JP4600988B2 - High carbon steel plate with excellent machinability - Google Patents
High carbon steel plate with excellent machinability Download PDFInfo
- Publication number
- JP4600988B2 JP4600988B2 JP2005108223A JP2005108223A JP4600988B2 JP 4600988 B2 JP4600988 B2 JP 4600988B2 JP 2005108223 A JP2005108223 A JP 2005108223A JP 2005108223 A JP2005108223 A JP 2005108223A JP 4600988 B2 JP4600988 B2 JP 4600988B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- pearlite
- machinability
- less
- cementite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、所定形状への切削加工が予定されている機械部品,自動車用部品等の素材として好適な被削性に優れた高炭素鋼板に関する。 The present invention relates to a high carbon steel plate excellent in machinability suitable as a material for machine parts, automobile parts and the like that are scheduled to be cut into a predetermined shape.
機械部品,自動車用部品等の用途では高炭素鋼板が使用されているが、切削加工で製品形状に形成することが多いので被削性に優れていることが要求される。高炭素鋼の被削性改善には、黒鉛の析出やPb,Ca,Te,Bi等の快削元素の添加が従来から採用されている。
たとえば、C:0.30〜0.60質量%の機械構造用炭素鋼又は機械構造用合金鋼をAc1〜Ac3の温度域に加熱した後、冷却速度:3℃/秒以下で空冷することにより良好な被削性が得られることが知られている(特許文献1)。被削性向上に有効な金属組織としてフェライト+パーライト組織が紹介されているが、フェライト+パーライト組織の詳細は不明である。
For example, after C: 0.30 to 0.60 mass% of carbon steel for mechanical structure or alloy steel for mechanical structure is heated to a temperature range of Ac 1 to Ac 3 , it is air-cooled at a cooling rate of 3 ° C./second or less. It is known that good machinability can be obtained (Patent Document 1). Ferrite + pearlite structure has been introduced as a metal structure effective for improving machinability, but details of ferrite + pearlite structure are unknown.
フェライト+パーライト組織の如何が被削性に及ぼす影響が明らかになれば、被削性を一層向上させることができるばかりでなく、環境に悪影響を与えがちな快削元素の添加を省略でき、また黒鉛析出に必要な熱処理も省略できる。そこで、本発明者等は、フェライト+パーライト組織と被削性との関係を種々調査・検討した。その結果、フェライト+球状セメンタイト又はフェライト+棒状セメンタイトの混合組織に分散析出しているパーライトの分散形態が被削性改善に大きな影響を及ぼしていることを解明した。
本発明は、かかる解明をベースに完成されたものであり、混合組織に分散析出しているパーライトの面積率,ラメラ間隔を規制することにより、黒鉛の析出や快削元素の添加に依ることなく被削性に優れた高炭素鋼板を提供することを目的とする。
If the influence of the ferrite + pearlite structure on the machinability is clarified, not only can the machinability be improved, but also the addition of free-cutting elements that tend to adversely affect the environment can be omitted. Heat treatment necessary for graphite precipitation can also be omitted. Therefore, the present inventors investigated and examined various relationships between the ferrite + pearlite structure and machinability. As a result, it was clarified that the dispersion form of pearlite dispersed and precipitated in the mixed structure of ferrite + spherical cementite or ferrite + rod-like cementite has a great influence on machinability improvement.
The present invention has been completed on the basis of such elucidation, and by regulating the area ratio of pearlite dispersed and precipitated in the mixed structure and the lamellar spacing, it does not depend on the precipitation of graphite or the addition of free-cutting elements. It aims at providing the high carbon steel plate excellent in machinability.
本発明の高炭素鋼板は、C:0.6〜1.5質量%,Si:1.0質量%以下,Mn:0.1〜2.0質量%,S:0.02質量%以下,P:0.03質量%以下,Al:0.005〜0.20質量%,Fe:実質的に残部の組成をもつ。必要に応じ、Ni:2.5質量%以下,Cr:2.0質量%以下,Mo:1.0質量%以下の一種又は二種以上及び/又はTi:0.07質量%以下,Nb:0.07質量%以下,V:0.4質量%以下,B:0.07質量%以下の一種又は二種以上を含ませても良い。
該高炭素鋼板の金属組織は、フェライト+球状セメンタイト又はフェライト+棒状セメンタイトと面積率:40〜80%,ラメラ間隔:0.4μm以上のパーライトとが分散した混合組織である。
The high carbon steel sheet of the present invention has C: 0.6 to 1.5 mass%, Si: 1.0 mass% or less, Mn: 0.1 to 2.0 mass%, S: 0.02 mass% or less, P: 0.03 mass% or less, Al: 0.005 to 0.20 mass%, Fe: Substantially remaining composition. If necessary, Ni: 2.5% by mass or less, Cr: 2.0% by mass or less, Mo: 1.0% by mass or less, and / or Ti: 0.07% by mass, Nb: One or two or more of 0.07% by mass or less, V: 0.4% by mass or less, and B: 0.07% by mass or less may be included.
The metal structure of the high carbon steel sheet is a mixed structure in which ferrite + spherical cementite or ferrite + rod-like cementite and pearlite having an area ratio of 40 to 80% and a lamellar spacing of 0.4 μm or more are dispersed.
本発明者等は、高炭素鋼板について焼鈍後の金属組織を種々変化させ、金属組織が被削性に及ぼす影響を調査・検討した。調査・検討の過程で、所定の成分・組成をもつ鋼材を熱延後又は冷延後に焼鈍した状態で、パーライト面積率:40〜80%,ラメラ間隔:0.4μm以上のパーライトとフェライト+球状又は棒状セメンタイトとが分散析出した混合組織に調整すると、優れた被削性が発現することを見出した。 The present inventors investigated and examined the influence of the metal structure on the machinability by variously changing the metal structure after annealing of the high carbon steel sheet. In the process of investigation and examination, in a state where a steel material having a predetermined composition and composition is annealed after hot rolling or cold rolling, pearlite area ratio: 40 to 80%, lamella spacing: 0.4 μm or more of pearlite and ferrite + spherical shape Alternatively, it has been found that excellent machinability is exhibited by adjusting to a mixed structure in which rod-like cementite is dispersed and precipitated.
当該混合組織が被削性改善に及ぼす理由は、次のように考えられる。
切削時、一次剪断面域に大きな剪断変形が加えられると、パーライトとフェライトの塑性変形能の相違に起因してパーライト/フェライトの界面に応力が集中し亀裂が発生する。更に切削が進み大きな剪断加工を受けると、フェライトに比べて塑性変形能に劣るパーライトで亀裂が伝播する。一次剪断面域で亀裂伝播が連続的又は同時多発的に発生する結果、切り屑が容易に切断され、切削抵抗の低下,工具摩耗の改善に有効に働き被削性が向上する。
The reason why the mixed structure affects the machinability improvement is considered as follows.
When a large shear deformation is applied to the primary shear area during cutting, stress concentrates at the pearlite / ferrite interface due to the difference in plastic deformability between pearlite and ferrite, and cracks occur. When the cutting further progresses and a large shearing process is applied, the crack propagates with pearlite which is inferior in plastic deformability compared to ferrite. As a result of continuous or simultaneous occurrence of crack propagation in the primary shear area, chips are easily cut, effectively reducing cutting resistance and improving tool wear and improving machinability.
高炭素鋼の熱延組織では、被削性改善に有効な面積率:40〜80%のパーライトと軟質フェライトの混合組織を得ることは一般に困難とされているが、熱処理条件の適正化により一部のセメンタイトを球状化するとき、球状セメンタイトの析出領域が軟質フェライトと同様な作用を呈するので被削性の改善が可能となる。セメンタイトが棒状に析出する場合でも、周辺にフェライトがあるため同じメカニズムで被削性が改善される。
熱延鋼板をA1点以下の温度で焼鈍した場合でも、パーライト面積率:40〜80%のフェライト+パーライト混合組織を得ることは可能であるが、パーライトラメラ間隔が影響して良好な被削性が得られない。この場合、A1点よりも高い温度での加熱保持及び冷却速度の制御を組み合わせることにより、ラメラ間隔を0.4μm以上として被削性の改善が図られる。
In the hot-rolled structure of high carbon steel, it is generally difficult to obtain a mixed structure of pearlite and soft ferrite having an area ratio of 40 to 80% that is effective for improving machinability. When spheroidizing the cementite in the part, the precipitation area of the spherical cementite exhibits the same action as that of the soft ferrite, so that machinability can be improved. Even when cementite precipitates in a rod shape, the machinability is improved by the same mechanism because of the presence of ferrite in the periphery.
Even when the hot-rolled steel sheet is annealed at a temperature of A 1 or less, it is possible to obtain a ferrite and pearlite mixed structure with a pearlite area ratio of 40 to 80%, but good cutting due to the influence of the pearlite lamella spacing. Sex cannot be obtained. In this case, by combining the heating and holding at a temperature higher than the point A 1 and the control of the cooling rate, the machinability can be improved by setting the lamellar interval to 0.4 μm or more.
以下、本発明が対象とする高炭素鋼に含まれる合金成分,含有量,金属組織等を説明する。
〔成分・組成〕
・C:0.6〜1.5質量%
高炭素鋼板を各種部品に切削加工した後で熱処理して使用される用途では、良好な被削性及び必要強度を得る上で必須の成分である。C:0.6質量%以上で軟質フェライトの影響が抑えられ、被削性の改善が可能となる。しかし、1.5質量%を超える過剰量のC含有では、工具摩耗に及ぼす硬質セメンタイトの悪影響が強くなり、被削性が劣化する。好ましくは、0.6〜1.2質量%の範囲でC含有量を選定する。
Hereinafter, the alloy component, content, metal structure and the like included in the high carbon steel targeted by the present invention will be described.
[Ingredients / Composition]
C: 0.6-1.5% by mass
In applications where high carbon steel sheets are cut into various parts and then heat treated, they are essential components for obtaining good machinability and required strength. C: When the content is 0.6% by mass or more, the influence of soft ferrite is suppressed, and machinability can be improved. However, if the C content exceeds 1.5% by mass, the adverse effect of hard cementite on tool wear becomes strong, and the machinability deteriorates. Preferably, the C content is selected in the range of 0.6 to 1.2% by mass.
・Si:1.0質量%以下
製鋼段階で脱酸剤として添加される成分であるが、セメンタイトを不安定化し黒鉛化促進作用を呈する。過剰量のSiが含まれると黒鉛析出により熱処理性が阻害されるので、上限を1.0質量%(好ましくは、0.4質量%)とした。
・Mn:0.1〜2.0質量%
良好な焼入れ性を得るために必要な成分であり、鋼中Sとの反応で生成したMnSは被削性の向上に寄与する。焼入れ性は0.1質量%以上のMn添加で向上するが、2.0質量%を超える過剰添加は熱処理後の靭性を劣化させやすい。好ましくは、0.3〜1.0質量%の範囲でMn含有量を選定する。
Si: 1.0 mass% or less Although it is a component added as a deoxidizer in the steelmaking stage, it destabilizes cementite and exhibits a graphitization promoting action. If an excessive amount of Si is contained, the heat treatment property is hindered by the precipitation of graphite, so the upper limit was made 1.0 mass% (preferably 0.4 mass%).
Mn: 0.1 to 2.0% by mass
It is a necessary component for obtaining good hardenability, and MnS produced by reaction with S in steel contributes to improvement of machinability. The hardenability is improved by the addition of 0.1% by mass or more of Mn, but the excessive addition exceeding 2.0% by mass tends to deteriorate the toughness after the heat treatment. Preferably, the Mn content is selected in the range of 0.3 to 1.0 mass%.
・S:0.02質量%以下
MnS系介在物となって被削性を向上させる成分であるが、過剰量のSが含まれると熱処理後の強度,靭性が劣化するので極力低減することが好ましい。本成分系では、S含有量の上限を0.02質量%(好ましくは、0.010質量%)とすることにより、強度,靭性に及ぼす悪影響を抑えている。
・P:0.03質量%以下
被削性を多少改善する作用を呈するものの、熱処理後の靭性を劣化させる成分であることから極力低減することが好ましく、本成分系ではP含有量の上限を0.03質量%(好ましくは、0.015質量%)とした。
S: 0.02% by mass or less Although it is a component that improves the machinability by becoming an MnS-based inclusion, if an excessive amount of S is contained, the strength and toughness after heat treatment deteriorate, so that it can be reduced as much as possible. preferable. In this component system, the adverse effect on strength and toughness is suppressed by setting the upper limit of the S content to 0.02 mass% (preferably 0.010 mass%).
-P: 0.03 mass% or less Although exhibiting the effect of improving the machinability to some extent, it is preferable to reduce it as much as possible because it is a component that deteriorates toughness after heat treatment. In this component system, the upper limit of the P content is limited. It was 0.03 mass% (preferably 0.015 mass%).
・Al:0.005〜0.20質量%
製鋼段階で脱酸剤として添加される成分である。脱酸効果は、Al:0.005質量%以上でみられ、増量に応じて良好な脱酸効果が得られるが、0.20質量%を超える過剰添加は鋼材の清浄度を低下させ、強度、靭性劣化の原因にもなる。好ましくは、0.010〜0.100質量%の範囲でAl含有量を選定する。
・Ni:2.5質量%以下
パーライト変態を遅延させる成分であり、パーライトの成長速度を遅くすることによりパーライトラメラ間隔を大きくする作用を呈する。Niの添加効果は1.0質量%以上でみられるが、過剰添加は被削性に悪影響を及ぼす。また、Siと同様に黒鉛化促進元素であり、黒鉛の析出に起因して焼入れ性を劣化する。そのため、Niを添加する場合、上限を2.5質量%(好ましくは、1.8質量%)とする。
-Al: 0.005-0.20 mass%
It is a component added as a deoxidizer in the steelmaking stage. The deoxidation effect is seen at Al: 0.005% by mass or more, and a good deoxidation effect can be obtained according to the increase, but excessive addition exceeding 0.20% by mass decreases the cleanliness of the steel material, and the strength It also causes toughness deterioration. Preferably, the Al content is selected in the range of 0.010 to 0.100 mass%.
Ni: 2.5% by mass or less Ni is a component that delays pearlite transformation, and has the effect of increasing the pearlite lamella spacing by slowing the growth rate of pearlite. The addition effect of Ni is observed at 1.0% by mass or more, but excessive addition adversely affects the machinability. Moreover, it is a graphitization promoting element like Si, and hardenability is deteriorated due to precipitation of graphite. Therefore, when adding Ni, the upper limit is set to 2.5% by mass (preferably 1.8% by mass).
・Cr:2.0質量%以下
焼入れ性を向上させる成分であり、0.1質量%以上でCr添加の効果がみられる。また、セメンタイトを安定化させ、セメンタイトに固溶してセメンタイトの強度を向上させる作用もある。しかし、過剰添加は、鋼材コストの上昇を招くばかりでなく、セメンタイトの強化作用によって工具摩耗を促進させ被削性を劣化させる。そのため、Crを添加する場合には、上限を2.0質量%(好ましくは、1.0質量%)とする。
・Mo:1.0質量%以下
焼入れ性を向上させる成分であり、0.1質量%以上でMo添加の効果がみられる。しかし、過剰添加は、鋼材コストの上昇を招くばかりでなく、硬質化により鋼材の加工性を劣化させる。そのため、Moを添加する場合、上限を1.0質量%(好ましくは、0.4質量%)とする。
-Cr: 2.0 mass% or less It is a component which improves hardenability, and the effect of Cr addition is seen at 0.1 mass% or more. It also has the effect of stabilizing cementite and improving the strength of cementite by dissolving in cementite. However, excessive addition not only increases the cost of the steel material, but also promotes tool wear and deteriorates machinability due to the strengthening action of cementite. Therefore, when adding Cr, the upper limit is set to 2.0 mass% (preferably 1.0 mass%).
-Mo: 1.0 mass% or less It is a component which improves hardenability, and the effect of Mo addition is seen at 0.1 mass% or more. However, excessive addition not only increases the cost of the steel material, but also deteriorates the workability of the steel material due to hardening. Therefore, when adding Mo, an upper limit is made into 1.0 mass% (preferably 0.4 mass%).
・Ti:0.07質量%以下
必要に応じて添加される成分であり、鋼中のC,S,Nとの反応で生成する析出物のピンニング作用によってオーステナイト粒を微細化し、熱処理後の靭性を向上させる。析出強化によって鋼材を高強度化する作用もある。このような効果は0.02質量%以上のTi添加で顕著になるが、過剰添加は焼入れ性の劣化,鋼材コストの上昇を招くので、上限を0.07質量%(好ましくは、0.05質量%)とする。
・Nb:0.07質量%以下
必要に応じて添加される成分であり、Tiと同様に鋼中のCと反応し、反応生成物NbCのピンニング作用によってオーステナイト粒を微細化し、熱処理後の靭性を向上させ、鋼材を高強度化する析出硬化元素である。このような効果は0.02質量%以上のNb添加で顕著になるが、過剰添加は焼入れ性の劣化,鋼材コストの上昇を招くので、上限を0.07質量%(好ましくは、0.05質量%)とする。
Ti: 0.07% by mass or less Ti is a component added as necessary, and austenite grains are refined by the pinning action of precipitates formed by reaction with C, S, N in steel, and toughness after heat treatment To improve. It also has the effect of increasing the strength of the steel material by precipitation strengthening. Such an effect becomes significant when Ti is added in an amount of 0.02% by mass or more. However, excessive addition causes deterioration of hardenability and an increase in steel material cost, so the upper limit is set to 0.07% by mass (preferably 0.05. Mass%).
Nb: 0.07% by mass or less Nb is a component added as necessary, reacts with C in steel in the same way as Ti, refines austenite grains by the pinning action of the reaction product NbC, and toughness after heat treatment It is a precipitation hardening element that improves the strength of steel materials. Such an effect becomes remarkable when Nb is added in an amount of 0.02% by mass or more. However, excessive addition causes deterioration of hardenability and an increase in steel material cost, so the upper limit is set to 0.07% by mass (preferably 0.05. Mass%).
・V:0.4質量%以下
必要に応じて添加される成分であり、ピンニング作用のある炭窒化物として析出し、オーステナイト粒の微細化,ひいては熱処理後の靭性向上に寄与する。Vの添加効果は0.1質量%以上で顕著になるが、過剰添加は焼入れ性の劣化,鋼材コストの上昇を招くので、上限を0.4質量%(好ましくは、0.3質量%)とする。
・B:0.007質量%以下
必要に応じて添加される成分であり、焼入れ性を向上させる。焼入れ性は、0.0003質量%以上のB添加でみられ、Bの増量に伴い焼入れ性が向上するが、0.0008質量%で焼入れ性向上効果が飽和する。また、過剰添加は熱間加工性に悪影響を及ぼすので、Bを添加する場合には上限を0.007質量%(好ましくは、0.005質量%)とする。
V: 0.4% by mass or less V is a component added as necessary, and precipitates as a carbonitride having a pinning action, contributing to refinement of austenite grains and consequently toughness after heat treatment. The effect of addition of V becomes remarkable at 0.1% by mass or more, but excessive addition causes deterioration of hardenability and an increase in steel material cost, so the upper limit is 0.4% by mass (preferably 0.3% by mass). And
-B: 0.007 mass% or less It is a component added as needed and improves hardenability. The hardenability is observed when 0.0003 mass% or more of B is added, and the hardenability improves as the amount of B increases. However, the effect of improving hardenability is saturated at 0.0008 mass%. Further, since excessive addition adversely affects hot workability, when B is added, the upper limit is made 0.007% by mass (preferably 0.005% by mass).
〔金属組織〕
本発明の高炭素鋼板は、面積率:40〜80%,ラメラ間隔:0.4μm以上のパーライトとフェライト+球状セメンタイト又はフェライト+棒状セメンタイトが分散析出した混合組織をもっている。本件明細書でいう「混合組織」は、(1)パーライト組織(面積率:40〜80%,ラメラ間隔:0.4μm以上),(2)フェライト内に球状又は棒状セメンタイトが析出した組織の二つが分散した組織である。
[Metal structure]
The high carbon steel sheet of the present invention has a mixed structure in which pearlite and ferrite + spherical cementite or ferrite + rod-like cementite having an area ratio of 40 to 80% and a lamellar spacing of 0.4 μm or more are dispersed and precipitated. As used herein, “mixed structure” refers to (1) a pearlite structure (area ratio: 40 to 80%, lamellar spacing: 0.4 μm or more), and (2) a structure in which spherical or rod-like cementite is precipitated in ferrite. Is a distributed organization.
・パーライト面積率:40〜80%
パーライトは、一次剪断面域でクラック発生を促す応力集中源として機能する。パーライト面積率の増加に伴い展延性の大きな軟質フェライトの影響が抑えられ、切削抵抗が軽減する。切削抵抗の軽減は、切削加工時の発熱量低減を意味し、熱摩耗に起因する工具摩耗を抑え工具寿命を長くする。このような効果は、析出したパーライトの面積率:40%以上で顕著になる。
逆にパーライトの面積率が40%を下回ると、切削加工時の発熱で構成刃先の結晶粒成長が促進され、更に切削過程で構成刃先が脱着を繰り返すことで切削抵抗が著しく変動する。切削抵抗の変動は、いわゆるビビリの発生原因であり、切削面の品位を低下させる。また、欠けた刃先片がマイクロチップとなり、工具の掬い面,逃げ面の摩耗を促進させる。その結果、パーライト面積率:40%未満の鋼板を切削加工する場合、切削速度の低減を余儀なくされ、作業効率の低下,切削コストの上昇を招きやすい。
しかし、パーライト面積率の増加に伴い、工具との摩擦面に硬質セメンタイトの影響が強く現れる。すなわち、切削加工時に工具の掬い面,逃げ面と被削材との間に強い摩擦が発生し、機械的摩耗に起因して工具寿命が短くなる。
以上の理由から、パーライト面積率を40〜80%(好ましくは、45〜75%)の範囲に調整している。
-Perlite area ratio: 40-80%
The pearlite functions as a stress concentration source that promotes the generation of cracks in the primary shear area. As the pearlite area ratio increases, the influence of soft ferrite with a large spreadability is suppressed, and cutting resistance is reduced. Reduction of cutting resistance means a reduction in the amount of heat generated during cutting, and suppresses tool wear due to thermal wear and prolongs the tool life. Such an effect becomes remarkable when the area ratio of the precipitated pearlite is 40% or more.
On the other hand, when the area ratio of pearlite is less than 40%, the growth of crystal grains of the constituent cutting edge is promoted by heat generation during cutting, and the cutting resistance is remarkably changed due to repeated desorption of the constituent cutting edge in the cutting process. The fluctuation of the cutting resistance is a cause of so-called chattering and reduces the quality of the cutting surface. Further, the chipped cutting edge piece becomes a microchip, which promotes wear on the scooping surface and flank surface of the tool. As a result, when a steel sheet having a pearlite area ratio of less than 40% is cut, the cutting speed is inevitably reduced, and the work efficiency and the cutting cost are likely to increase.
However, as the pearlite area ratio increases, the effect of hard cementite appears strongly on the friction surface with the tool. That is, strong friction is generated between the scooping surface of the tool, the flank surface, and the work material during cutting, and the tool life is shortened due to mechanical wear.
For the above reasons, the pearlite area ratio is adjusted to a range of 40 to 80% (preferably 45 to 75%).
・パーライトラメラ間隔:0.4μm以上
パーライトラメラ間隔が被削性を改善する詳細な理由は不明であるが、0.4μm以上のラメラ間隔で被削性が向上することは次のように推察され、後述の実施例でも確認できる。
パーライトの強度はパーライトラメラ間隔に依存し、ラメラ間隔が狭くなるほどパーライトの強度が高くなる。具体的には、ラメラ間隔が0.4μm未満になるとパーライトの強度が高くなり過ぎ被削性が劣化する。また、ラメラ間隔が狭い場合、単位体積当りパーライト/フェライトの界面が増大する。そのため、パーライトを切り込む際に、軟質フェライトと硬質セメンタイトとの界面で生じる応力変動及び破砕したセメンタイトのマイクロチップによる工具摩耗が促進され、工具寿命が短くなる。このような欠陥は、ラメラ間隔を0.4μm以上(好ましくは、0.5μm以上)とすることにより抑制できる。
・ Perlite lamella spacing: 0.4 μm or more The detailed reason why the pearlite lamella spacing improves machinability is unknown, but it is speculated that the machinability improves with a lamellar spacing of 0.4 μm or more as follows. This can also be confirmed in examples described later.
The intensity of pearlite depends on the pearlite lamella spacing, and the pearlite strength increases as the lamella spacing decreases. Specifically, when the lamella spacing is less than 0.4 μm, the strength of pearlite becomes too high and the machinability deteriorates. When the lamella spacing is narrow, the pearlite / ferrite interface per unit volume increases. Therefore, when cutting pearlite, stress fluctuations generated at the interface between soft ferrite and hard cementite and tool wear due to crushed cementite microtips are promoted, and the tool life is shortened. Such a defect can be suppressed by setting the lamella interval to 0.4 μm or more (preferably 0.5 μm or more).
・焼鈍
A1点以下の焼鈍温度では、セメンタイトが球状化され,軟質でねばいフェライト+球状又は棒状セメンタイトの混合組織の面積率が高くなったり、熱延で生じた残存パーライトのラメラ間隔が狭く強度が高いため被削性が劣化する。しかし、加熱温度が800℃を超えると、混合組織の核となる未溶解セメンタイトが減少し、被削性向上に有効な混合組織が得られ難く、焼鈍によって生じるパーライトの面積率が増大するため被削性が劣化する。また、実機コイルでは焼鈍密着が発生し、工業化が困難になる。このようなことから、A1点を超え800℃以下の温度域に焼鈍温度を設定する。
セメンタイトを十分溶解させる上で均熱時間を5時間以上とする。5時間に満たない均熱ではセメンタイトの溶解が不十分であり、未溶解セメンタイトが増大してパーライト組織の生成を阻害し、ほぼ球状セメンタイトになるため良好な被削性が得られない。しかし、均熱時間を長くするとコストが上昇する。
均熱後、5〜70℃/時の冷却速度で冷却することが好ましい。5℃/時未満の冷却速度では、セメンタイトが球状化されやすく、パーライトの面積率が減少して被削性が劣化する。逆に70℃/時を超える冷却速度では、パーライトの面積率が高くなりすぎて被削性が劣化する。
・冷間圧延
冷間圧延時の圧延率は、被削性に実質的な影響を及ぼさないので特段の制約を受けない。しかし、60%を超える圧延率では、冷延工程の付加が大きくなり、製造性の悪化,製造コストの上昇を招きやすい。
・ Annealing A At an annealing temperature of 1 point or less, cementite is spheroidized, and the area ratio of the mixed structure of soft and strong ferrite + spherical or rod-like cementite is increased, or the lamellar spacing of residual pearlite generated by hot rolling is narrow. Machinability deteriorates due to high strength. However, when the heating temperature exceeds 800 ° C., undissolved cementite that becomes the core of the mixed structure decreases, it is difficult to obtain a mixed structure effective for improving machinability, and the area ratio of pearlite generated by annealing increases. The machinability deteriorates. Moreover, in an actual coil, annealing adhesion occurs, making industrialization difficult. For this reason, the annealing temperature is set in a temperature range exceeding A 1 point and 800 ° C. or less.
In order to sufficiently dissolve cementite, the soaking time is set to 5 hours or more. When soaking is less than 5 hours, the dissolution of cementite is insufficient, the undissolved cementite increases to inhibit the formation of pearlite structure, and it becomes almost spherical cementite, so that good machinability cannot be obtained. However, increasing the soaking time increases the cost.
After soaking, it is preferable to cool at a cooling rate of 5 to 70 ° C./hour. At a cooling rate of less than 5 ° C./hour, cementite tends to be spheroidized, the area ratio of pearlite is reduced, and machinability is deteriorated. Conversely, at a cooling rate exceeding 70 ° C./hour, the area ratio of pearlite becomes too high and the machinability deteriorates.
・ Cold rolling The rolling ratio during cold rolling does not have a substantial effect on the machinability and is not subject to any particular restrictions. However, when the rolling rate exceeds 60%, the addition of a cold rolling process is increased, which tends to cause deterioration in manufacturability and increase in manufacturing cost.
表1の成分・組成をもつ鋼材を溶製し、鋳造後、仕上げ温度:850℃,巻取り温度:600℃で熱間圧延した。熱延板を酸洗した後、研削加工又は冷間圧延して板厚:2.0mmの鋼板を製造した。 Steel materials having the components and compositions shown in Table 1 were melted and cast, and then hot rolled at a finishing temperature of 850 ° C. and a winding temperature of 600 ° C. After pickling the hot-rolled sheet, grinding or cold rolling was performed to produce a steel sheet having a thickness of 2.0 mm.
各鋼板を680〜800℃×10時間で均熱処理した後、冷却速度:5〜70℃/時で650℃まで冷却し、更に室温まで炉冷する焼鈍によって、パーライト面積率,ラメラ間隔を変化させた供試材を作製した。
焼鈍条件がパーライト面積率,ラメラ間隔に及ぼす影響を表2に示す。
パーライト面積率に関しては、圧延方向及び板厚方向を含む試験片断面を鏡面研磨,エッチングし、光学顕微鏡を用いて倍率500倍の視野で試験片断面を写真撮影し、断面写真の画像処理によってパーライト面積率を測定した。
ラメラ間隔に関しては、同様に圧延方向及び板厚方向を含む試験片断面を鏡面研磨,エッチングし、電子顕微鏡を覗きながらラメラ間隔が狭い部分を選択し、選択部分20箇所を倍率2000倍で写真撮影した。20枚の中からラメラ間隔が狭いパーライトを10個特定してラメラ間隔を測定し、測定値を平均化することによりパーライトラメラ間隔を求めた。
何れの鋼種も、パーライトとフェライト+球状セメンタイト又はフェライト+棒状セメンタイトの混合組織になっていたが、過剰量のSiを含む鋼種Lでは黒鉛も析出したため熱処理性に劣っていた。
Each steel sheet is soaked at 680 to 800 ° C. for 10 hours, then cooled to 650 ° C. at a cooling rate of 5 to 70 ° C./hour, and further subjected to furnace cooling to room temperature to change the pearlite area ratio and lamella spacing. A sample was prepared.
Table 2 shows the effect of annealing conditions on the pearlite area ratio and lamella spacing.
Regarding the pearlite area ratio, the cross section of the test piece including the rolling direction and the plate thickness direction is mirror-polished and etched, and the cross section of the test piece is photographed at a magnification of 500 times using an optical microscope. The area ratio was measured.
Regarding the lamella spacing, similarly, the cross section of the specimen including the rolling direction and the plate thickness direction is mirror-polished and etched, and a portion with a narrow lamella spacing is selected while looking through an electron microscope, and 20 selected portions are photographed at a magnification of 2000 times. did. Ten pearlite having a narrow lamella interval was identified from 20 sheets, the lamella interval was measured, and the measured values were averaged to obtain the pearlite lamella interval.
All the steel types had a mixed structure of pearlite and ferrite + spherical cementite or ferrite + rod-like cementite, but the steel type L containing an excessive amount of Si was inferior in heat treatment properties because graphite was also precipitated.
次いで、切削試験で工具寿命を調査し、工具寿命から被削性を評価した。
切削試験では、先端角:118度,刃先径:10mm,溝長さ:95mmのJIS B4301汎用ストレートドリルを装着した直立ボール盤型の切削試験機を用い、回転数:600rpm,押込み荷重:20Nで試験片を穴あけ加工した。新品のドリルで試験片表面から板厚方向に穴あけ加工を繰り返し、切削不能になった時点を工具寿命と判定し、そのときまでの貫通孔の個数から被削性を評価した。
Next, the tool life was investigated by a cutting test, and the machinability was evaluated from the tool life.
In the cutting test, an upright drilling machine equipped with a JIS B4301 general-purpose straight drill with a tip angle of 118 degrees, a cutting edge diameter of 10 mm, and a groove length of 95 mm was used. The piece was drilled. Drilling in the thickness direction from the surface of the test piece with a new drill was repeated, and the point at which cutting became impossible was determined as the tool life, and the machinability was evaluated from the number of through holes up to that point.
表2,3の試験結果にみられるように、パーライト面積率:40〜80%,ラメラ間隔:0.4μm以上を満足する本発明例では、穴あけ加工を200回以上繰り返しても工具寿命に至っておらず、被削性に優れていることが判る。
これに対し、パーライト面積率が40%未満の試験No.1,2では、軟質フェライトの影響が強く現れて切削抵抗が増加し、被削性に劣っていた。逆にパーライト面積率が80%を超える試験No.10では、工具との摩擦面に硬質セメンタイトが大きく影響するため被削性に劣っていた。
As seen in the test results of Tables 2 and 3, in the present invention example satisfying the pearlite area ratio: 40 to 80% and the lamella spacing: 0.4 μm or more, the tool life is reached even when the drilling is repeated 200 times or more. It can be seen that it is excellent in machinability.
On the other hand, in Test Nos. 1 and 2 having a pearlite area ratio of less than 40%, the influence of soft ferrite appeared strongly, cutting resistance increased, and the machinability was inferior. On the other hand, Test No. with a pearlite area ratio exceeding 80%. No. 10 was inferior in machinability because hard cementite greatly affected the friction surface with the tool.
パーライトの面積率,ラメラ間隔を本発明で規定した範囲に調整しても、試験No.3にみられるようにC含有量が不足すると、同様に軟質フェライトの影響が強く現れて切削抵抗が増加するため、被削性に劣っていた。C含有量に加えパーライト面積率も本発明で規定した範囲を外れると、試験No.13にみられるように硬質セメンタイトの影響が強く現れ、被削性に劣っていた。
パーライトラメラ間隔が0.4μmに達しない試験No.4でも、工具寿命が短く被削性に劣っていた。悪い被削性は、パーライトの強度が高すぎ、軟質フェライトと硬質セメンタイトとの界面で生じる応力変動及び破砕したセメンタイトのマイクロチップにより工具摩耗が促進された結果と考えられる。
Even if the pearlite area ratio and lamella spacing are adjusted to the ranges specified in the present invention, if the C content is insufficient as seen in Test No. 3, the influence of soft ferrite also appears strongly and the cutting resistance increases. Therefore, the machinability was inferior. When the pearlite area ratio in addition to the C content was out of the range defined in the present invention, as shown in Test No. 13, the influence of hard cementite appeared strongly and the machinability was poor.
Even in test No. 4 where the pearlite lamella spacing did not reach 0.4 μm, the tool life was short and the machinability was poor. The poor machinability is considered to be a result of the tool wear being promoted by the stress variation generated at the interface between the soft ferrite and the hard cementite and the crushed cementite microtips because the strength of the pearlite is too high.
パーライトの面積率,ラメラ間隔共に本発明で規定した範囲を外れる試験No.9,17では、軟質フェライトの影響が強く現れると共にパーライトの強度が高すぎるため被削性に劣っていた。
更に過剰量のCrを含む試験No.21では、セメンタイトの強化作用によって工具摩耗が促進された結果、被削性に劣っていた。
以上の対比から明らかなように、成分・組成が特定された系でフェライト+球状セメンタイト又はフェライト+棒状セメンタイトとパーライト組織で構成され、パーライトの面積率,ラメラ間隔を調整することにより、被削性に優れた高炭素鋼板が得られることが判る。
In Test Nos. 9 and 17 in which both the area ratio of pearlite and the lamella spacing deviated from the ranges specified in the present invention, the influence of soft ferrite appeared strongly and the strength of pearlite was too high, so that the machinability was inferior.
Further, in Test No. 21 containing an excessive amount of Cr, tool wear was promoted by the strengthening action of cementite, resulting in poor machinability.
As is clear from the above comparison, it is a system with specified components and composition, and is composed of ferrite + spherical cementite or ferrite + rod cementite and pearlite structure, and by adjusting the pearlite area ratio and lamellar spacing, machinability It can be seen that a high-carbon steel sheet excellent in resistance can be obtained.
以上に説明したように、特定された成分系において、面積率:40〜80%,ラメラ間隔:0.4μm以上に調整したパーライトが分散析出したフェライト+球状セメンタイト又はフェライト+棒状セメンタイトの混合組織とすることにより、黒鉛析出や快削性元素の添加に依ることなく優れた被削性を高炭素鋼板に付与できる。そのため、機械部品,自動車用部品等の製品形状に高炭素鋼板を切削加工する場合に加工効率が向上し工具寿命が延長され、切削加工に要するコストが節減される。 As described above, in the specified component system, a mixed structure of ferrite + spherical cementite or ferrite + rod-like cementite in which pearlite adjusted to have an area ratio of 40 to 80% and a lamellar spacing of 0.4 μm or more is dispersed and By doing so, excellent machinability can be imparted to the high carbon steel sheet without depending on the precipitation of graphite or the addition of free-cutting elements. Therefore, when cutting a high carbon steel sheet into a product shape such as a machine part or an automobile part, the processing efficiency is improved, the tool life is extended, and the cost required for the cutting process is reduced.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005108223A JP4600988B2 (en) | 2005-04-05 | 2005-04-05 | High carbon steel plate with excellent machinability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005108223A JP4600988B2 (en) | 2005-04-05 | 2005-04-05 | High carbon steel plate with excellent machinability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006283175A JP2006283175A (en) | 2006-10-19 |
JP4600988B2 true JP4600988B2 (en) | 2010-12-22 |
Family
ID=37405382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005108223A Active JP4600988B2 (en) | 2005-04-05 | 2005-04-05 | High carbon steel plate with excellent machinability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4600988B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5630006B2 (en) * | 2009-11-04 | 2014-11-26 | Jfeスチール株式会社 | High-strength steel sheet having a tensile strength of 1500 MPa or more, its manufacturing method, and cold rolling material |
CN108004470B (en) * | 2017-12-08 | 2019-09-17 | 江苏省沙钢钢铁研究院有限公司 | Low-manganese high-carbon steel wire rod for high-strength steel strand and preparation method thereof |
JP6958391B2 (en) * | 2018-01-29 | 2021-11-02 | 日本製鉄株式会社 | Steel pipe |
CN111809116A (en) * | 2020-07-08 | 2020-10-23 | 山东四方工模具材料研究院有限公司 | Multi-element composite reinforced alloy semi-steel sizing/reducing mill roller and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62270720A (en) * | 1986-05-19 | 1987-11-25 | Kobe Steel Ltd | Manufacture of steel material for warm forging |
JPS63259056A (en) * | 1986-05-19 | 1988-10-26 | Nippon Steel Corp | Low-carbon free-cutting steel excellent in machinability |
JPH06299240A (en) * | 1993-04-12 | 1994-10-25 | Nippon Steel Corp | Manufacture of steel material for bearing having excellent spheroidizing characteristic |
JPH09143610A (en) * | 1995-11-15 | 1997-06-03 | Kobe Steel Ltd | Hot forged non-heat treated steel having high fatigue strength and its production |
JPH10226847A (en) * | 1997-02-13 | 1998-08-25 | Daido Steel Co Ltd | V-non added non-refined steel for hot forging |
JPH11229083A (en) * | 1998-02-17 | 1999-08-24 | Sanyo Special Steel Co Ltd | Bearing steel excellent in machinability |
JPH11269552A (en) * | 1998-03-25 | 1999-10-05 | Nisshin Steel Co Ltd | Manufacture of medium/high carbon steel sheet excellent in stretch-flange formability |
JP2001226738A (en) * | 2000-02-15 | 2001-08-21 | Daido Steel Co Ltd | Steel for induction hardening excellent in cold forgeability, and its producing method |
JP2003306719A (en) * | 2002-04-18 | 2003-10-31 | Sanyo Special Steel Co Ltd | Heat treatment method of steel of excellent machinability |
-
2005
- 2005-04-05 JP JP2005108223A patent/JP4600988B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62270720A (en) * | 1986-05-19 | 1987-11-25 | Kobe Steel Ltd | Manufacture of steel material for warm forging |
JPS63259056A (en) * | 1986-05-19 | 1988-10-26 | Nippon Steel Corp | Low-carbon free-cutting steel excellent in machinability |
JPH06299240A (en) * | 1993-04-12 | 1994-10-25 | Nippon Steel Corp | Manufacture of steel material for bearing having excellent spheroidizing characteristic |
JPH09143610A (en) * | 1995-11-15 | 1997-06-03 | Kobe Steel Ltd | Hot forged non-heat treated steel having high fatigue strength and its production |
JPH10226847A (en) * | 1997-02-13 | 1998-08-25 | Daido Steel Co Ltd | V-non added non-refined steel for hot forging |
JPH11229083A (en) * | 1998-02-17 | 1999-08-24 | Sanyo Special Steel Co Ltd | Bearing steel excellent in machinability |
JPH11269552A (en) * | 1998-03-25 | 1999-10-05 | Nisshin Steel Co Ltd | Manufacture of medium/high carbon steel sheet excellent in stretch-flange formability |
JP2001226738A (en) * | 2000-02-15 | 2001-08-21 | Daido Steel Co Ltd | Steel for induction hardening excellent in cold forgeability, and its producing method |
JP2003306719A (en) * | 2002-04-18 | 2003-10-31 | Sanyo Special Steel Co Ltd | Heat treatment method of steel of excellent machinability |
Also Published As
Publication number | Publication date |
---|---|
JP2006283175A (en) | 2006-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5231101B2 (en) | Machine structural steel with excellent fatigue limit ratio and machinability | |
JP6880245B1 (en) | High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts | |
TWI591187B (en) | High-carbon cold-rolled steel sheet and its manufacturing method | |
WO2012073485A1 (en) | Carburizing steel having excellent cold forgeability, and production method thereof | |
JP2007162128A (en) | Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component | |
JP5280324B2 (en) | High carbon steel sheet for precision punching | |
KR20170026220A (en) | Steel for mold and mold | |
JP4465057B2 (en) | High carbon steel sheet for precision punching | |
JP6065121B2 (en) | High carbon hot rolled steel sheet and manufacturing method thereof | |
JP2008081841A (en) | Case hardening steel having excellent cold forgeability and crystal grain coarsening prevention property, and machine part obtained therefrom | |
JP4530268B2 (en) | High carbon steel member with excellent impact characteristics and method for producing the same | |
JP4600988B2 (en) | High carbon steel plate with excellent machinability | |
JP2012237052A (en) | Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same | |
JP2009161809A (en) | Steel material for cutlery excellent in wear resistance and toughness | |
JP4738028B2 (en) | Manufacturing method for medium and high carbon steel sheets with excellent machinability | |
JP2005336553A (en) | Hot tool steel | |
JP4159009B2 (en) | Steel sheet for punched parts with excellent fatigue characteristics | |
JP5869919B2 (en) | Case-hardening bar steel with excellent cold workability | |
JP2015140449A (en) | Case hardening steel excellent in crystal grain size property at high temperature | |
JP2002146480A (en) | Wire rod/steel bar having excellent cold workability, and manufacturing method | |
JP4768117B2 (en) | Steel and machine parts with excellent machinability and cold workability | |
JP5937852B2 (en) | Case-hardening steel parts | |
JP2019131842A (en) | Steel pipe | |
JP5392857B2 (en) | Manufacturing method for medium and high carbon steel sheets with excellent machinability | |
JP6043080B2 (en) | Steel for high frequency heat treatment gears excellent in peeling resistance and gear cutting workability, and gears and methods for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070313 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080403 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100902 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100922 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100924 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4600988 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |