JP2004183065A - High strength steel for induction hardening, and production method therefor - Google Patents

High strength steel for induction hardening, and production method therefor Download PDF

Info

Publication number
JP2004183065A
JP2004183065A JP2002353074A JP2002353074A JP2004183065A JP 2004183065 A JP2004183065 A JP 2004183065A JP 2002353074 A JP2002353074 A JP 2002353074A JP 2002353074 A JP2002353074 A JP 2002353074A JP 2004183065 A JP2004183065 A JP 2004183065A
Authority
JP
Japan
Prior art keywords
less
steel
hot rolling
precipitates
induction hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002353074A
Other languages
Japanese (ja)
Other versions
JP3774697B2 (en
Inventor
Tatsuro Ochi
達朗 越智
Manabu Kubota
学 久保田
Shuji Ozawa
修司 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002353074A priority Critical patent/JP3774697B2/en
Publication of JP2004183065A publication Critical patent/JP2004183065A/en
Application granted granted Critical
Publication of JP3774697B2 publication Critical patent/JP3774697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength steel for induction hardening which has excellent induction hardenability, and further has excellent high strength properties, and to provide a production method therefor. <P>SOLUTION: The high strength steel for induction hardening has a composition comprising, by mass, 0.35 to 0.6% C, 0.01 to 1% Si, 0.2 to 2% Mn, 0.005 to 0.15% S, ≤0.35% (inclusive of 0%) Cr, 0.0005 to 0.005% B, 0.015 to 0.05% Al and 0.05 to 0.2% Ti, and in which the contents of N, P and O are limited, and the balance iron with inevitable impurities is included. In the steel, precipitates of Ti with a diameter of ≤0.2 μm are comprised in ≥5 pieces/μm<SP>2</SP>in the matrix of the structure after hot rolling, the ferrite crystal grain size is ≤20 μm, the ferrite fraction is ≤30%, and decarburization depth prescribed in JIS G 0558 is controlled to ≤0.2 mm DM-T. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高強度高周波焼入れ用鋼材及びその製造方法に関する。
【0002】
【従来の技術】
高周波焼入れ工程で製造される各種歯車類、シャフト類は、近年の自動車エンジンの高出力化あるいは環境規制対応にともない、高強度化の指向が強い。また、研磨工程や矯正工程の省略を狙いとした高周波焼入れ時に発生する熱処理歪みの低減の要求も強い。
【0003】
従来の高周波焼入れ鋼には、C:0.35〜0.6%、Si:0.01〜0.15%、Mn:1.0〜1.8%、Mo:0.05〜0.8%、S:0.01〜0.15%、Al:0.015〜0.05%、Ti:0.005〜0.05%、B:0.0005〜0.005%、N:0.002〜0.01%を含有し、P、Cu、O量を特定量以下に制限し、またはさらに特定量のNb、Vの1種または2種を含有し、またはさらにCr、Niの1種または2種を含有し、かつミクロ組織がフェライトとラメラパーライトからなり、フェライトの組織分率が35%以下で、フェライト結晶粒径が20μm以下であることを特徴とする高周波焼入れ前には冷間加工性に優れ、高周波焼入れ後は捩り疲労強度の優れた高周波焼入れ軸部品用として好適な鋼材(例えば特許文献1)、また、C:0.38超〜0.58%、Si:0.01〜0.15%、Mn:0.85〜1.7%、S:0.005〜0.15%、Cr:0.35%以下、B:0.0005〜0.005%、Al:0.015〜0.05%、N:0.007%未満を含有し、TiをN含有量に応じて、0.015〜3.4N+0.02%の範囲含有し、またはさらに、Mo:0.02〜0.3%、Ni:0.02〜1.0%の1種または2種を含有し、かつ、ミクロ組織は実質的にフェライト・パーライト組織であり、フェライト結晶粒径が25μm以下であり、熱間圧延方向に平行な断面の組織のフェライトバンドの評点が1〜5である鋼材。また、上記成分の鋼を加熱温度を1050℃以上、熱間圧延の仕上げ温度を750〜1000℃、熱間圧延に引き続いて750〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する方法により冷間加工性に優れ、高周波焼入れ後には、高強度特性と低熱処理歪み特性に優れた高周波焼入れ用鋼材とその製造方法がある(例えば特許文献2)。
【0004】
これらの鋼材は、鋼成分及びミクロ組織を特定することにより高強度特性を備えるようにしているが、いまだ高強度特性は充分満足できるものではない。
【0005】
【特許文献1】
特開平8−283910号公報
【特許文献2】
特開平11−236644号公報
【0006】
【発明が解決しようとする課題】
本発明は、高周波焼入れ性に優れると共に、高強度特性に優れた高強度高周波焼入れ用鋼材及びその製造方法を提供することを課題とする。
【0007】
【課題を解決しようとする手段】
本発明者は、上記課題を解決すべく鋭意検討した。高周波焼き入れ材の高強度化を狙って、高周波焼き入れ硬化層の硬さを硬くしたり、硬化層深さを深くしていくと、靭性が劣化し、脆性破壊を起こすようになり、強度は逆に劣化する。脆性破壊を抑制して、硬さどおりの強度を得るには、高周波焼き入れ硬化層の旧オーステナイト粒径を微細化し、高周波焼き入れ硬化層の靭性を向上させることがポイントである。高周波焼き入れ硬化層の旧オーステナイト粒径を微細化するためには、高周波焼き入れ前の段階でTiC系析出物を多量微細分散させることが必要である。これを実現するための鋼材製造方法を鋭意検討した結果、TiC系の微細析出物が生成するように鋼成分を選択し、鋳造後A3温度以下に冷却することなく分塊圧延を行い、得られた鋼片を用いて低温加熱圧延をすることにより、TiC系の析出物を多量微細分散した高強度高周波焼入れ鋼材が得られることを見出して本発明を完成した。
【0008】
本発明の要旨は次のとおりである。
【0009】
(1) 質量%で、
C:0.35〜0.6%、
Si:0.01〜1%、
Mn:0.2〜2%、
S:0.005〜0.15%、
Cr:0.35%以下(0%を含む)、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.05〜0.2%
を含有し、
N:0.007%未満(0%を含む)、
P:0.025%(0%を含む)、
O:0.0025%以下(0%を含む)
に各々制限し、残部が鉄及び不可避的不純物からなり、熱間圧延後の組織のマトリックス中に直径0.2μm以下のTiの析出物を5個/μm以上を有し、フェライト結晶粒径が20μm以下であり、フェライト分率が30%以下であり、JIS G 0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする高強度高周波焼き入れ用鋼材。
【0010】
(2) 質量%で、
C:0.35〜0.6%、
Si:0.01〜1%、
Mn:0.2〜2%、
S:0.005〜0.15%、
Cr:0.35%以下(0%を含む)、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.05〜0.15%、
Nb:0.002〜0.05%
を含有し、
N:0.007%未満(0%を含む)
P:0.025%(0%を含む)、
O:0.0025%以下(0%を含む)
に各々制限し、残部が鉄及び不可避的不純物からなり、熱間圧延後の組織のマトリックス中に直径0.2μm以下のNbの析出物、Tiの析出物、またはNbとTiの複合組成からなる析出物をその合計で5個/μm以上を有し、フェライト結晶粒径が20μm以下であり、フェライト分率が30%以下であり、JISG 0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする高強度高周波焼き入れ用鋼材。
【0011】
(3) さらに質量%で、
Mo:1%以下、
Ni:2.5%以下
V:0.4%以下
のうちの1種または2種以上を含有することを特徴とする上記(1)または(2)記載の高強度高周波焼き入れ用鋼材。
【0012】
(4) 質量%で、
C:0.35〜0.6%、
Si:0.01〜1%、
Mn:0.2〜2%、
S:0.005〜0.15%、
Cr:0.35%以下(0%を含む)、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.05〜0.15%
を含有し、
N:0.007%未満(0%を含む)
P:0.025%(0%を含む)、
O:0.0025%以下(0%を含む)
に各々制限し、残部が鉄及び不可避的不純物からなる鋼を、鋳造後A3点温度以下に冷却することなく分塊圧延を行う工程により製造された鋼片を用い、加熱温度を900〜1070℃、熱間圧延の仕上げ温度を800〜970℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件により線材または棒鋼に熱間圧延し、熱間圧延後の組織のマトリックス中に直径0.2μm以下のTiの析出物を5個/μm以上とし、フェライト結晶粒径が20μm以下とし、フェライト分率が30%以下とし、JIS G 0558で規定する脱炭深さ:DM−T0.2mm以下とすることを特徴とする高強度高周波焼き入れ用鋼材の製造方法。
【0013】
(5) 質量%で、
C:0.35〜0.6%、
Si:0.01〜1%、
Mn:0.2〜2%、
S:0.005〜0.15%、
Cr:0.35%以下(0%を含む)、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.05〜0.15%、
Nb:0.002〜0.05%
を含有し、
N:0.007%未満(0%を含む)、
P:0.025%(0%を含む)、
O:0.0025%以下(0%を含む)
に各々制限し、残部が鉄及び不可避的不純物からなる鋼を、鋳造後A3点温度以下に冷却することなく分塊圧延を行う工程により製造された鋼片を用い、加熱温度を900〜1070℃、熱間圧延の仕上げ温度を800〜970℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件により、線材または棒鋼に熱間圧延し、熱間圧延後の組織のマトリックス中に直径0.2μm以下のNbの析出物、Tiの析出物、またはNbとTiの複合組成からなる析出物をその合計で5個/μm以上とし、フェライト結晶粒径が20μm以下とし、フェライト分率が30%以下とし、JIS G 0558で規定する脱炭深さ:DM−T0.2mm以下とすることを特徴とする高強度高周波焼き入れ用鋼材の製造方法。
【0014】
(6) さらに質量%で、
Mo:1%以下、
Ni:2.5%以下
V:0.4%以下
のうちの1種または2種を含有することを特徴とする上記(4)または(5)記載の高強度高周波焼き入れ用鋼材の製造方法。
【0015】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0016】
本発明では、HCR(Hot Charge Rolling)により鋼を鋳造後A3点温度以下に冷却することなく分塊圧延を行って製造した鋼片を用い、棒鋼線材圧延に際して低温加熱圧延すると、TiCの微細析出物がそのまま析出した状態で保持される。その結果、その後の高周波焼き入れ材の旧オーステナイト粒径の微細化に有効となる。また、低温加熱圧延すると、TiCの溶体化を伴う通常加熱圧延や高温加熱圧延に比較すると、析出強化量は低減する。また、全脱炭量も低減し、JIS G 0558で規定する脱炭深さ:DM−T0.2mm以下とすることができる。
【0017】
これによって高周波焼き入れ材の旧オーステナイト粒径の微細化でき、脆性破壊を抑制することによって、高周波焼き入れ材の高強度特性を発揮させることができる。まず、成分の限定理由について説明する。
【0018】
Cは鋼に必要な強度を与えるのに有効な元素であるが、0.35%未満では必要な強さを確保することができず、0.6%を超えると硬くなって冷間加工性が劣化するとともに、高周波焼き入れ後の靭性が顕著に劣化し、かえって強度が劣化する。以上の理由から、C量は、0.35〜0.6%の範囲内にする必要がある。好適範囲は0.4〜0.56%である。
【0019】
Siは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度、焼入れ性を与え、焼戻し軟化抵抗を向上するのに有効な元素である。特に高周波焼き入れ材の粒界強度を増加させ粒界破壊を抑制し、靭性の改善を介して高強度化に顕著な効果を有する。しかしながら、0.01%未満ではその効果は不十分である。一方、1%を超えると、硬さの上昇を招き冷間加工性が劣化する。以上の理由から、その含有量を0.01〜1%の範囲内にする必要がある。なお、特に冷間加工性を重視する場合の好適範囲は、0.01〜0.15%である。また、高周波焼き入れ材の高強度特性を重視する場合の好適範囲は、0.2〜1%であり、高周波焼き入れ材の高強度特性を特に重視する場合の好適範囲は、0.4〜1%である。
【0020】
Mnは、高周波焼入れ性の向上に有効な元素である。高強度特性と低熱処理歪み特性を重視して、十分な焼入れ性を確保するためには、0.2%未満ではその効果は不十分である。一方、2%を超えると、硬さの顕著な上昇を招き冷間加工性が劣化するので、0.2%〜2%の範囲内にする必要がある。
【0021】
Sは鋼中でMnSを形成し、これによる被削性の向上を目的として添加するが、0.005%未満ではその効果は不十分である。一方、0.15%を超えるとその効果は飽和し、むしろ粒界偏析を起こし粒界脆化を招く。以上の理由から、Sの含有量を0.005〜0.15%の範囲内にする必要がある。好適範囲は0.005〜0.04%である。
【0022】
Crは焼入れ性の向上に有効な元素である。但し、Crはセメンタイト中に固溶してセメンタイトを安定化する。そのために、高周波焼入れの短時間加熱時にセメンタイトの溶け込み不良を起こしやすくなり、硬さムラの原因となる。この挙動は、特に0.35%を超えると顕著になる。以上の理由から、その含有量を0.35%以下(0%を含む)に制限する必要がある。好適範囲は0.15%以下である。硬さムラを厳密に抑制したい場合には、Crを0.15%以下に制限することが望ましい。
【0023】
Bは次の2点を狙いとして添加する。▲1▼高周波焼入れに際して、鋼に焼入れ性を付与する。▲2▼高周波焼入れ材の粒界強度を向上させることにより、靭性の向上を介して、強度を飛躍的に向上させる。0.0005%未満の添加では、上記の効果は不十分であり、0.005%を超えるとその効果は飽和するので、その含有量を0.0005〜0.005%の範囲内にする必要がある。好適範囲は0.001〜0.003%である。
【0024】
Alは脱酸剤として添加する。0.015%未満ではその効果は不十分である。一方、0.05%を超えると、AlNが圧延加熱時に溶体化しないで残存し、Tiの析出物の析出サイトとなり、冷間加工性を劣化させる。以上の理由から、その含有量を0.015〜0.05%の範囲内にする必要がある。好適範囲は0.02〜0.04%である。
【0025】
Nは以下の2点の理由から極力制限することが望ましい。▲1▼Bは上記のように焼入れ性向上、粒界強化等を目的として添加するが、これらのBの効果は鋼中で固溶Bの状態で初めて効果を発現するため、N量を低減してBNの生成を抑制することが必須である。▲2▼また、Nは鋼中のTiと結びつくと粒制御にほとんど寄与しない粗大なTiNを生成し、これがNbC、NbC主体のNb(CN)とTiC、TiC主体のTi(CN)の析出サイトとなり、これらのTiの炭窒化物、Nbの炭窒化物の微細析出を阻害し、高周波焼き入れ材の旧オーステナイト粒の微細化に悪影響を及ぼす。上記の悪影響はN量が0.007%以上の場合特に顕著である。以上の理由から、その含有量を0.007%未満(0%を含む)に制限する必要がある。好適範囲は0.005%以下である。
【0026】
Tiは本発明においては最も重要な成分であり、Nと結合してTiNを生成して固溶Nを固定し、BNの生成を抑制する作用を有する。このため鋼中に添加したBによる高周波焼入れ性増加等の作用を発揮させることができる。また、鋼を鋳造後A3点以下に冷却することなく分塊圧延すると、TiはC、Nと結合してTiC、Ti(CN)を生成し、鋼片には、これらの析出物が微細分散する。この鋼片を用いて低温加熱圧延により、棒鋼線材圧延を行うことにより、棒鋼線材の鋼中にTi系析出物を多量微細分散させることができる。これにより、高周波焼き入れ後の旧オーステナイト粒径を微細化することが可能となる。高周波焼き入れ材の高強度化を図るためには、高周波焼き入れ硬化層の硬さを増加させることが有効であるが、従来の検討では、硬化層の靭性が劣化して脆性破壊を起こし、かえって強度が劣化することが多かった。これに対して、上記のように鋼中にTi系析出物を多量微細分散させて、高周波焼き入れ後の旧オーステナイト粒径を微細化すると、靭性が向上し脆性破壊が抑制され、結果的に従来にはないレベルの高強度化の実現が可能となる。
【0027】
Ti含有量が0.05%未満では、TiC、Ti(CN)を多量・微細に生成させるには不十分であり、0.2%を超えるとTiCによる析出硬化が顕著になり、冷鍛割れの原因となるので好ましくない。
【0028】
したがって、Tiの含有量を0.05〜0.2%とした。好適範囲は0.06〜0.15%である。また、より一層高周波焼き入れ材の細粒化を図り、靭性の改善と高強度化を図る場合の好適範囲は、0.07〜0.15%である。
【0029】
Pは冷間鍛造時の変形抵抗を高め、靭性を劣化させる元素であるため、冷間加工性が劣化する。また、高周波焼入れ、焼戻し後の部品の結晶粒界を脆化させることによって、最終製品の疲労強度を劣化させるのでできるだけ低減することが望ましい。従ってその含有量を0.025%(0%を含む)以下に制限する必要がある。好適範囲は0.015%以下である。
【0030】
また、Oは鋼中でAlのような酸化物系介在物を形成する。酸化物系介在物が鋼中に多量に存在すると、冷間加工性が劣化する。O含有量が0.0025%を超えると特にその傾向が顕著になる。以上の理由から、その含有量を0.0025%以下(0%を含む)に制限する必要がある。好適範囲は0.002%以下である。
【0031】
NbはTiと同様の効果を有し、鋼中のC、Nと結びついてNb(CN)を形成し、高周波焼き入れ硬化層の結晶粒の微細を通じて高強度化に有効な元素である。0.002%未満ではその効果は不十分である。一方、0.05%を超えると、素材の硬さが硬くなって冷間加工性が劣化する。以上の理由から、その含有量を0.002〜0.05%の範囲内にする必要がある。好適範囲は、0.005〜0.04%である。また、より一層高周波焼き入れ材の細粒化を図り、靭性の改善と高強度化を図る場合の好適範囲は、0.02〜0.04%である。
【0032】
次に、本発明では、Mo、Ni、Vの1種又は2種以上を含有することができる。
【0033】
Moは鋼に強度、焼入れ性を与えるとともに、高周波焼き入れ材の粒界強度を増加させ粒界破壊を抑制し、靭性の改善を介して高強度化に顕著な効果を有する元素である。しかしながら、1%を超えて添加すると硬さの上昇を招き冷間加工性が劣化する。
【0034】
Niも鋼に強度、焼入れ性を与えるのに有効な元素であるが、2.5%を超えて添加すると硬さの上昇を招き冷間加工性が劣化する。Vも鋼に強度、焼入れ性を与えるのに有効な元素であるが、0.4%を超えて添加すると硬さの上昇を招き冷間加工性が劣化する。
【0035】
次に本発明では、熱間圧延後のマトリックス中に直径0.2μm以下のTiの析出物を5個/μm以上を有するが、このように限定した理由を以下に述べる。
【0036】
高周波焼き入れ材の旧オーステナイト粒径を微細化するためには、結晶粒界をピン止めする粒子を多量、微細に分散させることが有効であり、粒子の直径が小さいほど、また量が多いほどピン止め粒子の数が増加するため好ましい。本発明でいうTiの析出物はTiC、TiN、Ti(CN)をさす。熱間圧延後の直径0.2μm以下のTiの微細析出物をその合計で5個/μm以上分散させると、高周波加熱温度域において結晶粒が微細なまま保持され、高周波焼き入れ後には、微細な旧オーステナイト粒径を有する優れた強度靭性を有する組織が得られる。微細析出物の個数がその合計で5個/μm未満ではこのような効果は小さい。以上の理由から、マトリックス中に直径0.2μm以下のTiの析出物を5個/μm以上分散していることが必要である。好適範囲は10個/μm以上である。
【0037】
また、ミクロ組織をフェライト結晶粒径が20μm以下であり、フェライト分率が30%以下としたのは、高周波焼入れ性の観点から粒径とフェライト分率を規定したものである。高周波焼入れは急速加熱であるために、高周波焼入れ前の組織のフェライトが粗大であると、フェライトの部分は、オーステナイト化後、炭素の拡散が不十分であり、炭素濃度が添加炭素濃度よりも低くなり、焼入れ後、その位置での硬さが小さくなる。
【0038】
フェライト結晶粒径が20μmを超え、フェライト分率が30%を超えると焼入れ後の硬さムラが特に顕著になり、低い強度で破壊しやすくなる。
【0039】
なお、本発明でいうフェライト結晶粒径とは、フェライトの形態が粒状の場合はその円相当径に相当し、フェライトの形態が板状の場合はその幅に相当する。なお、本発明では、フェライト以外の組織は、パーライトまたはベイナイトであることが望ましいが、一部マルテンサイトが混入しても特に問題ない。
【0040】
また、脱炭深さは強度と密接に関係しており、脱炭深さが深いと強度が低下すると共に、表面層の十分な硬さが得られない。本発明では後述する低温加熱圧延を施すことにより、JIG G 0558で規定する脱炭深さ:DM−T0.2mm以下とすることができ、従来の脱炭深さよりも浅くすることが可能となり、高強度高周波焼入れ用鋼材が得られる。このため、本発明では、JIS G 0558で規定する脱炭深さ:DM−T0.2mm以下に制限した。
【0041】
次に熱間圧延条件について説明する。
【0042】
本発明成分からなる鋼を、転炉、電気炉等の通常の方法によって溶製し、成分調整を行い、鋳造後、A3点以下に冷却することなく分塊圧延工程を経て、線材または棒鋼に以下の低温加熱圧延を行う。
【0043】
即ち、加熱温度は900〜1070℃のAr点直上の温度として、熱間圧延の仕上げ温度を800〜970℃の熱間圧延を行う。熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件で線材または棒鋼に熱間加工する。
【0044】
加熱温度を900〜1070℃のAr点直上の温度とするのは、鋳造後にA3点温度以下に冷却することなしに分塊圧延することによって生成した微細TiC析出物をマトリックスに固溶させないようにするためであり、900℃未満では圧延温度がフェライト域圧延となるので好ましくなく、また1070℃を超えると析出物がマトリックスに固溶するので好ましくない。微細TiC析出物をそのままの状態で保持することにより、高周波焼入れ時に微細な組織が得られることができるようにするため、加熱温度を900〜1070℃とした。なお、加熱温度が1070℃を超えると全脱炭が顕著になるため、全脱炭抑制の視点からも、加熱温度をこの温度範囲に制限とした。
【0045】
次に、熱間圧延の仕上げ温度を800〜970℃とするのは次の理由による。仕上げ温度が800℃未満では、圧延材のフェライト脱炭が進行するために、結果的に全脱炭も顕著になり、高周波焼入れ材の表面硬さが出なくなる。一方、仕上げ温度が970℃を超えると、圧延材のフェライト粒径が粗大となり、高周波焼き入れ性の劣化を招く。以上の理由から、熱間圧延の仕上げ温度を800〜970℃とする。好適温度は850〜960℃である。
【0046】
次に、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷するのは次の理由による。冷却速度が1℃/秒を超えると、圧延材の硬さが上昇し冷間鍛造性・冷間加工性が劣化する。そのため、冷却速度1℃/秒以下に制限する。好適範囲は0.7℃/秒以下である。なお、冷却速度を小さくする方法としては、圧延ラインの後方に保温カバーまたは熱源付き保温カバーを設置し、これにより、徐冷を行う方法が挙げられる。
【0047】
本発明では、鋳片のサイズ、凝固時の冷却速度については特に限定するものではなく、本発明の要件を満足すればいずれの条件でも良い。また、本発明鋼は、圧延ままの棒鋼を冷間鍛造や切削加工で部品に成形する工程だけでなく、冷間鍛造や切削加工の前に焼鈍工程や温・熱間鍛造を経由する場合、温・熱間鍛造工程で部品に成形される場合、全て切削工程で部品に成形される場合にも適用できる。
【0048】
【実施例】
以下に、本発明の効果を実施例により、さらに具体的に示す。
【0049】
表1に示す組成を有する転炉溶製鋼を連続鋳造し、鋳造後、鋼をA3点温度以下に冷却することなく分塊圧延を行い、162mm角の鋼片(圧延素材)とした(分塊圧延条件I)。比較鋼c、dについては、連続鋳造後、鋼を一旦常温まで冷却した後、再度A3点以上に加熱して分塊圧延を行い、162mm角の鋼片(圧延素材)とした(分塊圧延条件II)。
【0050】
続いて、熱間加工により、直径37〜44mmの棒鋼を製造した。熱間加工条件を表2に示す。熱間加工後の冷却速度は冷却床に設置した徐冷カバーを用いて調整した。比較鋼a、bはJISのS45CおよびS53Cである。
【0051】
熱間加工後の棒鋼のTiの析出物、Nbの析出物の分散状態を調べるために、棒鋼のマトリックス中に存在する析出物を抽出レプリカ法によって採取し、透過型電子顕微鏡で観察した。観察方法は30000倍で20視野程度観察し、1視野中の直径0.2μm以下のTiの析出物、Nbの析出物、TiとNbの複合組成からなる析出物の数を数え、1平方μm当たりの数に換算した。
【0052】
圧延後の棒鋼の組織観察を行い、フェライト粒径およびフェライト分率を測定した。また、圧延後の棒鋼のビッカース硬さを測定した。硬さを冷間鍛造性、冷間転造性の指標とした。また、全脱炭深さの調査も行った。
【0053】
次に、圧延ままの棒鋼について、ハイスドリルによる寿命速度を用いて、被削性を評価した。用いたドリルはJIS−SKH51で直径3mmのハイスドリルであり、穴あけ条件は送り0.25mm/rev、穴深さ9mm、切削油はスピンドル油を用い、2リットル/分である。評価試験は、切削速度を種々変化させて各切削速度における切削不能になるまでのドリル寿命から切削−ドリル寿命曲線を求め、これを寿命速度とした。
【0054】
次に、圧延ままの棒鋼を周波数8.5kHzで高周波焼き入れを行い、その後170℃×1時間の条件で焼戻しを行った。当該材について、最表面から硬さを測定い、これを高周波焼き入れ硬さとした。
【0055】
また、圧延ままの棒鋼から、平行部20mmの静的捩り試験片を採取した。試験片平行部の中央の上下に深さ2mm、先端曲率1.0Rの切欠きを付けた。本試験片を周波数8.5kHzで高周波焼き入れを行い、その後170℃×1時間の条件で焼戻しを行った。高周波焼き入れ材について、硬化層深さ、硬化層の旧オーステナイト粒度を測定した。また、静的捩り試験を行い、静的捩り強度を評価した。
【0056】
これらの調査結果を熱間加工条件とあわせて表2に示す。ハイスドリル寿命は、比較例28(S53C)のドリル寿命を100とした時の相対値で示した。また、静的捩り強度試験における試験片の破壊モードを、せん断延性的に破壊した場合には延性、主応力により脆性的に破壊した場合には脆性と記載した。
【0057】
比較例27、28はJISのS45CおよびS53Cの特性であるが、本発明例の切削性は、比較例27、28に比較して、同一炭素量で比較すると、概ね同等以上の良好な被削性を示す。次に、同一炭素量で比較すると、本発明例は比較例27、28に比較して、高周波焼き入れ硬さは硬い。またγ粒度は顕著に微細であり、静的捩り破壊はいずれも延性モードで破壊し、捩り強度は優れた特性が得られている。
【0058】
次に、表2において、比較例20はCの含有量が本願規定の範囲を下回った場合であり、本発明例に比較して、高周波焼き入れ材の捩り強度特性が劣る。比較例21はCの含有量が本願規定の範囲を上回った場合であり、圧延材の切削性が不良であるとともに、高周波焼き入れ材の捩り試験において、脆性破壊を呈し、本発明例に比較して捩り強度特性が劣る。
【0059】
比較例22はCrの含有量が本願規定の範囲を上回った場合であり、高周波焼き入れ時に炭化物の溶け込み不良が顕著なため、高周波焼き入れ硬さが低めになり、硬化層深さも浅く、本発明例に比較して捩り強度特性が劣る。
比較例23はBの含有量が本願規定の範囲を下回った場合であり、高周波焼き入れ材の硬化層深さが浅く、高周波焼き入れ材の捩り試験において、脆性破壊を呈し、本発明例に比較して捩り強度特性が劣る。
【0060】
比較例24はTiの含有量が本願規定の範囲を下回った場合であり、比較例26はNの含有量が本願規定の範囲を上回った場合であり、いずれも圧延ままでの析出物の個数が不十分であり、高周波焼き入れ材の硬化層のオーステナイト粒が十分に微細化されておらず、高周波焼き入れ材の捩り試験において脆性破壊を呈し、本発明例に比較して捩り強度特性が劣る。
【0061】
比較例25はTiの含有量が本願規定の範囲を上回った場合であり、圧延ままの硬さが硬くなり切削性が劣る。高周波焼き入れ材の捩り試験において、TiNによる脆化により、脆性破壊を呈し、本発明例に比較して捩り強度特性が劣る。
【0062】
比較例29、30は鋼片の製造方法が本願発明と異なり、鋳造後、鋼をA3点温度以下に一旦冷却した後分塊圧延を行う方法で製造した場合である。いずれも圧延ままでの析出物の個数が不十分であり、高周波焼き入れ材の硬化層のオーステナイト粒が十分に微細化されておらず、高周波焼き入れ材の捩り試験において脆性破壊を呈し、本発明例に比較して捩り強度特性が劣る。
【0063】
比較例31は熱間加工の加熱温度が本願規定の範囲を上回った場合であり、析出物個数は本願発明の範囲を下回り、全脱炭深さも本願発明の範囲を上回る。そして、高周波焼き入れ硬さも低く、高周波焼き入れ材の硬化層のオーステナイト粒が十分に微細化されておらず、高周波焼き入れ材の捩り試験において脆性破壊を呈し、本発明例に比較して捩り強度特性が劣る。
【0064】
比較例32は熱間加工の仕上げ温度が本願規定の範囲を上回った場合であり、フェライト粒径も本願規定の範囲を上回り、高周波焼き入れ硬さは低く高周波焼き入れ深さは浅く、捩り強度特性は劣る。
【0065】
比較例33は熱間加工の仕上げ温度が本願規定の範囲を下回った場合であり、フェライト分率も本願規定の範囲を上回り、全脱炭深さも本願発明の範囲を上回り、同一炭素量の本発明例に比較して高周波焼き入れ硬さも低く、高周波焼き入れ深さは浅く、捩り強度特性は劣る。
【0066】
比較例34は熱間加工後の冷却速度が本願規定の範囲を上回った場合であり、圧延ままの硬さが硬く、切削性が不良である。
【0067】
【表1】

Figure 2004183065
【0068】
【表2】
Figure 2004183065
【0069】
【発明の効果】
本発明の高強度高周波焼入れ用鋼材とその製造方法を用いれば、冷間鍛造や切削加工時には冷間加工性に優れ、高周波焼入れ後には靭性に富んだ微細な組織が得られ、脆性破壊が抑制され、硬化層の硬さに見合った優れた強度特性を得ることが可能となり、産業上の効果は極めて顕著なるものがある。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength steel for induction hardening and a method for producing the same.
[0002]
[Prior art]
Various gears and shafts manufactured in the induction hardening process have a strong tendency to increase in strength in response to the recent increase in output of automobile engines or compliance with environmental regulations. Further, there is a strong demand for reduction of heat treatment distortion generated at the time of induction hardening in order to omit the polishing step and the correction step.
[0003]
Conventional induction hardened steels include C: 0.35 to 0.6%, Si: 0.01 to 0.15%, Mn: 1.0 to 1.8%, Mo: 0.05 to 0.8. %, S: 0.01 to 0.15%, Al: 0.015 to 0.05%, Ti: 0.005 to 0.05%, B: 0.0005 to 0.005%, N: 0. 002-0.01%, the amount of P, Cu, O is limited to a specific amount or less, or further contains one or two types of Nb and V, or one type of Cr and Ni Or a microstructure comprising ferrite and lamellar perlite, wherein the ferrite has a microstructure fraction of 35% or less and a ferrite crystal grain size of 20 μm or less. Excellent in workability, suitable for induction hardened shaft parts with excellent torsional fatigue strength after induction hardening Steel material (for example, Patent Document 1), C: more than 0.38 to 0.58%, Si: 0.01 to 0.15%, Mn: 0.85 to 1.7%, S: 0.005 to 0.15%, Cr: 0.35% or less, B: 0.0005 to 0.005%, Al: 0.015 to 0.05%, N: less than 0.007%, N containing Ti Depending on the amount, it is contained in the range of 0.015 to 3.4N + 0.02%, or one or two of Mo: 0.02 to 0.3% and Ni: 0.02 to 1.0%. And the microstructure is substantially a ferrite-pearlite structure, the ferrite crystal grain size is 25 μm or less, and the score of the ferrite band of the structure having a cross section parallel to the hot rolling direction is 1 to 5. Steel. In addition, the steel of the above component is heated at a heating temperature of 1050 ° C. or higher, a hot rolling finish temperature of 750 to 1000 ° C., and subsequently to a temperature range of 750 to 500 ° C. at a cooling rate of 1 ° C./sec or less following the hot rolling. There is a steel material for induction hardening which is excellent in cold workability due to a cooling method and has excellent high strength characteristics and low heat treatment distortion characteristics after induction hardening, and a method for producing the same (for example, Patent Document 2).
[0004]
Although these steel materials are designed to have high strength characteristics by specifying the steel composition and microstructure, the high strength characteristics are not yet sufficiently satisfactory.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 8-283910 [Patent Document 2]
JP-A-11-236644
[Problems to be solved by the invention]
An object of the present invention is to provide a steel material for high-strength induction hardening, which is excellent in high-frequency hardenability and has high strength properties, and a method for producing the same.
[0007]
[Means to solve the problem]
The inventor of the present invention has intensively studied to solve the above problems. If the hardness of the induction hardened hardened layer is increased or the depth of the hardened layer is increased in order to increase the strength of the induction hardened material, the toughness will deteriorate and brittle fracture will occur. Deteriorates conversely. In order to suppress the brittle fracture and obtain the strength according to the hardness, the point is to reduce the prior austenite grain size of the induction hardened hardened layer and to improve the toughness of the induction hardened hardened layer. In order to reduce the prior austenite grain size of the induction hardened hardened layer, it is necessary to finely disperse a large amount of TiC-based precipitates before the induction hardening. As a result of intensive studies on a steel material manufacturing method for realizing this, the steel composition was selected so that TiC-based fine precipitates were formed, and after casting, slab rolling was performed without cooling to a temperature of A3 or less. The present invention was completed by finding that a high-strength induction hardened steel material in which a large amount of TiC-based precipitates were finely dispersed was obtained by performing low-temperature heating rolling using the obtained steel slab.
[0008]
The gist of the present invention is as follows.
[0009]
(1) In mass%,
C: 0.35 to 0.6%,
Si: 0.01-1%,
Mn: 0.2-2%,
S: 0.005 to 0.15%,
Cr: 0.35% or less (including 0%),
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.05-0.2%
Containing
N: less than 0.007% (including 0%),
P: 0.025% (including 0%),
O: 0.0025% or less (including 0%)
And the balance consists of iron and unavoidable impurities. The matrix of the structure after hot rolling has at least 5 precipitates of Ti having a diameter of 0.2 μm or less per 5 μm 2 or more, and a ferrite crystal grain size. Is not more than 20 μm, the ferrite fraction is not more than 30%, and the decarburization depth specified by JIS G 0558: DM-T is 0.2 mm or less.
[0010]
(2) In mass%,
C: 0.35 to 0.6%,
Si: 0.01-1%,
Mn: 0.2-2%,
S: 0.005 to 0.15%,
Cr: 0.35% or less (including 0%),
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.05-0.15%,
Nb: 0.002 to 0.05%
Containing
N: less than 0.007% (including 0%)
P: 0.025% (including 0%),
O: 0.0025% or less (including 0%)
And the balance consists of iron and unavoidable impurities, and in the matrix of the structure after hot rolling, a precipitate of Nb with a diameter of 0.2 μm or less, a precipitate of Ti, or a composite composition of Nb and Ti The total number of the precipitates is 5 / μm 2 or more, the ferrite crystal grain size is 20 μm or less, the ferrite fraction is 30% or less, and the decarburization depth specified by JISG 0558: DM-T0. A high-strength induction hardening steel material having a thickness of 2 mm or less.
[0011]
(3) In mass%,
Mo: 1% or less,
Ni: 2.5% or less V: 0.4% or less The steel material for high-strength induction hardening according to the above (1) or (2), which contains one or more of V and 0.4% or less.
[0012]
(4) In mass%,
C: 0.35 to 0.6%,
Si: 0.01-1%,
Mn: 0.2-2%,
S: 0.005 to 0.15%,
Cr: 0.35% or less (including 0%),
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.05 to 0.15%
Containing
N: less than 0.007% (including 0%)
P: 0.025% (including 0%),
O: 0.0025% or less (including 0%)
The steel is made by a process of performing slab rolling without cooling the steel consisting of iron and unavoidable impurities to a temperature below the A3 point after casting. The heating temperature is 900 to 1070 ° C. Hot rolling to 800 or 970 ° C., followed by hot rolling, followed by hot rolling to 800 or 500 ° C. in a temperature range of 800 to 500 ° C. at a cooling rate of 1 ° C./sec or less, to a wire or a bar; In the matrix of the structure after hot rolling, precipitates of Ti having a diameter of 0.2 μm or less are set to 5 / μm 2 or more, the ferrite crystal grain size is 20 μm or less, the ferrite fraction is 30% or less, and JIS G 0558. Decarburization depth specified by: DM-T 0.2 mm or less, a method for producing a high-strength induction hardened steel material.
[0013]
(5) In mass%,
C: 0.35 to 0.6%,
Si: 0.01-1%,
Mn: 0.2-2%,
S: 0.005 to 0.15%,
Cr: 0.35% or less (including 0%),
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.05-0.15%,
Nb: 0.002 to 0.05%
Containing
N: less than 0.007% (including 0%),
P: 0.025% (including 0%),
O: 0.0025% or less (including 0%)
The steel is made by a process of performing slab rolling without cooling the steel consisting of iron and unavoidable impurities to a temperature below the A3 point after casting. The heating temperature is 900 to 1070 ° C. Hot rolling to a wire rod or a steel bar under the condition that the finishing temperature of hot rolling is 800 to 970 ° C., and the temperature range of 800 to 500 ° C. is gradually cooled at a cooling rate of 1 ° C./sec or less following the hot rolling. A total of 5 precipitates of Nb, Ti precipitates, or precipitates composed of a composite composition of Nb and Ti having a diameter of 0.2 μm or less in the matrix of the structure after hot rolling, and a total of 5 precipitates / μm 2 or more; A ferrite crystal grain size of 20 μm or less, a ferrite fraction of 30% or less, and a decarburization depth specified by JIS G 0558: DM-T of 0.2 mm or less. Manufacture Law.
[0014]
(6) In mass%,
Mo: 1% or less,
Ni: 2.5% or less V: 0.4% or less The method for producing a steel material for high-strength induction hardening as described in (4) or (5) above, wherein one or two of V: 0.4% or less are contained. .
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0016]
In the present invention, when a steel slab manufactured by casting a steel by HCR (Hot Charge Rolling) and then performing slab rolling without cooling to a temperature below A3 point is used, and low-temperature heating and rolling is performed at the time of bar rod wire rolling, fine precipitation of TiC is obtained. The material is kept in a state where it is deposited as it is. As a result, it is effective for making the former austenite grain size of the induction hardened material thereafter fine. Further, when the low-temperature heating rolling is performed, the amount of precipitation strengthening is reduced as compared with the normal heating rolling and the high-temperature heating rolling that involve solution of TiC. Also, the total decarburization amount can be reduced, and the decarburization depth: DM-T 0.2 mm or less specified in JIS G 0558 can be achieved.
[0017]
As a result, the former austenite grain size of the induction hardened material can be reduced, and the high strength characteristics of the induction hardened material can be exhibited by suppressing brittle fracture. First, the reasons for limiting the components will be described.
[0018]
C is an effective element for giving the necessary strength to steel, but if it is less than 0.35%, the required strength cannot be secured, and if it exceeds 0.6%, it becomes hard and cold workable. , The toughness after induction hardening is remarkably deteriorated, and the strength is rather deteriorated. For the above reasons, the C content needs to be in the range of 0.35 to 0.6%. The preferred range is 0.4-0.56%.
[0019]
Si is an element effective for deoxidizing steel, and is also an element effective for imparting necessary strength and hardenability to steel and improving tempering softening resistance. In particular, it has a remarkable effect of increasing the grain boundary strength of the induction hardened material, suppressing grain boundary fracture, and increasing the strength through improvement of toughness. However, if the content is less than 0.01%, the effect is insufficient. On the other hand, if it exceeds 1%, the hardness is increased and the cold workability is deteriorated. For the above reasons, the content needs to be within the range of 0.01 to 1%. In addition, a preferable range when the cold workability is particularly important is 0.01 to 0.15%. In addition, a preferable range when the high strength property of the induction hardened material is emphasized is 0.2 to 1%, and a preferable range when the high strength property of the induction hardened material is particularly emphasized is 0.4 to 1%. 1%.
[0020]
Mn is an element effective for improving induction hardenability. In order to ensure sufficient hardenability with emphasis on high strength characteristics and low heat treatment distortion characteristics, the effect is insufficient if less than 0.2%. On the other hand, if it exceeds 2%, the hardness will be remarkably increased and the cold workability will be degraded, so it is necessary to be within the range of 0.2% to 2%.
[0021]
S forms MnS in steel and is added for the purpose of improving machinability. However, if less than 0.005%, its effect is insufficient. On the other hand, when the content exceeds 0.15%, the effect is saturated, and rather, grain boundary segregation is caused to cause grain boundary embrittlement. For the above reasons, the content of S needs to be in the range of 0.005 to 0.15%. The preferred range is 0.005 to 0.04%.
[0022]
Cr is an element effective for improving hardenability. However, Cr stabilizes the cementite by forming a solid solution in the cementite. For this reason, poor penetration of cementite is likely to occur during short-time heating in induction hardening, which causes uneven hardness. This behavior becomes remarkable especially when it exceeds 0.35%. For the above reasons, it is necessary to limit the content to 0.35% or less (including 0%). A preferred range is 0.15% or less. In order to strictly suppress unevenness in hardness, it is desirable to limit Cr to 0.15% or less.
[0023]
B is added aiming at the following two points. (1) At the time of induction hardening, the steel is given hardenability. {Circle around (2)} By improving the grain boundary strength of the induction hardened material, the strength is dramatically improved through improvement of toughness. If the addition is less than 0.0005%, the above effect is insufficient, and if it exceeds 0.005%, the effect is saturated, so the content needs to be within the range of 0.0005 to 0.005%. There is. The preferred range is 0.001 to 0.003%.
[0024]
Al is added as a deoxidizing agent. If it is less than 0.015%, the effect is insufficient. On the other hand, when the content exceeds 0.05%, AlN remains without being solutionized at the time of rolling and heating, and becomes a precipitation site of a precipitate of Ti, thereby deteriorating cold workability. For the above reasons, the content needs to be in the range of 0.015 to 0.05%. The preferred range is 0.02 to 0.04%.
[0025]
It is desirable to limit N as much as possible for the following two reasons. {Circle around (1)} B is added for the purpose of improving hardenability and strengthening the grain boundary as described above. However, the effect of these B is exhibited only in the state of solid solution B in steel, so the N content is reduced. Therefore, it is essential to suppress the generation of BN. {Circle around (2)} When N combines with Ti in steel, it forms coarse TiN which hardly contributes to grain control, and this is a precipitation site of NbC, Nb (CN) mainly composed of NbC and TiC, Ti (CN) mainly composed of TiC. This hinders the fine precipitation of these carbonitrides of Ti and Nb and adversely affects the refinement of the prior austenite grains of the induction hardened material. The above adverse effects are particularly remarkable when the N content is 0.007% or more. For the above reasons, it is necessary to limit the content to less than 0.007% (including 0%). A preferred range is 0.005% or less.
[0026]
Ti is the most important component in the present invention, and has an effect of binding with N to form TiN, fix solid solution N, and suppress the formation of BN. For this reason, the effect of increasing the induction hardening property by B added to the steel can be exhibited. In addition, when the steel is cast and slab-rolled without being cooled to the A3 point or less, Ti combines with C and N to form TiC and Ti (CN), and these precipitates are finely dispersed in the steel slab. I do. By performing bar rod wire rolling by low-temperature heating rolling using the steel slab, a large amount of Ti-based precipitates can be finely dispersed in the steel of the bar steel rod. This makes it possible to reduce the prior austenite grain size after induction hardening. In order to increase the strength of the induction hardened material, it is effective to increase the hardness of the induction hardened hardened layer.However, according to conventional studies, the toughness of the hardened layer deteriorates, causing brittle fracture. Instead, the strength often deteriorated. On the other hand, when a large amount of Ti-based precipitates are finely dispersed in the steel as described above to reduce the prior austenite grain size after induction hardening, toughness is improved and brittle fracture is suppressed, and as a result, It is possible to realize an unprecedented level of high strength.
[0027]
If the Ti content is less than 0.05%, it is insufficient to generate a large amount and fineness of TiC and Ti (CN), and if it exceeds 0.2%, precipitation hardening due to TiC becomes remarkable, and cold forging cracking occurs. This is not preferred because it causes
[0028]
Therefore, the content of Ti is set to 0.05 to 0.2%. The preferred range is 0.06-0.15%. Further, a preferable range for further reducing the size of the induction hardened material to improve toughness and increasing the strength is 0.07 to 0.15%.
[0029]
Since P is an element that increases the deformation resistance during cold forging and deteriorates toughness, cold workability deteriorates. In addition, the fatigue strength of the final product is degraded by embrittlement of the crystal grain boundaries of the component after induction hardening and tempering, so that it is desirable to reduce the fatigue strength as much as possible. Therefore, it is necessary to limit the content to 0.025% (including 0%). A preferred range is 0.015% or less.
[0030]
O forms oxide inclusions such as Al 2 O 3 in steel. When a large amount of oxide-based inclusions is present in steel, the cold workability deteriorates. When the O content exceeds 0.0025%, the tendency becomes particularly remarkable. For the above reasons, it is necessary to limit the content to 0.0025% or less (including 0%). The preferred range is 0.002% or less.
[0031]
Nb has an effect similar to that of Ti, forms Nb (CN) by combining with C and N in steel, and is an element effective in increasing the strength through fine crystal grains of the induction hardened hardened layer. If less than 0.002%, the effect is insufficient. On the other hand, when the content exceeds 0.05%, the hardness of the material becomes hard and the cold workability deteriorates. For the above reasons, the content needs to be within the range of 0.002 to 0.05%. The preferred range is 0.005 to 0.04%. Further, a preferable range in which the grain size of the induction hardened material is further reduced to improve the toughness and increase the strength is 0.02 to 0.04%.
[0032]
Next, in the present invention, one, two or more of Mo, Ni, and V can be contained.
[0033]
Mo is an element that imparts strength and hardenability to steel, increases grain boundary strength of the induction hardened material, suppresses grain boundary fracture, and has a remarkable effect on increasing strength through improvement of toughness. However, if it is added in excess of 1%, the hardness is increased and the cold workability is deteriorated.
[0034]
Ni is also an element effective in imparting strength and hardenability to steel, but if added in excess of 2.5%, the hardness is increased and the cold workability is degraded. V is also an effective element for imparting strength and hardenability to steel, but if added in excess of 0.4%, hardness is increased and cold workability is degraded.
[0035]
Next, in the present invention, the matrix after hot rolling has 5 precipitates / μm 2 or more of Ti having a diameter of 0.2 μm or less, and the reason for such limitation is described below.
[0036]
In order to reduce the former austenite grain size of the induction hardened material, it is effective to disperse a large amount and finely of the particles that pin the crystal grain boundaries. This is preferable because the number of pinning particles increases. In the present invention, the precipitate of Ti refers to TiC, TiN, Ti (CN). When fine precipitates of Ti having a diameter of 0.2 μm or less after hot rolling are dispersed at a total of 5 / μm 2 or more, crystal grains are kept fine in a high-frequency heating temperature range, and after high-frequency quenching, A structure having excellent strength toughness having a fine prior austenite grain size is obtained. If the total number of fine precipitates is less than 5 / μm 2 , such an effect is small. For the above reasons, it is necessary that 5 precipitates / μm 2 or more of Ti having a diameter of 0.2 μm or less are dispersed in the matrix. A preferable range is 10 pieces / μm 2 or more.
[0037]
Further, the reason why the microstructure is such that the ferrite crystal grain size is 20 μm or less and the ferrite fraction is 30% or less is that the grain size and the ferrite fraction are specified from the viewpoint of induction hardening. Because induction quenching is rapid heating, if the ferrite in the structure before induction quenching is coarse, the part of the ferrite, after austenitizing, the diffusion of carbon is insufficient, and the carbon concentration is lower than the added carbon concentration. After quenching, the hardness at that position decreases.
[0038]
When the ferrite crystal grain size exceeds 20 μm and the ferrite fraction exceeds 30%, the hardness unevenness after quenching becomes particularly remarkable, and it is easy to break down with low strength.
[0039]
The ferrite crystal grain size referred to in the present invention corresponds to a circle-equivalent diameter when the form of the ferrite is granular, and corresponds to a width when the form of the ferrite is plate-like. In the present invention, the structure other than ferrite is desirably pearlite or bainite, but there is no particular problem even if martensite is partially mixed.
[0040]
In addition, the decarburization depth is closely related to the strength. If the decarburization depth is large, the strength is reduced, and sufficient hardness of the surface layer cannot be obtained. In the present invention, by performing low-temperature heating rolling described below, the decarburization depth specified by JIG G0558: DM-T can be 0.2 mm or less, and can be made shallower than the conventional decarburization depth. High strength induction hardened steel is obtained. For this reason, in the present invention, the decarburization depth: DM-T defined by JIS G 0558 is limited to 0.2 mm or less.
[0041]
Next, the hot rolling conditions will be described.
[0042]
The steel comprising the component of the present invention is melted by a usual method such as a converter, an electric furnace, etc., the components are adjusted, and after casting, a slab rolling process is performed without cooling to a point A3 or lower to obtain a wire or a bar. The following low-temperature heat rolling is performed.
[0043]
That is, the hot rolling is performed at a finishing temperature of 800 to 970 ° C. at a heating temperature of just above the Ar 3 point of 900 to 1070 ° C. Subsequent to the hot rolling, hot working is performed on the wire or the bar under the condition that the temperature is slowly cooled in a temperature range of 800 to 500 ° C. at a cooling rate of 1 ° C./sec or less.
[0044]
The heating temperature is set to a temperature just above the Ar 3 point of 900 to 1070 ° C. so that fine TiC precipitates generated by slab rolling without cooling to a temperature below the A3 point after casting do not form a solid solution in the matrix. If the temperature is lower than 900 ° C., the rolling temperature is in a ferrite region, which is not preferable. If the temperature exceeds 1070 ° C., the precipitates are not preferable because they form a solid solution in the matrix. The heating temperature was set to 900 to 1070 ° C. in order to maintain a fine TiC precipitate as it is and to obtain a fine structure during induction hardening. When the heating temperature exceeds 1070 ° C., the total decarburization becomes remarkable. Therefore, from the viewpoint of suppressing the total decarburization, the heating temperature is limited to this temperature range.
[0045]
Next, the finishing temperature of the hot rolling is set to 800 to 970 ° C. for the following reason. If the finishing temperature is lower than 800 ° C., the decarburization of the rolled material proceeds, so that the total decarburization becomes conspicuous, and the surface hardness of the induction hardened material does not appear. On the other hand, when the finishing temperature exceeds 970 ° C., the ferrite grain size of the rolled material becomes coarse, and the induction hardening property is deteriorated. For the above reasons, the finishing temperature of the hot rolling is set to 800 to 970 ° C. The preferred temperature is 850-960 ° C.
[0046]
Next, after the hot rolling, the temperature range of 800 to 500 ° C. is gradually cooled at a cooling rate of 1 ° C./sec or less for the following reason. When the cooling rate exceeds 1 ° C./sec, the hardness of the rolled material increases, and the cold forgeability and cold workability deteriorate. Therefore, the cooling rate is limited to 1 ° C./sec or less. A preferred range is 0.7 ° C./sec or less. In addition, as a method of reducing the cooling rate, there is a method of installing a heat insulating cover or a heat insulating cover with a heat source behind the rolling line, thereby performing slow cooling.
[0047]
In the present invention, the size of the slab and the cooling rate during solidification are not particularly limited, and any conditions may be used as long as the requirements of the present invention are satisfied. In addition, when the steel of the present invention is not only a step of forming an as-rolled steel bar into a part by cold forging or cutting, but also undergoes an annealing step or warm / hot forging before cold forging or cutting, The present invention can also be applied to a case where a component is formed in a warm / hot forging process and a case where a component is entirely formed in a cutting process.
[0048]
【Example】
Hereinafter, the effects of the present invention will be more specifically described with reference to examples.
[0049]
Continuously molten converter steel having the composition shown in Table 1 was cast, and after casting, the steel was subjected to slab rolling without cooling to a temperature below the A3 point to obtain a 162 mm square steel slab (rolled material) Rolling conditions I). For the comparative steels c and d, after continuous casting, the steel was once cooled to room temperature, and then heated again to the point A3 or higher and subjected to slab rolling to obtain a 162 mm square steel slab (rolled material). Condition II).
[0050]
Subsequently, a steel bar having a diameter of 37 to 44 mm was manufactured by hot working. Table 2 shows the hot working conditions. The cooling rate after hot working was adjusted using a slow cooling cover installed on a cooling floor. Comparative steels a and b are JIS S45C and S53C.
[0051]
In order to examine the dispersion state of the precipitates of Ti and Nb in the steel bars after the hot working, the precipitates present in the matrix of the steel bars were sampled by the extraction replica method and observed with a transmission electron microscope. Observation was performed at about 30,000 magnifications in about 20 visual fields, and the number of precipitates of Ti, Nb, and composites of Ti and Nb having a diameter of 0.2 μm or less in one visual field were counted. It was converted to a number.
[0052]
The structure of the bar after rolling was observed, and the ferrite grain size and the ferrite fraction were measured. Further, the Vickers hardness of the bar steel after rolling was measured. Hardness was used as an index of cold forgeability and cold rollability. The total decarburization depth was also investigated.
[0053]
Next, the machinability of the as-rolled steel bars was evaluated using the life speed of a high-speed drill. The drill used was a high-speed drill having a diameter of 3 mm according to JIS-SKH51. The drilling conditions were 0.25 mm / rev for feed, 9 mm hole depth, and 2 liters / minute using spindle oil as cutting oil. In the evaluation test, a cutting-drill life curve was obtained from a drill life until cutting became impossible at various cutting speeds at various cutting speeds, and this was defined as a life speed.
[0054]
Next, the as-rolled steel bars were induction hardened at a frequency of 8.5 kHz, and then tempered at 170 ° C. for 1 hour. The hardness of the material was measured from the outermost surface, and this was defined as induction hardening hardness.
[0055]
In addition, a static torsion test piece having a parallel portion of 20 mm was collected from the as-rolled steel bar. Notches having a depth of 2 mm and a curvature of 1.0 R at the tip were provided above and below the center of the parallel portion of the test piece. This test piece was subjected to induction hardening at a frequency of 8.5 kHz, and then tempered at 170 ° C. for 1 hour. For the induction hardened material, the depth of the hardened layer and the prior austenite grain size of the hardened layer were measured. In addition, a static torsional test was performed to evaluate the static torsional strength.
[0056]
Table 2 shows the results of these investigations together with the hot working conditions. The high-speed drill life was indicated by a relative value when the drill life of Comparative Example 28 (S53C) was set to 100. Further, the fracture mode of the test piece in the static torsional strength test was described as ductility when fractured by shear ductility, and brittle when fractured brittlely due to main stress.
[0057]
Comparative Examples 27 and 28 are the characteristics of S45C and S53C of JIS, but the cutability of the present invention example is substantially equal to or better than that of Comparative Examples 27 and 28 when compared with the same amount of carbon. Shows sex. Next, when compared with the same amount of carbon, the present invention example is higher in induction hardening hardness than Comparative Examples 27 and 28. Further, the γ grain size is remarkably fine, and the static torsional fractures are all broken in the ductile mode, and excellent characteristics of torsional strength are obtained.
[0058]
Next, in Table 2, Comparative Example 20 is a case where the content of C is lower than the range specified in the present application, and the torsional strength characteristics of the induction hardened material are inferior to those of the present invention. Comparative Example 21 was a case where the content of C was more than the range specified in the present application, the cutability of the rolled material was poor, and the brittle fracture was exhibited in the torsional test of the induction hardened material. And the torsional strength characteristics are poor.
[0059]
Comparative Example 22 is a case where the content of Cr exceeded the range specified in the present application, and the penetration defect of carbide was remarkable during induction hardening, so that the induction hardening hardness was lower and the depth of the hardened layer was shallower. The torsional strength characteristics are inferior to the invention examples.
Comparative Example 23 is a case where the content of B was less than the range specified in the present application, the hardened layer depth of the induction hardened material was shallow, and in the torsion test of the induction hardened material, brittle fracture was exhibited. The torsional strength characteristics are inferior in comparison.
[0060]
Comparative Example 24 is a case where the content of Ti is lower than the range specified in the present application, and Comparative Example 26 is a case where the content of N is higher than the range specified in the present application. Is insufficient, the austenite grains of the hardened layer of the induction hardened material are not sufficiently refined, exhibit brittle fracture in the torsional test of the induction hardened material, and have a torsional strength characteristic compared to the present invention example. Inferior.
[0061]
Comparative Example 25 is a case where the content of Ti exceeds the range specified in the present application, and the hardness as-rolled becomes hard and the machinability is inferior. In the torsion test of the induction hardened material, the brittle fracture due to embrittlement due to TiN is exhibited, and the torsional strength characteristics are inferior to those of the examples of the present invention.
[0062]
Comparative Examples 29 and 30 are different from the present invention in a method of manufacturing a billet, and are a case where after casting, the steel is once cooled to a temperature not higher than the A3 point and then subjected to slab rolling. In each case, the number of precipitates as rolled was insufficient, the austenite grains in the hardened layer of the induction hardened material were not sufficiently refined, and brittle fracture was exhibited in the torsional test of the induction hardened material. The torsional strength characteristics are inferior to the invention examples.
[0063]
Comparative Example 31 is a case where the heating temperature of the hot working exceeded the range specified in the present application, the number of precipitates was lower than the range of the present invention, and the total decarburization depth was higher than the range of the present invention. And, the induction hardening hardness is low, the austenite grains of the hardened layer of the induction hardened material are not sufficiently refined, and the brittle fracture is exhibited in the torsional test of the induction hardened material, and the torsion is compared with the example of the present invention. Poor strength properties.
[0064]
Comparative Example 32 is the case where the finishing temperature of hot working exceeded the range specified in the present application, the ferrite grain size also exceeded the range specified in the present application, the induction hardening hardness was low, the induction hardening depth was shallow, and the torsional strength was high. The properties are poor.
[0065]
Comparative Example 33 is a case where the finishing temperature of hot working was lower than the range specified in the present application, the ferrite fraction also exceeded the range specified in the present application, the total decarburization depth also exceeded the range in the present invention, and Compared with the invention examples, the induction hardening hardness is lower, the induction hardening depth is shallower, and the torsional strength characteristics are inferior.
[0066]
Comparative Example 34 is a case where the cooling rate after hot working exceeded the range specified in the present application, and the hardness as rolled was high and the machinability was poor.
[0067]
[Table 1]
Figure 2004183065
[0068]
[Table 2]
Figure 2004183065
[0069]
【The invention's effect】
By using the high-strength induction hardening steel material of the present invention and a method for producing the same, excellent cold workability is obtained during cold forging or cutting, and a fine structure rich in toughness is obtained after induction hardening, and brittle fracture is suppressed. As a result, it is possible to obtain excellent strength characteristics commensurate with the hardness of the cured layer, and the industrial effect is extremely remarkable.

Claims (6)

質量%で、
C:0.35〜0.6%、
Si:0.01〜1%、
Mn:0.2〜2%、
S:0.005〜0.15%、
Cr:0.35%以下(0%を含む)、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.05〜0.2%
を含有し、
N:0.007%未満(0%を含む)、
P:0.025%(0%を含む)、
O:0.0025%以下(0%を含む)
に各々制限し、残部が鉄及び不可避的不純物からなり、熱間圧延後の組織のマトリックス中に直径0.2μm以下のTiの析出物を5個/μm以上を有し、フェライト結晶粒径が20μm以下であり、フェライト分率が30%以下であり、JIS G 0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする高強度高周波焼き入れ用鋼材。
In mass%,
C: 0.35 to 0.6%,
Si: 0.01-1%,
Mn: 0.2-2%,
S: 0.005 to 0.15%,
Cr: 0.35% or less (including 0%),
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.05-0.2%
Containing
N: less than 0.007% (including 0%),
P: 0.025% (including 0%),
O: 0.0025% or less (including 0%)
And the balance consists of iron and unavoidable impurities. The matrix of the structure after hot rolling has at least 5 precipitates of Ti having a diameter of 0.2 μm or less per 5 μm 2 or more, and a ferrite crystal grain size. Is not more than 20 μm, the ferrite fraction is not more than 30%, and the decarburization depth specified by JIS G 0558: DM-T is 0.2 mm or less.
質量%で、
C:0.35〜0.6%、
Si:0.01〜1%、
Mn:0.2〜2%、
S:0.005〜0.15%、
Cr:0.35%以下(0%を含む)、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.05〜0.15%、
Nb:0.002〜0.05%
を含有し、
N:0.007%未満(0%を含む)
P:0.025%(0%を含む)、
O:0.0025%以下(0%を含む)
に各々制限し、残部が鉄及び不可避的不純物からなり、熱間圧延後の組織のマトリックス中に直径0.2μm以下のNbの析出物、Tiの析出物、またはNbとTiの複合組成からなる析出物をその合計で5個/μm以上を有し、フェライト結晶粒径が20μm以下であり、フェライト分率が30%以下であり、JISG 0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする高強度高周波焼き入れ用鋼材。
In mass%,
C: 0.35 to 0.6%,
Si: 0.01-1%,
Mn: 0.2-2%,
S: 0.005 to 0.15%,
Cr: 0.35% or less (including 0%),
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.05-0.15%,
Nb: 0.002 to 0.05%
Containing
N: less than 0.007% (including 0%)
P: 0.025% (including 0%),
O: 0.0025% or less (including 0%)
And the balance consists of iron and unavoidable impurities, and in the matrix of the structure after hot rolling, a precipitate of Nb with a diameter of 0.2 μm or less, a precipitate of Ti, or a composite composition of Nb and Ti The total number of the precipitates is 5 / μm 2 or more, the ferrite crystal grain size is 20 μm or less, the ferrite fraction is 30% or less, and the decarburization depth specified by JISG 0558: DM-T0. A high-strength induction hardening steel material having a thickness of 2 mm or less.
さらに質量%で、
Mo:1%以下、
Ni:2.5%以下
V:0.4%以下
のうちの1種または2種以上を含有することを特徴とする請求項1または2記載の高強度高周波焼き入れ用鋼材。
In further mass%,
Mo: 1% or less,
The steel material for high-strength induction hardening according to claim 1 or 2, wherein the steel material contains one or more of Ni: 2.5% or less and V: 0.4% or less.
質量%で、
C:0.35〜0.6%、
Si:0.01〜1%、
Mn:0.2〜2%、
S:0.005〜0.15%、
Cr:0.35%以下(0%を含む)、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.05〜0.15%
を含有し、
N:0.007%未満(0%を含む)
P:0.025%(0%を含む)、
O:0.0025%以下(0%を含む)
に各々制限し、残部が鉄及び不可避的不純物からなる鋼を、鋳造後A3点温度以下に冷却することなく分塊圧延を行う工程により製造された鋼片を用い、加熱温度を900〜1070℃、熱間圧延の仕上げ温度を800〜970℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件により線材または棒鋼に熱間圧延し、熱間圧延後の組織のマトリックス中に直径0.2μm以下のTiの析出物を5個/μm以上とし、フェライト結晶粒径が20μm以下とし、フェライト分率が30%以下とし、JIS G 0558で規定する脱炭深さ:DM−T0.2mm以下とすることを特徴とする高強度高周波焼き入れ用鋼材の製造方法。
In mass%,
C: 0.35 to 0.6%,
Si: 0.01-1%,
Mn: 0.2-2%,
S: 0.005 to 0.15%,
Cr: 0.35% or less (including 0%),
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.05 to 0.15%
Containing
N: less than 0.007% (including 0%)
P: 0.025% (including 0%),
O: 0.0025% or less (including 0%)
The steel is made by a process of performing slab rolling without cooling the steel consisting of iron and unavoidable impurities to a temperature below the A3 point after casting. The heating temperature is 900 to 1070 ° C. Hot rolling to 800 or 970 ° C., followed by hot rolling, followed by hot rolling to 800 or 500 ° C. in a temperature range of 800 to 500 ° C. at a cooling rate of 1 ° C./sec or less, to a wire or a bar; In the matrix of the structure after hot rolling, precipitates of Ti having a diameter of 0.2 μm or less are set to 5 / μm 2 or more, the ferrite crystal grain size is 20 μm or less, the ferrite fraction is 30% or less, and JIS G 0558. Decarburization depth specified by: DM-T 0.2 mm or less, a method for producing a high-strength induction hardened steel material.
質量%で、
C:0.35〜0.6%、
Si:0.01〜1%、
Mn:0.2〜2%、
S:0.005〜0.15%、
Cr:0.35%以下(0%を含む)、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.05〜0.15%、
Nb:0.002〜0.05%、
を含有し、
N:0.007%未満(0%を含む)、
P:0.025%(0%を含む)、
O:0.0025%以下(0%を含む)
に各々制限し、残部が鉄及び不可避的不純物からなる鋼を、鋳造後A3点温度以下に冷却することなく分塊圧延を行う工程により製造された鋼片を用い、加熱温度を900〜1070℃、熱間圧延の仕上げ温度を800〜970℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件により、線材または棒鋼に熱間圧延し、熱間圧延後の組織のマトリックス中に直径0.2μm以下のNbの析出物、Tiの析出物、またはNbとTiの複合組成からなる析出物をその合計で5個/μm以上とし、フェライト結晶粒径が20μm以下とし、フェライト分率が30%以下とし、JIS G 0558で規定する脱炭深さ:DM−T0.2mm以下とすることを特徴とする高強度高周波焼き入れ用鋼材の製造方法。
In mass%,
C: 0.35 to 0.6%,
Si: 0.01-1%,
Mn: 0.2-2%,
S: 0.005 to 0.15%,
Cr: 0.35% or less (including 0%),
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.05-0.15%,
Nb: 0.002 to 0.05%,
Containing
N: less than 0.007% (including 0%),
P: 0.025% (including 0%),
O: 0.0025% or less (including 0%)
The steel is made by a process of performing slab rolling without cooling the steel consisting of iron and unavoidable impurities to a temperature below the A3 point after casting. The heating temperature is 900 to 1070 ° C. Hot rolling to a wire rod or a steel bar under the condition that the finishing temperature of hot rolling is 800 to 970 ° C., and the temperature range of 800 to 500 ° C. is gradually cooled at a cooling rate of 1 ° C./sec or less following the hot rolling. A total of 5 precipitates of Nb, Ti precipitates, or precipitates composed of a composite composition of Nb and Ti having a diameter of 0.2 μm or less in the matrix of the structure after hot rolling, and a total of 5 precipitates / μm 2 or more; A ferrite crystal grain size of 20 μm or less, a ferrite fraction of 30% or less, and a decarburization depth specified by JIS G 0558: DM-T of 0.2 mm or less. Manufacture Law.
さらに質量%で、
Mo:1%以下、
Ni:2.5%以下
V:0.4%以下
のうちの1種または2種以上を含有することを特徴とする請求項4または5記載の高強度高周波焼き入れ用鋼材の製造方法。
In further mass%,
Mo: 1% or less,
6. The method for producing a high-strength induction hardening steel material according to claim 4, wherein one or more of Ni: 2.5% or less and V: 0.4% or less are contained.
JP2002353074A 2002-12-04 2002-12-04 Steel material for high strength induction hardening and method for manufacturing the same Expired - Fee Related JP3774697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353074A JP3774697B2 (en) 2002-12-04 2002-12-04 Steel material for high strength induction hardening and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353074A JP3774697B2 (en) 2002-12-04 2002-12-04 Steel material for high strength induction hardening and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004183065A true JP2004183065A (en) 2004-07-02
JP3774697B2 JP3774697B2 (en) 2006-05-17

Family

ID=32754483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353074A Expired - Fee Related JP3774697B2 (en) 2002-12-04 2002-12-04 Steel material for high strength induction hardening and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3774697B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008960A1 (en) * 2004-07-16 2006-01-26 Jfe Steel Corporation Component for machine structure, method for producing same, and material for high-frequency hardening
JP2008537982A (en) * 2005-04-12 2008-10-02 スカニア シーブイ アクチボラグ(パブル) Boron steel and shaft for induction hardening
KR100883716B1 (en) * 2004-07-16 2009-02-12 제이에프이 스틸 가부시키가이샤 Composition for Machine Structure, Method of Producing the Same and Material for Induction Hardening
WO2009154235A1 (en) * 2008-06-19 2009-12-23 株式会社神戸製鋼所 Steel for heat treatment
WO2011049006A1 (en) * 2009-10-22 2011-04-28 新日本製鐵株式会社 Steel for induction hardening, induction-hardened steel parts, and process for production of same
JP2012001765A (en) * 2010-06-17 2012-01-05 Sumitomo Metal Ind Ltd Bar steel for steering rack bar and method for manufacturing bar steel
JP2012207257A (en) * 2011-03-29 2012-10-25 Sanyo Special Steel Co Ltd Medium carbon steel excellent in rolling contact fatigue property and induction hardenability
CN114959465A (en) * 2022-05-17 2022-08-30 石家庄钢铁有限责任公司 Steel for fine-grain gear and production method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883716B1 (en) * 2004-07-16 2009-02-12 제이에프이 스틸 가부시키가이샤 Composition for Machine Structure, Method of Producing the Same and Material for Induction Hardening
JP4645593B2 (en) * 2004-07-16 2011-03-09 Jfeスチール株式会社 Machine structural component and method of manufacturing the same
WO2006008960A1 (en) * 2004-07-16 2006-01-26 Jfe Steel Corporation Component for machine structure, method for producing same, and material for high-frequency hardening
JP2008537982A (en) * 2005-04-12 2008-10-02 スカニア シーブイ アクチボラグ(パブル) Boron steel and shaft for induction hardening
KR101235448B1 (en) * 2008-06-19 2013-02-20 가부시키가이샤 고베 세이코쇼 Steel for heat treatment
WO2009154235A1 (en) * 2008-06-19 2009-12-23 株式会社神戸製鋼所 Steel for heat treatment
JP2010001525A (en) * 2008-06-19 2010-01-07 Kobe Steel Ltd Steel for heat treatment
US9023159B2 (en) 2008-06-19 2015-05-05 Kobe Steel, Ltd. Steel for heat treatment
US8821652B2 (en) 2009-10-22 2014-09-02 Nippon Steel & Sumitomo Metal Corporation Steel for induction hardening and induction hardened steel part
CN103510007A (en) * 2009-10-22 2014-01-15 新日铁住金株式会社 Steel for high-frequency hardening and high-frequency hardened steel part, and methods of production of same
KR101425737B1 (en) * 2009-10-22 2014-07-31 신닛테츠스미킨 카부시키카이샤 Steel for induction hardening, induction-hardened steel parts, and process for production of same
WO2011049006A1 (en) * 2009-10-22 2011-04-28 新日本製鐵株式会社 Steel for induction hardening, induction-hardened steel parts, and process for production of same
CN103510007B (en) * 2009-10-22 2015-10-14 新日铁住金株式会社 Steel for high-frequency quenching and high-frequency quenching steel part and their manufacture method
JP2012001765A (en) * 2010-06-17 2012-01-05 Sumitomo Metal Ind Ltd Bar steel for steering rack bar and method for manufacturing bar steel
JP2012207257A (en) * 2011-03-29 2012-10-25 Sanyo Special Steel Co Ltd Medium carbon steel excellent in rolling contact fatigue property and induction hardenability
CN114959465A (en) * 2022-05-17 2022-08-30 石家庄钢铁有限责任公司 Steel for fine-grain gear and production method thereof

Also Published As

Publication number Publication date
JP3774697B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
KR100414937B1 (en) Cold workable steel bar or wire and process
WO2011049006A1 (en) Steel for induction hardening, induction-hardened steel parts, and process for production of same
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JP4219023B2 (en) High-strength drive shaft and manufacturing method thereof
JP3036416B2 (en) Hot forged non-heat treated steel having high fatigue strength and method for producing forged product
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3432950B2 (en) Steel material for induction hardened shaft parts that has both cold workability and torsional fatigue strength characteristics
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP2015166495A (en) Case hardening steel excellent in cold forgeability and crystal grain coarsening suppression performance
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JPH05214484A (en) High strength spring steel and its production
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP3764627B2 (en) Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP4556770B2 (en) Carburizing steel and method for producing the same
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JPH11269541A (en) Manufacture of high strength steel excellent in fatigue characteristic
JP2007107046A (en) Steel material to be induction-hardened
JP2017071859A (en) Non-heat-treated steel and method for producing the same
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R151 Written notification of patent or utility model registration

Ref document number: 3774697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees