかの項に記載の被削性に優れる鋼。   (6) The steel is characterized in that the steel further contains one or two of Ni: 0.05 to 2.0% and Cu: 0.01 to 2.0% by mass% (1). The steel excellent in machinability according to any one of the items (1) to (5).

(7)前記鋼が、質量%で、さらに、Sn:0.005〜2.0%、Zn:0.0005〜0.5%の1種または2種を含有することを特徴とする(1)〜(6)のいずれかの項に記載の被削性に優れる鋼。   (7) The steel is characterized in that the steel further contains one or two of Sn: 0.005 to 2.0% and Zn: 0.0005 to 0.5% by mass%. The steel excellent in machinability according to any one of the items (1) to (6).

(8)前記鋼が、質量%で、さらに、Ti:0.0005〜0.1%、Ca:0.0002〜0.005%、Zr:0.0005〜0.1%、Mg:0.0003〜0.005%の1種または2種以上を含有することを特徴とする(1)〜(7)のいずれかの項に記載の被削性に優れる鋼。   (8) The steel further contains, by mass%, Ti: 0.0005 to 0.1%, Ca: 0.0002 to 0.005%, Zr: 0.0005 to 0.1%, and Mg: 0. The steel excellent in machinability according to any one of (1) to (7), which contains one or more of 0003 to 0.005%.

(9)前記鋼が、質量%で、さらに、Te:0.0003〜0.05%、Bi:0.005〜0.5%、Pb:0.01〜0.5%の1種または2種以上を含有することを特徴とする(1)〜(8)のいずれかの項に記載の被削性に優れる鋼。   (9) The steel is, in mass%, one or more of Te: 0.0003 to 0.05%, Bi: 0.005 to 0.5%, Pb: 0.01 to 0.5%. The steel excellent in machinability according to any one of (1) to (8), which contains at least one kind.

(10)前記鋼において、Al:0.015%以下に制限することを特徴とする(1)〜(9)のいずれかの項に記載の被削性に優れる鋼。   (10) The steel excellent in machinability according to any one of (1) to (9), wherein the steel is limited to Al: 0.015% or less.

以上説明したように、本発明は切削時の工具寿命と切削表面粗さ、および切り屑処理性に優れた特性を有するため自動車用部材、一般機械用部材に用いることが可能となる。   As described above, the present invention can be used for members for automobiles and members for general machinery because the present invention has characteristics of excellent tool life, cutting surface roughness, and chip disposability during cutting.

本発明は、鉛を添加することなく、十分な被削性、特に良好な表面粗さを得るためにマトリックスを脆化させるとともに、工具/被削材の接触面の潤滑を良好にするため、Bを多量に添加することを特徴としている。さらにS量も比較的多量に添加し、それらを微細分散させるためMnとSの添加量の比率を精密に制御する。また、鋼のミクロ組織に関しても、従来の炭素鋼で見られるパーライトを制御した。すなわち化学成分ではC添加量を抑制し、粗大なパーライトの析出を抑制し、あるいはCを多く含む場合には熱処理により粗大なパーライト粒の生成を抑制する、すなわち自然放冷でよく見られるパーライトバンドを抑制した被削性に優れた鋼である。   The present invention embrittles the matrix to obtain sufficient machinability, especially good surface roughness, without adding lead, and to improve the lubrication of the tool / workpiece contact surface, It is characterized by adding a large amount of B. Furthermore, the amount of S is also added in a relatively large amount, and the ratio of the added amounts of Mn and S is precisely controlled in order to finely disperse them. Also, regarding the microstructure of the steel, the pearlite found in conventional carbon steel was controlled. That is, in the chemical component, the amount of C added is suppressed, and the precipitation of coarse pearlite is suppressed, or when large amounts of C are contained, the formation of coarse pearlite grains is suppressed by heat treatment. It is a steel with excellent machinability with reduced cracking.

次に、本発明で規定する鋼成分の限定理由について説明する。   Next, the reasons for limiting the steel components specified in the present invention will be described.

Cは、鋼材の基本強度と鋼中の酸素量に関係するので被削性に大きな影響を及ぼす。Cを多く添加して強度を高めると被削性を低下させるのでその上限を0.2%とした。一方、被削性を低下させる硬質酸化物生成を防止しつつ、凝固過程でのピンホール等の高温での固溶酸素の弊害を抑制するため、酸素量を適量に制御する必要がある。単純に吹錬によってC量を低減させすぎるとコストがかさむだけでなく、鋼中酸素量が多量に残留してピンホール等の不具合の原因となる。従ってピンホール等の不具合を容易に防止できるC量0.005%を下限とした。C量の好ましい下限は0.05%である。   C has a significant effect on machinability because it relates to the basic strength of the steel material and the amount of oxygen in the steel. If the strength is increased by adding a large amount of C, the machinability decreases, so the upper limit was made 0.2%. On the other hand, it is necessary to control the amount of oxygen to an appropriate amount in order to prevent the formation of hard oxides that reduce machinability and to suppress the adverse effects of dissolved oxygen at high temperatures such as pinholes during the solidification process. If the amount of C is simply reduced too much by blowing, not only does the cost increase, but also a large amount of oxygen in the steel remains and causes problems such as pinholes. Therefore, the lower limit is set to 0.005% of C, which can easily prevent problems such as pinholes. A preferred lower limit of the amount of C is 0.05%.

Siの過度な添加は硬質酸化物を生じて被削性を低下させるが、適度な添加は酸化物を軟質化させ、被削性を低下させない。その上限は0.5%であり、それ以上では硬質酸化物を生じる。0.001%以下では酸化物の軟質化が困難になるとともに工業的にはコストがかかる。   Excessive addition of Si generates a hard oxide and reduces machinability, but moderate addition softens the oxide and does not reduce machinability. The upper limit is 0.5%, above which hard oxides are produced. If the content is less than 0.001%, it becomes difficult to soften the oxide, and the cost is industrially high.

Mnは、鋼中硫黄をMnSとして固定・分散させるために必要である。また鋼中酸化物を軟質化させ、酸化物を無害化させるために必要である。その効果は添加するS量にも依存するが、0.5%以下では添加SをMnSとして十分に固定できず、SがFeSとなり脆くなる。Mn量が大きくなると素地の硬さが大きくなり被削性や冷間加工性が低下するので、3.0%を上限とした。   Mn is necessary for fixing and dispersing sulfur in steel as MnS. In addition, it is necessary to soften oxides in steel and make the oxides harmless. The effect also depends on the amount of S added, but if it is 0.5% or less, the added S cannot be sufficiently fixed as MnS, and S becomes FeS and becomes brittle. When the amount of Mn increases, the hardness of the substrate increases, and machinability and cold workability decrease. Therefore, the upper limit is set to 3.0%.

Pは、鋼中において素地の硬さが大きくなり、冷間加工性だけでなく、熱間加工性や鋳造特性が低下するので、その上限を0.2%にしなければならない。一方、被削性向上に効果がある元素で下限値を0.001%とした。   P increases the hardness of the base material in steel, and deteriorates not only cold workability but also hot workability and casting properties. Therefore, the upper limit of P must be set to 0.2%. On the other hand, the lower limit of elements that are effective in improving machinability is set to 0.001%.

Sは、Mnと結合してMnS介在物として存在する。MnSは被削性を向上させるが、伸延したMnSは鍛造時の異方性を生じる原因の一つである。大きなMnSは避けるべきであるが、被削性向上の観点からは多量の添加が好ましい。従ってMnSを微細分散させることが好ましい。Pbを添加しない場合の従来の硫黄快削鋼以上の被削性の向上には0.5%以上の添加が必要である。一方、1%を越えると粗大MnSの生成が避けられないだけでなく、FeS等による鋳造特性、熱間変性特性の劣化から製造中に割れを生じるので、これを上限とした。   S bonds with Mn and exists as MnS inclusions. MnS improves machinability, but elongated MnS is one of the causes of anisotropy during forging. Large MnS should be avoided, but a large amount is preferable from the viewpoint of improving machinability. Therefore, it is preferable to finely disperse MnS. When Pb is not added, 0.5% or more must be added to improve the machinability over conventional free-cutting steel. On the other hand, if it exceeds 1%, not only the generation of coarse MnS is inevitable, but also cracks occur during production due to deterioration of casting properties and hot modification properties due to FeS or the like.

Bは、BNとして析出すると被削性向上に効果がある。これらの効果は0.005%以下では顕著でなく、0.05%を超えて添加してもその効果が飽和し、BNが多く析出しすぎるとかえって鋳造特性、熱間変性特性の劣化から製造中に割れを生じる。そこで0.005超〜0.05%を範囲とした。   B is effective in improving machinability when precipitated as BN. These effects are not remarkable at 0.005% or less, and even if added over 0.05%, the effects are saturated, and if too much BN is precipitated, the casting properties and the hot denaturing properties are rather deteriorated. Cracks occur inside. Therefore, the range is more than 0.005 to 0.05%.

N(total−N)は、固溶Nの場合、鋼を硬化させる。特に切削においては動的ひずみ時効によって刃先近傍で硬化し、工具の寿命を低下させるが、切削表面粗さを改善する効果もある。また、Bと結びついてBNを生成して被削性を向上させる。0.002%以下では固溶窒素による表面粗さ向上効果やBNによる被削性改善効果が認められないので、これを下限とした。また0.02%を越えると固溶窒素が多量に存在するためかえって工具寿命を低下させる。また鋳造途中に気泡を生成し、疵などの原因となる。従って本発明ではそれらの弊害が顕著になる0.02%を上限とした。   N (total-N) hardens steel in the case of solid solution N. In particular, in cutting, it hardens near the cutting edge due to dynamic strain aging and shortens the life of the tool, but also has the effect of improving the cutting surface roughness. In addition, BN is generated in combination with B to improve machinability. If the content is 0.002% or less, the effect of improving the surface roughness due to solid solution nitrogen and the effect of improving the machinability due to BN are not recognized. On the other hand, if the content exceeds 0.02%, a large amount of solute nitrogen is present, so that the tool life is rather shortened. In addition, bubbles are generated during casting, which causes flaws and the like. Therefore, in the present invention, the upper limit is set to 0.02% at which these adverse effects become remarkable.

O(total−O)は、フリーで存在する場合には冷却時に気泡となり、ピンホールの原因となる。また、酸化物を軟質化し、被削性に有害な硬質酸化物を抑制するためにも制御が必要である。さらに、MnSの微細分散させる際にも析出核として酸化物を利用する。0.0005%未満では十分にMnSを微細分散させることができず、粗大なMnSを生じ、機械的性質にも悪影響を及ぼすので0.0005%を下限とした。さらに酸素量0.035%を越えると鋳造中に気泡となりピンホールとなるため、その上限を0.035%以下とした。   When O (total-O) is present in a free state, it becomes bubbles at the time of cooling and causes pinholes. Control is also required to soften oxides and suppress hard oxides harmful to machinability. Furthermore, when finely dispersing MnS, an oxide is used as a precipitation nucleus. If it is less than 0.0005%, MnS cannot be sufficiently finely dispersed, coarse MnS is generated, and mechanical properties are adversely affected. Therefore, the lower limit is made 0.0005%. Further, if the oxygen content exceeds 0.035%, bubbles are formed during casting and pinholes are formed. Therefore, the upper limit is set to 0.035% or less.

次にパーライト面積率を5%以下とする理由を説明する。一般に炭素を含む鋼を変態点以上の温度から冷却すると、フェライト・パーライト組織となる。本発明の対象となるC量の比較的少ない鋼の場合、変態点(A3 点)以上の温度から空冷後、切り出してその内部を鏡面研磨してナイタールでエッチングすると、図1のようなミクロ組織を観察することができる。黒い粒がパーライトと呼ばれるフェライトとセメンタイトの複合組織であるが、通常、このようにナイタールによって黒く見える粒は白くみえるフェライト粒よりも硬質であり、鋼の変形/破断挙動において局部的にフェライト粒とは異なる挙動を示す。このことは切削において切りくずの破断挙動において、均一変形/破断を阻害するため、構成刃先の生成に大きく関与し、さらには切削面の表面粗さを劣化させる。従って、Cに起因する組織的不均一を極力排除することが重要である。そこでナイタールでエッチングされる黒い粒をパーライト粒とみなし、このパーライト粒が多すぎると組織不均一を引き起こし、表面粗さ劣化の原因になるのでその面積率を5%以下に制限した。図4にパーライト面積率と表面粗さの関係を示した。 Next, the reason why the pearlite area ratio is set to 5% or less will be described. Generally, when a steel containing carbon is cooled from a temperature higher than the transformation point, a ferrite-pearlite structure is formed. For relatively small steel subject to C content of the present invention, after air cooling transformation point (A 3 points) or higher, when etched with nital its internal and mirror-polished cut, micro like Figure 1 The tissue can be observed. The black grains are a composite structure of ferrite and cementite called pearlite. Usually, grains that appear black due to nital are harder than ferrite grains that appear white, and the ferrite grains are locally localized in the deformation / fracture behavior of steel. Shows different behavior. This hinders uniform deformation / rupture in the chip breaking behavior in cutting, and thus greatly contributes to the generation of a constituent cutting edge, and further deteriorates the surface roughness of the cut surface. Therefore, it is important to eliminate systematic nonuniformity caused by C as much as possible. Therefore, black particles etched with nital were regarded as pearlite particles, and if the number of pearlite particles was too large, the structure became nonuniform and the surface roughness deteriorated. Therefore, the area ratio was limited to 5% or less. FIG. 4 shows the relationship between the pearlite area ratio and the surface roughness.

ここで測定方法の詳細に関して述べる。圧延または鍛造後の鋼の長手方向断面(L断面)に切断、樹脂埋め込みサンプルを鏡面研磨し、ナイタールエッチングした。ナイタールにて黒色にエッチングされた物の内、灰色のMnSを除いた粒径(円相当径)1μm以上の粒を画像処理装置で解析し、その面積率を求めた。面積率測定の画像処理時に、黒色に見えるパーライトに合わせた“しきい値”設定で画像濃淡を合わせ、グレーに見える介在物(MnS等)を画面上から消すことで、パーライトのみを測定対象とした。この時の認識最小パーライトは約1μmであるが、1μm未満のパーライトは被削性に影響を及ぼさないので、認識されなくても影響はない。   Here, the details of the measurement method will be described. The rolled or forged steel was cut into a longitudinal section (L section), and the resin-embedded sample was mirror-polished and nital etched. Of the materials that were black-etched with Nital, particles having a particle diameter (equivalent circle diameter) of 1 μm or more, excluding gray MnS, were analyzed with an image processing apparatus, and the area ratio was determined. At the time of image processing of area ratio measurement, adjust the image density by setting the "threshold" according to the pearlite that looks black, and eliminate grayish inclusions (MnS, etc.) from the screen, so that only pearlite can be measured. did. The minimum perlite recognized at this time is about 1 μm, but perlite smaller than 1 μm does not affect the machinability, so there is no effect even if it is not recognized.

本発明での、測定視野は、1視野0.2mm2 (0.4mm×0.5mm)を400倍以上の倍率で20視野測定し、計4mm2 の面積について、パーライト面積率を算出した。 In the present invention, one visual field of 0.2 mm 2 (0.4 mm × 0.5 mm) was measured at a magnification of 400 times or more in 20 visual fields, and the pearlite area ratio was calculated for a total area of 4 mm 2 .

Mn/Sに関してはすでに熱間延性に大きく影響し、通常、Mn/S>3でなければ製造性を大きく低下させることが知られている。その原因はFeSの生成であるが、本発明においては、低C、かつ高Sの領域ではその比率をさらにMn/S:1.2〜2.8まで低下させることができることを見出した。Mn/S:1.2以下ではFeSが多く生成し、熱間延性を極端に低下させ、製造性を大きく低下させる。   It is known that Mn / S has a great influence on hot ductility, and usually, unless Mn / S> 3, the productivity is greatly reduced. The cause is the formation of FeS. In the present invention, it has been found that the ratio can be further reduced to Mn / S: 1.2 to 2.8 in a low C and high S region. If Mn / S is 1.2 or less, a large amount of FeS is generated, and the hot ductility is extremely reduced, and the productivity is greatly reduced.

図2にMn/S≦2.8とMn/S>2.8の場合の微細なMnSをレプリカ法を用い、透過型電子顕微鏡にて観察した例を示す。Mn/S>2.8の場合には図2(b)に示すような粗大なMnSのみとなり、表面粗さを小さくすることができない。一方、Mn/S:1.2〜2.8と規制した場合には図2(a)に示すような微細なMnSの生成が得られる。   FIG. 2 shows an example in which fine MnS in the case of Mn / S ≦ 2.8 and Mn / S> 2.8 is observed by a transmission electron microscope using a replica method. When Mn / S> 2.8, only coarse MnS as shown in FIG. 2B is obtained, and the surface roughness cannot be reduced. On the other hand, when Mn / S is regulated to 1.2 to 2.8, fine MnS is generated as shown in FIG.

この微細なMnSは連続鋳造やインゴットによる鋳造後、900℃以上の加熱を繰り返すことにより、個数を増加させることができる。   The number of the fine MnS can be increased by repeating heating at 900 ° C. or more after continuous casting or casting by ingot.

なお、MnSとは、純粋なMnSのみならず、MnSを主体に含み、Fe,Ca,Ti,Zr,Mg,REM等の硫化物がMnSと固溶したり結合して共存している介在物や、MnTeのようにS以外の元素がMnと化合物を形成してMnSと固溶・結合して共存している介在物や、酸化物を核として析出した上記介在物が含まれるものであり、化学式では、(Mn,X)(S,Y)(ここで、X:Mn以外の硫化物形成元素、Y:S以外でMnと結合する元素)として表記できるMn硫化物系介在物を総称して言うものである。   In addition, MnS means not only pure MnS but also an inclusion mainly containing MnS, and sulfides such as Fe, Ca, Ti, Zr, Mg and REM coexist with MnS by solid solution or bonding. And inclusions such as MnTe in which an element other than S forms a compound with Mn to form a compound with MnS to form a solid solution / bond and coexist with the MnS, or includes the above-mentioned inclusions precipitated with an oxide as a nucleus. In the chemical formula, Mn sulfide-based inclusions that can be expressed as (Mn, X) (S, Y) (here, X: an element other than Mn and a sulfide-forming element other than Y: S that binds to Mn) are collectively referred to. That's what they say.

次に、本発明においては、上述した成分に加え、V,Nb,Cr,Mo,W,Ni,Sn,Zn,Ti,Ca,Zr,Mg,Te,Bi,Pbの1種または2種以上を必要に応じて添加することができる。   Next, in the present invention, one or more of V, Nb, Cr, Mo, W, Ni, Sn, Zn, Ti, Ca, Zr, Mg, Te, Bi, and Pb, in addition to the components described above. Can be added as needed.

Vは、炭窒化物を形成し、二次析出硬化により鋼を強化することができる。0.05%以下では高強度化に効果はなく、1.0%を超えて添加すると多くの炭窒化物を析出し、かえって機械的性質を損なうので、これを上限とした。   V forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.05%, there is no effect on increasing the strength, and if it exceeds 1.0%, a large amount of carbonitride precipitates and mechanical properties are rather impaired.

Nbも炭窒化物を形成し、二次析出硬化により鋼を強化することができる。0.005%以下では高強度化に効果はなく、0.2%を超えて添加すると多くの炭窒化物を析出し、かえって機械的性質を損なうので、これを上限とした。   Nb also forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.005%, there is no effect on increasing the strength, and if it exceeds 0.2%, a large amount of carbonitride precipitates and mechanical properties are rather impaired.

Crは、焼入れ性向上、焼戻し軟化抵抗付与元素である。そのため高強度化が必要な鋼には添加される。その場合、0.01%以上の添加を必要とする。しかし多量に添加するとCr炭化物を生成し脆化させるため、2.0%を上限とした。   Cr is an element that imparts hardenability and temper softening resistance. Therefore, it is added to steels requiring high strength. In that case, 0.01% or more must be added. However, if added in a large amount, Cr carbides are formed and embrittled, so the upper limit is 2.0%.

Moは、焼戻し軟化抵抗を付与するとともに、焼入れ性を向上させる元素である。0.05%未満ではその効果が認められず、1.0%を超えて添加してもその効果が飽和しているので、0.05%〜1.0%を添加範囲とした。   Mo is an element that imparts temper softening resistance and improves hardenability. If the content is less than 0.05%, the effect is not recognized, and even if added over 1.0%, the effect is saturated. Therefore, the addition range is set to 0.05% to 1.0%.

Wは、炭化物を形成し、二次析出硬化により鋼を強化することができる。0.05%以下では高強度化に効果はなく、1.0%を超えて添加すると多くの炭化物が析出し、かえって機械的性質を損うのでこれを上限とした。   W forms carbides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.05%, there is no effect on increasing the strength, and if it exceeds 1.0%, a large amount of carbide will precipitate and the mechanical properties will be impaired.

Niは、フェライトを強化し、延性を延性向上させるとともに焼入れ性向上、耐食性向上にも有効である。0.05%未満ではその効果は認められず、2.0%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。   Ni is effective in strengthening ferrite, improving ductility, improving hardenability, and improving corrosion resistance. If the content is less than 0.05%, the effect is not recognized. If the content exceeds 2.0%, the effect is saturated in terms of mechanical properties. Therefore, the upper limit is set.

Cuはフェライトを強化し、焼入れ性向上、耐食性向上にも有効である。0.01%未満で、その効果は認められず、2.0%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。特に熱間延性を低下させ、圧延時の疵の原因となりやすいので、Niと同時に添加することが好ましい。   Cu strengthens ferrite and is also effective for improving hardenability and corrosion resistance. If it is less than 0.01%, the effect is not recognized. Even if it is added more than 2.0%, the effect is saturated in terms of mechanical properties. In particular, it is preferable to add it at the same time as Ni because it reduces the hot ductility and easily causes flaws during rolling.

Snはフェライトを脆化させ、工具寿命を延ばすとともに、表面粗さ向上に効果がある。0.005%未満ではその効果は認められず、2.0%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。   Sn embrittles ferrite, prolongs tool life, and is effective in improving surface roughness. If the content is less than 0.005%, the effect is not recognized. If the content exceeds 2.0%, the effect is saturated in terms of mechanical properties, so the upper limit is set.

Znはフェライトを脆化させ、工具寿命を延ばすとともに、表面粗さ向上に効果がある。0.0005%未満ではその効果は認められず、0.5%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。   Zn has the effect of making the ferrite brittle, extending the tool life, and improving the surface roughness. If the content is less than 0.0005%, the effect is not recognized. Even if the content exceeds 0.5%, the effect is saturated in terms of mechanical properties. Therefore, the upper limit is set.

Tiも炭窒化物を形成し、鋼を強化する。また脱酸元素でもあり、軟質酸化物を形成させることで被削性を向上させることが可能である。0.0005%以下ではその効果が認められず、0.1%を超えて添加してもその効果が飽和する。またTiは高温でも窒化物となりオーステナイト粒の成長を抑制する。そこで上限を0.1%とした。尚、TiはNと化合してTiNを形成するが、TiNは硬質物質で被削性を低下させる。また被削性向上に有効なBNを造るのに必要なN量を低減させる。そのためTi添加量は0.010%以下が好ましい。   Ti also forms carbonitrides and strengthens the steel. It is also a deoxidizing element, and can improve machinability by forming a soft oxide. If the content is less than 0.0005%, the effect is not recognized, and even if added over 0.1%, the effect is saturated. Further, Ti becomes a nitride even at a high temperature and suppresses the growth of austenite grains. Therefore, the upper limit is set to 0.1%. Note that Ti combines with N to form TiN, but TiN is a hard substance and reduces machinability. Further, the amount of N required to produce BN effective for improving machinability is reduced. Therefore, the addition amount of Ti is preferably 0.010% or less.

Caは、脱酸元素であり、軟質酸化物を生成し、被削性を向上させるだけでなく、MnSに固溶してその変形能を低下させ、圧延や熱間鍛造してもMnS形状の伸延を抑制する働きがある。したがって異方性の低減に有効な元素である。0.0002%未満ではその効果は顕著ではなく、0.005%以上添加しても歩留まりが極端に悪くなるばかりでなく、硬質のCaOを大量に生成し、かえって被削性を低下させる。従って添加範囲を0.0002〜0.005%と規定した。   Ca is a deoxidizing element, generates a soft oxide and not only improves the machinability, but also dissolves in MnS to reduce its deformability, and the MnS shape is formed even by rolling or hot forging. It works to control distraction. Therefore, it is an element effective for reducing anisotropy. If the content is less than 0.0002%, the effect is not remarkable. Even if 0.005% or more is added, not only the yield is extremely deteriorated, but also a large amount of hard CaO is generated, and the machinability is rather reduced. Therefore, the addition range was defined as 0.0002 to 0.005%.

Zrは、脱酸元素であり、酸化物を生成する。酸化物はMnSの析出核になりMnSの微細均一分散に効果がある。またMnSに固溶してその変形能を低下させ、圧延や熱間鍛造してもMnS形状の伸延を抑制する働きがある。したがって異方性の低減に有効な元素である。0.0005%未満ではその効果は顕著ではなく、0.1%以上添加しても歩留まりが極端に悪くなるばかりでなく、硬質のZrO2 やZrSなどを大量に生成し、かえって被削性を低下させる。従って添加範囲を0.0005〜0.1%と規定した。なお、MnSの微細分散を図る場合には、ZrとCaとの複合添加が好ましい。 Zr is a deoxidizing element and generates an oxide. The oxide serves as a precipitation nucleus of MnS, and is effective in fine and uniform dispersion of MnS. Further, it has the function of dissolving in MnS to reduce its deformability and suppressing the elongation of the MnS shape even in rolling or hot forging. Therefore, it is an element effective for reducing anisotropy. If it is less than 0.0005%, the effect is not remarkable. Even if it is added at 0.1% or more, not only the yield is extremely deteriorated, but also hard ZrO 2 , ZrS and the like are generated in large amounts, and the machinability is rather reduced. Lower. Therefore, the addition range was defined as 0.0005 to 0.1%. In order to achieve fine dispersion of MnS, it is preferable to add Zr and Ca in combination.

Mgは、脱酸元素であり、酸化物を生成する。酸化物はMnSの析出核になりMnSの微細均一分散に効果があり、異方性の低減に有効な元素である。0.0003%未満ではその効果は顕著ではなく、0.005%以上添加しても歩留まりが極端に悪くなるばかりで効果は飽和する。従って添加範囲を0.0003〜0.005%と規定した。   Mg is a deoxidizing element and generates an oxide. The oxide becomes an nucleus for precipitation of MnS, has an effect on fine and uniform dispersion of MnS, and is an element effective in reducing anisotropy. If it is less than 0.0003%, the effect is not remarkable. Even if 0.005% or more is added, the yield is extremely deteriorated and the effect is saturated. Therefore, the addition range was defined as 0.0003 to 0.005%.

Teは、被削性向上元素である。またMnTeを生成したり、MnSと共存することでMnSの変形能を低下させてMnS形状の伸延を抑制する働きがある。したがって異方性の低減に有効な元素である。この効果は0.0003%未満では認められず、0.05%を超えると効果が飽和する。   Te is a machinability improving element. In addition, by producing MnTe or coexisting with MnS, it has a function of reducing the deformability of MnS and suppressing the elongation of the MnS shape. Therefore, it is an element effective for reducing anisotropy. This effect is not recognized at less than 0.0003%, and the effect is saturated at more than 0.05%.

BiおよびPbは、被削性向上に効果のある元素である。その効果は0.005%以下では認められず、0.5%を超えて添加しても被削性向上効果が飽和するだけでなく、熱間鍛造特性が低下して疵の原因となりやすい。   Bi and Pb are elements that are effective in improving machinability. The effect is not recognized at 0.005% or less, and even if added over 0.5%, not only the machinability improving effect is saturated, but also the hot forging property is reduced, which is likely to cause flaws.

Alは、脱酸元素で鋼中ではAl23 やAlNを形成する。しかし、Al23 は硬質なので切削時に工具損傷の原因となり、摩耗を促進させる。そこでAl23 を多量に生成しない0.015%以下に制限した。特に工具寿命を優先させる場合には0.005%以下が好ましい。 Al is a deoxidizing element and forms Al 2 O 3 and AlN in steel. However, since Al 2 O 3 is hard, it causes tool damage during cutting and promotes wear. Therefore, the content is limited to 0.015% or less which does not generate a large amount of Al 2 O 3 . In particular, when giving priority to the tool life, 0.005% or less is preferable.

本発明の効果を実施例によって説明する。表1、表2(表1のつづき1)、表3(表1のつづき2)、表4(表1のつづき3)、表5(表1のつづき4)、表6(表1のつづき5)に示す供試材のうち、No.13は270t転炉で、その他は2t真空溶解炉で溶製後、ビレットに分解圧延、さらにφ60mmに圧延した。   The effects of the present invention will be described with reference to examples. Table 1, Table 2 (continuation 1 of Table 1), Table 3 (continuation 2 of Table 1), Table 4 (continuation 3 of Table 1), Table 5 (continuation 4 of Table 1), Table 6 (continuation of Table 1) No. 5 among the test materials shown in 5). 13 is a 270-t converter, and the others are melted in a 2-t vacuum melting furnace, then disassembled and rolled into billets, and further rolled to φ60 mm.

表の熱処理の項において、焼準と記された実施例は920℃で10min 以上保持し、空冷したものである。QTと記された発明例は920℃から圧延ライン後端の水槽に投入性急冷後、焼鈍にて700℃で1時間以上保持した。これによりパーライト面積率を調整した。発明例でもC量が低いものは焼準でもパーライト面積率を低減することができる。   In the heat treatment section of the table, the examples described as normalization were held at 920 ° C. for 10 minutes or more and air-cooled. The invention example marked as QT was put into a water tank at the rear end of the rolling line from 920 ° C., rapidly cooled, and then kept at 700 ° C. for 1 hour or more by annealing. Thereby, the pearlite area ratio was adjusted. Even in the invention examples, those having a low C content can reduce the pearlite area ratio even in normalizing.

表1〜表6の実施例1〜86に示す材料の被削性評価はドリル穿孔試験で表7に切削条件を示す。累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるVL1000、単位はm/min )で被削性を評価した。   In the evaluation of the machinability of the materials shown in Examples 1 to 86 in Tables 1 to 6, cutting conditions are shown in Table 7 in a drilling test. The machinability was evaluated at the highest cutting speed (so-called VL1000, unit: m / min) capable of cutting to a cumulative hole depth of 1000 mm.

さらに切削における表面品質を示す切削表面粗さを評価した。その切削条件を表8に、その評価方法(以後、プランジ切削試験と記す)の概要を図3に示す。プランジ切削試験では工具は短時間切削を繰り返す。一回の切削で工具は被削材長手方向に動かず、回転している被削材中心に向かって動くため、短時間の切削後、工具は引き抜かれるが、その形状は基本的には工具は刃先形状が被削材表面に転写される。構造刃先の付着や工具の磨耗損傷によりこの転写された切削面の表面粗さは影響を受ける。この表面粗さを表面粗さ計で測定した。10点表面粗さRz(μm)を表面粗さを示す指標とした。   Furthermore, the cutting surface roughness indicating the surface quality in cutting was evaluated. The cutting conditions are shown in Table 8, and the outline of the evaluation method (hereinafter referred to as plunge cutting test) is shown in FIG. In the plunge cutting test, the tool repeats cutting for a short time. In a single cut, the tool does not move in the longitudinal direction of the work material but moves toward the center of the rotating work material, so the tool is pulled out after a short cut, but the shape is basically the tool Is transferred to the surface of the work material. The surface roughness of the transferred cutting surface is affected by the attachment of the structural cutting edge and wear damage of the tool. The surface roughness was measured with a surface roughness meter. Ten-point surface roughness Rz (μm) was used as an index indicating the surface roughness.

発明例1〜75はいずれも比較例76〜86に対してドリル工具寿命に優れるとともに、プランジ切削における表面粗さが良好であった。これはBによってフェライトが局部的に脆化され、表面創成がスムーズに行われたために良好な表面粗さを得られたと考えられる。   Inventive Examples 1 to 75 all had better drill tool life than Comparative Examples 76 to 86, and had good surface roughness in plunge cutting. This is considered to be because the ferrite was locally embrittled by B and the surface was created smoothly, so that good surface roughness was obtained.

これらの表面粗さの改善効果はSが0.5%超の場合に顕著であるが、S量がそれより少ない場合でも切りくず処理性に効果が見られた。   Although the effect of improving the surface roughness is remarkable when S is more than 0.5%, even when the amount of S is smaller than that, the effect on the chip disposition was observed.

さらにMnとSの比率が従来鋼によく見られる3程度でも効果が認められるが、Mn/Sを小さくすると、より工具寿命が向上するとともに、表面粗さも向上する。この原因はB多量添加の環境下では微細なMnSがフェライト中にも微細分散し、潤滑効果と脆化効果の両面に有効に機能するためと考えられる。ただし実施例85のようにMn/Sが小さすぎるとFeSが生成するため、圧延割れを生じる。本発明に関する評価では実施例85は圧延割れのため、被削性等の評価が全くできなかったので、表中にはその評価結果を表記しなかった。   Further, even when the ratio of Mn to S is about 3, which is often found in conventional steels, the effect is recognized. However, when Mn / S is reduced, the tool life is further improved and the surface roughness is also improved. This is considered to be because fine MnS is finely dispersed in ferrite in an environment where a large amount of B is added, and effectively functions on both the lubricating effect and the embrittlement effect. However, when Mn / S is too small as in Example 85, FeS is generated, so that rolling cracks occur. In the evaluation of the present invention, Example 85 was not able to be evaluated at all, such as machinability, due to rolling cracks. Therefore, the evaluation results are not shown in the table.

C量を若干変更した場合(表1〜表6、実施例37〜75)でもBを大量に添加すること、さらに、パーライト面積率を制御することで良好な工具寿命と切削表面粗さを得ることができた。   Even when the amount of C is slightly changed (Tables 1 to 6, Examples 37 to 75), a good tool life and a cut surface roughness can be obtained by adding a large amount of B and controlling the pearlite area ratio. I was able to.

なお、切り屑処理性に関しては切り屑のカール時の曲率が小さいもの、あるいは分断されているものが好ましい。そこで切り屑が20mmを超えた曲率半径で3巻き以上連続してカールして長く延びた切り屑を不良とした。巻数が多くとも曲率半径が小さいもの、あるいは曲率半径が大きくとも切り屑長さが100mmに達しなかったものは良好とした。   Regarding the chip handling property, it is preferable that the chip has a small curvature at the time of curling or the chip is cut. Accordingly, chips that were continuously curled and extended longer than three turns with a radius of curvature exceeding 20 mm were regarded as defective. If the number of windings was large and the radius of curvature was small, or if the chip length did not reach 100 mm even if the radius of curvature was large, it was regarded as good.

Figure 2004176177
Figure 2004176177

Figure 2004176177
Figure 2004176177

Figure 2004176177
Figure 2004176177

Figure 2004176177
Figure 2004176177

Figure 2004176177
Figure 2004176177

Figure 2004176177
Figure 2004176177

Figure 2004176177
Figure 2004176177

Figure 2004176177
Figure 2004176177

本発明による鋼のフェライト・パーライト組織を示す顕微鏡写真である。4 is a micrograph showing a ferrite-pearlite structure of a steel according to the present invention. (a)は本発明によるMnSの微細分散状態を示す顕微鏡写真であり、(b)は従来鋼における粗大MnSの存在状態を示す顕微鏡写真である。(A) is a micrograph showing the state of fine dispersion of MnS according to the present invention, and (b) is a micrograph showing the state of existence of coarse MnS in conventional steel. (a),(b)はプランジ切削試験法を示す図である。(A), (b) is a figure which shows a plunge cutting test method. パーライト面積率と表面粗さの関係を示す図である。It is a figure which shows the relationship between a pearlite area ratio and surface roughness.

Claims (10)

質量%で、C:0.005〜0.2%、S:0.5〜1.0%、B:0.005超〜0.05%を含み、かつMn/S:1.2〜2.8で、ミクロ組織においてパーライト面積率が5%以下であることを特徴とする被削性に優れる鋼。   By mass%, C: 0.005 to 0.2%, S: 0.5 to 1.0%, B: more than 0.005 to 0.05%, and Mn / S: 1.2 to 2 0.8, the steel having excellent machinability, characterized in that the pearlite area ratio in the microstructure is 5% or less. C:0.005〜0.2%、
Si:0.001〜0.5%、
Mn:0.5〜3.0%、
P:0.001〜0.2%、
S:0.5〜1.0%、
B:0.005超〜0.05%、
total−N:0.002〜0.02%、
total−O:0.0005〜0.035%
を含有し、残部がFeおよび不可避的不純物よりなることを特徴とする被削性に優れる鋼。
C: 0.005 to 0.2%,
Si: 0.001 to 0.5%,
Mn: 0.5-3.0%,
P: 0.001-0.2%,
S: 0.5-1.0%,
B: more than 0.005 to 0.05%,
total-N: 0.002 to 0.02%,
total-O: 0.0005 to 0.035%
A steel excellent in machinability, characterized by containing Fe and the balance being Fe and inevitable impurities.
前記鋼が、ミクロ組織においてパーライト面積率が5%以下であることを特徴とする請求項2記載の被削性に優れる鋼。   The steel with excellent machinability according to claim 2, wherein the steel has a pearlite area ratio of 5% or less in a microstructure. 前記鋼において、質量%で、鋼中のMnとSの比Mn/S:1.2〜2.8であることを特徴とする請求項2または3記載の被削性に優れる鋼。   The steel with excellent machinability according to claim 2 or 3, wherein the steel has a ratio of Mn / S in the steel of Mn / S: 1.2 to 2.8 in mass%. 前記鋼が、質量%で、さらに、V:0.05〜1.0%、Nb:0.005〜0.2%、Cr:0.01〜2.0%、Mo:0.05〜1.0%、W:0.05〜1.0%の1種または2種以上を含有することを特徴とする請求項1〜4のいずれかの項に記載の被削性に優れる鋼。   The steel further contains, by mass%, V: 0.05 to 1.0%, Nb: 0.005 to 0.2%, Cr: 0.01 to 2.0%, Mo: 0.05 to 1 The steel with excellent machinability according to any one of claims 1 to 4, wherein the steel contains one or more of 0.0% and W: 0.05 to 1.0%. 前記鋼が、質量%で、さらに、Ni:0.05〜2.0%、Cu:0.01〜2.0%の1種または2種を含有することを特徴とする請求項1〜5のいずれかの項に記載の被削性に優れる鋼。   6. The steel according to claim 1, wherein the steel further contains one or two of Ni: 0.05 to 2.0% and Cu: 0.01 to 2.0% by mass%. The steel excellent in machinability according to any one of the above items. 前記鋼が、質量%で、さらに、Sn:0.005〜2.0%、Zn:0.0005〜0.5%の1種または2種を含有することを特徴とする請求項1〜6のいずれかの項に記載の被削性に優れる鋼。   7. The steel according to claim 1, wherein the steel further contains one or two of Sn: 0.005 to 2.0% and Zn: 0.0005 to 0.5% by mass%. The steel excellent in machinability according to any one of the above items. 前記鋼が、質量%で、さらに、Ti:0.0005〜0.1%、Ca:0.0002〜0.005%、Zr:0.0005〜0.1%、Mg:0.0003〜0.005%の1種または2種以上を含有することを特徴とする請求項1〜7のいずれかの項に記載の被削性に優れる鋼。   The steel further contains, by mass%, Ti: 0.0005 to 0.1%, Ca: 0.0002 to 0.005%, Zr: 0.0005 to 0.1%, Mg: 0.0003 to 0%. The steel having excellent machinability according to any one of claims 1 to 7, comprising one or more of 0.005%. 前記鋼が、質量%で、さらに、Te:0.0003〜0.05%、Bi:0.005〜0.5%、Pb:0.01〜0.5%の1種または2種以上を含有することを特徴とする請求項1〜8のいずれかの項に記載の被削性に優れる鋼。   The steel further contains, by mass%, one or more of Te: 0.0003 to 0.05%, Bi: 0.005 to 0.5%, and Pb: 0.01 to 0.5%. The steel excellent in machinability according to any one of claims 1 to 8, wherein the steel is contained. 前記鋼において、Al:0.015%以下に制限することを特徴とする請求項1〜9のいずれかの項に記載の被削性に優れる鋼。   The steel according to any one of claims 1 to 9, wherein the steel is limited to Al: 0.015% or less.
JP2003374517A 2002-11-15 2003-11-04 Steel with excellent machinability Expired - Fee Related JP4348164B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2003374517A JP4348164B2 (en) 2002-11-15 2003-11-04 Steel with excellent machinability
KR1020057008721A KR100708430B1 (en) 2002-11-15 2003-11-14 Steel excellent in machinability and method for production thereof
DE60318745T DE60318745T2 (en) 2002-11-15 2003-11-14 STEEL WITH EXCELLENT CUT-OUTPUT AND MANUFACTURING METHOD THEREFOR
US10/534,858 US7488396B2 (en) 2002-11-15 2003-11-14 Superior in machinability and method of production of same
TW092132048A TWI249579B (en) 2002-11-15 2003-11-14 A steel having an excellent cuttability and a method for producing the same
CN2007101960130A CN101215665B (en) 2002-11-15 2003-11-14 Steel having excellent machinability and production method therefor
EP03772791A EP1580287B1 (en) 2002-11-15 2003-11-14 Steel excellent in machinability and method for production thereof
PCT/JP2003/014547 WO2004050932A1 (en) 2002-11-15 2003-11-14 Steel excellent in machinability and method for production thereof
US12/288,542 US8137484B2 (en) 2002-11-15 2008-10-20 Method of production of steel superior in machinability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002332665 2002-11-15
JP2003374517A JP4348164B2 (en) 2002-11-15 2003-11-04 Steel with excellent machinability

Publications (2)

Publication Number Publication Date
JP2004176177A true JP2004176177A (en) 2004-06-24
JP4348164B2 JP4348164B2 (en) 2009-10-21

Family

ID=32716256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374517A Expired - Fee Related JP4348164B2 (en) 2002-11-15 2003-11-04 Steel with excellent machinability

Country Status (1)

Country Link
JP (1) JP4348164B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096186A1 (en) * 2006-11-28 2009-09-02 Nippon Steel Engineering Corporation Free-cutting steel excellent in manufacturability
JP2010514929A (en) * 2006-12-28 2010-05-06 ポスコ Environmentally friendly lead-free free-cutting steel with excellent machinability and hot-rollability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096186A1 (en) * 2006-11-28 2009-09-02 Nippon Steel Engineering Corporation Free-cutting steel excellent in manufacturability
EP2096186A4 (en) * 2006-11-28 2011-07-13 Nippon Steel Engineering Corp Free-cutting steel excellent in manufacturability
JP2010514929A (en) * 2006-12-28 2010-05-06 ポスコ Environmentally friendly lead-free free-cutting steel with excellent machinability and hot-rollability

Also Published As

Publication number Publication date
JP4348164B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP5652555B2 (en) Bearing steel and manufacturing method thereof
US7264684B2 (en) Steel for steel pipes
KR101340729B1 (en) Steel for high-frequency hardening
JP4267260B2 (en) Steel with excellent machinability
KR101830023B1 (en) Spring steel and method for producing same
CN102378822B (en) Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
JP4924422B2 (en) Low carbon sulfur free cutting steel
WO2004050932A1 (en) Steel excellent in machinability and method for production thereof
JP4478072B2 (en) High strength spring steel
JPH1129839A (en) Spring steel with high toughness
JP2010007143A (en) Steel for machine structure having excellent fatigue limit ratio and machinability
JP2008013788A (en) Steel for mechanical structural use having excellent machinability and strength property
CN111601908B (en) Carburized bearing steel member and steel bar for carburized bearing steel member
JP4264329B2 (en) Steel with excellent machinability
JP4559959B2 (en) High strength spring steel
JP2004143579A (en) Machine structural steel excellent in scrap treatability and method for producing the same
JP4600988B2 (en) High carbon steel plate with excellent machinability
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP4323778B2 (en) Manufacturing method of steel with excellent machinability
JP4213948B2 (en) Steel with excellent machinability
JP4348164B2 (en) Steel with excellent machinability
WO2018139671A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
JP3565428B2 (en) Steel for machine structure
WO2018139672A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090717

R151 Written notification of patent or utility model registration

Ref document number: 4348164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees