JP4530268B2 - High carbon steel member with excellent impact characteristics and method for producing the same - Google Patents

High carbon steel member with excellent impact characteristics and method for producing the same Download PDF

Info

Publication number
JP4530268B2
JP4530268B2 JP2004246945A JP2004246945A JP4530268B2 JP 4530268 B2 JP4530268 B2 JP 4530268B2 JP 2004246945 A JP2004246945 A JP 2004246945A JP 2004246945 A JP2004246945 A JP 2004246945A JP 4530268 B2 JP4530268 B2 JP 4530268B2
Authority
JP
Japan
Prior art keywords
mass
less
carbide
steel
undissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004246945A
Other languages
Japanese (ja)
Other versions
JP2006063384A (en
Inventor
聡 田頭
敬之 中原
昭史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2004246945A priority Critical patent/JP4530268B2/en
Publication of JP2006063384A publication Critical patent/JP2006063384A/en
Application granted granted Critical
Publication of JP4530268B2 publication Critical patent/JP4530268B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、歯車,軸受等の車両用駆動系部品を初め、小型で精密な形状が要求される精密機械部品,刃物,切削工具,織機部材等として広範な分野で使用される高炭素鋼部材及びその製造方法に関する。   The present invention is a high carbon steel member used in a wide range of fields, such as vehicle drive system parts such as gears and bearings, precision machine parts that require small and precise shapes, blades, cutting tools, loom members, etc. And a manufacturing method thereof.

歯車,軸受,精密機械部品,刃物,切削工具,織機部材,耐摩耗部材は、JIS SK70〜SK120等の炭素工具鋼やJIS SK55,SK51等の合金工具鋼を部品形状に成形した後、目標特性を付与する焼入れ・焼戻しを経て製造されている。何れの用途でも熱処理後の衝撃特性が要求されるが、熱処理時に如何なる組織形態に調整することにより衝撃特性が向上するかは必ずしも明確にされていない。   Gears, bearings, precision machine parts, blades, cutting tools, loom members, and wear-resistant parts are made of carbon tool steels such as JIS SK70 to SK120 and alloy tool steels such as JIS SK55 and SK51 into parts and then target characteristics. It is manufactured through quenching and tempering. In any application, impact characteristics after heat treatment are required, but it is not necessarily clarified whether the impact characteristics can be improved by adjusting to what structure form during heat treatment.

組織形態と衝撃特性に関する従来の知見では、共析鋼,過共析鋼等の熱処理に際し、およそ0.6質量%程度の炭素を固溶させ、残りを未溶解炭化物として残存させる熱処理条件が採用されている。焼入れマルテンサイトは、0.6質量%まではC量の増加に応じて硬質化するが、0.6質量%を超えるC量では硬質化の度合いが鈍化してくる。C>0.6質量%で硬さ上昇が低下することは、組織中に軟質の残留オーステナイトが増加することに原因がある。   In the conventional knowledge on the structure and impact properties, heat treatment conditions are adopted in which about 0.6% by mass of carbon is dissolved in the eutectoid steel, hypereutectoid steel, etc., and the remainder remains as undissolved carbide. Has been. Quenched martensite hardens as the amount of C increases up to 0.6% by mass, but the degree of hardening decreases with an amount of C exceeding 0.6% by mass. The decrease in hardness increase at C> 0.6% by mass is due to an increase in soft retained austenite in the structure.

すなわち、C量と硬質化との関係は、0.6質量%を超えるC量が未溶解炭化物として残存することを前提にしている。しかも、C量が0.6質量%以上の鋼材では、靭性の低いマルテンサイトが生成しやすくなる。このようなことから、0.6質量%のC量を固溶させ、残りのCが未溶解炭化物として残存する熱処理条件が通常である。したがって、共析鋼,過共析鋼等は、通常、未溶解炭化物,マルテンサイトからなる熱処理組織に調質される。   That is, the relationship between the amount of C and hardening is based on the premise that the amount of C exceeding 0.6% by mass remains as undissolved carbide. In addition, martensite with low toughness is likely to be generated in steel materials having a C content of 0.6% by mass or more. For this reason, a heat treatment condition in which 0.6 mass% of the C amount is dissolved and the remaining C remains as undissolved carbide is normal. Therefore, eutectoid steel, hypereutectoid steel, etc. are usually tempered to a heat-treated structure composed of undissolved carbide and martensite.

熱処理組織のうち、未溶解炭化物は焼入れ時にオーステナイト結晶粒の粗大化を抑制し、耐磨耗性を向上する作用を呈するといわれているが、未溶解炭化物の形態や粒径が衝撃特性に及ぼす影響は必ずしも明らかにされていない。そのため、焼入れ・焼戻し後に得られる衝撃特性の安定性が低く、信頼性の高い品質の構成部材が得られ難い。   Among the heat-treated structures, undissolved carbides are said to suppress the austenite grain coarsening during quenching and improve wear resistance. However, the form and particle size of undissolved carbides affect impact properties. The impact is not always clear. Therefore, the stability of the impact characteristics obtained after quenching and tempering is low, and it is difficult to obtain a highly reliable constituent member.

ところで、本発明者等は、炭化物のサイズ,球状化率,分散状態を制御することにより、打抜き加工性,絞り加工性に加えて衝撃特性,耐磨耗性も改善した高炭素鋼板を紹介した(特許文献1)。該高炭素鋼板では、比較的大きなサイズの球状炭化物を等軸晶フェライトの熱処理組織に分散させた素材組織とすることにより、破壊起点を減らし靭性を向上させている。
特開2003-147485号公報
By the way, the present inventors introduced a high carbon steel sheet that has improved impact characteristics and wear resistance in addition to punching workability and drawing workability by controlling the size, spheroidization rate, and dispersion state of carbides. (Patent Document 1). In the high carbon steel sheet, the fracture origin is reduced and the toughness is improved by using a raw material structure in which a relatively large size spherical carbide is dispersed in a heat treated structure of equiaxed ferrite.
Japanese Patent Laid-Open No. 2003-147485

本発明は、炭化物のサイズ,分散形態と衝撃特性との関係を更に詳細に調査・検討した結果得られた知見をベースとし、未溶解炭化物の量及び粒度分布を制御することにより衝撃特性が改善された高炭素鋼部材を提供することを目的とする。   The present invention is based on the knowledge obtained as a result of investigating and examining the relationship between the size, dispersion form and impact characteristics of carbides in more detail, and the impact characteristics are improved by controlling the amount of undissolved carbide and the particle size distribution. An object of the present invention is to provide a high carbon steel member.

本発明の高炭素鋼部材は、C:0.60〜1.30質量%,Si:1.0質量%以下,Mn:0.2〜1.5質量%,P:0.02質量%以下,S:0.02質量%以下,Fe:実質的に残部の基本組成をもち、焼入れ・焼戻し後のマトリックスに、式(1)を満足する体積率Vf(体積%)で未溶解炭化物が残存し、粒径:1.0μm以上の未溶解炭化物が観察面積:100μm2当り2個以下に規制されていることを特徴とする。
鋼組成には、Ni:1.8質量%以下,Cr:2.0質量%以下,V:0.5質量%以下,Mo:0.5質量%以下,Nb:0.3質量%以下,Ti:0.3質量%以下,B:0.01質量%以下,Ca:0.01質量%以下の一種又は二種以上が含まれても良い。
8.5<15.3×C%−Vf<10.0 ・・・・(1)
The high carbon steel member of the present invention has C: 0.61 to 1.30 mass%, Si: 1.0 mass% or less, Mn: 0.2 to 1.5 mass%, P: 0.02 mass% or less. , S: 0.02 mass% or less, Fe: Substantially remaining basic composition, undissolved carbide remains in the matrix after quenching and tempering at a volume ratio Vf (volume%) satisfying the formula (1) The undissolved carbide having a particle size of 1.0 μm or more is regulated to 2 or less per 100 μm 2 of the observation area.
Steel composition includes Ni: 1.8% by mass or less, Cr: 2.0% by mass or less, V: 0.5% by mass or less, Mo: 0.5% by mass or less, Nb: 0.3% by mass or less, One or two or more of Ti: 0.3% by mass or less, B: 0.01% by mass or less, and Ca: 0.01% by mass or less may be included.
8.5 <15.3 × C% −Vf <10.0 (1)

所定組成に調整され、平均短軸長さ:0.3〜1.1μmの炭化物が分散した鋼材を出発材料に使用し、次の条件下で焼入れ・焼戻しすることにより製造される。
・760〜850℃の温度域に3〜20分保持する溶体化
・室温〜200℃の冷却媒体で急冷する焼入れ
・150〜350℃の温度域に10〜180分保持する焼戻し
It is manufactured by using a steel material adjusted to a predetermined composition and having an average minor axis length of 0.3 to 1.1 μm dispersed in a starting material, followed by quenching and tempering under the following conditions.
・ Solution to hold in temperature range of 760 to 850 ° C. for 3 to 20 minutes ・ Quenching rapidly cooled with a cooling medium at room temperature to 200 ° C. ・ Tempering to hold in temperature range of 150 to 350 ° C. for 10 to 180 minutes

発明の効果及び実施の形態Effects and embodiments of the invention

高炭素鋼を焼入れすると、マルテンサイトからなる硬質の鋼材が得られるが、硬質化に伴い靭性,衝撃特性が低下する傾向を示す。本発明者等は、靭性,衝撃特性に大きな影響を及ぼす未溶解炭化物の形態や粒径を調査・検討した。その結果、素材の組織形態とオーステナイト化条件を適正制御すると、マトリクスから剥離し難いサイズに未溶解炭化物が微細化され、焼戻し後に良好な靭性が付与されるとの知見を得た。焼入れ中の炭素濃度は、熱処理後の金属組織に分散している未溶解炭化物の割合及び鋼材の化学成分値から推定される。   When high carbon steel is quenched, a hard steel material made of martensite is obtained, but the toughness and impact properties tend to decrease with hardening. The present inventors investigated and examined the form and particle size of undissolved carbides that have a large effect on toughness and impact properties. As a result, it was found that if the structure of the material and the austenitizing conditions are appropriately controlled, undissolved carbides are refined to a size that is difficult to exfoliate from the matrix, and good toughness is imparted after tempering. The carbon concentration during quenching is estimated from the ratio of undissolved carbide dispersed in the metal structure after heat treatment and the chemical component value of the steel material.

本発明は、焼入れ・焼戻し処理で600〜900HVに調質され、歯車,軸受等の車両用駆動系部品、小型で精密な形状が必要な部品,精密機械部品,刃物,切削工具,糸が摺擦するメリヤス針等の織機用部品,硬質で優れた衝撃特性が要求される部品等に使用される高炭素鋼部材を対象としている。これら用途には硬さが600HV以上の炭素工具鋼,合金工具鋼等が使用されているが、硬さは900HVを超えると靭性の低下が避けられないので、要求硬度を600〜900HVの範囲としている。静的或いは動的な荷重が加えられた場合に脆性破断を起こさないことも要求特性のひとつであり、シャルピー衝撃試験で測定される衝撃吸収エネルギーにより衝撃特性を評価でき、衝撃吸収エネルギー:25J/cm2以上を目標衝撃値とした。 The present invention is tempered to 600 to 900 HV by quenching and tempering processing, vehicle drive system parts such as gears and bearings, parts that require small and precise shapes, precision machine parts, blades, cutting tools, and thread slides. It is intended for high-carbon steel members used for loom parts such as knitting needles that rub, and parts that are hard and require excellent impact characteristics. Carbon tool steel and alloy tool steel having a hardness of 600 HV or higher are used for these applications. However, if the hardness exceeds 900 HV, a decrease in toughness is inevitable, so the required hardness is in the range of 600 to 900 HV. Yes. One of the required characteristics is that brittle fracture does not occur when a static or dynamic load is applied. The impact characteristics can be evaluated by the impact absorption energy measured by the Charpy impact test. The target impact value was set to cm 2 or more.

必要とする硬さ,衝撃特性を満足させるため、以下に説明するように鋼材の成分・組成を特定し、未溶解炭化物の形態や粒径を制御する。
〔成分・組成〕
・C:0.60〜1.30質量%
熱処理後の硬さ:600HV以上を得るためには、0.60質量%以上のC量が必要である。しかし、1.30質量%を超える過剰量のCが含まれると、靭性,衝撃特性に悪影響を及ぼす粗大な未溶解炭化物が残存しやすくなる。
In order to satisfy the required hardness and impact characteristics, the components and composition of the steel material are specified as described below, and the form and particle size of the undissolved carbide are controlled.
[Ingredients / Composition]
C: 0.60 to 1.30% by mass
Hardness after heat treatment: In order to obtain 600HV or more, a C amount of 0.60% by mass or more is required. However, if an excessive amount of C exceeding 1.30% by mass is contained, coarse undissolved carbides that adversely affect toughness and impact properties tend to remain.

・Si:1.0質量%以下
製鋼段階で脱酸剤として添加される合金成分であるが、本成分系ではSi無添加でも脱酸不良の弊害が生じない。しかし、Si量の増加に応じて加工性が劣化しやすいので、Si含有量の上限を1.0質量%とした。
・Mn:0.2~1.5質量%
焼入れ性向上に有効な合金成分であり、0.2質量%以上でMnの添加効果がみられる。しかし、1.5質量%を超える過剰量のMnを添加すると、マルテンサイト変態点Msが下がり、熱処理歪みが大きくなって、製造性,靭性が低下しやすくなる。
・P,S:0.02質量%以下
何れも靭性に悪影響を及ぼす成分であり、少ないほど好ましいが、本成分系では上限を0.02質量%とすることによりP,S起因の弊害を抑えている。
Si: 1.0 mass% or less Although it is an alloy component added as a deoxidizer in the steelmaking stage, this component system does not cause the deoxidation failure even if Si is not added. However, since the workability is likely to deteriorate as the Si amount increases, the upper limit of the Si content is set to 1.0% by mass.
Mn: 0.2 to 1.5% by mass
It is an alloy component effective for improving hardenability, and the effect of adding Mn is seen at 0.2% by mass or more. However, when an excessive amount of Mn exceeding 1.5% by mass is added, the martensitic transformation point Ms decreases, the heat treatment strain increases, and the manufacturability and toughness tend to decrease.
・ P, S: 0.02% by mass or less Both are components that adversely affect toughness. The smaller the amount, the better. However, in this component system, the upper limit is set to 0.02% by mass to suppress the adverse effects caused by P and S. ing.

・Ni:1.8質量%以下
必要に応じて添加される合金成分であり、Mnと同様に焼入れ性の向上に有効で、靭性を高める作用も呈する。このような効果は、0.5質量%以上のNi添加で顕著になる。しかし、過剰添加はマルテンサイト変態点Msを下げ、熱処理歪みを大きくし、製造性,靭性低下の原因となるので、上限を1.8質量%とした。
・Cr:2.0質量%以下
入れ性,強度,耐磨耗性を向上させる作用を呈し、0.2質量%以上でCrの添加効果が顕著になる。しかし、過剰添加は靭性を著しく低下させるので、上限を2.0質量%とした。
Ni: 1.8% by mass or less Ni is an alloy component added as necessary, and is effective in improving hardenability and exhibits an effect of increasing toughness in the same manner as Mn. Such an effect becomes remarkable when Ni is added in an amount of 0.5 mass% or more. However, excessive addition lowers the martensitic transformation point Ms, increases heat treatment strain, and causes a decrease in manufacturability and toughness, so the upper limit was made 1.8% by mass.
・ Cr: 2.0% by mass or less
Hardenability, strength, exhibits the effect of improving the abrasion resistance, the effect of adding Cr is remarkable at 0.2 mass% or more. However, excessive addition significantly reduces toughness, so the upper limit was made 2.0% by mass.

・V:0.5質量%以下
必要に応じて添加される合金成分であり、焼入れ時にオーステナイト結晶粒を微細化する作用を呈し、0.01質量%以上でVの添加効果が顕著になる。旧オーステナイト結晶粒を微細化する上では最大でも0.5質量%のVで十分であり、過剰添加は靭性の低下を招く。
・Mo:0.5質量%以下
必要に応じて添加される合金成分であり、焼入れ性を向上する作用を呈し、Niとの複合添加で鋼材の靭性を高める効果もある。また、特殊炭化物の形成により、耐磨耗性を向上させる作用もある。このような効果は、0.05質量%以上のMo添加で顕著になるが、最大でも0.5質量%のMoで十分であり、過剰添加は靭性に悪影響を及ぼす。
V: 0.5% by mass or less V is an alloy component that is added as necessary, exhibits an effect of refining austenite crystal grains during quenching, and the effect of adding V becomes remarkable at 0.01% by mass or more. In order to refine the prior austenite crystal grains, V of 0.5 mass% is sufficient at the maximum, and excessive addition causes a decrease in toughness.
Mo: 0.5% by mass or less Mo is an alloy component that is added as necessary, exhibits an effect of improving hardenability, and has an effect of increasing the toughness of the steel material by the combined addition with Ni. In addition, the formation of special carbides also has the effect of improving wear resistance. Such an effect becomes remarkable when 0.05% by mass or more of Mo is added, but at most 0.5% by mass of Mo is sufficient, and excessive addition adversely affects toughness.

・Nb:0.3質量%以下
必要に応じて添加される合金成分であり、焼入れ時にオーステナイト結晶粒を微細化する作用があり、0.01質量%以上でNbの添加効果が顕著になる。しかし、旧オーステナイト結晶粒の微細化には最大でも0.3質量%のNbで十分であり、過剰添加は製造コストの上昇を招く。
・Ti:0.3質量%以下
必要に応じて添加される合金成分であり、焼入れ時にオーステナイト結晶粒を微細化する作用があり、0.005質量%以上でTiの添加効果が顕著になる。しかし、旧オーステナイト結晶粒の微細化には最大でも0.3質量%のTiで十分であり、過剰添加は非金属介在物を増加させやすい。
Nb: 0.3% by mass or less Nb is an alloy component added as necessary, and has the effect of refining austenite crystal grains during quenching, and the effect of Nb addition becomes remarkable at 0.01% by mass or more. However, 0.3% by mass of Nb is sufficient for refinement of prior austenite crystal grains, and excessive addition causes an increase in manufacturing cost.
Ti: 0.3% by mass or less Ti is an alloy component added as necessary, and has the effect of refining austenite crystal grains during quenching, and the effect of adding Ti becomes remarkable at 0.005% by mass or more. However, at most 0.3% by mass of Ti is sufficient for refinement of prior austenite crystal grains, and excessive addition tends to increase nonmetallic inclusions.

・B:0.01質量%以下
必要に応じて添加される合金成分であり、靭性を向上させる作用がある。靭性向上効果は、0.0003質量%以上のBで顕著になるが、0.01質量%で飽和し、それ以上添加しても増量に見合った靭性向上効果が得られない。
・Ca:0.01質量%以下
介在物の形状を制御し、鋼材の機械的性質の異方性を改善する成分であり、必要に応じて添加される。0.0005質量%以上でCaの添加効果が顕著になるが、0.01質量%で飽和し、それ以上添加しても却ってCa系介在物を増加させる。
-B: 0.01 mass% or less It is an alloy component added as needed, and has the effect | action which improves toughness. The effect of improving toughness becomes remarkable with B of 0.0003 mass% or more, but is saturated at 0.01 mass%, and even if it is added more than that, the effect of improving toughness commensurate with the increase cannot be obtained.
-Ca: 0.01 mass% or less It is a component which controls the shape of inclusions and improves the anisotropy of the mechanical properties of steel, and is added as necessary. The addition effect of Ca becomes remarkable at 0.0005% by mass or more, but is saturated at 0.01% by mass, and Ca inclusions are increased by adding more than 0.01% by mass.

〔未溶解炭化物〕
・未溶解炭化物の体積率Vf:
焼入れ・焼戻し処理後に良好な靭性を得るためには、溶体化処理時の炭素濃度が0.55〜0.65質量%の範囲にあるオーステナイトからの焼入れで生成したマルテンサイトを適正条件で焼き戻すことが必要である。しかし、溶体化処理時の炭素濃度は工業的に測定・制御できないので、熱処理後の金属組織に残存する未溶解炭化物及び鋼材の化学成分から溶体化処理時の炭素濃度を推定している。この点、未溶解炭化物の体積率を規定することは、溶体化処理時の炭素濃度を規定することを同義であるといえる。
[Undissolved carbide]
-Volume fraction Vf of undissolved carbide:
In order to obtain good toughness after quenching and tempering treatment, martensite produced by quenching from austenite whose carbon concentration during solution treatment is in the range of 0.55 to 0.65% by mass is tempered under appropriate conditions. It is necessary. However, since the carbon concentration during the solution treatment cannot be measured and controlled industrially, the carbon concentration during the solution treatment is estimated from the undissolved carbide remaining in the metal structure after the heat treatment and the chemical components of the steel material. In this respect, defining the volume fraction of undissolved carbide is synonymous with defining the carbon concentration during the solution treatment.

本発明では、8.5<15.3×C%−Vf<10.0を満足するように未溶解炭化物の体積率Vfを調整することにより、溶体化処理時の炭素濃度を適正範囲:0.55〜0.65質量%に維持し、焼戻しされた鋼材の靭性を高めている。(15.3×C%−Vf)が8.5未満ではマルテンサイト中の炭素濃度が不足し、十分な熱処理硬さが得られない。逆に、10.0をこえる(15.3×C%−Vf)では、マルテンサイトに過剰量のCが含まれ、良好な衝撃特性が得られない。   In the present invention, by adjusting the volume fraction Vf of the undissolved carbide so as to satisfy 8.5 <15.3 × C% −Vf <10.0, the carbon concentration during the solution treatment is in an appropriate range: 0 The toughness of the tempered steel material is increased by maintaining the content at 0.55 to 0.65% by mass. If (15.3 × C% −Vf) is less than 8.5, the carbon concentration in martensite is insufficient, and sufficient heat treatment hardness cannot be obtained. Conversely, if it exceeds 10.0 (15.3 × C% −Vf), an excessive amount of C is contained in the martensite, and good impact characteristics cannot be obtained.

・未溶解炭化物の粒度分布:
少量の未溶解炭化物が分散した焼入れマルテンサイト組織の鋼材では、未溶解炭化物とマトリックス(焼入れマルテンサイト)との界面が衝撃破壊の起点となり、界面が剥離すると微小亀裂が生じ衝撃破壊が発生・進展する。未溶解炭化物/マトリックス界面の剥離は、大きな粒径の未溶解炭化物が分散しているほど生じやすい。界面剥離によって微小亀裂が発生すると、溶体化処理時のオーステナイトに適正量のCが含まれていても、微小亀裂を起点としたディンプルが形成され、ディンプルが互いに連結したマクロ亀裂となって破壊に至る。
-Particle size distribution of undissolved carbides:
In steel materials with a hardened martensite structure in which a small amount of undissolved carbide is dispersed, the interface between the undissolved carbide and the matrix (hardened martensite) is the starting point of impact fracture. To do. Peeling of the undissolved carbide / matrix interface tends to occur as the undissolved carbide having a large particle size is dispersed. When microcracks occur due to interfacial debonding, even if the austenite at the time of solution treatment contains an appropriate amount of C, dimples starting from the microcracks are formed, and the dimples are connected to each other to form macrocracks and break down. It reaches.

本発明者等の調査・研究によると、衝撃破壊時にマトリックスから剥離し破壊の起点となる未溶解炭化物は、1μm以上の比較的粒径の大きな未溶解炭化物であり、粒径:1μm未満の未溶解炭化物の粒径はほとんど無害であることが判った。この調査結果から粒径:1.0μm以上の未溶解炭化物を可能な限り低減することが好ましいといえ、材質的に許容できる範囲は観察面積:100μm2当り2個以下の割合で粒径:1.0μm以上の未溶解炭化物が分散していることである。ここでいう炭化物の粒径は、顕微鏡観察される炭化物と同一面積をもつ円の直径(すなわち、円相当直径)として求めた値である。 According to the investigations and researches of the present inventors, the undissolved carbide that peels from the matrix at the time of impact fracture and becomes the starting point of the fracture is an undissolved carbide having a relatively large particle diameter of 1 μm or more, and an undissolved carbide having a particle diameter of less than 1 μm The particle size of the dissolved carbide was found to be almost harmless. From this investigation result, it can be said that it is preferable to reduce as much as possible undissolved carbide having a particle size of 1.0 μm or more. The allowable range for the material is a particle size of 1 at a ratio of 2 or less per 100 μm 2 of observation area. That is, undissolved carbides of 0.0 μm or more are dispersed. The particle size of the carbide here is a value obtained as a diameter of a circle having the same area as that of the carbide observed with a microscope (that is, a circle equivalent diameter).

〔熱処理前の金属組織〕
熱処理後の組織を適正に制御するためには、熱処理前の金属組織に分散している炭化物の形態を適切な状態に調整することが必要である。パーライト組織或いは微細な球状炭化物の場合、溶体化処理時に炭化物の固溶が急速に進行し、工業的に実施可能な熱処理条件では適切な組織形態に制御し難い。溶体化処理の難易度は、球状炭化物や棒状炭化物では短軸方向の長さ,パーライトや板状炭化物では炭化物の厚さで決まる。そこで、炭化物の厚みを包含する意味で炭化物の短軸長さを使用する。
[Metal structure before heat treatment]
In order to appropriately control the structure after the heat treatment, it is necessary to adjust the form of the carbide dispersed in the metal structure before the heat treatment to an appropriate state. In the case of a pearlite structure or fine spherical carbide, the solid solution of the carbide rapidly progresses during the solution treatment, and it is difficult to control the structure to an appropriate structure under industrially feasible heat treatment conditions. The difficulty of solution treatment is determined by the length in the minor axis direction for spherical carbides and rod-like carbides, and by the thickness of carbides for pearlite and plate-like carbides. Therefore, the short axis length of the carbide is used to include the thickness of the carbide.

炭化物の平均短軸長さを0.3〜1.1μmの範囲に調整すると、熱処理後の組織形態が適正制御され、硬さ,靭性共に良好な鋼材が得られる。他方、1.1μmを超える平均短軸長さでは熱処理後に平均粒径:1.0μm以上の炭化物が出現する頻度が高くなり、衝撃特性が劣化する。逆に、平均短軸長さが0.3μm未満の炭化物は溶体化処理時に急速固溶し、適正な炭素濃度:0.55〜0.65質量%を確保できない。   When the average minor axis length of the carbide is adjusted to a range of 0.3 to 1.1 μm, the structure form after the heat treatment is appropriately controlled, and a steel material having good hardness and toughness can be obtained. On the other hand, when the average minor axis length exceeds 1.1 μm, carbides with an average particle diameter of 1.0 μm or more appear after the heat treatment, and the impact characteristics are deteriorated. Conversely, carbides having an average minor axis length of less than 0.3 μm are rapidly solid-dissolved during the solution treatment, and an appropriate carbon concentration of 0.55 to 0.65% by mass cannot be ensured.

〔焼入れ・焼戻し〕
目標硬さ:600〜900HVで優れた衝撃特性を得るためには、760〜850℃(好ましくは、780〜820℃)で3〜20分加熱する溶体化処理で未溶解炭化物を適正量に制御することが必要である。850℃を超える加熱温度や20分を超える長時間加熱では、炭化物が過度に固溶し未溶解炭化物の体積率Vfが少なくなり、溶体化処理時のオーステナイトの炭素濃度が0.65質量%を超えるため、優れた衝撃特性が得られない。逆に760℃に達しない加熱温度では、オーステナイトの形成が不十分となり健全な熱処理組織が得られない。
[Quenching / tempering]
In order to obtain excellent impact characteristics at a target hardness of 600 to 900 HV, the undissolved carbide is controlled to an appropriate amount by solution treatment that is heated at 760 to 850 ° C. (preferably 780 to 820 ° C.) for 3 to 20 minutes. It is necessary to. When the heating temperature is higher than 850 ° C. or the heating time is longer than 20 minutes, the carbide is excessively dissolved, the volume fraction Vf of the undissolved carbide is reduced, and the carbon concentration of the austenite during the solution treatment is 0.65% by mass. Therefore, excellent impact characteristics cannot be obtained. On the other hand, at a heating temperature that does not reach 760 ° C., austenite formation is insufficient and a sound heat-treated structure cannot be obtained.

溶体化処理後、室温〜200℃の温度域に保持された冷媒に鋼材を浸漬して急冷すると、適正C量の焼入れマルテンサイト組織になる。200℃より高温の冷媒では、冷却速度が臨界冷却速度より遅くなり、焼入れ不良組織が混在した熱処理組織となる。他方、冷媒温度を過度に下げても材質面で有利な結果が得られないので、室温を下限とすることが好ましい。冷媒中での保持時間は、溶体化処理された鋼材が十分に冷却される時間に設定される。
次いで、150〜350℃に10〜180分焼き戻すことにより、良好な靭性が付与される。低すぎる焼戻し温度では靭性改善効果が不足し、高すぎる焼戻し温度では600HV以上の目標硬さが得られない。
After the solution treatment, when a steel material is immersed in a coolant maintained in a temperature range of room temperature to 200 ° C. and rapidly cooled, a quenching martensite structure with an appropriate amount of C is obtained. In the case of a refrigerant having a temperature higher than 200 ° C., the cooling rate becomes slower than the critical cooling rate, resulting in a heat-treated structure in which poorly quenched structures are mixed. On the other hand, even if the refrigerant temperature is excessively lowered, an advantageous result in terms of material cannot be obtained. The holding time in the refrigerant is set to a time during which the solution-treated steel material is sufficiently cooled.
Next, good toughness is imparted by tempering at 150 to 350 ° C. for 10 to 180 minutes. If the tempering temperature is too low, the effect of improving toughness is insufficient, and if the tempering temperature is too high, a target hardness of 600 HV or higher cannot be obtained.

表1の成分をもつ鋼材を溶製し、鋳造後、表2の条件で鋼帯を製造した。
各鋼帯に施す焼入れ・焼戻しに、表3の熱処理条件を採用した。
Steel strips having the components shown in Table 1 were melted, and after casting, steel strips were manufactured under the conditions shown in Table 2.
The heat treatment conditions shown in Table 3 were adopted for quenching and tempering applied to each steel strip.

Figure 0004530268
Figure 0004530268

Figure 0004530268
Figure 0004530268

Figure 0004530268
Figure 0004530268

成分・組成が硬さ,衝撃特性に及ぼす影響を調査するため、表1の鋼種No.1〜14を製造条件SA3で炭化物の平均短軸長さが0.3〜1.1μmの鋼帯とした後、条件B,I又はFで熱処理した。熱処理後の鋼帯について硬さを測定すると共に、未溶解炭化物の量,体積率Vf,観察面積:100μm2当り粒径:1.0μm以上の炭化物の個数を調査した。 In order to investigate the effects of composition and composition on hardness and impact properties, steel types No. 1 to 14 in Table 1 were manufactured under the same conditions as in production conditions SA3 and steel strips with an average minor axis length of 0.3 to 1.1 μm. Then, heat treatment was performed under conditions B, I, or F. The steel strip after the heat treatment was measured for hardness, and the amount of undissolved carbide, volume ratio Vf, observation area: 100 μm 2 and the number of carbides with a particle size of 1.0 μm or more were investigated.

表4の調査結果にみられるように、C量が不足する鋼種No.1では硬さ:600HV以上を満足しておらず、逆にC量が過剰な鋼種No.5では(15.3×C%−Vf)が12.1と高いことから溶体化状態のオーステナイトの炭素濃度が高すぎることが窺われ、結果として著しく低い衝撃値であった。Si量,Mn量が過剰な鋼種No.13,14では硬さ:600HV以上を満足するものの衝撃値が大幅に低い値を示した。   As can be seen from the investigation results in Table 4, the hardness of steel grade No. 1 with insufficient C content does not satisfy the hardness: 600 HV or more, and conversely with steel grade No. 5 with excessive C content (15.3 × Since C% -Vf) is as high as 12.1, it is indicated that the carbon concentration of the austenite in the solution state is too high, and as a result, the impact value is extremely low. Steel types Nos. 13 and 14 with excessive amounts of Si and Mn satisfy hardness: 600 HV or more, but the impact value is significantly low.

これに対し、本発明で規定した成分条件を満足する鋼種では、未溶解炭化物,(15.3×C%−Vf)共に適正範囲に維持され、目標硬さ:600〜900HVを維持しながら、2mmUノッチシャルピー衝撃試験(室温,n=5)で平均衝撃吸収エネルギー(衝撃値):25J/cm2以上と高い衝撃特性が得られた。 On the other hand, in the steel type satisfying the component conditions defined in the present invention, both the undissolved carbide and (15.3 × C% −Vf) are maintained in an appropriate range, while maintaining the target hardness: 600 to 900 HV, In the 2 mm U-notch Charpy impact test (room temperature, n = 5), high impact characteristics were obtained, with an average impact absorption energy (impact value) of 25 J / cm 2 or more.

Figure 0004530268
Figure 0004530268

更に、鋼材No.3の製造条件,熱処理条件を種々変更し、熱処理後の硬さを測定すると共に、未溶解炭化物の量,体積率Vf,観察面積:100μm2当り粒径:1.0μm以上の炭化物の個数を調査した。
表5の調査結果にみられるように、本発明で規定した熱処理条件に従った焼入れ・焼戻し処理を施すと、8.5<15.3×C%−Vf<10.0を満足し、粒径:1.0μm以上の炭化物が観察面積:100μm2当り2個以下になり、目標硬さ:600〜900HVを維持しながらも、2mmUノッチシャルピー衝撃試験で衝撃吸収エネルギー:25J/cm2以上と高い衝撃特性が示された。
Furthermore, the manufacturing conditions and heat treatment conditions of steel No. 3 were changed variously, the hardness after the heat treatment was measured, the amount of undissolved carbide, the volume ratio Vf, the observation area: 100 μm 2 and the particle size per 1.0 μm or more The number of carbides was investigated.
As can be seen from the investigation results in Table 5, when quenching / tempering treatment was performed according to the heat treatment conditions defined in the present invention, 8.5 <15.3 × C% −Vf <10.0 was satisfied, Carbide with a diameter of 1.0 μm or more becomes 2 or less per 100 μm 2 observation area, and while maintaining the target hardness: 600 to 900 HV, the impact absorption energy is 25 J / cm 2 or more in the 2 mm U notch Charpy impact test. High impact properties were shown.

これに対し、溶体化処理温度が低すぎる試験No.1では、硬さが不足していた。逆に溶体化処理温度が高すぎる試験No.6では、730HVと硬質化しているが、(15.3×C%−Vf)が高すぎ衝撃靭性が極端に劣っていた。溶体化処理温度に短時間保持した試験No.13は、硬さが不足し、衝撃値も低い値を示した。焼戻し温度が低すぎる試験No.14では、硬さは十分であるが、衝撃値が極端に低くなっていた。逆に焼戻し温度が高すぎる試験No.15では、靭性が良好であるものの焼戻し軟化のため硬さが極端に低下していた。溶体化処理温度に長時間保持した試験No.16は、(15.3×C%−Vf)が10.0を超えており衝撃特性に劣っていた。   On the other hand, in test No. 1 where the solution treatment temperature is too low, the hardness was insufficient. On the contrary, in the test No. 6 where the solution treatment temperature is too high, it was hardened to 730 HV, but (15.3 × C% −Vf) was too high and the impact toughness was extremely inferior. Test No. 13, which was held at the solution treatment temperature for a short time, showed a low hardness and a low impact value. In test No. 14 where the tempering temperature was too low, the hardness was sufficient, but the impact value was extremely low. On the contrary, in test No. 15 where the tempering temperature is too high, although the toughness is good, the hardness is extremely lowered due to softening of the tempering. In Test No. 16, which was held at the solution treatment temperature for a long time, (15.3 × C% −Vf) exceeded 10.0, and the impact characteristics were inferior.

パーライト組織の試験No.10では、炭化物の平均短軸長さが短いため溶体化処理で炭化物が瞬時に固溶し、本発明で規定する熱処理条件で焼入れ・焼戻しを施しても、(15.3×C%−Vf)が高すぎ衝撃靭性に劣っていた。同じく製造条件SA1で製造した試験No.11でも、炭化物の平均短軸長さが短いため(15.3×C%−Vf)が10.0を超えており、720HVと硬さは満足するものの低い衝撃値であった。逆に炭化物の平均短軸長さが長くなる製造条件SA4で製造した試験No.12では、粒径:1.0μm以上の炭化物が過剰となり、衝撃値が低下していた。炭化物の平均短軸長さが長くなる製造条件SA4による影響は、鋼種No.4を用いた試験No.17でも低い衝撃値として現れていた。   In the test No. 10 of the pearlite structure, since the average minor axis length of the carbide is short, the carbide is instantly dissolved in the solution treatment, and even if quenching / tempering is performed under the heat treatment conditions defined in the present invention (15. 3 × C% −Vf) was too high and inferior in impact toughness. Similarly, in test No. 11 manufactured under the same manufacturing conditions SA1, the average minor axis length of the carbide is short (15.3 × C% −Vf) exceeds 10.0, and the hardness is satisfied with 720HV. The impact value was low. On the other hand, in Test No. 12 manufactured under the manufacturing condition SA4 in which the average minor axis length of the carbide is increased, the carbide having a particle size of 1.0 μm or more is excessive and the impact value is decreased. The influence due to the production condition SA4 in which the average minor axis length of the carbide is increased also appeared as a low impact value even in the test No. 17 using the steel type No. 4.

観察面積:100μm2当り粒径:1.0μm以上の炭化物の個数との関連で衝撃値を整理したところ、図1に示すように炭化物の個数増加に応じて衝撃値が低下しており、衝撃値:25J/cm2以上を得るには粒径:1.0μm以上の炭化物:2個以下が必要なことが判った。 Observation area: Particle size per 100 μm 2 Particle size: 1.0 μm or more The impact value was arranged in relation to the number of carbides, and as shown in FIG. 1, the impact value decreased as the number of carbides increased. It was found that to obtain a value: 25 J / cm 2 or more, a particle size of 1.0 μm or more of carbide: 2 or less was required.

Figure 0004530268
Figure 0004530268

以上に説明したように、未溶解炭化物の体積率VfをC量との関係で8.5<15.3×C%−Vf<10.0が満足されるように調整し、観察面積:100μm2当り粒径:1.0μm以上の未溶解炭化物を2個以下に規制すると、溶体化処理時のオーステナイトの炭素濃度が適正に管理され、目標硬さ:600〜900HVを維持しながらも衝撃値:25J/cm2以上と優れた衝撃特性を呈する高炭素鋼部材が得られる。得られた高炭素鋼部材は、硬質で衝撃特性,靭性に優れていることを活用し、歯車,軸受等の車両用駆動系部品、小型で精密な形状が必要な部品,精密機械部品,刃物,切削工具,糸が摺擦するメリヤス針等の織機用部品,硬質で優れた衝撃特性が要求される部品等、広範な分野で使用される。 As described above, the volume fraction Vf of the undissolved carbide is adjusted so that 8.5 <15.3 × C% −Vf <10.0 is satisfied in relation to the amount of C, and the observation area is 100 μm. When the number of undissolved carbides with a particle size of 2 or more per 1.0 is regulated to 2 or less, the carbon concentration of austenite during solution treatment is properly controlled, and the impact value is maintained while maintaining the target hardness: 600 to 900 HV. : A high carbon steel member exhibiting excellent impact characteristics of 25 J / cm 2 or more is obtained. The obtained high carbon steel members are hard and have excellent impact characteristics and toughness, and are used for vehicle drive system parts such as gears and bearings, parts that require small and precise shapes, precision machine parts, and blades. , Used in a wide range of fields, such as parts for looms such as cutting tools, knitted needles that rub against threads, and parts that are hard and require excellent impact characteristics.

粒径:1.0μm以上の未溶解炭化物の個数が靭性に及ぼす影響を表したグラフGraph showing the effect of the number of undissolved carbides with a particle size of 1.0 μm or more on toughness

Claims (4)

C:0.60〜1.30質量%,Si:1.0質量%以下,Mn:0.2〜1.5質量%,P:0.02質量%以下,S:0.02質量%以下,Cr:2.0質量%以下,および残部がFe及び不可避的不純物からなる組成をもち、焼入れ・焼戻し後のマトリックスに、式(1)を満足する体積率Vf(体積%)で未溶解炭化物が残存し、粒径:1.0μm以上の未溶解炭化物が観察面積:100μm2当り2個以下に規制されていることを特徴とする衝撃特性に優れた高炭素鋼部材。
8.5<15.3×C%−Vf<10.0 ・・・・(1)
C: 0.60 to 1.30 mass%, Si: 1.0 mass% or less, Mn: 0.2 to 1.5 mass%, P: 0.02 mass% or less, S: 0.02 mass% or less , Cr: 2.0% by mass or less, and the balance is Fe and inevitable impurities, and the matrix after quenching and tempering is an undissolved carbide at a volume ratio Vf (volume%) satisfying the formula (1). A high carbon steel member with excellent impact characteristics, characterized in that the undissolved carbide having a particle size of 1.0 μm or more is restricted to 2 or less per 100 μm 2 of the observation area.
8.5 <15.3 × C% −Vf <10.0 (1)
更にNi:1.8質量%以下V:0.5質量%以下,Mo:0.5質量%以下,Nb:0.3質量%以下,Ti:0.3質量%以下,B:0.01質量%以下,Ca:0.01質量%以下の一種又は二種以上を含む請求項1記載の高炭素鋼部材。 Furthermore, Ni: 1.8% by mass or less , V: 0.5% by mass or less, Mo: 0.5% by mass or less, Nb: 0.3% by mass or less, Ti: 0.3% by mass or less, B: 0.3% or less. The high carbon steel member according to claim 1, comprising one or more of 01 mass% or less and Ca: 0.01 mass% or less. C:0.60〜1.30質量%,Si:1.0質量%以下,Mn:0.2〜1.5質量%,P:0.02質量%以下,S:0.02質量%以下,Cr:2.0質量%以下,および残部がFe及び不可避的不純物からなる組成をもち、平均短軸長さ:0.3〜1.1μmの炭化物が分散した鋼材を用意し、
760〜850℃の温度域に3〜20分保持した後、室温〜200℃の冷却媒体で急冷し、150〜350℃の温度域に10〜180分保持する焼入れ・焼戻し処理により、粒径:1.0μm以上の未溶解炭化物が観察面積:100μm2当り2個以下の分散度及び式(1)を満足する体積率Vf(体積%)で未溶解炭化物を残存させることを特徴とする衝撃特性に優れた炭素鋼部材の製造方法。
8.5<15.3×C%−Vf<10.0 ・・・・(1)
C: 0.60 to 1.30 mass%, Si: 1.0 mass% or less, Mn: 0.2 to 1.5 mass%, P: 0.02 mass% or less, S: 0.02 mass% or less , Cr: 2.0% by mass or less, and the balance is made of steel and inevitable impurities , and an average minor axis length: 0.3 to 1.1 μm of carbide dispersed steel is prepared,
After holding in a temperature range of 760 to 850 ° C. for 3 to 20 minutes, quenching with a cooling medium at room temperature to 200 ° C., and holding in a temperature range of 150 to 350 ° C. for 10 to 180 minutes, a particle size: Impact characteristics characterized in that undissolved carbide of 1.0 μm or more remains undissolved carbide at an observation area of 2 μm or less per 100 μm 2 and a volume fraction Vf (volume%) satisfying the formula (1) Method for producing a carbon steel member excellent in performance.
8.5 <15.3 × C% −Vf <10.0 (1)
更にNi:1.8質量%以下V:0.5質量%以下,Mo:0.5質量%以下,Nb:0.3質量%以下,Ti:0.3質量%以下,B:0.01質量%以下,Ca:0.01質量%以下の一種又は二種以上を含む鋼材を使用する請求項3記載の製造方法。 Furthermore, Ni: 1.8% by mass or less , V: 0.5% by mass or less, Mo: 0.5% by mass or less, Nb: 0.3% by mass or less, Ti: 0.3% by mass or less, B: 0.3% or less. The manufacturing method of Claim 3 which uses the steel materials containing the 1 type (s) or less of 01 mass% or less and Ca: 0.01 mass% or less.
JP2004246945A 2004-08-26 2004-08-26 High carbon steel member with excellent impact characteristics and method for producing the same Expired - Lifetime JP4530268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246945A JP4530268B2 (en) 2004-08-26 2004-08-26 High carbon steel member with excellent impact characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246945A JP4530268B2 (en) 2004-08-26 2004-08-26 High carbon steel member with excellent impact characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006063384A JP2006063384A (en) 2006-03-09
JP4530268B2 true JP4530268B2 (en) 2010-08-25

Family

ID=36110128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246945A Expired - Lifetime JP4530268B2 (en) 2004-08-26 2004-08-26 High carbon steel member with excellent impact characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4530268B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207743B2 (en) * 2008-01-07 2013-06-12 日新製鋼株式会社 Steel for blades with excellent wear resistance and toughness
CN107760986A (en) * 2011-05-17 2018-03-06 Skf公司 Modified bearing steel
US20150030870A1 (en) 2012-03-08 2015-01-29 Hitachi Metals, Ltd. Carbon tool steel strip
CN103774510B (en) * 2014-02-17 2016-09-07 上海瑞纽机械股份有限公司 A kind of manufacture method of hydraulic pressure sleeper relaying machine mainframe
JP6117140B2 (en) * 2014-03-28 2017-04-19 日新製鋼株式会社 Steel plate for textile machine parts and method for producing the same
JP6089131B2 (en) * 2015-08-14 2017-03-01 株式会社特殊金属エクセル High carbon cold rolled steel sheet and method for producing the same
CN105296870A (en) * 2015-11-03 2016-02-03 合肥海源机械有限公司 Preparation method for piston rod of hydraulic cylinder of forklift
KR101819383B1 (en) 2016-11-09 2018-01-17 주식회사 포스코 Quenched high carbon steel sheet and method for manufacturing the same
JP6467441B2 (en) * 2017-01-17 2019-02-13 トクセン工業株式会社 Needle wire
US20200384321A1 (en) * 2017-03-02 2020-12-10 Nippon Steel Nisshin Co., Ltd. Golf club shaft and method for producing same
KR102043511B1 (en) * 2017-12-12 2019-11-12 주식회사 포스코 Quenched high carbon steel sheet and method for manufacturing the same
KR102704263B1 (en) * 2019-06-03 2024-09-09 현대자동차주식회사 Method for manufacturing high-carbon bearing steel and high-carbon bearing steel manufactured therefrom
JP6880245B1 (en) 2019-11-08 2021-06-02 株式会社特殊金属エクセル High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts
KR102348549B1 (en) * 2019-12-20 2022-01-06 주식회사 포스코 Steel having excellent workability and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147485A (en) * 2001-11-14 2003-05-21 Nisshin Steel Co Ltd High toughness high carbon steel sheet having excellent workability, and production method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147485A (en) * 2001-11-14 2003-05-21 Nisshin Steel Co Ltd High toughness high carbon steel sheet having excellent workability, and production method therefor

Also Published As

Publication number Publication date
JP2006063384A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
KR101340729B1 (en) Steel for high-frequency hardening
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
JP5432105B2 (en) Case-hardened steel and method for producing the same
JP6089131B2 (en) High carbon cold rolled steel sheet and method for producing the same
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
JP6880245B1 (en) High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts
EP2562283B1 (en) Steel part having excellent in temper softening resistance
JP2007031734A (en) High strength bolt having excellent delayed fracture resistance, and method for producing the same
JP4530268B2 (en) High carbon steel member with excellent impact characteristics and method for producing the same
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP2007063627A (en) Steel component for bearing having excellent fatigue property, and method for producing the same
JP4159009B2 (en) Steel sheet for punched parts with excellent fatigue characteristics
JP4600988B2 (en) High carbon steel plate with excellent machinability
JP2007063626A (en) Steel component for bearing having excellent fatigue property, and method for producing the same
JP4738028B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent machinability
JP2007107046A (en) Steel material to be induction-hardened
JP3999727B2 (en) Hypereutectoid steel
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP5747243B2 (en) Warm working steel
AU2018318501A1 (en) Steel with High Hardness and Excellent Toughness
JP2004124127A (en) Carburizing steel superior in torsion fatigue characteristic
JP2000017374A (en) Age hardening type high strength bainitic steel and its production
JP2000256785A (en) Steel excellent in machinability and its production
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4530268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350