JP3288563B2 - Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same - Google Patents

Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Info

Publication number
JP3288563B2
JP3288563B2 JP26865795A JP26865795A JP3288563B2 JP 3288563 B2 JP3288563 B2 JP 3288563B2 JP 26865795 A JP26865795 A JP 26865795A JP 26865795 A JP26865795 A JP 26865795A JP 3288563 B2 JP3288563 B2 JP 3288563B2
Authority
JP
Japan
Prior art keywords
less
machinability
steel material
resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26865795A
Other languages
Japanese (ja)
Other versions
JPH09111401A (en
Inventor
明博 松崎
充実 河崎
俊幸 星野
靖浩 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
JFE Steel Corp
Original Assignee
NTN Corp
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, JFE Steel Corp filed Critical NTN Corp
Priority to JP26865795A priority Critical patent/JP3288563B2/en
Publication of JPH09111401A publication Critical patent/JPH09111401A/en
Application granted granted Critical
Publication of JP3288563B2 publication Critical patent/JP3288563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被削性および耐焼
割れ性に優れた機械構造用鋼に関し、特に高周波焼入れ
焼もどし後のねじり強度が1400MPa 以上を有し、自動車
用ドライブシャフト、等速ジョイント等に適用して好適
な機械構造用鋼材およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a machine structural steel having excellent machinability and resistance to quenching cracking, and more particularly to a drive shaft for automobiles having a torsional strength of 1400 MPa or more after induction hardening and tempering. The present invention relates to a steel material for machine structure suitable for application to a joint or the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、自動車用ドライブシャフトや等速
ジョイント等の機械構造用部材は、熱間圧延棒鋼に熱間
鍛造、あるいはさらに焼きならし処理を施し、切削、冷
間鍛造等により所定の形状に加工したのち、高周波焼入
れ焼もどしを行い、機械構造用部材としての重要な特性
であるねじり強度を確保しているのが一般的である。
2. Description of the Related Art Conventionally, members for mechanical structures such as drive shafts and constant velocity joints for automobiles are subjected to hot forging or further normalizing hot-rolled steel bars, and are subjected to predetermined processes such as cutting and cold forging. After being processed into a shape, induction hardening and tempering are generally performed to ensure torsional strength, which is an important property as a member for a machine structure.

【0003】他方、近年環境問題から自動車部材に対し
て部品の軽量化の要求が強く、この点から自動車用部材
のねじり強度の上昇が要求されている。ねじり強度を上
昇させるためには、高周波焼入れによる焼入れ硬化深さ
の増加が考えられている。しかし、焼入れ硬化深さを増
加させるためには、高周波焼入れ条件の変更あるいは鋼
材の合金元素量を増加させることが考えられるが、いず
れも経済的に問題がある。
On the other hand, in recent years, there has been a strong demand for weight reduction of parts for automobile parts due to environmental problems, and from this point, an increase in torsional strength of automobile parts has been required. In order to increase the torsional strength, it has been considered to increase the quench hardening depth by induction hardening. However, in order to increase the quench hardening depth, it is conceivable to change the induction hardening conditions or to increase the amount of alloying elements in the steel material, but both have economic problems.

【0004】特開平4−218641号公報には、自動車用部
材のねじり強度と被削性、耐焼割れ性を同時に満足でき
るように合金元素量を限定する技術が提案されている。
しかしながら、化学組成のみの限定では被削性、耐焼割
れ性とねじり強度を同時に満足する化学組成の範囲は狭
く、また品質レベルも問題を残していた。
Japanese Patent Application Laid-Open No. Hei 4-218641 proposes a technique for limiting the amount of alloying elements so as to simultaneously satisfy the torsional strength, machinability and resistance to burn-out cracking of automotive members.
However, if only the chemical composition is limited, the range of the chemical composition that simultaneously satisfies the machinability, the resistance to quenching cracking and the torsional strength is narrow, and the quality level still has a problem.

【0005】[0005]

【発明が解決しようとする課題】本発明は、自動車用部
材に用いられ、高周波焼入れ焼もどし後のねじり強度が
1400MPa 以上を有し、かつ被削性、耐焼割れ性を満足す
る機械構造用鋼材およびその製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention is used for automobile parts, and has a high torsional strength after induction hardening and tempering.
An object of the present invention is to provide a steel material for a machine structure having a mechanical strength of 1400 MPa or more and satisfying the machinability and the resistance to burning cracking, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討した結果、高周波焼入れ焼もど
し後の芯部(非硬化部)の強度を上げることが、ねじり
強度を上昇させることに極めて有利である点に着目し
た。従来、鋼においては熱間圧延あるいは鍛造又は焼な
らし後の組織は、フェライト+パーライトであった。そ
こで、本発明者らは、芯部の強度を増加させるために芯
部の組織をフェライト+ベイナイトあるいはフェライト
+パーライト+ベイナイトとすることに思い至った。一
方、被削性は一般に硬さの他にミクロ組織が影響するこ
とは知られていたが、本発明者らはベイナイト相をわず
かに含ませることにより、被削性が顕著に向上すること
を新規に見い出し、本発明を構成したのである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, increasing the strength of the core (unhardened portion) after induction hardening and tempering increases the torsional strength. We noticed that it was extremely advantageous to make it work. Conventionally, in steel, the structure after hot rolling, forging or normalizing was ferrite + pearlite. Therefore, the present inventors have come to think that the structure of the core is ferrite + bainite or ferrite + pearlite + bainite in order to increase the strength of the core. On the other hand, it has been known that the machinability generally depends on the microstructure in addition to the hardness, but the present inventors have found that by slightly including the bainite phase, the machinability is significantly improved. The present invention was newly found and constituted the present invention.

【0007】すなわち、本発明の第1の発明は、mass%
で、C:0.35%以上0.60%以下、Si:0.05%以下、Mn:
0.65%以上1.70%以下、P:0.020 %以下、S:0.005
%以上0.035 %以下、Cr:0.15%以下、Mo:0.05%以上
0.50%以下、Ti:0.01%以上0.05%以下、Al:0.01%以
上0.05%以下、N:0.01%以下、B:0.0005%以上0.00
50%以下を含有し、残部Feおよび不可避的不純物からな
り、かつベイナイト相を面積率で5〜30%含む組織から
なることを特徴とする被削性および耐焼割れ性に優れた
機械構造用鋼材である。
That is, the first invention of the present invention provides a
And C: 0.35% or more and 0.60% or less, Si: 0.05% or less, Mn:
0.65% or more and 1.70% or less, P: 0.020% or less, S: 0.005
% To 0.035%, Cr: 0.15% or less, Mo: 0.05% or more
0.50% or less, Ti: 0.01% or more and 0.05% or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less, B: 0.0005% or more and 0.00
A steel material for machine structural use having excellent machinability and resistance to fire cracking, characterized by containing 50% or less, the balance being Fe and inevitable impurities, and having a structure containing a bainite phase in an area ratio of 5 to 30%. It is.

【0008】また、本発明の第2の発明は、第1の発明
に加えて、Ms=538 −317(% C)−33(%Mn) −28(%Cr)
−17(%Ni)−11(%Si)−11(%Mo)で定義されるMs値
が360以上であることを特徴とする被削性および耐焼
割れ性に優れた機械構造用鋼材である。また、本発明の
第3の発明は、mass%で、C:0.35%以上0.60%以下、
Si:0.05%以下、Mn:0.65%以上1.70%以下、P:0.02
0 %以下、S:0.005 %以上0.035 %以下、Cr:0.15%
以下、Mo:0.05%以上0.50%以下、Ti:0.01%以上0.05
%以下、Al:0.01%以上0.05%以下、N:0.01%以下、
B:0.0005%以上0.0050%以下を含有し、さらにCu:1.
0 %以下、Ni:3.5 %以下、V:0.01%以上0.30%以
下、Nb:0.005 %以上0.050 %以下のうちから選んだ1
種又は2種以上を含有し、残部Feおよび不可避的不純物
からなり、かつベイナイト相を面積率で5〜30%含む組
織からなることを特徴とする被削性および耐焼割れ性に
優れた機械構造用鋼材である。
[0008] In a second aspect of the present invention, in addition to the first aspect, Ms = 538-317 (% C) -33 (% Mn) -28 (% Cr)
Ms value defined by -17 (% Ni) -11 (% Si) -11 (% Mo) is 360 or more, and is a steel material for machine structure excellent in machinability and resistance to fire cracking. . Further, a third invention of the present invention provides a method of the present invention, in which, in mass%, C: 0.35% or more and 0.60% or less;
Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less, P: 0.02
0% or less, S: 0.005% or more and 0.035% or less, Cr: 0.15%
Mo: 0.05% to 0.50%, Ti: 0.01% to 0.05
% Or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less,
B: 0.0005% to 0.0050%, Cu: 1.
0% or less, Ni: 3.5% or less, V: 0.01% or more and 0.30% or less, Nb: 0.005% or more and 0.050% or less
A mechanical structure excellent in machinability and resistance to quenching cracking, characterized by comprising a structure containing at least one or more species, the balance being Fe and unavoidable impurities, and having a structure containing a bainite phase in an area ratio of 5 to 30%. Steel.

【0009】また、本発明の第4の発明は、第3の発明
に加えて、Ms=538 −317(% C)−33(%Mn) −28(%Cr)
−17(%Ni)−11(%Si)−11(%Mo)で定義されるMs値
が360以上であることを特徴とする被削性および耐焼
割れ性に優れた機械構造用鋼材である。また、本発明の
第5の発明は、mass%でC:0.35%以上0.60%以下、S
i:0.05以下、Mn:0.65%以上1.70%以下、P:0.020
%以下、S:0.005 %以上0.035%以下、Cr:0.15%以
下、Mo:0.05%以上0.50%以下、Ti:0.01%以上0.05%
以下、Al:0.01%以上0.05%以下、N:0.01%以下、
B:0.0005%以上0.0050%以下を含有し、残部Feおよび
不可避的不純物からなる鋼素材を熱間圧延および/また
は熱間鍛造により所定の形状に熱間加工し、熱間加工終
了後あるいは中間処理加熱後 0.2〜2℃/sec の冷却速
度で冷却することにより、ベイナイト相を面積率で5〜
30%含む組織とすることを特徴とする被削性および耐焼
割れ性に優れた機械構造用鋼材の製造方法である。
[0009] In a fourth aspect of the present invention, in addition to the third aspect, Ms = 538-317 (% C) -33 (% Mn) -28 (% Cr)
Ms value defined by -17 (% Ni) -11 (% Si) -11 (% Mo) is 360 or more, and is a steel material for machine structure excellent in machinability and resistance to fire cracking. . Further, the fifth invention of the present invention is characterized in that C: 0.35% to 0.60% in mass%;
i: 0.05 or less, Mn: 0.65% or more and 1.70% or less, P: 0.020
%, S: 0.005% to 0.035%, Cr: 0.15% or less, Mo: 0.05% to 0.50%, Ti: 0.01% to 0.05%
Below, Al: 0.01% or more and 0.05% or less, N: 0.01% or less,
B: A steel material containing 0.0005% or more and 0.0050% or less, with the balance being Fe and unavoidable impurities, is hot-rolled and / or hot-forged into a predetermined shape, and after hot working or after intermediate processing. After the heating, the bainite phase is cooled at a cooling rate of 0.2 to 2 ° C./sec.
This is a method for producing a steel material for machine structural use, which is excellent in machinability and resistance to fire cracking, characterized by having a structure containing 30%.

【0010】また、本発明の第6の発明は、前記鋼素材
が、mass%で、C:0.35%以上0.60%以下、Si:0.05%
以下、Mn:0.65%以上1.70%以下、P:0.020 %以下、
S:0.005 %以上0.035 %以下、Cr:0.15%以下、Mo:
0.05%以上0.50%以下、Ti:0.01%以上0.05%以下、A
l:0.01%以上0.05%以下、N:0.01%以下、B:0.000
5%以上0.0050%以下を含有し、残部Feおよび不可避的
不純物からなり、Ms=538 −317(% C) −33(%Mn) −
28(%Cr) −17(%Ni)−11(%Si)−11(%Mo)で定義される
Ms値が360以上であることを特徴とする被削性およ
び耐焼割れ性に優れた機械構造用鋼の製造方法である。
[0010] In a sixth aspect of the present invention, the steel material is such that, in mass%, C: 0.35% to 0.60%, Si: 0.05%
Mn: 0.65% or more and 1.70% or less, P: 0.020% or less,
S: 0.005% or more and 0.035% or less, Cr: 0.15% or less, Mo:
0.05% or more and 0.50% or less, Ti: 0.01% or more and 0.05% or less, A
l: 0.01% or more and 0.05% or less, N: 0.01% or less, B: 0.000
5% or more and 0.0050% or less, the balance being Fe and unavoidable impurities, Ms = 538-317 (% C) -33 (% Mn)-
Machine with excellent machinability and resistance to fire cracking, characterized in that the Ms value defined by 28 (% Cr) -17 (% Ni) -11 (% Si) -11 (% Mo) is 360 or more. This is a method for producing structural steel.

【0011】また、本発明の第7の発明は、第5発明に
おける前記鋼素材が、mass%で、C:0.35%以上0.60%
以下、Si:0.05%以下、Mn:0.65%以上1.70%以下、
P:0.020 %以下、S:0.005 %以上0.035 %以下、C
r:0.15%以下、Mo:0.05%以上0.50%以下、Ti:0.01
%以上0.05%以下、Al:0.01%以上0.05%以下、N:0.
01%以下、B:0.0005%以上0.0050%以下を含有し、さ
らにCu:1.0 %以下、Ni:3.5 %以下、V:0.01%以上
0.30%以下、Nb:0.005 %以上0.050 %以下のうちから
選んだ1種又は2種以上を含有し、残部Feおよび不可避
的不純物からなる鋼素材であることを特徴とする被削性
および耐焼割れ性に優れた機械構造用鋼材の製造方法で
ある。
In a seventh aspect of the present invention, the steel material according to the fifth aspect is characterized in that the steel material is mass%, and C: 0.35% to 0.60%.
Below, Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less,
P: 0.020% or less, S: 0.005% or more and 0.035% or less, C
r: 0.15% or less, Mo: 0.05% to 0.50%, Ti: 0.01
% To 0.05%, Al: 0.01% to 0.05%, N: 0.
01% or less, B: 0.0005% to 0.0050%, Cu: 1.0% or less, Ni: 3.5% or less, V: 0.01% or more
Machinability and fire-resistant cracking characterized by being a steel material containing one or more selected from 0.30% or less and Nb: 0.005% or more and 0.050% or less, with the balance being Fe and unavoidable impurities. This is a method for producing a steel material for machine structures having excellent properties.

【0012】また、本発明の第8の発明は、第6発明に
おける前記鋼素材が、mass%で、C:0.35%以上0.60%
以下、Si:0.05%以下、Mn:0.65%以上1.70%以下、
P:0.020 %以下、S:0.005 %以上0.035 %以下、C
r:0.15%以下、Mo:0.05%以上0.50%以下、Ti:0.01
%以上0.05%以下、Al:0.01%以上0.05%以下、N:0.
01%以下、B:0.0005%以上0.0050%以下を含有し、さ
らにCu:1.0 %以下、Ni:3.5 %以下、V:0.01%以上
0.30%以下、Nb:0.005 %以上0.050 %以下のうちから
選んだ1種又は2種以上を含有し、残部Feおよび不可避
的不純物からなり、Ms=538 −317(% C) −33(%Mn)
−28(%Cr) −17(%Ni)−11(%Si)−11(%Mo)で定義され
るMs値が360以上であることを特徴とする被削性お
よび耐焼割れ性に優れた機械構造用鋼の製造方法であ
る。
An eighth invention of the present invention is the steel invention according to the sixth invention, wherein the steel material is mass%, and C: 0.35% to 0.60%.
Below, Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less,
P: 0.020% or less, S: 0.005% or more and 0.035% or less, C
r: 0.15% or less, Mo: 0.05% to 0.50%, Ti: 0.01
% To 0.05%, Al: 0.01% to 0.05%, N: 0.
01% or less, B: 0.0005% to 0.0050%, Cu: 1.0% or less, Ni: 3.5% or less, V: 0.01% or more
0.30% or less, Nb: One or more selected from 0.005% to 0.050% or less, the balance consisting of Fe and unavoidable impurities, Ms = 538-317 (% C) -33 (% Mn )
Excellent in machinability and fire cracking resistance, characterized in that the Ms value defined by -28 (% Cr), -17 (% Ni), -11 (% Si), -11 (% Mo) is 360 or more. This is a method for producing steel for machine structural use.

【0013】[0013]

【発明の実施の形態】本発明鋼材は、高周波焼入れ焼も
どし後のねじり強度が1400MPa 以上で、被削性として工
具寿命が2000mm以上、焼割れ発生率が従来鋼と同等以上
の特性を有するものである。以下、本発明について詳し
く述べる。まず、組成の限定理由について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The steel material of the present invention has a torsion strength after induction hardening and tempering of 1400 MPa or more, a tool life of 2000 mm or more in machinability, and a rate of occurrence of crazing cracks equal to or more than conventional steel. It is. Hereinafter, the present invention will be described in detail. First, the reasons for limiting the composition will be described.

【0014】C:0.35%以上0.60%以下 Cは高周波焼入れ性への影響が最も大きい元素であり、
焼入れ硬化層の硬さおよび深さを高めて、ねじり強度を
高周波焼入れ焼もどし後に1400MPa 以上を確保するのに
有用である。その効果を得るためには少なくとも0.35%
以上必要である。しかし、0.60%超えて添加すると被削
性が低下し、耐焼割れ性も低下する。したがってC量は
0.35%以上0.60%以下とする。
C: 0.35% or more and 0.60% or less C is an element that has the greatest effect on induction hardening.
It is useful for increasing the hardness and depth of the quenched hardened layer to secure the torsional strength of 1400 MPa or more after induction hardening and tempering. At least 0.35% to achieve that effect
It is necessary. However, if it is added in excess of 0.60%, the machinability decreases and the resistance to fire cracking also decreases. Therefore, the amount of C is
0.35% or more and 0.60% or less.

【0015】Si:0.05%以下 Siはフェライトに固溶し、強化する元素であり、本発明
ではフェライトを軟化させ被削性を向上させるため可能
な限り低減する。フェライトの軟化のために許容できる
上限は0.05%であり、Siは0.05%以下とする。Siを低減
することによりフェライト相は軟化し被削性が向上す
る。特に、第2相のベイナイト相による被削性向上効果
は、第1相のフェライト相が十分に軟質な時にその効果
が発揮される。
Si: 0.05% or less Si is an element that forms a solid solution in ferrite and strengthens it. In the present invention, Si is reduced as much as possible to soften the ferrite and improve machinability. The allowable upper limit for the softening of ferrite is 0.05%, and the content of Si is 0.05% or less. By reducing Si, the ferrite phase softens and machinability improves. In particular, the effect of improving the machinability by the bainite phase of the second phase is exhibited when the ferrite phase of the first phase is sufficiently soft.

【0016】Mn:0.65%以上1.70%以下 Mnは焼入れ性の向上に有用な元素であり、同時に鋼中の
Sを固定して熱間脆性を防止する元素である。その効果
を得るためには少なくとも0.65%以上必要だが、1.70%
を超えて添加すると、パーライト分率が増加し被削性が
低下する。したがってMn量は0.65%以上1.70%以下とす
る。好ましくは0.65〜 1.3%である。
Mn: not less than 0.65% and not more than 1.70% Mn is an element useful for improving hardenability, and at the same time, an element for fixing S in steel to prevent hot brittleness. At least 0.65% is required to achieve the effect, but 1.70%
If added in excess of, the pearlite fraction increases and the machinability decreases. Therefore, the Mn content is set to 0.65% or more and 1.70% or less. Preferably it is 0.65 to 1.3%.

【0017】P: 0.020%以下 Pは焼入れ時のオーステナイト粒界に偏析して焼割れ性
を助長する。したがってその含有量は極力低下させるべ
きであり、上限は0.020 %とする。 S: 0.005%以上 0.035%以下 Sは鋼中でMnS を形成し被削性を向上させる。そのため
には0.005 %以上が必要である。一方、MnS は亀裂の起
点となりやすく、強度、靱性の低下を招くため、Sの上
限は 0.035%とする。
P: 0.020% or less P segregates at the austenite grain boundary during quenching and promotes quenching cracking. Therefore, its content should be reduced as much as possible, and the upper limit is made 0.020%. S: 0.005% or more and 0.035% or less S forms MnS in steel and improves machinability. For that purpose, 0.005% or more is required. On the other hand, since MnS tends to be a starting point of cracks and causes a decrease in strength and toughness, the upper limit of S is set to 0.035%.

【0018】Cr:0.15%以下 Crは、パーライトの層状化を促進し、被削性を低下させ
る有害な元素である。また、Crは高周波焼入れ前の加熱
時にセメンタイト中に濃縮しこれを安定化させる。その
ため、高周波焼入れ前の加熱で、オーステナイトに固溶
しない残留炭化物を形成し、これが疲労亀裂、とくにね
じり疲労亀裂の起点となり疲労強度を低下させる。した
がって、その含有量は極力低下させるべきであるが、0.
15%まで許容できる。Cr含有量は0.15%以下を上限とし
たが、望ましくは0.05%以下の範囲とする。
Cr: 0.15% or less Cr is a harmful element that promotes layering of pearlite and reduces machinability. In addition, Cr concentrates in cementite during heating before induction hardening and stabilizes it. Therefore, by heating before induction hardening, a residual carbide that does not form a solid solution in austenite is formed, and this serves as a starting point of fatigue cracks, especially torsional fatigue cracks, and lowers fatigue strength. Therefore, its content should be reduced as much as possible,
Acceptable up to 15%. Although the upper limit of the Cr content is 0.15% or less, it is desirably in the range of 0.05% or less.

【0019】Mo:0.05%以上0.50%以下 Moは焼入れ性向上に有用であるばかりでなく、ベイナイ
トの生成を促進し被削性を向上させる。そのためには0.
05%以上必要である。一方、過剰な添加は硬質なベイナ
イトが多量に生成し被削性を低下させるので、上限は0.
50%とする。被削性の点からは、0.05〜0.25%が好適で
ある。
Mo: 0.05% or more and 0.50% or less Mo is not only useful for improving hardenability, but also promotes formation of bainite and improves machinability. 0 for that.
05% or more is required. On the other hand, excessive addition causes a large amount of hard bainite to be generated and reduces machinability, so the upper limit is 0.
50%. From the viewpoint of machinability, 0.05 to 0.25% is preferable.

【0020】Ti:0.01%以上0.05%以下 TiはNと結合し窒化物を形成し、高温加熱時のオーステ
ナイト粒を微細化したり、焼入れ性向上に有用な固溶B
を確保するのに必要である。そのためには0.01%以上必
要である。一方、過剰に添加すると、靱性を阻害するた
め上限は0.05%とする。N含有量との関係で通常の溶製
法であれば、Tiは0.01〜0.03%が好適である。
Ti: 0.01% or more and 0.05% or less Ti combines with N to form a nitride, and is a solid solution B useful for refining austenite grains during high-temperature heating and improving hardenability.
It is necessary to secure For that purpose, 0.01% or more is necessary. On the other hand, if added in excess, the toughness is impaired, so the upper limit is made 0.05%. In the case of a normal melting method in relation to the N content, 0.01 to 0.03% of Ti is suitable.

【0021】Al:0.01%以上0.05%以下 Alは強力な脱酸元素であり、鋼中のO低減のために必要
である。このためには、0.01%以上が必要であるが、0.
05%を超えると巨大なアルミナを形成するようになり、
これが疲労破壊の起点となることにより疲労強度を低下
させるので、0.05%以下とする。
Al: 0.01% or more and 0.05% or less Al is a strong deoxidizing element and is necessary for reducing O in steel. For this purpose, 0.01% or more is necessary, but 0.1% is required.
If it exceeds 05%, it will form huge alumina,
Since this becomes the starting point of the fatigue fracture, thereby reducing the fatigue strength, the content is set to 0.05% or less.

【0022】N:0.01%以下 NはAlあるいはTiと結合し窒化物を形成し、高周波加熱
時のオーステナイト粒径を細粒化することにより疲労強
度を向上させるのに有用である。しかし0.01%を超える
と粗大な窒化物を形成し疲労強度を低下させる。過剰な
N は、BNを形成し焼入れ性に有効なフリーB量を低下さ
せる。したがって上限は0.01%とした。オーステナイト
粒細粒化のためには、0.0040〜0.0080%が好適である。
N: 0.01% or less N combines with Al or Ti to form a nitride, and is useful for improving the fatigue strength by reducing the austenite grain size during high-frequency heating. However, if it exceeds 0.01%, coarse nitrides are formed and the fatigue strength is reduced. Excessive
N forms BN and reduces the amount of free B effective for hardenability. Therefore, the upper limit was set to 0.01%. For austenite grain refinement, 0.0040 to 0.0080% is suitable.

【0023】B:0.0005%以上0.0050%以下 Bは、焼入れ性を高め高周波焼入れ時の焼入れ深さを高
めることによりねじり強度を高める。そのためには0.00
05%以上の添加が必要であるが、0.0050%を超えると靱
性を低下させるため上限は0.0050%とする。 Cu: 1.0%以下 Cuは焼入れ性向上および被削性向上に有用な元素であ
る。しかし 1.0%を超えて添加すると熱間脆性を引き起
こすため、Cu含有量は 1.0%を上限とする。なお、好ま
しい含有量は 0.4〜1.0 %である。
B: 0.0005% or more and 0.0050% or less B enhances the hardenability and increases the quenching depth during induction hardening to increase the torsional strength. For that, 0.00
Addition of at least 05% is necessary, but if it exceeds 0.0050%, the toughness is reduced, so the upper limit is made 0.0050%. Cu: 1.0% or less Cu is an element useful for improving hardenability and machinability. However, adding more than 1.0% causes hot embrittlement, so the upper limit of the Cu content is 1.0%. The preferred content is 0.4 to 1.0%.

【0024】Ni: 3.5%以下 Niは焼入れ性を増加し強度向上に寄与する有用な元素で
ある。しかし 3.5%を超えて添加すると被削性を低下さ
せるので、Niの含有量は 3.5%以下とする。なお、好ま
しい含有量は 0.5〜2.0 %である。 V:0.01%以上0.30%以下 Vは炭窒化物を形成し、オーステナイト粒を微細化させ
て強度向上に寄与する。そのためには0.01%以上が必要
である。一方、過剰に添加すると粗大な析出物を形成し
靱性を阻害するため上限は0.30%とする。
Ni: 3.5% or less Ni is a useful element that increases hardenability and contributes to improvement of strength. However, if added in excess of 3.5%, the machinability decreases, so the Ni content should be 3.5% or less. The preferred content is 0.5 to 2.0%. V: 0.01% or more and 0.30% or less V forms carbonitrides, refines austenite grains, and contributes to improvement in strength. For that purpose, 0.01% or more is required. On the other hand, if added in excess, coarse precipitates are formed and the toughness is impaired, so the upper limit is made 0.30%.

【0025】Nb: 0.005%以上0.050 %以下 Nbは炭窒化物を形成し、オーステナイト粒を微細化させ
て疲労強度向上に寄与する。そのためには 0.005%以上
が必要である。一方、過剰に添加すると粗大な析出物を
形成し靱性を阻害するため上限は 0.050%とする。ま
た、Ms値を360以上とする。
Nb: 0.005% or more and 0.050% or less Nb forms carbonitrides, refines austenite grains, and contributes to improvement in fatigue strength. For that purpose, 0.005% or more is required. On the other hand, if added in excess, coarse precipitates are formed and the toughness is impaired, so the upper limit is made 0.050%. Further, the Ms value is set to 360 or more.

【0026】Ms値は、Ms=538 −317(% C) −33(%
Mn) −28(%Cr) −17(%Ni)−11(%Si)−11(%Mo)で定義
される。なお、( )内は、各元素の含有量(mass%)
を意味する。本発明者らは、耐焼割れ性について鋭意検
討した結果、耐焼割れ性は、材料のMs値(マルテンサ
イト変態開始温度)に依存するという知見を得た。本発
明の鋼種においては、Ms=360以上であれば耐焼割
れ性が著しく向上するため、限界値とした。
The Ms value is Ms = 538-317 (% C) -33 (%
Mn) −28 (% Cr) −17 (% Ni) −11 (% Si) −11 (% Mo) The content in parentheses is the content of each element (mass%)
Means The present inventors have conducted intensive studies on the resistance to burning cracking, and as a result, have found that the resistance to burning cracking depends on the Ms value (martensite transformation start temperature) of the material. In the steel type of the present invention, when Ms = 360 or more, the resistance to quenching cracking is remarkably improved.

【0027】次に、組織の限定について説明する。組織
中のベイナイト相の比率は、面積率で5〜30%とする。
本発明では熱間圧延あるいは鍛造後または焼ならし後の
組織をベイナイト+フェライト、フェライト+パーライ
+ベイナイトとする。ベイナイト相の存在により被削性
が飛躍的に増大する。この理由について、本発明者らは
次のように考えている。切削時の切屑は剪断において発
生したボイドの拡大、連結により母材から分離して形成
される。そして、ボイドの発生はフェライト・パーライ
ト鋼においては、フェライトとパーライトの界面や、パ
ーライト中のフェライトとセメンタイトとの界面で起こ
る。しかしながら、パーライト地中のセメンタイトはラ
メラー状に規則的に配列しており、切削時のボイド発生
サイトとしての効果が小さい。これに対して、ベイナイ
ト相では炭化物が不揃いになっており、炭化物とフェラ
イト相の界面が切削時のボイド発生サイトとして最も有
効に作用する。これにより、鋼中にベイナイト相が存在
する場合には被削性が飛躍的に向上するのである。被削
性を向上させるためには、ベイナイト相は5%以上の存
在が必要である。しかし30%を超えると硬さの上昇が大
きく、被削性はかえって低下する。したがって、ベイナ
イト相の比率は面積率で5〜30%の範囲とする。
Next, the limitation of the organization will be described. The ratio of the bainite phase in the structure is 5 to 30% in area ratio.
In the present invention, the structure after hot rolling, forging or normalizing is defined as bainite + ferrite or ferrite + pearlite + bainite. The machinability dramatically increases due to the presence of the bainite phase. For this reason, the present inventors consider as follows. Chips during cutting are formed separately from the base material by expansion and connection of voids generated in shearing. In the ferrite-pearlite steel, voids occur at the interface between ferrite and pearlite or at the interface between ferrite and cementite in pearlite. However, cementite in the pearlite ground is regularly arranged in a lamella shape, and the effect as a void generation site during cutting is small. On the other hand, carbides are irregular in the bainite phase, and the interface between the carbide and the ferrite phase acts most effectively as a void generation site during cutting. Thereby, when the bainite phase exists in the steel, the machinability is remarkably improved. In order to improve machinability, the bainite phase needs to be present in an amount of 5% or more. However, if it exceeds 30%, the increase in hardness is large and the machinability is rather reduced. Therefore, the ratio of the bainite phase is in the range of 5 to 30% in area ratio.

【0028】本発明鋼材の溶製方法は、常法にしたがっ
て製造すればよく特に限定しない。溶製方法は、転炉あ
るいは電気炉で溶製し、RH脱ガス等の真空脱ガス、取
鍋での精錬などを付加してもよい。溶鋼は連続鋳造法あ
るいは造塊法で凝固させ、凝固させた後、熱間圧延ある
いは熱間・温間鍛造を経て所定形状の素材とする。これ
ら素材は、必要により焼ならし、球状化焼鈍、軟化焼鈍
などの中間熱処理を施され、切削、鍛造、転造などの冷
間加工により所望の形状に仕上げられる。
The method of producing the steel material of the present invention is not particularly limited as long as it is produced according to a conventional method. As the smelting method, smelting may be performed in a converter or an electric furnace, and vacuum degassing such as RH degassing, refining in a ladle, or the like may be added. The molten steel is solidified by a continuous casting method or an ingot casting method, solidified, and then subjected to hot rolling or hot / warm forging to obtain a material having a predetermined shape. These materials are subjected to an intermediate heat treatment such as normalizing, spheroidizing annealing, softening annealing and the like as required, and finished to a desired shape by cold working such as cutting, forging, and rolling.

【0029】本発明では、熱間圧延あるいは熱間鍛造後
または焼ならし等のオーステナイト化後の冷却は、鋼材
の組織を所定のベイナイト含有量とするため、 0.2℃/
sec〜2℃/sec 範囲の冷却速度とすることが好まし
い。特に太径の棒鋼では冷却を調整した加速冷却を行う
のが好適である。この冷却条件の範囲を下回ると、ベイ
ナイト相の形成が少なく、またこれら冷却速度より速い
と硬化相が出現し被削性が低下する。
In the present invention, cooling after austenitization such as after hot rolling or hot forging or normalizing is carried out at a rate of 0.2 ° C. /
The cooling rate is preferably in the range of sec to 2 ° C./sec. In particular, in the case of a large-diameter steel bar, it is preferable to perform accelerated cooling with cooling adjusted. Below the range of the cooling conditions, formation of the bainite phase is small, and if the cooling rate is higher than this, a hardened phase appears and the machinability is reduced.

【0030】また、最終の高周波焼入れ焼もどしは、15
kHz の高周波焼入装置を用い、出力120kWで0.2 〜1sec
の加熱を施したのち焼入れし、 170℃×1hrの焼もど
し行ったときのねじり強さを標準として評価した。
In addition, the final induction hardening and tempering
0.2 to 1 sec at 120 kW output using induction hardening equipment of kHz
And then quenched, and the torsional strength when tempered at 170 ° C. for 1 hour was evaluated as a standard.

【0031】[0031]

【実施例】【Example】

(実施例1)表1に示す化学組成の鋼を、転炉で溶製
し、連続鋳造により 400× 540mmのブルームにした後、
熱間圧延により 150mm角ビレットとした。このビレット
を1030℃に加熱後、熱間圧延により25mmφの直棒とし
た。圧延後、空冷( 0.7℃/min)した。冷却後の直棒
の組織中ベイナイト相の比率を表2に示す。ベイナイト
相の比率から、光学顕微鏡により該鋼材のミクロ組織を
撮影し、この写真から画像解析装置によりベイナイト相
の面積率を測定した。この直棒を用いて、下記に示す試
験を実施し、その結果を表2に示す。
(Example 1) A steel having a chemical composition shown in Table 1 was melted in a converter and turned into a 400 x 540 mm bloom by continuous casting.
It was made into a 150 mm square billet by hot rolling. The billet was heated to 1030 ° C., and then hot-rolled into a straight bar having a diameter of 25 mm. After rolling, it was air-cooled (0.7 ° C./min). Table 2 shows the ratio of the bainite phase in the structure of the straight rod after cooling. From the ratio of the bainite phase, the microstructure of the steel material was photographed by an optical microscope, and the area ratio of the bainite phase was measured from the photograph by an image analyzer. The following tests were performed using this straight rod, and the results are shown in Table 2.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】(1)被削性試験 この直棒から被削性試験片を採取した。被削性試験は、
SKH4、4mmφのドリルを用いて、1500rpm の条件で
12mm長さの穿孔を行い、切削不能になるまでの総穴明け
長さ(mm)を工具寿命として求め評価した。 (2)ねじり強さ試験 直棒から平行部20mmφの平滑丸棒ねじり試験片を作製
し、これに周波数15kHzの高周波焼入れ装置を用いて焼
入れし、 170℃×30分の焼もどし処理を施しねじり試験
を行った。高周波焼入れ焼もどし後の焼入れ深さは4mm
とした。ねじり試験は、500kgf・mのねじり試験機を用
いて、最大ねじり剪断強度を求めねじり強度とした。
(1) Machinability test A machinability test piece was taken from this straight bar. The machinability test is
SKH4, using a 4mmφ drill at 1500rpm
A 12 mm long hole was drilled, and the total drilling length (mm) until cutting became impossible was determined as the tool life and evaluated. (2) Torsion strength test A smooth round bar torsion test piece with a parallel portion of 20 mmφ was prepared from a straight bar, quenched using a 15 kHz frequency induction hardening device, and tempered at 170 ° C for 30 minutes. The test was performed. The quenching depth after induction hardening and tempering is 4mm
And In the torsion test, the maximum torsional shear strength was determined using a torsional tester of 500 kgf · m and defined as the torsional strength.

【0035】(3)焼割れ性試験 耐焼割れ性は、上記の25mmφの直棒から、表面に軸方向
のV字溝を付けた丸棒(20mmφ)を加工し、(2)と同
様の高周波焼入れを行った後に、丸棒のC断面10箇所を
研磨観察し、その割れの発生個数で評価した。鋼1〜1
1は本発明例である。比較例の鋼12〜19に比べ、ベ
イナイト相の比率が本発明範囲内となることにより被削
性が高いことがわかる。本発明範囲でもMs値が360
以上の鋼は、焼割れの発生個数も20以下と耐焼割れ性
が改善されている。比較例の鋼17は本発明範囲に比べ
C量が高く、ねじり強度の改善が著しくなく、しかも耐
焼割れ性が劣化し、被削性も低下している。C量が低い
比較例、鋼15は、ねじり強度が著しく低下している。
Si量が高い鋼16は、ベイナイト相の比率には変化ない
ものの、被削性が低下している。Mo量が少ない鋼14
は、被削性が低下している。
(3) Burning cracking test Burning cracking resistance was determined by processing a round bar (20 mmφ) with a V-shaped groove in the surface from the above 25 mmφ straight bar, and applying the same high frequency as in (2). After quenching, 10 rounds of the C section of the round bar were polished and observed, and the number of cracks generated was evaluated. Steel 1-1
1 is an example of the present invention. It can be seen that the machinability is higher when the ratio of the bainite phase falls within the range of the present invention, as compared with steels 12 to 19 of Comparative Examples. The Ms value is 360 even in the range of the present invention.
The above steels have improved cracking resistance as the number of occurrences of cracking is 20 or less. The steel 17 of the comparative example has a higher carbon content than the range of the present invention, has no remarkable improvement in torsional strength, and furthermore has deteriorated resistance to fire cracking and reduced machinability. In the comparative example with a low C content, steel 15, the torsional strength is significantly reduced.
Steel 16 having a high Si content does not change the ratio of the bainite phase, but has reduced machinability. Steel 14 with low Mo content
Has reduced machinability.

【0036】(実施例2)表3に示す化学組成の鋼を、
転炉で溶製し、 560×400mm のブルームにした後、熱間
圧延により25mmφの丸棒とした。熱間圧延終了後、加速
冷却を行い素材とした。これらの素材を用い、実施例1
と同様の試験を実施し、その結果を表4に示す。
(Example 2) Steel having the chemical composition shown in Table 3 was
After being melted in a converter to form a bloom of 560 × 400 mm, a 25 mmφ round bar was formed by hot rolling. After the completion of the hot rolling, accelerated cooling was performed to obtain a material. Example 1 using these materials
A test similar to the above was performed, and the results are shown in Table 4.

【0037】この結果から、本発明範囲とすることで、
被削性、ねじり強度、耐焼割れ性も優れている。圧延後
の冷却条件によってベイナイト相比率が変化するが、本
発明範囲外のベイナイト量では被削性が劣る。
From these results, it can be seen that by setting the range of the present invention,
Also excellent in machinability, torsional strength, and fire resistance. Although the bainite phase ratio changes depending on the cooling conditions after rolling, the machinability is inferior with a bainite amount outside the range of the present invention.

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【発明の効果】本発明によれば、高周波焼入れ焼もどし
後のねじり強度も高く、しかも被削性と耐焼割れ性を同
時に兼ね備えた鋼材が得られ、産業上の利用価値は大で
ある。
According to the present invention, a steel material having high torsional strength after induction hardening and tempering and having both machinability and resistance to quenching cracking at the same time is obtained, and its industrial value is great.

フロントページの続き (72)発明者 星野 俊幸 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (72)発明者 大森 靖浩 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (56)参考文献 特開 平9−87801(JP,A) 特開 平8−283910(JP,A) 特開 平8−176733(JP,A) 特開 平8−127844(JP,A) 特開 平6−256892(JP,A) 特開 平4−228519(JP,A) 特開 平3−177537(JP,A) 特開 平4−218641(JP,A) 特開 平2−145744(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 Continuing on the front page (72) Inventor Toshiyuki Hoshino 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Engineering Co., Ltd. (72) Inventor Yasuhiro Omori 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation In the laboratory (56) References JP-A-9-87801 (JP, A) JP-A-8-283910 (JP, A) JP-A-8-176733 (JP, A) JP-A-8-127844 (JP, A) JP-A-6-256892 (JP, A) JP-A-4-228519 (JP, A) JP-A-3-17757 (JP, A) JP-A-4-218641 (JP, A) JP-A-2- 145744 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 mass%で、C:0.35%以上0.60%以下、
Si:0.05%以下、Mn:0.65%以上1.70%以下、P:0.02
0 %以下、S:0.005 %以上0.035 %以下、Cr:0.15%
以下、Mo:0.05%以上0.50%以下、Ti:0.01%以上0.05
%以下、Al:0.01%以上0.05%以下、N:0.01%以下、
B:0.0005%以上0.0050%以下を含有し、残部Feおよび
不可避的不純物からなり、かつベイナイト相を面積率で
5〜30%含む組織からなることを特徴とする被削性およ
び耐焼割れ性に優れた機械構造用鋼材。
1. mass%, C: 0.35% to 0.60%,
Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less, P: 0.02
0% or less, S: 0.005% or more and 0.035% or less, Cr: 0.15%
Mo: 0.05% to 0.50%, Ti: 0.01% to 0.05
% Or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less,
B: excellent in machinability and fire-cracking resistance characterized by containing 0.0005% or more and 0.0050% or less, the balance being Fe and unavoidable impurities, and having a structure containing a bainite phase in an area ratio of 5 to 30%. Machine structural steel.
【請求項2】 mass%で、C:0.35%以上0.60%以下、
Si:0.05%以下、Mn:0.65%以上1.70%以下、P:0.02
0 %以下、S:0.005 %以上0.035 %以下、Cr:0.15%
以下、Mo:0.05%以上0.50%以下、Ti:0.01%以上0.05
%以下、Al:0.01%以上0.05%以下、N:0.01%以下、
B:0.0005%以上0.0050%以下を含有し、残部Feおよび
不可避的不純物からなり、下記式で定義されるMs値が
360以上で、かつベイナイト相を面積率で5〜30%含
む組織からなることを特徴とする被削性および耐焼割れ
性に優れた機械構造用鋼材 記 Ms=538 −317(% C) −33(%Mn) −28(%Cr) −17(%N
i)−11(%Si)−11(%Mo)
2. mass%, C: 0.35% or more and 0.60% or less,
Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less, P: 0.02
0% or less, S: 0.005% or more and 0.035% or less, Cr: 0.15%
Mo: 0.05% to 0.50%, Ti: 0.01% to 0.05
% Or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less,
B: A structure containing 0.0005% or more and 0.0050% or less, the balance being Fe and unavoidable impurities, an Ms value defined by the following formula of 360 or more, and a structure containing a bainite phase in an area ratio of 5 to 30%. Ms = 538 -317 (% C) -33 (% Mn) -28 (% Cr) -17 (% N
i) -11 (% Si) -11 (% Mo)
【請求項3】 mass%で、C:0.35%以上0.60%以下、
Si:0.05%以下、Mn:0.65%以上1.70%以下、P:0.02
0 %以下、S:0.005 %以上0.035 %以下、Cr:0.15%
以下、Mo:0.05%以上0.50%以下、Ti:0.01%以上0.05
%以下、Al:0.01%以上0.05%以下、N:0.01%以下、
B:0.0005%以上0.0050%以下を含有し、さらにCu:1.
0 %以下、Ni:3.5 %以下、V:0.01%以上0.30%以
下、Nb:0.005 %以上0.050 %以下のうちから選んだ1
種又は2種以上を含有し、残部Feおよび不可避的不純物
からなり、かつベイナイト相を面積率で5〜30%含む組
織からなることを特徴とする被削性および耐焼割れ性に
優れた機械構造用鋼材。
3. mass%, C: 0.35% or more and 0.60% or less,
Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less, P: 0.02
0% or less, S: 0.005% or more and 0.035% or less, Cr: 0.15%
Mo: 0.05% to 0.50%, Ti: 0.01% to 0.05
% Or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less,
B: 0.0005% to 0.0050%, Cu: 1.
0% or less, Ni: 3.5% or less, V: 0.01% or more and 0.30% or less, Nb: 0.005% or more and 0.050% or less
A mechanical structure which is excellent in machinability and quenching crack resistance, characterized by comprising a structure containing at least one or more species, the balance being Fe and unavoidable impurities, and comprising a bainite phase in an area ratio of 5 to 30%. For steel.
【請求項4】 mass%で、C:0.35%以上0.60%以下、
Si:0.05%以下、Mn:0.65%以上1.70%以下、P:0.02
0 %以下、S:0.005 %以上0.035 %以下、Cr:0.15%
以下、Mo:0.05%以上0.50%以下、Ti:0.01%以上0.05
%以下、Al:0.01%以上0.05%以下、N:0.01%以下、
B:0.0005%以上0.0050%以下を含有し、さらにCu:1.
0 %以下、Ni:3.5 %以下、V:0.01%以上0.30%以
下、Nb:0.005 %以上0.050 %以下のうちから選んだ1
種又は2種以上を含有し、残部Feおよび不可避的不純物
からなり、下記式で定義されるMs値が360以上で、
かつベイナイト相を面積率で5〜30%含む組織からなる
ことを特徴とする被削性および耐焼割れ性に優れた機械
構造用鋼材。 記 Ms=538 −317(% C) −33(%Mn) −28(%Cr) −17(%N
i)−11(%Si)−11(%Mo)
4. Mass%, C: 0.35% to 0.60%,
Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less, P: 0.02
0% or less, S: 0.005% or more and 0.035% or less, Cr: 0.15%
Mo: 0.05% to 0.50%, Ti: 0.01% to 0.05
% Or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less,
B: 0.0005% to 0.0050%, Cu: 1.
0% or less, Ni: 3.5% or less, V: 0.01% or more and 0.30% or less, Nb: 0.005% or more and 0.050% or less
Containing two or more species, the balance consisting of Fe and unavoidable impurities, the Ms value defined by the following formula is 360 or more,
A steel material for machine structural use having excellent machinability and resistance to fire cracking, characterized by having a structure containing a bainite phase in an area ratio of 5 to 30%. Ms = 538 -317 (% C) -33 (% Mn) -28 (% Cr) -17 (% N
i) -11 (% Si) -11 (% Mo)
【請求項5】 mass%で、C:0.35%以上0.60%以下、
Si:0.05%以下、Mn:0.65%以上1.70%以下、P:0.02
0 %以下、S:0.005 %以上0.035 %以下、Cr:0.15%
以下、Mo:0.05%以上0.50%以下、Ti:0.01%以上0.05
%以下、Al:0.01%以上0.05%以下、N:0.01%以下、
B:0.0005%以上0.0050%以下を含有し、残部Feおよび
不可避的不純物からなる鋼素材を熱間圧延および/また
は熱間鍛造により所定の形状に熱間加工し、熱間加工終
了後あるいは中間処理加熱後 0.2〜2℃/sec の冷却速
度で冷却することにより、ベイナイト相を面積率で5〜
30%含む組織とすることを特徴とする被削性および耐焼
割れ性に優れた機械構造用鋼材の製造方法。
5. Mass%, C: 0.35% to 0.60%,
Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less, P: 0.02
0% or less, S: 0.005% or more and 0.035% or less, Cr: 0.15%
Mo: 0.05% to 0.50%, Ti: 0.01% to 0.05
% Or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less,
B: A steel material containing 0.0005% or more and 0.0050% or less, with the balance being Fe and unavoidable impurities, is hot-rolled and / or hot-forged into a predetermined shape, and after hot working or after intermediate processing. After the heating, the bainite phase is cooled at a cooling rate of 0.2 to 2 ° C./sec.
A method for producing a steel material for machine structural use having excellent machinability and resistance to fire cracking, characterized by having a structure containing 30%.
【請求項6】 mass%で、C:0.35%以上0.60%以下、
Si:0.05%以下、Mn:0.65%以上1.70%以下、P:0.02
0 %以下、S:0.005 %以上0.035 %以下、Cr:0.15%
以下、Mo:0.05%以上0.50%以下、Ti:0.01%以上0.05
%以下、Al:0.01%以上0.05%以下、N:0.01%以下、
B:0.0005%以上0.0050%以下を含有し、残部Feおよび
不可避的不純物からなり、かつ下記式で定義されるMs
値が360以上である鋼素材を熱間圧延および/または
熱間鍛造により所定の形状に熱間加工し、熱間加工終了
後あるいは中間処理加熱後 0.2〜2℃/sec の冷却速度
で冷却することにより、ベイナイト相を面積率で5〜30
%含む組織とすることを特徴とする被削性および耐焼割
れ性に優れた機械構造用鋼材の製造方法。 記 Ms=538 −317(% C) −33(%Mn) −28(%Cr) −17(%N
i)−11(%Si)−11(%Mo)
6. In mass%, C: 0.35% or more and 0.60% or less,
Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less, P: 0.02
0% or less, S: 0.005% or more and 0.035% or less, Cr: 0.15%
Mo: 0.05% to 0.50%, Ti: 0.01% to 0.05
% Or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less,
B: Ms containing 0.0005% or more and 0.0050% or less, the balance being Fe and unavoidable impurities, and defined by the following formula
A steel material having a value of 360 or more is hot-worked into a predetermined shape by hot rolling and / or hot forging, and is cooled at a cooling rate of 0.2 to 2 ° C./sec after completion of the hot working or after heating during the intermediate treatment. Thereby, the bainite phase is 5 to 30 in area ratio.
A method for producing a steel material for machine structural use having excellent machinability and resistance to burn-out cracking, wherein Ms = 538 -317 (% C) -33 (% Mn) -28 (% Cr) -17 (% N
i) -11 (% Si) -11 (% Mo)
【請求項7】 前記鋼素材が、mass%で、C:0.35%以
上0.60%以下、Si:0.05%以下、Mn:0.65%以上1.70%
以下、P:0.020 %以下、S:0.005 %以上0.035 %以
下、Cr:0.15%以下、Mo:0.05%以上0.50%以下、Ti:
0.01%以上0.05%以下、Al:0.01%以上0.05%以下、
N:0.01%以下、B:0.0005%以上0.0050%以下を含有
し、さらにCu:1.0 %以下、Ni:3.5 %以下、V:0.01
%以上0.30%以下、Nb:0.005 %以上0.050 %以下のう
ちから選んだ1種又は2種以上を含有し、残部Feおよび
不可避的不純物からなる鋼素材であることを特徴とする
請求項5記載の被削性および耐焼割れ性に優れた機械構
造用鋼材の製造方法。
7. The steel material is mass%, C: 0.35% or more and 0.60% or less, Si: 0.05% or less, Mn: 0.65% or more and 1.70%.
Below, P: 0.020% or less, S: 0.005% or more and 0.035% or less, Cr: 0.15% or less, Mo: 0.05% or more and 0.50% or less, Ti:
0.01% or more and 0.05% or less, Al: 0.01% or more and 0.05% or less,
N: 0.01% or less, B: 0.0005% to 0.0050%, Cu: 1.0% or less, Ni: 3.5% or less, V: 0.01
6. A steel material containing one or more selected from the group consisting of Nb: 0.005% to 0.050% and Nb: 0.005% to 0.050%, with the balance being Fe and unavoidable impurities. Method for producing a steel material for machine structural use having excellent machinability and resistance to fire cracking.
【請求項8】 前記鋼素材が、mass%で、C:0.35%以
上0.60%以下、Si:0.05%以下、Mn:0.65%以上1.70%
以下、P:0.020 %以下、S:0.005 %以上0.035 %以
下、Cr:0.15%以下、Mo:0.05%以上0.50%以下、Ti:
0.01%以上0.05%以下、Al:0.01%以上0.05%以下、
N:0.01%以下、B:0.0005%以上0.0050%以下を含有
し、さらにCu:1.0 %以下、Ni:3.5 %以下、V:0.01
%以上0.30%以下、Nb:0.005 %以上0.050 %以下のう
ちから選んだ1種又は2種以上を含有し、残部Feおよび
不可避的不純物からなり、下記式で定義されるMs値が
360以上となる鋼素材であることを特徴とする請求項
6記載の被削性および耐焼割れ性に優れた機械構造用鋼
材の製造方法。 記 Ms=538 −317(% C) −33(%Mn) −28(%Cr) −17(%N
i)−11(%Si)−11(%Mo)
8. The steel material has a mass% of C: 0.35% to 0.60%, Si: 0.05% or less, Mn: 0.65% to 1.70%.
Below, P: 0.020% or less, S: 0.005% or more and 0.035% or less, Cr: 0.15% or less, Mo: 0.05% or more and 0.50% or less, Ti:
0.01% or more and 0.05% or less, Al: 0.01% or more and 0.05% or less,
N: 0.01% or less, B: 0.0005% to 0.0050%, Cu: 1.0% or less, Ni: 3.5% or less, V: 0.01
% Or more and 0.30% or less, Nb: one or more kinds selected from 0.005% or more and 0.050% or less, the balance being Fe and inevitable impurities, and the Ms value defined by the following formula is 360 or more. 7. The method for producing a steel material for machine structural use according to claim 6, wherein the steel material is excellent in machinability and resistance to fire cracking. Ms = 538 -317 (% C) -33 (% Mn) -28 (% Cr) -17 (% N
i) -11 (% Si) -11 (% Mo)
JP26865795A 1995-10-17 1995-10-17 Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same Expired - Lifetime JP3288563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26865795A JP3288563B2 (en) 1995-10-17 1995-10-17 Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26865795A JP3288563B2 (en) 1995-10-17 1995-10-17 Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09111401A JPH09111401A (en) 1997-04-28
JP3288563B2 true JP3288563B2 (en) 2002-06-04

Family

ID=17461602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26865795A Expired - Lifetime JP3288563B2 (en) 1995-10-17 1995-10-17 Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Country Status (1)

Country Link
JP (1) JP3288563B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3072986A4 (en) * 2013-11-19 2017-06-14 Nippon Steel & Sumitomo Metal Corporation Rod steel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170294B2 (en) * 2002-10-18 2008-10-22 Jfeスチール株式会社 Steel for machine structures and drive shafts with excellent rolling, fire cracking and torsional properties
CN100436628C (en) * 2003-01-17 2008-11-26 杰富意钢铁株式会社 Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
EP1584701B1 (en) * 2003-01-17 2008-10-08 JFE Steel Corporation Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
JP5706765B2 (en) * 2011-06-14 2015-04-22 株式会社神戸製鋼所 Induction hardening steel excellent in machinability and manufacturing method thereof
JP5706766B2 (en) * 2011-06-14 2015-04-22 株式会社神戸製鋼所 Induction hardening steel excellent in machinability and manufacturing method thereof
JP6988230B2 (en) * 2017-07-26 2022-01-05 大同特殊鋼株式会社 Material for induction hardened parts
CN111041356B (en) * 2019-12-05 2021-10-15 马鞍山钢铁股份有限公司 Niobium-containing atmospheric corrosion-resistant 14.9-grade high-strength bolt steel and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3072986A4 (en) * 2013-11-19 2017-06-14 Nippon Steel & Sumitomo Metal Corporation Rod steel

Also Published As

Publication number Publication date
JPH09111401A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
KR101965520B1 (en) Rolled steel bar or rolled wire material for cold-forged component
EP0637636B1 (en) Graphite structural steel having good free-cutting and good cold-forging properties and process of making this steel
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JP4983099B2 (en) Steel shaft parts with excellent impact and fatigue properties and manufacturing method thereof
JP4219023B2 (en) High-strength drive shaft and manufacturing method thereof
JP2916069B2 (en) High-strength induction hardened shaft parts
JP3432950B2 (en) Steel material for induction hardened shaft parts that has both cold workability and torsional fatigue strength characteristics
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP2003055714A (en) Non-heat treated steel forged workpiece, production method therefor and connecting rod parts for internal combustion engine obtained by using the same
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP3715744B2 (en) Non-tempered steel for hot forging used by fracture cutting
JP4728884B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP4488228B2 (en) Induction hardening steel
JP6390685B2 (en) Non-tempered steel and method for producing the same
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
JP4450217B2 (en) Non-tempered steel for soft nitriding
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP4170294B2 (en) Steel for machine structures and drive shafts with excellent rolling, fire cracking and torsional properties
JP3320958B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JPH1129836A (en) Steel for machine structural use for induction hardening
JP3398233B2 (en) Manufacturing method of machine structural steel and machine structural member excellent in machinability and fatigue strength after induction hardening / tempering
JPH09235654A (en) Steel for induction hardening and induction hardened part

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140315

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term