JP2000017374A - Age hardening type high strength bainitic steel and its production - Google Patents

Age hardening type high strength bainitic steel and its production

Info

Publication number
JP2000017374A
JP2000017374A JP18049198A JP18049198A JP2000017374A JP 2000017374 A JP2000017374 A JP 2000017374A JP 18049198 A JP18049198 A JP 18049198A JP 18049198 A JP18049198 A JP 18049198A JP 2000017374 A JP2000017374 A JP 2000017374A
Authority
JP
Japan
Prior art keywords
steel
less
temperature
weight
age
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18049198A
Other languages
Japanese (ja)
Other versions
JP3900690B2 (en
Inventor
Naoki Iwama
直樹 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP18049198A priority Critical patent/JP3900690B2/en
Publication of JP2000017374A publication Critical patent/JP2000017374A/en
Application granted granted Critical
Publication of JP3900690B2 publication Critical patent/JP3900690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the strength and machinability of steel by subjecting steel having a specified compsn. to hot rolling or hot forging and thereafter executing cooling under specified conditions to control the hardness, structure and grain size therein to specified ones and thereafter executing machining or plastic working and aging treatment. SOLUTION: Steel contains, by weight, 0.06 to 0.20% C, 0.03 to 1.00% Si, 1.50 to 3.00% Mn, 0.50 to 2.00% Cr, 0.05 to 1.00% Mo, 0.002 to 0.100% Al, 0.51 to 1.00% V and 0.0080 to 0.0200% N. This steel is subjected to hot rolling or hot forging at 1,150 to 1,300 deg.C. Then, it is cooled to <=200 deg.C in such a manner that the average cooling rate in the range of 800 to 500 deg.C: CV ( deg.C/min) is controlled to 40/(Mn%+0.8Cr%+1.2Mo%)<=CV<=500/(Mn%+0.8Cr%+1.2Mo%) to control the structure to >=70% bainitic ratio and the old austenite grain size to <=80 μm. After that, machining or plastic working is executed at need, and, moreover, aging treatment is executed at 550 to 700 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自動車エンジンのク
ランクシャフト、コネクティングロッドのように、高い
強度と優れた被削性を必要とする部品に最適な、熱間鍛
造用時効硬化型ベイナイト鋼およびその鍛造品の製造方
法を提供するものであり、自動車エンジン部品の軽量化
を可能とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an age hardening type bainite steel for hot forging, which is most suitable for parts requiring high strength and excellent machinability, such as a crankshaft and a connecting rod of an automobile engine. It is intended to provide a method for manufacturing a forged product, and to reduce the weight of an automobile engine component.

【0002】[0002]

【従来の技術】自動車エンジンのクランクシャフトやコ
ネクティングロッド等のエンジン部品は、高い強度と優
れた被削性が要求されるために、炭素鋼や低合金鋼にS
やPb等の快削元素を添加した鋼を熱間鍛造し、焼入焼
もどしの熱処理を施した後、機械加工して使用されてい
る。近年では低コスト化ニーズより、前記部品におい
て、焼入焼もどしの熱処理を省略する、いわゆる非調質
鋼の採用が活発となっており、部品に要求される強度特
性に応じてフェライト・パーライト型、ベイナイト型、
あるいはマルテンサイト型等、各種の非調質鋼が開発、
実用化されている。
2. Description of the Related Art Engine parts such as crankshafts and connecting rods of automobile engines are required to have high strength and excellent machinability.
Steel to which free-cutting elements such as Pb and Pb are added is hot forged, subjected to heat treatment of quenching and tempering, and then machined for use. In recent years, due to the need for cost reduction, so-called non-heat treated steel, which omits the heat treatment of quenching and tempering, has been actively used in the above-mentioned parts. , Bainite type,
Alternatively, various non-heat treated steels such as martensite type have been developed,
Has been put to practical use.

【0003】一方、最近では自動車の燃費規制やエンジ
ンの高出力化の動向を受けて、自動車エンジン部品の軽
量化ニーズが強く、高強度の鋼材を用いて部品を薄肉軽
量化する動きが活発となっている。そこで上記の低コス
ト化ニーズと軽量化ニーズを両立させる手法として、高
強度非調質鋼の適用が考えられ、例えば特開平4-193931
では、フェライト・パーライト型非調質鋼において化学
成分のコントロールと鍛造加熱条件のコントロールにより、表面が黒
皮鍛造肌のまま使用される部品の疲労強度を改善した発
明が、特開平5-302116では、ベイナイトあるいはベイナ
イト+マルテンサイト型非調質鋼において鍛造放冷後に
焼もどし処理を施すことにより、降伏比、耐久比を改善
した発明が、特開平10-140285では、非調質鋼の硬さの
冷却速度依存性と鍛造部品の形状,寸法とをうまく組み
合わせて、被削性と高強度化を両立させた発明がそれぞ
れ開示されている。
[0003] On the other hand, recently, in response to the trend of fuel efficiency of automobiles and the trend toward higher output of engines, there is a strong need to reduce the weight of automobile engine parts, and there is an active movement to reduce the thickness and weight of parts using high-strength steel. Has become. Therefore, as a method of satisfying both the need for cost reduction and the need for weight reduction, application of high-strength non-heat treated steel is considered.
In the ferrite pearlite type non-heat treated steel, by controlling the chemical composition and controlling the forging heating conditions, the invention of improving the fatigue strength of the parts used with the surface as black forged skin is disclosed in Japanese Patent Application Laid-Open No. 5-302116. Japanese Patent Application Laid-Open No. 10-140285 discloses an invention in which the yield ratio and the durability ratio are improved by subjecting bainite or bainite + martensite type non-heat treated steel to tempering after being forged and allowed to cool. The invention in which machinability and high strength are achieved at the same time by properly combining the cooling rate dependency of the above and the shape and dimensions of the forged part is disclosed.

【0004】しかしながらチタン合金やアルミ合金に匹
敵する軽量化効果を得るまでに鋼を高強度化しようとし
た場合には、硬さの大幅な上昇が避けられず被削性の低
下を招くという問題が生ずる。この問題に対して、前記
の特開平4-193931では目標の軽量化効果の達成は不可能
であり、特開平5-302116では被削性確保のために多量の
快削元素の含有が必要不可欠となるため、材料のコスト
増加を招くとともに、快削元素含有量増加による介在物
量増加によって、圧延や鍛造等,塑性加工性の劣化や疲
労強度低下の問題が生ずる。また特開平10-140285で
は、非切削加工部位を薄肉化し切削加工部位は厚肉とす
ることで、快削元素の添加量を増加させなくても、高強
度化と被削性確保の両立がある程度確保はされるもの
の、その効果には限界があるとともに、前記のような部
品形状に制約されてしまうことが課題となる。
[0004] However, when steel is to be strengthened before obtaining a weight-reducing effect comparable to that of a titanium alloy or an aluminum alloy, a significant increase in hardness is unavoidable, leading to a reduction in machinability. Occurs. With respect to this problem, it is impossible to achieve the target weight reduction effect in the above-mentioned Japanese Patent Application Laid-Open No. 4-193931. Therefore, the cost of the material increases, and the increase in the amount of inclusions due to the increase in the content of free-cutting elements causes problems such as deterioration in plastic workability such as rolling and forging and deterioration in fatigue strength. Also, in Japanese Patent Application Laid-Open No. 10-140285, by reducing the thickness of the non-cutting portion and increasing the thickness of the cutting portion, both increasing strength and ensuring machinability can be achieved without increasing the amount of free-cutting elements added. Although it is ensured to some extent, its effect is limited, and there is a problem that it is restricted by the above-mentioned component shape.

【0005】[0005]

【課題を解決するための手段】上記のように、チタン合
金やアルミ合金に匹敵する軽量化効果を得るまでに鋼を
高強度化するとともに、快削元素含有量を大幅に増加さ
せることなく、かつ部品の設計形状を制約しなくても被
削性を確保するための方策について、発明者らは種々の
検討を試みた結果、以下の着想に至った。すなわち、V
量が高くかつベイナイト組織が主体の鋼において、時効
処理前後での硬さが大きく変化し、時効前の硬さを低
く、時効後の硬さを高くすることができることが知見さ
れた。よって時効前に切削粗加工を行った後に時効処理
することで、高強度化と被削性確保の両立が可能とな
る。
As described above, the strength of steel is increased until a weight reduction effect comparable to that of a titanium alloy or an aluminum alloy is obtained, and the content of free-cutting elements is not greatly increased. In addition, the inventors have conducted various studies on measures for ensuring machinability without restricting the design shape of parts, and as a result, have reached the following idea. That is, V
It has been found that in a steel having a high content and a bainite structure as a main component, the hardness before and after the aging treatment changes greatly, and the hardness before the aging can be reduced and the hardness after the aging can be increased. Therefore, by performing the aging treatment after performing the rough cutting before the aging, it is possible to achieve both high strength and ensuring machinability.

【0006】また、前記のような鋼の高強度化による軽
量化に際しては、特に降伏強度(0.2%耐力)の向上が重
要となるが、V量の高いベイナイト鋼を時効処理する
と、一般の調質鋼および非調質鋼に比べて同一硬さでの
0.2%耐力が高くなる、すなわち高い降伏比が得られるこ
とが知見された。よって前記のような時効前の切削加工
は勿論、時効処理後に切削加工する場合においても、
V量の高いベイナイト鋼では一般の調質鋼および非調質
鋼に比べて、同一の0.2%耐力の値における硬さが低くで
きるので、被削性を向上させることが可能となる。
In order to reduce the weight by increasing the strength of the steel as described above, it is particularly important to improve the yield strength (0.2% proof stress). With the same hardness compared to high-quality steel and non-heat-treated steel
It was found that 0.2% proof stress was increased, that is, a high yield ratio was obtained. Therefore, not only cutting before aging as described above, but also when cutting after aging,
Since the bainite steel with a high V content can have a lower hardness at the same 0.2% proof stress than ordinary heat-treated steel and non-heat-treated steel, machinability can be improved.

【0007】そして前記効果を得るためには、V含有量
を0.51%以上とすることが必要であり、更には1150〜13
00℃の加熱温度にて熱間圧延もしくは熱間鍛造後、800
〜500℃の温度範囲の平均冷却速度:CV(℃/min)
を、40/(Mn%+0.8Cr%+1.2Mo%) ≦ CV ≦ 500/
(Mn%+0.8Cr%+1.2Mo%)として200℃以下の温度まで冷
却することで硬さをHv400以下、組織をヘ゛イナイト率70%以上
とさせることが必要となることを知見した。また、上記
の鋼材もしくは鍛造品においては、加工熱処理中にV炭
窒化物が析出して結晶粒を微細化させるために、80μm
以下の旧オーステナイト結晶粒径が得られ、これを550〜700℃
の温度にて時効処理することで、結果として降伏点もし
くは0.2%耐力を900MPa以上とすることが可能となること
を知見し、本発明に至ったものである。
In order to obtain the above-mentioned effects, it is necessary to make the V content 0.51% or more.
After hot rolling or hot forging at a heating temperature of 00 ° C, 800
Average cooling rate in the temperature range of ~ 500 ° C: CV (° C / min)
Of 40 / (Mn% + 0.8Cr% + 1.2Mo%) ≦ CV ≦ 500 /
(Mn% + 0.8Cr% + 1.2Mo%), it was found that it is necessary to make the hardness Hv400 or less and the microstructure 70% or more by cooling to a temperature of 200 ° C or less. In addition, in the above steel materials or forged products, V carbonitride precipitates during the thermomechanical treatment to refine the crystal grains.
The following austenite grain size is obtained, which is
It has been found that the aging treatment at the above temperature makes it possible to increase the yield point or the 0.2% proof stress to 900 MPa or more as a result, leading to the present invention.

【0008】第1の発明は、化学組成が重量%で、C:0.
06〜0.20%、Si:0.03〜1.00%、Mn:1.50〜3.00%、Cr:
0.50〜2.00%、Mo:0.05〜1.00%、Al:0.002〜0.100%、
V:0.51〜1.00%、N:0.0080〜0.0200%を含有し、残部Fe
および不可避不純物からなる鋼を1150〜1300℃の加熱温
度にて熱間圧延もしくは熱間鍛造後、800〜500℃の温度
範囲の平均冷却速度:CV(℃/min)を、40/(Mn%+
0.8Cr%+1.2Mo%) ≦ CV ≦ 500/(Mn%+0.8Cr%+1.
2Mo%)として200℃以下の温度まで冷却することで硬さ
をHv400以下、組織をヘ゛イナイト率70%以上でかつ旧オーステナイト
結晶粒径80μm以下とし、その後必要に応じて切削加工
ないし塑性加工を加え、更にその後550〜700℃の温度に
て時効処理を施すことにより、降伏点もしくは0.2%耐力
を900MPa以上とすることを特徴とする時効硬化型高強度
ベイナイト鋼である。
In the first invention, the chemical composition is expressed by weight%, and C: 0.
06 to 0.20%, Si: 0.03 to 1.00%, Mn: 1.50 to 3.00%, Cr:
0.50 to 2.00%, Mo: 0.05 to 1.00%, Al: 0.002 to 0.100%,
V: 0.51-1.00%, N: 0.0080-0.0200%, balance Fe
After hot rolling or hot forging of steel consisting of unavoidable impurities at a heating temperature of 1150 to 1300 ° C, the average cooling rate in the temperature range of 800 to 500 ° C: CV (° C / min) is set to 40 / (Mn% +
0.8Cr% + 1.2Mo%) ≤ CV ≤ 500 / (Mn% + 0.8Cr% + 1.
2Mo%) and cooled to a temperature of 200 ° C or less to reduce the hardness to Hv400 or less, the microstructure to 70% or more of hainite and the grain size of old austenite to 80μm or less, and then apply cutting or plastic working as necessary. And an aging treatment at a temperature of 550 to 700 ° C. so that the yield point or 0.2% proof stress is 900 MPa or more.

【0009】第2の発明は、化学組成が重量%で、C:0.
06〜0.20%、Si:0.03〜1.00%、Mn:1.50〜3.00%、Cr:
0.50〜2.00%、Mo:0.05〜1.00%、Al:0.002〜0.100%、
V:0.51〜1.00%、N:0.0080〜0.0200%を含有し、残部Fe
および不可避不純物からなる鋼を1150〜1300℃の加熱温
度にて熱間圧延もしくは熱間鍛造後、800〜500℃の温度
範囲の平均冷却速度:CV(℃/min)を、40/(Mn%+
0.8Cr%+1.2Mo%) ≦ CV ≦ 500/(Mn%+0.8Cr%+1.
2Mo%)として200℃以下の温度まで冷却することで硬さ
をHv400以下、組織をヘ゛イナイト率70%以上でかつ旧オーステナイト
結晶粒径80μm以下とし、その後必要に応じて切削加工
ないし塑性加工を加え、更にその後550〜700℃の温度に
て時効処理を施すことにより、降伏点もしくは0.2%耐力
を900MPa以上とすることを特徴とする時効硬化型高強度
ベイナイト鋼の製造方法である。
In the second invention, the chemical composition is expressed by weight%, and C: 0.
06 to 0.20%, Si: 0.03 to 1.00%, Mn: 1.50 to 3.00%, Cr:
0.50 to 2.00%, Mo: 0.05 to 1.00%, Al: 0.002 to 0.100%,
V: 0.51-1.00%, N: 0.0080-0.0200%, balance Fe
After hot rolling or hot forging of steel consisting of unavoidable impurities at a heating temperature of 1150 to 1300 ° C, the average cooling rate in the temperature range of 800 to 500 ° C: CV (° C / min) is set to 40 / (Mn% +
0.8Cr% + 1.2Mo%) ≤ CV ≤ 500 / (Mn% + 0.8Cr% + 1.
2Mo%) and cooled to a temperature of 200 ° C or less to reduce the hardness to Hv400 or less, the microstructure to 70% or more of hainite and the grain size of old austenite to 80μm or less, and then apply cutting or plastic working as necessary. And a aging treatment at a temperature of 550 to 700 ° C. so that the yield point or 0.2% proof stress is 900 MPa or more.

【0010】第3の発明は、化学組成が重量%で、Ti:
0.01〜0.10%、Nb:0.01〜0.10%から選択した1種または2
種を含有することを特徴とする請求項1に記載の時効硬
化型高強度ベイナイト鋼である。
A third aspect of the present invention is directed to a method for manufacturing a semiconductor device, comprising:
One or two selected from 0.01 to 0.10%, Nb: 0.01 to 0.10%
The age hardening type high-strength bainite steel according to claim 1, which contains a seed.

【0011】第4の発明は、化学組成が重量%で、Ti:
0.01〜0.10%、Nb:0.01〜0.10%から選択した1種または2
種を含有することを特徴とする請求項2に記載の時効硬
化型高強度ベイナイト鋼の製造方法である。
A fourth aspect of the present invention is directed to a method of the present invention, wherein the chemical composition is
One or two selected from 0.01 to 0.10%, Nb: 0.01 to 0.10%
The method for producing an age-hardened high-strength bainite steel according to claim 2, comprising a seed.

【0012】第5の発明は、化学組成が重量%で、S:
0.04〜0.12%、 Pb:0.01〜0.30%、Bi:0.01〜0.30%、C
a:0.0005〜0.01%、 REM:0.001〜0.10%から選択した1
種または2種以上を含有することを特徴とする請求項1
に記載の時効硬化型高強度ベイナイト鋼である。
According to a fifth aspect of the present invention, the chemical composition is represented by weight% and S:
0.04 to 0.12%, Pb: 0.01 to 0.30%, Bi: 0.01 to 0.30%, C
a: 0.0005 to 0.01%, REM: 1 selected from 0.001 to 0.10%
2. The composition according to claim 1, wherein the composition contains at least one species.
The age hardening type high-strength bainite steel described in 1.

【0013】第6の発明は、化学組成が重量%で、S:
0.04〜0.12%、 Pb:0.01〜0.30%、Bi:0.01〜0.30%、C
a:0.0005〜0.01%、 REM:0.001〜0.10%から選択した1
種または2種以上を含有することを特徴とする請求項2
に記載の時効硬化型高強度ベイナイト鋼の製造方法であ
る。
A sixth aspect of the present invention is a method of the present invention, wherein the chemical composition is expressed by weight% and S:
0.04 to 0.12%, Pb: 0.01 to 0.30%, Bi: 0.01 to 0.30%, C
a: 0.0005 to 0.01%, REM: 1 selected from 0.001 to 0.10%
3. The composition according to claim 2, wherein the composition contains at least two species.
3. A method for producing an age hardening type high-strength bainite steel according to (1).

【0014】第7の発明は、化学組成が重量%で、Ti:
0.01〜0.10%、Nb:0.01〜0.10%から選択した1種または2
種を含有し、かつ、S:0.04〜0.12%、 Pb:0.01〜0.30
%、Bi:0.01〜0.30%、Ca:0.0005〜0.01%、 REM:0.001
〜0.10%から選択した1種または2種以上を含有すること
を特徴とする請求項1に記載の時効硬化型高強度ベイナ
イト鋼である。
According to a seventh aspect of the present invention, the chemical composition has a weight percentage of Ti:
One or two selected from 0.01 to 0.10%, Nb: 0.01 to 0.10%
Contains seeds, S: 0.04-0.12%, Pb: 0.01-0.30
%, Bi: 0.01 to 0.30%, Ca: 0.0005 to 0.01%, REM: 0.001
The age-hardened high-strength bainite steel according to claim 1, comprising one or more selected from 0.10%.

【0015】第8の発明は、化学組成が重量%で、Ti:
0.01〜0.10%、Nb:0.01〜0.10%から選択した1種または2
種を含有し、かつ、S:0.04〜0.12%、 Pb:0.01〜0.30
%、Bi:0.01〜0.30%、Ca:0.0005〜0.01%、 REM:0.001
〜0.10%から選択した1種または2種以上を含有すること
を特徴とする請求項2に記載の時効硬化型高強度ベイナ
イト鋼の製造方法である。
[0015] An eighth invention provides a method for manufacturing a semiconductor device, comprising:
One or two selected from 0.01 to 0.10%, Nb: 0.01 to 0.10%
Contains seeds, S: 0.04-0.12%, Pb: 0.01-0.30
%, Bi: 0.01 to 0.30%, Ca: 0.0005 to 0.01%, REM: 0.001
The method for producing an age-hardenable high-strength bainite steel according to claim 2, wherein one or two or more kinds selected from 0.1% to 0.10% are contained.

【0016】次に、本発明における構成成分の限定理由
について述べる。 C:0.06〜0.20% Cは、機械構造用鋼としての強度を確保するための必須
元素であり、0.06%以上、望ましくは0.08%以上必要であ
る。しかし、多すぎると硬さ増加から被削性の劣化を招
くため上限を0.20%、望ましくは0.18%以下とする。 Si:0.03〜1.00% Siは、製鋼時の脱酸材として不可欠であるため下限を0.
03%、望ましくは0.10%以上とする。しかし、過剰に添加
すると鋼中に高硬度の介在物であるSiO2を生成させて被
削性を劣化させるため上限を1.00%、望ましくは0.80%以
下とする。
Next, the reasons for limiting the components in the present invention will be described. C: 0.06 to 0.20% C is an essential element for securing strength as steel for machine structural use, and is required to be 0.06% or more, preferably 0.08% or more. However, if the content is too large, the machinability is degraded due to the increase in hardness, so the upper limit is set to 0.20%, preferably 0.18% or less. Si: 0.03 to 1.00% Since Si is indispensable as a deoxidizing material during steelmaking, the lower limit is set to 0.
03%, preferably 0.10% or more. However, if added excessively, SiO 2 which is a high-hardness inclusion is generated in the steel to deteriorate the machinability, so the upper limit is made 1.00%, preferably 0.80% or less.

【0017】Mn:1.50〜3.00% Mnは、熱間圧延もしくは熱間鍛造後の冷却過程でヘ゛イナイト
組織が得られるための焼入性を確保する上で重要な元素
であり、ヘ゛イナイト組織を得るためには少なくとも1.50%以
上、望ましくは1.80%以上必要である。しかし、多すぎ
るとマルテンサイト主体の組織となり、時効処理前の硬さが増
加して被削性が劣化するため上限を3.00%、望ましくは
2.70%以下とする。 Cr:0.50〜2.00% CrはMnと同様、熱間圧延もしくは熱間鍛造後の冷却過程
でヘ゛イナイト組織が得られるための焼入性を確保する上で重
要な元素であり、ヘ゛イナイト組織を得るためには少なくとも
0.50%以上、望ましくは0.70%以上必要である。しかし、
多すぎるとマルテンサイト主体の組織となり、時効処理前の硬
さが増加して被削性が劣化するため上限を2.00%、望ま
しくは1.60%以下とする。
Mn: 1.50% to 3.00% Mn is an important element for securing hardenability for obtaining a hainite structure in a cooling process after hot rolling or hot forging. Requires at least 1.50%, preferably at least 1.80%. However, if the content is too large, the structure becomes mainly martensite, the hardness before aging treatment increases, and the machinability deteriorates, so the upper limit is 3.00%, desirably.
2.70% or less. Cr: 0.50 to 2.00% Like Mn, Cr is an important element in securing hardenability to obtain a hainite structure in a cooling process after hot rolling or hot forging, and is required to obtain a hainite structure. At least
0.50% or more, desirably 0.70% or more is required. But,
If the content is too large, the structure becomes mainly martensite, the hardness before the aging treatment increases, and the machinability deteriorates. Therefore, the upper limit is made 2.00%, preferably 1.60% or less.

【0018】Mo:0.05〜1.00% MoはMn,Crと同様、熱間圧延もしくは熱間鍛造後の冷却
過程でヘ゛イナイト組織を安定して得るために必要な元素であ
るとともに、ヘ゛イナイト組織を微細化させて強靭性を高め、
また時効処理時にMo2Cを析出させて時効硬化させる働き
があり、前記効果を得るためには少なくとも0.05%以
上、望ましくは0.10%以上必要である。しかし必要以上
に多く添加しても、その効果が飽和するとともにコスト
高となるため、上限を1.00%、望ましくは0.60%以下とす
る。 Al:0.002〜0.100% Alは脱酸のために不可欠の元素であり0.002%以上、望ま
しくは0.005%以上必要であるが、必要以上に添加させる
とAl2O3の形成によって被削性を劣化させるため、上限
を0.100%、望ましくは0.060%以下とする。
Mo: 0.05 to 1.00% Mo, like Mn and Cr, is an element necessary for stably obtaining a hainite structure in a cooling process after hot rolling or hot forging, and also refines the hainite structure. To increase the toughness,
Further, it has a function of precipitating Mo 2 C during aging treatment and effecting age hardening, and at least 0.05% or more, desirably 0.10% or more is required to obtain the above effect. However, even if it is added more than necessary, the effect is saturated and the cost increases, so the upper limit is made 1.00%, preferably 0.60% or less. Al: 0.002 to 0.100% Al is an indispensable element for deoxidation and needs to be 0.002% or more, preferably 0.005% or more. However, if added more than necessary, the machinability is deteriorated due to the formation of Al 2 O 3. Therefore, the upper limit is set to 0.100%, preferably 0.060% or less.

【0019】V:0.51〜1.00% Vは本発明において、時効処理後にV(CN)を析出させて硬
さおよび降伏強度を高める点で最も重要な働きをする元
素であり、前記効果を必要十分に得るためには、少なく
とも0.51%以上、望ましくは0.53%以上必要である。しか
しながら必要以上に多く添加してもその効果が飽和する
とともに、著しい靭性の劣化やコスト増加を招くため、
上限を1.00%、望ましくは0.70%以下とする。 N:0.0080〜0.0200% NはVとの親和力が高い元素であり、本発明においては、
熱間圧延もしくは熱間鍛造中にVNとして析出し、そのピ
ン止め効果によってオーステナイト結晶粒径を80μm以下にする
働きがあるとともに、時効処理後のV(CN)析出による強
度増加に対して必要不可欠な元素であり、前記効果を必
要十分に得るためには、少なくとも0.0080%以上、望ま
しくは0.0100%以上必要である。しかしながら必要以上
に多く添加してもその効果が飽和するとともに、著しい
靭性の劣化やコスト増加を招くため、上限を0.0200%、
望ましくは0.0180%以下とする。
V: 0.51 to 1.00% V is an element that plays the most important role in precipitating V (CN) after aging treatment to increase hardness and yield strength in the present invention. In order to obtain the above, at least 0.51% or more, preferably 0.53% or more is required. However, even if it is added more than necessary, the effect is saturated, and significant toughness deterioration and cost increase are caused.
The upper limit is set to 1.00%, preferably 0.70% or less. N: 0.0080 to 0.0200% N is an element having a high affinity for V, and in the present invention,
Precipitates as VN during hot rolling or hot forging, has the effect of reducing the austenite grain size to 80 μm or less by its pinning effect, and is indispensable for the increase in strength due to V (CN) precipitation after aging treatment And at least 0.0080%, preferably 0.0100% or more in order to obtain the above-mentioned effects sufficiently and sufficiently. However, even if added more than necessary, the effect is saturated, and significant toughness degradation and cost increase are incurred, so the upper limit is 0.0200%,
Desirably, it is 0.0180% or less.

【0020】Ti:0.01〜0.10%、Nb:0.01〜0.10% Ti、Nbは、Vと同様にTi(CN)、Nb(CN)として鋼中に析出
し、そのピン止め効果によってオーステナイト結晶粒径を微細
化させる働きがあり、必要に応じて添加されるものであ
る。前記効果を得るためには、それぞれ最低でも0.01%
以上の含有が必要である。しかしながら必要以上に多く
添加してもその効果が飽和するとともにコスト増加を招
くため、上限を0.10%とする。 S:0.04〜0.12%、 Pb:0.01〜0.30%、Bi:0.01〜0.30
%、Ca:0.0005〜0.01%、REM:0.001〜0.10% S、Pb、Bi、Ca、REMは被削性の改善に有効な元素であ
り、必要に応じて添加されるものである。前記効果を得
るためには、それぞれ0.04%、0.01%、0.01%、0.0005%、
0.001%の含有が必要である。しかし多量に含有させる
と、コスト増加を招くとともに、介在物量増加によっ
て、圧延や鍛造等,塑性加工性の劣化や疲労強度低下の
問題が生ずるため、上限をそれぞれ0.12%、0.30%、0.30
%、0.01%、0.10%とした。
Ti: 0.01 to 0.10%, Nb: 0.01 to 0.10% Ti and Nb are precipitated in steel as Ti (CN) and Nb (CN) in the same manner as V, and the austenite grain size is obtained by the pinning effect. Has a function of making the particles finer, and is added as necessary. To achieve the above effects, at least 0.01%
The above content is necessary. However, even if it is added more than necessary, the effect is saturated and the cost is increased. Therefore, the upper limit is set to 0.10%. S: 0.04-0.12%, Pb: 0.01-0.30%, Bi: 0.01-0.30
%, Ca: 0.0005 to 0.01%, REM: 0.001 to 0.10% S, Pb, Bi, Ca, and REM are effective elements for improving machinability, and are added as necessary. To obtain the above effects, 0.04%, 0.01%, 0.01%, 0.0005%,
0.001% content is required. However, if it is contained in a large amount, the cost increases, and the increase in the amount of inclusions causes problems such as rolling and forging, etc., which degrade plastic workability and decrease fatigue strength. Therefore, the upper limits are 0.12%, 0.30%, and 0.30%, respectively.
%, 0.01%, and 0.10%.

【0021】次に本発明の製造条件限定理由について説
明する。熱間圧延もしくは熱間鍛造時の加熱温度を1150
〜1300℃に限定したのは、加熱温度が1150℃未満になる
と時効処理前の段階で鋼中にVが十分に固溶せず、その
後の時効硬化が十分に得られないためであり、また1300
℃を超える加熱温度になると加熱段階でのオーステナイト粒が
粗大化したり混粒を生じたりして、最終的に旧オーステナイト
粒径80μm以下が達成不可能となるためである。ここ
で、熱間圧延もしくは熱間鍛造時の加熱温度としている
のは、部品の製造工程によって加熱温度制御する工程が
異なることを意味しており、熱間鍛造を実施する場合に
は、熱間鍛造時の加熱温度を上記温度範囲に限定し、熱
間鍛造を行わない場合、例えば圧延鋼材より直接部品を
切削加工して製造する場合には、熱間圧延時の加熱温度
を上記温度範囲に限定する必要がある。
Next, the reasons for limiting the manufacturing conditions of the present invention will be described. Heating temperature during hot rolling or hot forging is 1150
When the heating temperature is lower than 1150 ° C, V is not sufficiently dissolved in the steel at the stage before the aging treatment, so that the age hardening cannot be sufficiently obtained. 1300
If the heating temperature exceeds ℃, the austenite grains in the heating step become coarse or mixed, and finally the prior austenite grain size of 80 μm or less cannot be achieved. Here, the heating temperature at the time of hot rolling or hot forging means that the process of controlling the heating temperature differs depending on the manufacturing process of the parts. The heating temperature during forging is limited to the above temperature range, and when hot forging is not performed, for example, when cutting and manufacturing a part directly from a rolled steel material, the heating temperature during hot rolling is set to the above temperature range. It needs to be limited.

【0022】熱間圧延もしくは熱間鍛造後の平均冷却速
度:CV(℃/min)を800〜500℃の温度範囲で限定した
のは、平均冷却速度:CV(℃/min)が40/(Mn%+0.8
Cr%+1.2Mo%)未満になると、初析フェライトやハ゜ーライトが生成
してヘ゛イナイト率70%以上を確保することが困難になるため
であり、またCV(℃/min)が500/(Mn%+0.8Cr%+1.
2Mo%)を超えると、マルテンサイトが生成してしまい、ヘ゛イナイト
率70%以上を確保することが困難になるためである。こ
こで平均冷却速度:CV(℃/min)は、冷却中に800℃
に達してから500℃に達するまでに要した時間(min)で
もって300℃(=800℃−500℃)を除した数値を示す。
The reason why the average cooling rate after hot rolling or hot forging: CV (° C./min) is limited in the temperature range of 800 to 500 ° C. is that the average cooling rate: CV (° C./min) is 40 / ( Mn% + 0.8
If the content is less than (Cr% + 1.2Mo%), proeutectoid ferrite or halite is generated, and it is difficult to secure a hainite ratio of 70% or more. CV (° C./min) is 500 / (Mn%). + 0.8Cr% + 1.
If it exceeds 2 Mo%), martensite is generated, and it is difficult to secure a hainite ratio of 70% or more. Here, the average cooling rate: CV (° C / min) is 800 ° C during cooling.
The value obtained by dividing 300 ° C (= 800 ° C-500 ° C) by the time (min) required to reach 500 ° C after the temperature reached 500 ° C.

【0023】冷却を200℃以下の温度までと限定した理
由は、冷却中のヘ゛イナイト変態を十分に生じさせてヘ゛イナイト率
70%以上を確保するためである。硬さをHv400以下と限定
した理由は、その後に施される切削加工ないし塑性加工
の加工性を確保させるためであり、硬さがHv400を超え
ると急激に切削加工性、塑性加工性が劣化する。なお、
前記請求範囲内の組成の鋼を加熱温度1150〜1300℃にて
熱間圧延もしくは熱間鍛造後、前記限定条件にて冷却し
た場合に、硬さはHv400以下となる。
The reason why the cooling is limited to a temperature of 200 ° C. or less is that the hainite transformation during cooling is sufficiently generated to reduce the hainite rate.
This is to secure at least 70%. The reason for limiting the hardness to Hv400 or less is to ensure the workability of the cutting or plastic working performed thereafter, and when the hardness exceeds Hv400, the machinability and plastic workability deteriorate rapidly. . In addition,
When the steel having the composition within the above-mentioned claims is hot-rolled or hot-forged at a heating temperature of 1150 to 1300 ° C. and then cooled under the above-mentioned limited conditions, the hardness becomes Hv400 or less.

【0024】組織をヘ゛イナイト率70%以上と限定した理由
は、V(CN)による必要十分な時効硬化特性を得るためで
あり、ヘ゛イナイト率が70%未満となってフェライト・ハ゜ーライトやマルテンサ
イトの組織分率が増えると、必要十分な時効硬化特性が得
られなくなる、即ち時効処理前の硬さが高くなってしま
ったり、時効処理後の硬さが低くなってしまったりす
る。なお、前記請求範囲内の組成の鋼を加熱温度1150〜
1300℃にて熱間圧延もしくは熱間鍛造後、前記限定条件
にて冷却した場合に、ヘ゛イナイト率は70%以上となる。旧オース
テナイト結晶粒径を80μm以下と限定した理由は、高い降伏
強度や疲労強度を達成する上で必要なためであり、旧オー
ステナイト結晶粒径が80μmを超えると強度特性が劣化する。
なお、前記請求範囲内の組成の鋼を加熱温度1150〜1300
℃にて熱間圧延もしくは熱間鍛造後、前記限定条件にて
冷却した場合に、旧オーステナイト結晶粒径は80μmとなる。
The reason why the structure is limited to a hainite ratio of 70% or more is to obtain a necessary and sufficient age hardening characteristic by V (CN), and the structure of ferrite, barite or martensite is reduced when the hainite ratio becomes less than 70%. When the fraction increases, the necessary and sufficient age hardening characteristics cannot be obtained, that is, the hardness before the aging treatment increases or the hardness after the aging treatment decreases. In addition, steel having a composition within the above-mentioned claims was heated at a temperature of 1150 to
After hot rolling or hot forging at 1300 ° C., when cooled under the above-mentioned limited conditions, the hainite ratio becomes 70% or more. The reason why the prior austenite crystal grain size is limited to 80 μm or less is that it is necessary to achieve high yield strength and fatigue strength. If the old austenite crystal grain size exceeds 80 μm, the strength characteristics deteriorate.
In addition, steel having a composition within the above-mentioned claims was heated at a temperature of 1150 to 1300.
After hot rolling or hot forging at ℃, and cooled under the above-mentioned limited conditions, the prior austenite crystal grain size becomes 80 μm.

【0025】時効処理温度を550〜700℃に限定した理由
は、ヘ゛イナイト主体の組織の鋼中にV(CN)を必要十分に微細
析出させて時効硬化させるためである。時効処理温度が
550℃未満であると、 V(CN)の析出量が少なく十分な時
効硬化が得られず、また時効処理温度が700℃を超える
と、析出したV(CN)が粗大化するとともにかえって軟化
を生じてしまうので、時効処理温度は550〜700℃に限定
する必要がある。降伏点もしくは0.2%耐力:900MPa以上
は、チタン合金やアルミ合金に匹敵する軽量化効果を鋼
で得るために必要な強度レベルであり、前記請求範囲内
の組成の鋼を加熱温度1150〜1300℃にて熱間圧延もしく
は熱間鍛造後、前記限定条件にて冷却し、その後550〜7
00℃にて時効処理することにより達成される。
The reason why the aging treatment temperature is limited to 550 to 700 ° C. is that V (CN) is finely precipitated as necessary and sufficiently in steel having a structure mainly composed of hainite to age harden. Aging temperature
If the temperature is lower than 550 ° C, the amount of V (CN) deposited is small and sufficient age hardening cannot be obtained.If the aging temperature exceeds 700 ° C, the precipitated V (CN) becomes coarse and softens. Therefore, it is necessary to limit the aging temperature to 550 to 700 ° C. Yield point or 0.2% proof stress: 900MPa or more is a strength level necessary for obtaining a weight-reducing effect comparable to that of titanium alloys and aluminum alloys with steel. After hot rolling or hot forging, cooled under the above-mentioned limited conditions, then 550-7
It is achieved by aging at 00 ° C.

【0026】[0026]

【発明の実施の形態】第1、2の発明を実施するには、
重量%で、 C:0.06〜0.20%、Si:0.03〜1.00%、Mn:1.5
0〜3.00%、Cr:0.50〜2.00%、Mo:0.05〜1.00%、Al:0.
002〜0.100%、V:0.51〜1.00%、N:0.0080〜0.0200%を含
有し、残部Feおよび不可避不純物からなる鋼を1150〜13
00℃の加熱温度にて熱間圧延もしくは熱間鍛造後、800
〜500℃の温度範囲の平均冷却速度:CV(℃/min)
を、40/(Mn%+0.8Cr%+1.2Mo%) ≦ CV ≦ 500/
(Mn%+0.8Cr%+1.2Mo%)として200℃以下の温度まで冷
却することで硬さをHv400以下、組織をヘ゛イナイト率70%以上
でかつ旧オーステナイト結晶粒径80μm以下とし、その後必要に
応じて切削加工ないし塑性加工を加え、更にその後550
〜700℃の温度にて時効処理を施すことにより、降伏点
もしくは0.2%耐力を900MPa以上とする。このようにして
得られた鋼材およびその鍛造品は、チタン合金やアルミ
合金に匹敵する軽量化効果を得るまでに高強度化するこ
とが可能であるとともに、快削元素含有量を大幅に増加
させることなく、かつ部品の設計形状を制約しなくても
被削性を確保できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS To implement the first and second inventions,
% By weight, C: 0.06-0.20%, Si: 0.03-1.00%, Mn: 1.5
0 to 3.00%, Cr: 0.50 to 2.00%, Mo: 0.05 to 1.00%, Al: 0.
1150-13 containing steel containing 002-0.100%, V: 0.51-1.00%, N: 0.0080-0.0200%, the balance being Fe and unavoidable impurities
After hot rolling or hot forging at a heating temperature of 00 ° C, 800
Average cooling rate in the temperature range of ~ 500 ° C: CV (° C / min)
Of 40 / (Mn% + 0.8Cr% + 1.2Mo%) ≦ CV ≦ 500 /
(Mn% + 0.8Cr% + 1.2Mo%), cooling to a temperature of 200 ° C or less, the hardness becomes Hv400 or less, the structure becomes 70% or more of hainite and the grain size of old austenite is 80μm or less. Add cutting or plastic processing according to
The yield point or 0.2% proof stress is made 900 MPa or more by aging treatment at a temperature of ~ 700 ° C. The steel material and the forged product thus obtained can be strengthened before obtaining a weight-reducing effect comparable to that of a titanium alloy or an aluminum alloy, and greatly increase the content of free-cutting elements. Machinability can be ensured without any restrictions and without restricting the design shape of the part.

【0027】第3、4の発明を実施するには、第1、2
の発明に記載の元素に加えて、重量%で、Ti:0.01〜0.1
0%、Nb:0.01〜0.10%から選択した1種または2種を含有
し、残部Feおよび不可避不純物からなる鋼を1150〜1300
℃の加熱温度にて熱間圧延もしくは熱間鍛造後、800〜5
00℃の温度範囲の平均冷却速度:CV(℃/min)を、40
/(Mn%+0.8Cr%+1.2Mo%) ≦ CV ≦ 500/(Mn%+
0.8Cr%+1.2Mo%)として200℃以下の温度まで冷却する
ことで硬さをHv400以下、組織をヘ゛イナイト率70%以上でかつ
旧オーステナイト結晶粒径80μm以下とし、その後必要に応じて
切削加工ないし塑性加工を加え、更にその後550〜700℃
の温度にて時効処理を施すことにより、降伏点もしくは
0.2%耐力を900MPa以上とする。このようにして得られた
鋼材およびその鍛造品は、チタン合金やアルミ合金に匹
敵する軽量化効果を得るまでに高強度化することが可能
であるとともに、快削元素含有量を大幅に増加させるこ
となく、かつ部品の設計形状を制約しなくても被削性を
確保できる。
In order to carry out the third and fourth inventions, the first and second inventions are required.
In addition to the elements according to the invention, Ti: 0.01 to 0.1
0%, Nb: steel containing one or two selected from 0.01 to 0.10%, the balance consisting of Fe and unavoidable impurities is 1150 to 1300
800 ~ 5 after hot rolling or hot forging at heating temperature of ℃
Average cooling rate in the temperature range of 00 ° C: CV (° C / min)
/(Mn%+0.8Cr%+1.2Mo%) ≤ CV ≤ 500 / (Mn% +
(0.8Cr% + 1.2Mo%), cooling to a temperature of 200 ° C or less to reduce the hardness to Hv400 or less, the microstructure to 70% or more of hainite and the grain size of old austenite to 80μm or less. Or plastic working, then 550-700 ℃
The aging treatment at the temperature of
0.2% proof stress should be 900MPa or more. The steel material and the forged product obtained in this way can be strengthened before obtaining a weight-reducing effect comparable to that of a titanium alloy or an aluminum alloy, and greatly increase the free-cutting element content. Machinability can be ensured without any restrictions and without restricting the design shape of the part.

【0028】第5、6の発明を実施するには、第1、2
の発明に記載の元素に加えて、重量%で、S:0.04〜0.12
%、 Pb:0.01〜0.30%、Bi:0.01〜0.30%、Ca:0.0005〜
0.01%、 REM:0.001〜0.10%から選択した1種または2種
以上を含有し、残部Feおよび不可避不純物からなる鋼を
1150〜1300℃の加熱温度にて熱間圧延もしくは熱間鍛造
後、800〜500℃の温度範囲の平均冷却速度:CV(℃/m
in)を、40/(Mn%+0.8Cr%+1.2Mo%) ≦ CV ≦ 500
/(Mn%+0.8Cr%+1.2Mo%)として200℃以下の温度まで
冷却することで硬さをHv400以下、組織をヘ゛イナイト率70%以
上でかつ旧オーステナイト結晶粒径80μm以下とし、その後必要
に応じて切削加工ないし塑性加工を加え、更にその後55
0〜700℃の温度にて時効処理を施すことにより、降伏点
もしくは0.2%耐力を900MPa以上とする。このようにして
得られた鋼材およびその鍛造品は、チタン合金やアルミ
合金に匹敵する軽量化効果を得るまでに高強度化するこ
とが可能であるとともに、快削元素含有量を大幅に増加
させることなく、かつ部品の設計形状を制約しなくても
被削性を確保できる。
In order to carry out the fifth and sixth aspects of the present invention, the first and second aspects are required.
In addition to the elements according to the invention, S: 0.04 to 0.12
%, Pb: 0.01 to 0.30%, Bi: 0.01 to 0.30%, Ca: 0.0005 to
0.01%, REM: One or more selected from 0.001 to 0.10%, steel containing the balance Fe and unavoidable impurities
After hot rolling or hot forging at a heating temperature of 1150 to 1300 ° C, an average cooling rate in a temperature range of 800 to 500 ° C: CV (° C / m
in), 40 / (Mn% + 0.8Cr% + 1.2Mo%) ≦ CV ≦ 500
/(Mn%+0.8Cr%+1.2Mo%) Cooling to a temperature of 200 ° C or less, the hardness is Hv400 or less, the structure is 70% or more of hainite and the grain size of old austenite is 80μm or less. Cutting or plastic working according to
The yield point or 0.2% proof stress is made 900 MPa or more by performing aging treatment at a temperature of 0 to 700 ° C. The steel material and the forged product thus obtained can be strengthened before obtaining a weight-reducing effect comparable to that of a titanium alloy or an aluminum alloy, and greatly increase the content of free-cutting elements. Machinability can be ensured without any restrictions and without restricting the design shape of the part.

【0029】第7、8の発明を実施するには、第1、2
の発明に記載の元素に加えて、重量%で、Ti:0.01〜0.1
0%、Nb:0.01〜0.10%から選択した1種または2種を含有
し、かつ、S:0.04〜0.12%、 Pb:0.01〜0.30%、Bi:0.
01〜0.30%、Ca:0.0005〜0.01%、 REM:0.001〜0.10%か
ら選択した1種または2種以上を含有し、残部Feおよび不
可避不純物からなる鋼を1150〜1300℃の加熱温度にて熱
間圧延もしくは熱間鍛造後、800〜500℃の温度範囲の平
均冷却速度:CV(℃/min)を、40/(Mn%+0.8Cr%+
1.2Mo%) ≦ CV ≦ 500/(Mn%+0.8Cr%+1.2Mo%)と
して200℃以下の温度まで冷却することで硬さをHv400以
下、組織をヘ゛イナイト率70%以上でかつ旧オーステナイト結晶粒径80
μm以下とし、その後必要に応じて切削加工ないし塑性
加工を加え、更にその後550〜700℃の温度にて時効処理
を施すことにより、降伏点もしくは0.2%耐力を900MPa以
上とする。このようにして得られた鋼材およびその鍛造
品は、チタン合金やアルミ合金に匹敵する軽量化効果を
得るまでに高強度化することが可能であるとともに、快
削元素含有量を大幅に増加させることなく、かつ部品の
設計形状を制約しなくても被削性を確保できる。
In order to carry out the seventh and eighth inventions, first, second
In addition to the elements according to the invention, Ti: 0.01 to 0.1
0%, Nb: contains one or two selected from 0.01 to 0.10%, and S: 0.04 to 0.12%, Pb: 0.01 to 0.30%, Bi: 0.
01-0.30%, Ca: 0.0005-0.01%, REM: One or two or more selected from 0.001-0.10%, steel consisting of Fe and unavoidable impurities is heated at a heating temperature of 1150-1300 ° C. After cold rolling or hot forging, the average cooling rate in the temperature range of 800 to 500 ° C: CV (° C / min) is increased to 40 / (Mn% + 0.8Cr% +
1.2Mo%) ≤ CV ≤ 500 / (Mn% + 0.8Cr% + 1.2Mo%) By cooling to a temperature of 200 ° C or less, the hardness is Hv400 or less, the structure is 70% or more of hainite and the former austenite crystal. Particle size 80
The yield point or 0.2% proof stress is adjusted to 900 MPa or more by applying cutting or plastic working as necessary, and then performing aging treatment at a temperature of 550 to 700 ° C. The steel material and the forged product thus obtained can be strengthened before obtaining a weight-reducing effect comparable to that of a titanium alloy or an aluminum alloy, and greatly increase the content of free-cutting elements. Machinability can be ensured without any restrictions and without restricting the design shape of the part.

【0030】[0030]

【実施例】下に本発明の実施例について、比較鋼および
従来鋼との比較によって説明する。表1、2は、実施例
に用いた供試材の化学成分を示すものである。
EXAMPLES Examples of the present invention will be described below by comparison with comparative steels and conventional steels. Tables 1 and 2 show the chemical components of the test materials used in the examples.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】成分組成が表1からなる本発明鋼と表2か
らなる比較鋼(従来鋼を含む)を30kg真空溶解炉にて溶
製し、1200℃でφ30mmへ鍛伸した。その後φ30mm材を、
1200℃加熱、1050℃鍛造の条件にて15mm厚の板材に鍛造
した後、室温まで空冷処理を行い、その後A〜W鋼につい
ては600℃にて時効処理を行い、X、Y、Z鋼について
は880℃にて焼入れ後580℃にて焼戻し処理を行い、引張
試験、小野式回転曲げ疲労試験、ドリル穿孔試験、ミク
ロ組織観察に用いた。なお、この場合の鍛造後の空冷時
における800〜500℃の温度範囲の平均冷却速度は、72℃
/minであった。またA〜W鋼については、上記以外に鍛造
後空冷ままで時効処理しない状態でもドリル穿孔試験を
行うとともに、硬さ試験を実施した。
A steel of the present invention having a component composition of Table 1 and a comparative steel (including conventional steel) of Table 2 were melted in a 30 kg vacuum melting furnace and forged at 1200 ° C. to φ30 mm. Then, φ30mm material,
After forging into a 15mm thick plate under the conditions of 1200 ° C heating and 1050 ° C forging, air-cooling treatment is performed to room temperature, then aging treatment at 600 ° C for A to W steel, and X, Y, Z steel Was quenched at 880 ° C. and then tempered at 580 ° C., and used for a tensile test, an Ono-type rotary bending fatigue test, a drilling test, and microstructure observation. In this case, the average cooling rate in the temperature range of 800 to 500 ° C during air cooling after forging is 72 ° C.
/ min. Regarding the A to W steels, in addition to the above, a drilling test and a hardness test were performed even after forging and in an air-cooled state without aging treatment.

【0034】引張試験はJIS14A号試験片を作製して引張
速度1mm/secの条件で行い、0.2%耐力および引張強さを
測定した。小野式回転曲げ疲労試験は平行部φ8の平滑
試験片を作製して試験し、107回での疲労強度を求め、
これと引張強さとの比率をとった耐久比(=107回疲労
強度/引張強さ)でもって評価した。ドリル穿孔試験
は、時効処理前、時効処理後のいずれの場合も、ドリル
がφ6mmのストレートシャンク、ドリルの材質はSKH51、
ドリル回転数は966rpm、潤滑油なし、荷重75kgの条件で
行い、測定した結果は従来鋼であるZ鋼の穿孔距離を10
0とし、それぞれの穿孔距離を整数比で評価した。
A tensile test was performed on a JIS14A test piece under the conditions of a tensile speed of 1 mm / sec, and a 0.2% proof stress and a tensile strength were measured. Ono rotating bending fatigue test formulas were tested to produce a smooth test piece parallel portion ø8, it obtains a fatigue strength at 10 7 times,
It was evaluated with in this and the tensile strength and durability ratio took the ratio of (= 10 7 times fatigue strength / tensile strength). Before and after aging treatment, the drill piercing test was performed using a straight shank with a diameter of φ6 mm and a drill material of SKH51.
The drilling speed was 966 rpm, no lubricating oil was used, and the load was 75 kg. The measurement results showed that the drilling distance of the conventional steel, Z steel, was 10
It was set to 0 and each perforation distance was evaluated by an integer ratio.

【0035】硬さ試験については、時効処理前に行った
ドリル穿孔試験用の試料を用い、ビッカース硬度計にて
測定荷重10kgfで行った。ミクロ組織観察については、
前記引張試験片の試験後のつかみ部を切断、研磨したも
のを試料として用い、光学顕微鏡にて倍率400倍で観察
し、ヘ゛イナイト率ならびに旧オーステナイト結晶粒径を測定した。
The hardness test was performed with a Vickers hardness meter at a measurement load of 10 kgf using a sample for a drilling test performed before the aging treatment. For microstructure observation,
Using a sample obtained by cutting and polishing the grip portion of the tensile test piece after the test, the sample was observed with an optical microscope at a magnification of 400, and the hainite ratio and the prior austenite crystal grain size were measured.

【0036】各種試験評価結果を本発明鋼についてを表
3、比較鋼(従来鋼を含む)についてを表4に示す。
Table 3 shows the results of various tests and evaluations for the steel of the present invention, and Table 4 shows the results of comparative steels (including conventional steels).

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】ここに示すように、本発明鋼であるA〜N
鋼はいずれも時効処理前の硬さがHv331以下であり、請
求範囲に該当するHv400以下を十分に満足しており、ヘ゛イ
ナイト率は82%以上、旧オーステナイト粒径は54μm以下であって、
請求範囲に該当するヘ゛イナイト率70%以上、旧オーステナイト粒径80
μm以下を十分に満足しており、また時効処理後の0.2%
耐力はいずれも958MPa以上あって、請求範囲に該当する
900MPa以上を十分に満足している。また耐久比について
も0.54以上と優れた値を示し、ト゛リル穿孔性については時
効処理前にて特に優れた値を示すとともに、時効処理前
後のいずれも従来鋼であるZ鋼よりも優れていることが
確認された。
As shown here, the steels A to N of the present invention
The hardness of all steels before aging treatment is Hv331 or less, and sufficiently satisfies Hv400 or less corresponding to the claims, the hainite ratio is 82% or more, and the prior austenite particle size is 54 μm or less,
70% or more of the hainite ratio falling within the scope of claims, and the former austenite grain size of 80
μm or less, and 0.2% after aging treatment
All have a proof stress of 958MPa or more and fall within the scope of claims.
We are fully satisfied with 900MPa or more. In addition, the durability ratio shows an excellent value of 0.54 or more, and the torill piercing property shows a particularly excellent value before the aging treatment, and both before and after the aging treatment are superior to the conventional steel Z. Was confirmed.

【0040】これに対して比較鋼のO鋼は、C量が本特
許請求範囲よりも低いために0.2%耐力に劣り、またP鋼
は逆にC量が本特許請求範囲よりも高いために、時効前
の硬さがHv400を超えてしまうとともに、ト゛リル穿孔性が
従来鋼のZ鋼よりも劣る結果となっている。比較鋼のQ
鋼については、Si量が本特許請求範囲よりも高いために
ト゛リル穿孔性が従来鋼のZ鋼よりも劣り、R鋼はMn量が本
特許請求範囲よりも低いために、フェライト・ハ゜ーライトが生成し
てヘ゛イナイト率が70%未満であるとともに0.2%耐力が900MPa
未満と低くなっている。S鋼はMn量およびCr量が共に本
特許請求範囲よりも高いために、マルテンサイト主体の組織と
なってヘ゛イナイト率が低く、かつ時効前の硬さがHv400を超
えてしまって、ト゛リル穿孔性が従来鋼のZ鋼よりも劣る結
果となっている。T鋼はMo量が本特許請求範囲よりも低
いために、フェライト・ハ゜ーライトが生成してヘ゛イナイト率が70%未満
であるとともに0.2%耐力が900MPa未満と低くなってい
る。U鋼はV量およびN量が共に本特許請求範囲よりも低
いために、時効硬化が十分にされず、0.2%耐力が900MPa
未満と低くなっている。
On the other hand, the O steel of the comparative steel is inferior in 0.2% proof stress because the C content is lower than the claimed range, and the P steel is conversely because the C content is higher than the claimed range. In addition, the hardness before aging exceeds Hv400, and the drilling performance of the drill is inferior to that of the conventional steel Z. Q of comparative steel
Regarding the steel, since the Si content is higher than the claimed range, the drill piercing property is inferior to that of the conventional steel Z, and the R steel has a lower Mn content than the claimed range, so that ferrite barite is formed. The hainite rate is less than 70% and the 0.2% proof stress is 900MPa
It is lower than less. Since the S steel has both a higher Mn content and a higher Cr content than the scope of the present invention, it has a martensite-based structure, a low hainite ratio, and a hardness before aging exceeding Hv400, which results in a high drilling performance. Is inferior to the conventional steel Z. Since the T steel has a lower Mo content than that of the present invention, ferrite and barite are formed and the hainite ratio is less than 70%, and the 0.2% proof stress is as low as less than 900 MPa. Since both U content and N content of U steel are lower than the claimed range, age hardening is not sufficient, and 0.2% proof stress is 900 MPa.
It is lower than less.

【0041】また従来鋼であるV鋼およびW鋼はヘ゛イナイト
+マルテンサイト型の従来の焼入省略鋼であり、いずれも900MP
a以上の0.2%耐力が達成されてはいるものの、V鋼はト゛リ
ル穿孔性に劣り、W鋼は快削元素を含有させることによ
りト゛リル穿孔性はZ鋼並みとなっているが、快削元素を多
量に含有させたために耐久比が低くなっている。X、
Y、Z鋼はそれぞれJISに規定されているS48C、
SCr440、SCM440に相当する鋼であり、焼入
焼もどし処理を付与しても、0.2%耐力は900MPaに達して
いない。
The conventional steels V and W are conventional quenched and omitted steels of the hainite + martensite type.
Although 0.2% proof stress of a or more is achieved, V steel is inferior in drilling ability, and W steel has the same drilling ability as Z steel by containing free cutting elements. Has a low durability ratio. X,
Y and Z steels are S48C specified by JIS, respectively.
It is a steel corresponding to SCr440 and SCM440, and the 0.2% proof stress does not reach 900 MPa even after quenching and tempering.

【0042】次に製造条件の影響、すなわち鍛造加熱温
度,鍛造後の冷却条件,時効処理温度の変化による影響
を調査した実施例を示す。表1に示す本発明鋼のうち
B、D、G、M鋼について、φ30mmの丸棒を1050、117
0、1200、1270、1350℃の各温度に加熱した後15mm厚の
板材に鍛造し、その後の冷却条件を炉冷、空冷、弱ファ
ン冷却、強ファン冷却と変化させ、さらにその後の時効
処理温度を、500、570、600、650、750℃の5条件で行
い、引張試験、ドリル穿孔試験(時効処理前のみ)、硬
さ試験(時効処理前のみ)、ミクロ組織観察に用いた。
なお、この場合の鍛造後の800〜500℃の温度範囲の平均
冷却速度は、炉冷が5℃/min 、空冷が72℃/min、弱ファ
ン冷却が103℃/min、強ファン冷却が131℃/min であっ
た。また試験条件については、前記の試験条件と同様で
ある。
Next, there will be described an embodiment in which the influence of the manufacturing conditions, that is, the influence of changes in the forging heating temperature, the cooling conditions after forging, and the aging treatment temperature was investigated. Among the steels of the present invention shown in Table 1, for B, D, G and M steels, round bars of φ30 mm
After heating to each temperature of 0, 1200, 1270, and 1350 ° C, forging into a 15 mm thick plate material, then changing the cooling condition to furnace cooling, air cooling, weak fan cooling, strong fan cooling, and further aging treatment temperature Was performed under five conditions of 500, 570, 600, 650 and 750 ° C., and used for a tensile test, a drilling test (only before aging treatment), a hardness test (only before aging treatment), and microstructure observation.
In this case, the average cooling rate in the temperature range of 800 to 500 ° C. after forging is 5 ° C./min for furnace cooling, 72 ° C./min for air cooling, 103 ° C./min for weak fan cooling, and 131 ° C. for strong fan cooling. ° C / min. The test conditions are the same as those described above.

【0043】各種試験評価結果を本発明鋼についてを表
5、比較例についてを表6に示す。
Table 5 shows the results of various test evaluations for the steel of the present invention, and Table 6 shows the results of comparative examples.

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【表6】 [Table 6]

【0046】No.1〜15の本発明範囲においては、鋼種や
製造条件が変化しても、時効処理前の硬さHv400以下,ヘ
゛イナイト率70%以上,旧オーステナイト結晶粒径80μm以下,0.2%耐
力900MPa以上の全てを満足するとともに、ト゛リル穿孔性に
ついても従来鋼SCM440の調質(前記実施例のZ鋼)より
優れていることが確認された。これに対してNo.16〜27
の比較例の結果より、化学成分が本特許請求範囲内であ
っても、鍛造加熱温度,鍛造後の冷却条件,時効処理温
度の製造条件の内、いずれか1項目でも満足しない場合
には、前記特性が得られなくなることが明らかとなっ
た。
In the range of the present invention of Nos. 1 to 15, the hardness before aging treatment is Hv 400 or less, the hainite ratio is 70% or more, the prior austenite crystal grain size is 80 μm or less, 0.2% It was confirmed that the steel satisfies all the proof stresses of 900 MPa or more, and also has superior toroidal piercing property compared to the refining of the conventional steel SCM440 (the Z steel of the above-described example). No.16 ~ 27
According to the results of the comparative examples, even if the chemical components are within the scope of the present invention, if any one of the forging heating temperature, the cooling condition after forging, and the aging treatment temperature is not satisfied, It became clear that the above characteristics could not be obtained.

【0047】[0047]

【発明の効果】以上の説明で明らかなように、本発明は
自動車エンジンのクランクシャフト、コネクティングロ
ッドのように、高い強度と優れた被削性を必要とする部
品に最適な、熱間鍛造用時効硬化型ベイナイト鋼および
その鍛造品の製造方法を提供するものであり、自動車エ
ンジン部品の軽量化を可能とする。
As is apparent from the above description, the present invention is suitable for hot forging for parts which require high strength and excellent machinability, such as crankshafts and connecting rods of automobile engines. An object of the present invention is to provide a method for producing an age-hardened bainite steel and a forged product thereof, and to reduce the weight of automobile engine parts.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 化学組成が重量%で、C:0.06〜0.20%、S
i:0.03〜1.00%、Mn:1.50〜3.00%、Cr:0.50〜2.00%、
Mo:0.05〜1.00%、Al:0.002〜0.100%、V:0.51〜1.00
%、N:0.0080〜0.0200%を含有し、残部Feおよび不可避
不純物からなる鋼を1150〜1300℃の加熱温度にて熱間圧
延もしくは熱間鍛造後、800〜500℃の温度範囲の平均冷
却速度:CV(℃/min)を、40/(Mn%+0.8Cr%+1.2Mo
%) ≦CV ≦ 500/(Mn%+0.8Cr%+1.2Mo%)として20
0℃以下の温度まで冷却することで硬さをHv400以下、組
織をヘ゛イナイト率70%以上でかつ旧オーステナイト結晶粒径80μm以
下とし、その後必要に応じて切削加工ないし塑性加工を
加え、更にその後550〜700℃の温度にて時効処理を施す
ことにより、降伏点もしくは0.2%耐力を900MPa以上とす
ることを特徴とする時効硬化型高強度ベイナイト鋼。
1. The chemical composition in weight%, C: 0.06-0.20%, S
i: 0.03 to 1.00%, Mn: 1.50 to 3.00%, Cr: 0.50 to 2.00%,
Mo: 0.05-1.00%, Al: 0.002-0.100%, V: 0.51-1.00
%, N: 0.0080 to 0.0200%, the steel consisting of the balance Fe and unavoidable impurities is hot rolled or hot forged at a heating temperature of 1150 to 1300 ° C, and then the average cooling rate in the temperature range of 800 to 500 ° C : CV (° C / min) is 40 / (Mn% + 0.8Cr% + 1.2Mo)
%) ≤ CV ≤ 500 / (Mn% + 0.8Cr% + 1.2Mo%) 20
By cooling to a temperature of 0 ° C. or less, the hardness is Hv 400 or less, the structure is 70% or more of hainite and the prior austenite crystal grain size is 80 μm or less, and then cutting or plastic working is performed as necessary, and then 550 Age hardening type high-strength bainite steel characterized by having a yield point or 0.2% proof stress of 900 MPa or more by aging at a temperature of up to 700 ° C.
【請求項2】 化学組成が重量%で、C:0.06〜0.20%、S
i:0.03〜1.00%、Mn:1.50〜3.00%、Cr:0.50〜2.00%、
Mo:0.05〜1.00%、Al:0.002〜0.100%、V:0.51〜1.00
%、N:0.0080〜0.0200%を含有し、残部Feおよび不可避
不純物からなる鋼を1150〜1300℃の加熱温度にて熱間圧
延もしくは熱間鍛造後、800〜500℃の温度範囲の平均冷
却速度:CV(℃/min)を、40/(Mn%+0.8Cr%+1.2Mo
%) ≦CV ≦ 500/(Mn%+0.8Cr%+1.2Mo%)として20
0℃以下の温度まで冷却することで硬さをHv400以下、組
織をヘ゛イナイト率70%以上でかつ旧オーステナイト結晶粒径80μm以
下とし、その後必要に応じて切削加工ないし塑性加工を
加え、更にその後550〜700℃の温度にて時効処理を施す
ことにより、降伏点もしくは0.2%耐力を900MPa以上とす
ることを特徴とする時効硬化型高強度ベイナイト鋼の製
造方法。
2. The chemical composition in weight%, C: 0.06-0.20%, S
i: 0.03 to 1.00%, Mn: 1.50 to 3.00%, Cr: 0.50 to 2.00%,
Mo: 0.05-1.00%, Al: 0.002-0.100%, V: 0.51-1.00
%, N: 0.0080 to 0.0200%, the steel consisting of the balance Fe and unavoidable impurities is hot rolled or hot forged at a heating temperature of 1150 to 1300 ° C, and then the average cooling rate in the temperature range of 800 to 500 ° C : CV (° C / min) is 40 / (Mn% + 0.8Cr% + 1.2Mo)
%) ≤ CV ≤ 500 / (Mn% + 0.8Cr% + 1.2Mo%) 20
By cooling to a temperature of 0 ° C. or less, the hardness is Hv 400 or less, the structure is 70% or more of hainite and the prior austenite crystal grain size is 80 μm or less, and then cutting or plastic working is performed as necessary, and then 550 A method for producing an age hardenable high-strength bainite steel, wherein the yield point or 0.2% proof stress is made 900 MPa or more by performing aging treatment at a temperature of up to 700 ° C.
【請求項3】 化学組成が重量%で、Ti:0.01〜0.10
%、Nb:0.01〜0.10%から選択した1種または2種を含有す
ることを特徴とする請求項1に記載の時効硬化型高強度
ベイナイト鋼。
3. The chemical composition in weight%, Ti: 0.01 to 0.10
%, Nb: 0.01 to 0.10%, one or two kinds selected from the group consisting of 0.01% to 0.10%.
【請求項4】 化学組成が重量%で、Ti:0.01〜0.10
%、Nb:0.01〜0.10%から選択した1種または2種を含有す
ることを特徴とする請求項2に記載の時効硬化型高強度
ベイナイト鋼の製造方法。
4. The chemical composition in weight%, Ti: 0.01 to 0.10
%, Nb: One or two kinds selected from 0.01 to 0.10% are contained, the method for producing an age-hardened high-strength bainite steel according to claim 2, characterized in that:
【請求項5】 化学組成が重量%で、S:0.04〜0.12%、
Pb:0.01〜0.30%、Bi:0.01〜0.30%、Ca:0.0005〜0.0
1%、 REM:0.001〜0.10%から選択した1種または2種以上
を含有することを特徴とする請求項1に記載の時効硬化
型高強度ベイナイト鋼。
5. The chemical composition in weight%, S: 0.04 to 0.12%,
Pb: 0.01 to 0.30%, Bi: 0.01 to 0.30%, Ca: 0.0005 to 0.0
The age-hardened high-strength bainite steel according to claim 1, comprising one or more selected from 1%, REM: 0.001 to 0.10%.
【請求項6】 化学組成が重量%で、S:0.04〜0.12%、
Pb:0.01〜0.30%、Bi:0.01〜0.30%、Ca:0.0005〜0.0
1%、 REM:0.001〜0.10%から選択した1種または2種以上
を含有することを特徴とする請求項2に記載の時効硬化
型高強度ベイナイト鋼の製造方法。
6. The chemical composition in weight%, S: 0.04-0.12%,
Pb: 0.01 to 0.30%, Bi: 0.01 to 0.30%, Ca: 0.0005 to 0.0
The method for producing an age-hardenable high-strength bainite steel according to claim 2, characterized in that it contains one or more kinds selected from 1% and REM: 0.001 to 0.10%.
【請求項7】 化学組成が重量%で、Ti:0.01〜0.10
%、Nb:0.01〜0.10%から選択した1種または2種を含有
し、かつ、S:0.04〜0.12%、 Pb:0.01〜0.30%、Bi:0.
01〜0.30%、Ca:0.0005〜0.01%、 REM:0.001〜0.10%か
ら選択した1種または2種以上を含有することを特徴とす
る請求項1に記載の時効硬化型高強度ベイナイト鋼。
7. The chemical composition has a Ti content of 0.01 to 0.10% by weight.
%, Nb: contains one or two selected from 0.01 to 0.10%, and S: 0.04 to 0.12%, Pb: 0.01 to 0.30%, Bi: 0.
The age-hardened high-strength bainite steel according to claim 1, comprising one or more selected from 01 to 0.30%, Ca: 0.0005 to 0.01%, REM: 0.001 to 0.10%.
【請求項8】 化学組成が重量%で、Ti:0.01〜0.10
%、Nb:0.01〜0.10%から選択した1種または2種を含有
し、かつ、S:0.04〜0.12%、 Pb:0.01〜0.30%、Bi:0.
01〜0.30%、Ca:0.0005〜0.01%、 REM:0.001〜0.10%か
ら選択した1種または2種以上を含有することを特徴とす
る請求項2に記載の時効硬化型高強度ベイナイト鋼の製
造方法。
8. The chemical composition has a Ti content of 0.01 to 0.10% by weight.
%, Nb: contains one or two selected from 0.01 to 0.10%, and S: 0.04 to 0.12%, Pb: 0.01 to 0.30%, Bi: 0.
The age-hardenable high-strength bainite steel according to claim 2, comprising one or more selected from 01 to 0.30%, Ca: 0.0005 to 0.01%, REM: 0.001 to 0.10%. Method.
JP18049198A 1998-06-26 1998-06-26 Age-hardening high-strength bainitic steel and method for producing the same Expired - Lifetime JP3900690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18049198A JP3900690B2 (en) 1998-06-26 1998-06-26 Age-hardening high-strength bainitic steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18049198A JP3900690B2 (en) 1998-06-26 1998-06-26 Age-hardening high-strength bainitic steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000017374A true JP2000017374A (en) 2000-01-18
JP3900690B2 JP3900690B2 (en) 2007-04-04

Family

ID=16084174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18049198A Expired - Lifetime JP3900690B2 (en) 1998-06-26 1998-06-26 Age-hardening high-strength bainitic steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3900690B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266023A (en) * 2001-03-08 2002-09-18 Aichi Steel Works Ltd Method for producing automobile chassis forging
US7354487B2 (en) * 2002-12-03 2008-04-08 Ascometal Cooled and annealed bainite steel part, and a method of manufacturing it
WO2010090238A1 (en) * 2009-02-04 2010-08-12 住友金属工業株式会社 Age hardenable steel and method for producing mechanical parts
WO2015050152A1 (en) 2013-10-02 2015-04-09 新日鐵住金株式会社 Age hardening steel
WO2016148206A1 (en) * 2015-03-16 2016-09-22 新日鐵住金株式会社 Age-hardenable steel, and method for manufacturing components using age-hardenable steel
CN107250410A (en) * 2015-03-31 2017-10-13 新日铁住金株式会社 Time hardening steel and used time hardening steel part manufacture method
CN110257713A (en) * 2019-07-16 2019-09-20 内蒙古科技大学 A kind of low-carbon aged steel and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266023A (en) * 2001-03-08 2002-09-18 Aichi Steel Works Ltd Method for producing automobile chassis forging
US7354487B2 (en) * 2002-12-03 2008-04-08 Ascometal Cooled and annealed bainite steel part, and a method of manufacturing it
WO2010090238A1 (en) * 2009-02-04 2010-08-12 住友金属工業株式会社 Age hardenable steel and method for producing mechanical parts
JP5257460B2 (en) * 2009-02-04 2013-08-07 新日鐵住金株式会社 Method of manufacturing age-hardening steel and machine parts
US10066281B2 (en) 2013-10-02 2018-09-04 Nippon Steel & Sumitomo Metal Corporation Age-hardenable steel
WO2015050152A1 (en) 2013-10-02 2015-04-09 新日鐵住金株式会社 Age hardening steel
CN105164296A (en) * 2013-10-02 2015-12-16 新日铁住金株式会社 Age hardening steel
CN109913628A (en) * 2013-10-02 2019-06-21 日本制铁株式会社 Time hardening steel
WO2016148206A1 (en) * 2015-03-16 2016-09-22 新日鐵住金株式会社 Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JPWO2016148206A1 (en) * 2015-03-16 2018-01-18 新日鐵住金株式会社 Age-hardening steel and method for producing parts using age-hardening steel
US20180044757A1 (en) * 2015-03-31 2018-02-15 Nippon Steel & Sumitomo Metal Corporation Age-hardening steel and method of manufacturing parts using age-hardening steel
EP3279356A4 (en) * 2015-03-31 2018-10-03 Nippon Steel & Sumitomo Metal Corporation Age-hardening steel and method of manufacturing parts using age-hardening steel
KR101918432B1 (en) 2015-03-31 2018-11-13 신닛테츠스미킨 카부시키카이샤 Method for manufacturing parts using age hardening steel and age hardening steel
CN107250410A (en) * 2015-03-31 2017-10-13 新日铁住金株式会社 Time hardening steel and used time hardening steel part manufacture method
CN110257713A (en) * 2019-07-16 2019-09-20 内蒙古科技大学 A kind of low-carbon aged steel and preparation method thereof

Also Published As

Publication number Publication date
JP3900690B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
JP5079788B2 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
JP3300500B2 (en) Method for producing hot forging steel excellent in fatigue strength, yield strength and machinability
JP4581966B2 (en) Induction hardening steel
JP4047499B2 (en) Carbonitriding parts with excellent pitting resistance
JP2008240130A (en) Non-heat treated steel material
JPH07109545A (en) Non-heat treated steel for hot forging excellent in tensile strength, fatigue strength and machinability
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP3196579B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JPH11293390A (en) High strength free cutting non-heat treated steel
JP2000017374A (en) Age hardening type high strength bainitic steel and its production
JP4752800B2 (en) Non-tempered steel
JPH09256102A (en) Carburized parts excellent in bending strength and impact characteristic
JP5181621B2 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
JP4556770B2 (en) Carburizing steel and method for producing the same
JP2012237052A (en) Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
JP2768062B2 (en) Manufacturing method of high strength tough steel
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP2004183065A (en) High strength steel for induction hardening, and production method therefor
JP2007107046A (en) Steel material to be induction-hardened
JP3890724B2 (en) Ferritic / pearlite non-heat treated steel with excellent machinability
JP3489376B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3261552B2 (en) Manufacturing method of non-heat treated steel with excellent fatigue properties
JP2017071859A (en) Non-heat-treated steel and method for producing the same
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term