JP2916069B2 - High-strength induction hardened shaft parts - Google Patents

High-strength induction hardened shaft parts

Info

Publication number
JP2916069B2
JP2916069B2 JP5253691A JP25369193A JP2916069B2 JP 2916069 B2 JP2916069 B2 JP 2916069B2 JP 5253691 A JP5253691 A JP 5253691A JP 25369193 A JP25369193 A JP 25369193A JP 2916069 B2 JP2916069 B2 JP 2916069B2
Authority
JP
Japan
Prior art keywords
strength
induction hardened
hardness
less
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5253691A
Other languages
Japanese (ja)
Other versions
JPH0790484A (en
Inventor
達朗 越智
善郎 子安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5253691A priority Critical patent/JP2916069B2/en
Publication of JPH0790484A publication Critical patent/JPH0790484A/en
Application granted granted Critical
Publication of JP2916069B2 publication Critical patent/JP2916069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/64Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高強度高周波焼入れ軸部
品にかかわり、さらに詳しくは、図1の(a)〜(c)
に示したスプライン部を有するシャフト、フランジ付シ
ャフト、外筒付シャフト等の自動車の動力伝達系を構成
する軸部品として優れた捩り強度を有する高周波焼入れ
軸部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength induction hardened shaft part, and more particularly to FIGS. 1 (a) to 1 (c).
The present invention relates to an induction hardened shaft component having excellent torsional strength as a shaft component constituting a power transmission system of an automobile, such as a shaft having a spline portion, a shaft with a flange, a shaft with an outer cylinder, and the like.

【0002】[0002]

【従来の技術】自動車の動力伝達系を構成する軸部品
は、通常中炭素鋼を所定の部品に成形加工し、高周波焼
入れ−焼戻しを施して製造されているが、近年の自動車
エンジンの高出力化及び環境規制対応にともない、高強
度化(捩り強度の向上)の指向が強い。これに対して、
特公昭63−62571公報にはC:0.30〜0.3
8%、Mn:0.6〜1.5%、B:0.0005〜
0.0030%、Ti:0.01〜0.04%、Al:
0.01〜0.04%からなる鋼をドライブシャフトに
成形し、高周波焼入れによる高周波焼入れ深さと鋼部材
半径の比を0.4以上とするドライブシャフトの製造方
法が示されている。該発明材で得られる最大の捩り強度
は該公報第1図にみられるように、約160kgf/m
2 である。また、特開平4−218641号公報には
Si:0.05%以下、Mn:0.65超1.7以下で
ある低Siと高Mnを特徴とする特定成分系の高強度軸
部品用鋼材を用いることにより、スプライン部付き材で
140〜160kgf/mm2 の捩り強度が得られるこ
とが示されている。以上のように現状で実現できる捩り
強度の最大は約160kgf/mm2 である。
2. Description of the Related Art Shaft parts constituting a power transmission system of an automobile are usually manufactured by forming medium carbon steel into predetermined parts and performing induction hardening-tempering. In accordance with the progress of environmental protection and environmental regulations, there is a strong tendency to increase strength (improve torsional strength). On the contrary,
Japanese Patent Publication No. 63-62571 discloses C: 0.30 to 0.3.
8%, Mn: 0.6-1.5%, B: 0.0005-
0.0030%, Ti: 0.01 to 0.04%, Al:
A method of manufacturing a drive shaft in which steel of 0.01 to 0.04% is formed into a drive shaft and the ratio of the induction hardening depth by induction hardening to the steel member radius is 0.4 or more is disclosed. The maximum torsional strength obtained with the invention material is about 160 kgf / m as shown in FIG.
m 2 . Japanese Patent Application Laid-Open No. 4-218641 discloses a steel material for a high-strength shaft component of a specific component characterized by low Si and high Mn, in which Si: 0.05% or less and Mn: more than 0.65 to 1.7 or less. It has been shown that the use of a material having a spline portion can provide a torsional strength of 140 to 160 kgf / mm 2 with a material having a spline portion. As described above, the maximum torsional strength that can be realized at present is about 160 kgf / mm 2 .

【0003】[0003]

【発明が解決しようとする課題】しかし、前記した捩り
強度160kgf/mm2 の強度レベルは、自動車の動
力伝達系軸部品の強度レベルとして十分であるとは言え
ないのが現状である。また、高強度化を図る上で部品製
造工程上、加工性の向上と焼き割れの抑制が重要な課題
となっている。本発明の目的は、部品製造工程上、加工
性が優れ焼き割れを起こさず、かつ部品として160k
gf/mm2 以上の優れた捩り強度を有する軸部品を提
供しようとするものである。
However, at present, the strength level of the torsional strength of 160 kgf / mm 2 cannot be said to be sufficient as the strength level of a power transmission shaft part of an automobile. Further, in order to increase the strength, improvement of workability and suppression of burn-out cracks are important issues in a part manufacturing process. An object of the present invention is to provide a component having a high workability in the part manufacturing process without causing sintering cracks,
An object of the present invention is to provide a shaft component having an excellent torsional strength of gf / mm 2 or more.

【0004】[0004]

【課題を解決するための手段】本発明者らは、高周波焼
入れにより優れた捩り強度を有する軸部品を実現するた
めに、鋭意検討を行い次の知見を得た。 (1)高周波焼入れ材の捩り強度は、延性破壊する場
合、下記で定義される断面内平均硬さに比例して向上す
る。捩り強度と断面内平均硬さの関係から外挿すると、
160kgf/mm2 以上の優れた捩り強度を得るため
には、HVaが560以上とすることが必要である。断
面内平均硬さの定義;図2に示したように、半径aの断
面を半径方向に同心円状にN個のリングに分割し、n番
目のリング状部分の硬さをHVn 、半径をrn 、間隔を
Δrn とした時、
Means for Solving the Problems The present inventors have conducted intensive studies and obtained the following knowledge in order to realize a shaft part having excellent torsional strength by induction hardening. (1) The torsional strength of the induction hardened material is improved in the case of ductile fracture in proportion to the average in-section hardness defined below. Extrapolating from the relationship between torsional strength and average hardness in cross section,
In order to obtain excellent torsional strength of 160 kgf / mm 2 or more, HVa needs to be 560 or more. Definition of average hardness in cross section: As shown in FIG. 2, a cross section of radius a is divided concentrically into N rings in the radial direction, and the hardness of the n-th ring portion is HV n , and the radius is HV n . when r n, the interval was Δr n,

【0005】[0005]

【数3】 (Equation 3)

【0006】以上は、次の知見から得られた。図3は軸
部品の捩り変形過程で塑性変形が表層から内部へ進行す
る時の剪断歪と剪断応力を模式的に示した図である。図
中で実線は剪断歪分布、太実線は剪断応力分布、破線は
剪断降伏応力分布を示す。トルクが1)の時、表面で剪
断応力τが鋼材の剪断降伏応力τyに達して塑性変形が
開始する。トルクが2)の段階まで捩り変形が進行する
と、加工硬化を伴いながら(図中で表層部の破線と実線
の差が加工硬化量)塑性変形が内部へ進行する。なお、
図中の1点鎖線は塑性変形が起こらないと仮定した時の
仮想的な剪断応力分布である。さらにトルクが捩り破壊
を起こす直前の3)の段階では、ほぼ中心部まで塑性変
形が進行していると考えられる。
The above has been obtained from the following findings. FIG. 3 is a view schematically showing shear strain and shear stress when plastic deformation progresses from the surface layer to the inside during the torsional deformation process of the shaft component. In the figure, the solid line indicates the shear strain distribution, the thick solid line indicates the shear stress distribution, and the broken line indicates the shear yield stress distribution. When the torque is 1), the shear stress τ at the surface reaches the shear yield stress τy of the steel material, and plastic deformation starts. When the torsional deformation proceeds to the stage where the torque is 2), the plastic deformation proceeds inside with accompanying work hardening (the difference between the broken line and the solid line in the surface layer is the work hardening amount). In addition,
The alternate long and short dash line in the figure is a hypothetical shear stress distribution assuming that no plastic deformation occurs. Further, at the stage 3) immediately before the torque causes torsional fracture, it is considered that the plastic deformation has progressed to almost the center.

【0007】ここで、任意の剪断応力分布τ(r)に対
するトルクMt は次式(1)で与えられる。
[0007] Here, the torque M t for a given shear stress distribution tau (r) is given by the following equation (1).

【0008】[0008]

【数4】 (Equation 4)

【0009】一方、一般に捩り強度の指標として用いら
れる弾性破壊を仮定した見かけ上の剪断破壊応力τmax
は次式(2)で求められる。
On the other hand, an apparent shear fracture stress τ max assuming elastic fracture generally used as an index of torsional strength
Is obtained by the following equation (2).

【0010】[0010]

【数5】 (Equation 5)

【0011】鋼材が中・高炭素マルテンサイト鋼なので
加工硬化量が小さいと仮定すると、図3から明らかなよ
うに破壊時の剪断応力分布は剪断降伏応力分布にほぼ一
致するため、破壊時の剪断応力分布は硬さ分布の関数と
してτf (r)=K1 ・HV(r)と近似できる。
Assuming that the amount of work hardening is small because the steel material is a medium / high carbon martensitic steel, the shear stress distribution at the time of fracture almost coincides with the shear yield stress distribution as apparent from FIG. The stress distribution can be approximated as τ f (r) = K 1 · HV (r) as a function of the hardness distribution.

【0012】[0012]

【数6】 (Equation 6)

【0013】ここで、均一硬さ材に相当する硬さの指標
として、相当硬さHVeqを次式(4)で定義する。
Here, the equivalent hardness HV eq is defined by the following equation (4) as an index of the hardness corresponding to the uniform hardness material.

【0014】[0014]

【数7】 (Equation 7)

【0015】均一硬さ材では、HVeq=HV=一定よ
り、K2 =3/a3
For a material of uniform hardness, K 2 = 3 / a 3 because HV eq = HV = constant.

【0016】[0016]

【数8】 (Equation 8)

【0017】(3)、(5)式より、From equations (3) and (5),

【0018】[0018]

【数9】 (Equation 9)

【0019】相当硬さHVeqは、断面を半径方向に同心
円状にN個のリングに分割し、n番目のリング状部分の
硬さをHVn 、半径をrn 、間隔をΔrn とした時、次
のように近似できる。
The corresponding hardness HV eq divides into N ring section in the radial direction concentrically and the hardness of the n-th annular section HV n, radius r n, the distance between [Delta] r n At this time, it can be approximated as follows.

【0020】[0020]

【数10】 (Equation 10)

【0021】これをあらためて、断面内平均硬さHVa
と定義した。図4は、各種の硬さ分布を有する材料につ
いて、平均硬さHVaを求め、捩り強度をHVaで整理
した結果であるが、捩り強度はHVaと良い相関があ
り、160kgf/mm2 以上の優れた強度を得るため
には、HVaが560以上とすることが必要であること
が明らかである。
Again, the average hardness in the cross section HVa
Defined. FIG. 4 shows the results obtained by determining the average hardness HVa and arranging the torsional strength by HVa for materials having various hardness distributions. The torsional strength has a good correlation with HVa, and is excellent at 160 kgf / mm 2 or more. It is clear that HVa needs to be 560 or more in order to obtain a high strength.

【0022】(2)しかしながら、従来材を用いて断面
内平均硬さを増加させていくと、「延性破壊」から「粒
界割れ起点の脆性破壊」に破壊モードが変化し、強度の
増加が飽和するかもしくはかえって低下する。しかしな
がら、下記の手法を組み合わせて用いれば粒界破壊によ
る脆性破壊が抑制され、断面内平均硬さの増加に伴い捩
り強度は増加する。 1)Ti−B添加 2)P、Cu、O量の低減 3)炭窒化物による旧オーステナイト粒の細粒化(A
l、N適量添加)
(2) However, when the average hardness in the cross section is increased by using the conventional material, the fracture mode changes from “ductile fracture” to “brittle fracture at the grain boundary crack origin”, and the strength increases. Saturates or rather decreases. However, when the following methods are used in combination, brittle fracture due to grain boundary fracture is suppressed, and torsional strength increases with an increase in average hardness in a cross section. 1) Ti-B addition 2) Reduction of P, Cu and O contents 3) Refinement of old austenite grains by carbonitride (A
l, N appropriate amount added)

【0023】(3)上記の脆性破壊抑制による捩り強度
増加の効果は、上記に加えてさらに次の手法を付加する
ことによりさらに大きくなる。 1)Si増量 2)Cr、Mo、Ni添加 3)ハードショットピーニング処理による圧縮残留応力
の付与
(3) The effect of increasing the torsional strength by suppressing the brittle fracture is further increased by adding the following method in addition to the above. 1) Increase Si 2) Add Cr, Mo, Ni 3) Apply compressive residual stress by hard shot peening

【0024】(4)上記(1)の断面内平均硬さを増加
させていくと、従来材では焼き割れを起こしやすくなる
が、上記の(2)、(3)の対策を講じることにより焼
き割れは抑制される。
(4) As the average hardness in the cross section of (1) is increased, the conventional material is liable to cause sintering cracks. However, by taking the above measures (2) and (3), Cracking is suppressed.

【0025】(5)なお、軸部品の製造工程において優
れた加工性が必要な場合には、Si量を制限することに
より加工性が改善される。本発明は以上の新規なる知見
に基づいてなされたものであり、本発明の要旨は以下の
通りである。
(5) When excellent workability is required in the manufacturing process of the shaft part, the workability is improved by limiting the amount of Si. The present invention has been made based on the above-described novel findings, and the gist of the present invention is as follows.

【0026】本発明の請求項1の発明は重量比として、 C :0.35〜0.70% Si:0.01〜0.15% Mn:0.2〜2.0% S :0.005〜0.15% Al:0.0005〜0.05% Ti:0.005〜0.05% B :0.0005〜0.005% N :0.002〜0.02% を含有し、 P :0.020%以下 Cu:0.05%以下 O :0.0020%以下に制限し、 残部が鉄および不可避的不純物からなり、下記で定義さ
れる断面内平均硬さHVaが560以上であることを特
徴とする高強度高周波焼入れ軸部品である。断面内平均
硬さの定義;半径aの断面を半径方向に同心円状にN個
のリングに分割し、n番目のリング状部分の硬さをHV
n 、半径をrn 、間隔をΔrn とした時、
According to the first aspect of the present invention, as a weight ratio, C: 0.35 to 0.70% Si: 0.01 to 0.15% Mn: 0.2 to 2.0% S: 0. 005-0.15% Al: 0.0005-0.05% Ti: 0.005-0.05% B: 0.0005-0.005% N: 0.002-0.02% P: 0.020% or less Cu: 0.05% or less O: Restricted to 0.0020% or less, with the balance being iron and unavoidable impurities, and having an average in-section hardness HVa defined below of 560 or more. It is a high-strength induction hardened shaft part characterized by the following. Definition of average hardness in the cross section: The cross section of radius a is divided concentrically into N rings in the radial direction, and the hardness of the n-th ring-shaped portion is HV.
n, when the radius was r n, the interval and Δr n,

【0027】[0027]

【数11】 [Equation 11]

【0028】本発明の請求項2の発明は重量比として、 C :0.35〜0.70% Si:0.15超〜2.5% Mn:0.6〜2.0% S :0.005〜0.15% Al:0.0005〜0.05% Ti:0.005〜0.05% B :0.0005〜0.005% N :0.002〜0.02% を含有し、 P :0.020%以下 Cu:0.05%以下 O :0.0020%以下に制限し、 残部が鉄および不可避的不純物からなり、下記で定義さ
れる断面内平均硬さHVaが560以上であることを特
徴とする高強度高周波焼入れ軸部品である。断面内平均
硬さの定義;半径aの断面を半径方向に同心円状にN個
のリングに分割し、n番目のリング状部分の硬さをHV
n 、半径をrn 、間隔をΔrn とした時、
According to the second aspect of the present invention, as a weight ratio, C: 0.35 to 0.70% Si: more than 0.15 to 2.5% Mn: 0.6 to 2.0% S: 0 0.005 to 0.15% Al: 0.0005 to 0.05% Ti: 0.005 to 0.05% B: 0.0005 to 0.005% N: 0.002 to 0.02% P: 0.020% or less Cu: 0.05% or less O: 0.0020% or less, the balance being iron and unavoidable impurities, and the average in-section hardness HVa defined below as 560 or more A high-strength induction hardened shaft part characterized by the following. Definition of average hardness in the cross section: The cross section of radius a is divided concentrically into N rings in the radial direction, and the hardness of the n-th ring-shaped portion is HV.
n, when the radius was r n, the interval and Δr n,

【0029】[0029]

【数12】 (Equation 12)

【0030】本発明の請求項3ないし5の発明は、鋼が
さらに、 Cr:0.03〜1.5% Mo:0.05〜1.0% Ni:0.1〜3.5% の1種または2種以上を含有し、 さらにまたは、 Nb:0.01〜0.3%、 V :0.03〜0.6%、 の1種または2種を含有し、さらにまたは、 Ca:0.0005〜0.010% Pb:0.05〜0.5% の1種または2種を含有する請求項1または2記載の高
強度高周波焼入れ軸部品である。本発明の請求項6また
は請求項7の発明は、高周波焼入れ層の旧オーステナイ
ト結晶粒度が9番以上であり、さらにまたは表面の残留
応力が−80kgf/mm2 以下である請求項1ないし
5記載の高強度高周波焼入れ軸部品である。
According to a third aspect of the present invention, the steel further comprises Cr: 0.03 to 1.5% Mo: 0.05 to 1.0% Ni: 0.1 to 3.5% Nb: 0.01 to 0.3%, V: 0.03 to 0.6%, or one or two of the following: Ca: The high-strength induction hardened shaft part according to claim 1 or 2, comprising one or two of 0.0005 to 0.010% Pb: 0.05 to 0.5%. The invention according to claim 6 or 7 of the present invention, wherein the prior-austenite grain size of the induction hardened layer is 9 or more and the residual stress on the surface is -80 kgf / mm 2 or less. High strength induction hardened shaft parts.

【0031】[0031]

【作用】以下に、本発明を詳細に説明する。請求項1
は、最終製品が優れた捩り強度を有し、かつ軸部品の製
造工程において加工性に優れ、焼き割れを起こさない高
強度高周波焼入れ軸部品に関する発明である。まず、請
求項1発明の成分含有範囲を上記の如く限定した理由に
ついて説明する。
Hereinafter, the present invention will be described in detail. Claim 1
Is an invention relating to a high-strength induction hardened shaft part which has an excellent torsional strength in a final product, is excellent in workability in a manufacturing process of the shaft part, and does not cause quench cracking. First, the reason why the component content range of the first aspect of the present invention is limited as described above will be described.

【0032】Cは高周波焼入れ硬化層の硬さを増加させ
るのに有効な元素であるが、0.35%未満では硬さが
不十分であり、また0.70%を超えるとオーステナイ
ト粒界への炭化物析出が顕著になって粒界強度を劣化さ
せ、脆性破壊強度の低下を招くとともに、焼き割れが発
生しやすくなるため、含有量を0.35〜0.70%に
定めた。
C is an element effective for increasing the hardness of the induction hardened hardened layer, but if it is less than 0.35%, the hardness is insufficient, and if it exceeds 0.70%, it may cause an austenite grain boundary. Is remarkable, the grain boundary strength is degraded, the brittle fracture strength is lowered, and sintering cracks easily occur. Therefore, the content is set to 0.35 to 0.70%.

【0033】次に、Siは脱酸元素として添加する。し
かしながら、0.01%未満ではその効果は不十分であ
る。一方、Siは固溶体硬化により素材硬さを高くする
ため、0.15%を超える添加は、軸部品の製造工程で
加工性を劣化させる。以上の理由で、その含有量を0.
01〜0.15%とした。
Next, Si is added as a deoxidizing element. However, if the content is less than 0.01%, the effect is insufficient. On the other hand, Si increases the hardness of the material by solid solution hardening. Therefore, the addition of more than 0.15% deteriorates the workability in the manufacturing process of the shaft component. For the above reasons, the content is set to 0.
01-0.15%.

【0034】Mnは焼入れ性の向上を目的として添加す
る。しかしながら、0.20%未満ではこの効果は不十
分である。一方、2.0%を超えるとこの効果は飽和し
むしろ最終製品の靱性の劣化を招くので、その含有量を
0.20〜2.0%とした。
Mn is added for the purpose of improving hardenability. However, if less than 0.20%, this effect is insufficient. On the other hand, if the content exceeds 2.0%, this effect is not saturated but rather causes the toughness of the final product to deteriorate, so the content is set to 0.20 to 2.0%.

【0035】また、Sは鋼中でMnSを形成、これによ
る高周波焼入れ加熱時のオーステナイト粒の微細化およ
び被削性の向上を目的として添加するが、0.005%
未満ではその効果は不十分である。一方、0.15%を
超えるとその効果は飽和し、むしろ粒界偏析を起こし粒
界脆化を招く。以上の理由から、Sの含有量を0.00
5〜0.15%とした。
S forms MnS in the steel and is added for the purpose of refining austenite grains and improving machinability during induction hardening and heating.
If less, the effect is insufficient. On the other hand, if the content exceeds 0.15%, the effect is saturated, and rather, grain boundary segregation is caused to cause grain boundary embrittlement. For the above reasons, the content of S is 0.00
5 to 0.15%.

【0036】Alは、1)Nと結合してAlNを形成す
ることによる高周波焼入れ加熱時のオーステナイト粒の
微細化を目的として、および2)脱酸元素として添加す
るが、0.0005%未満ではその効果は不十分であ
り、一方、0.05%を超えるとその効果は飽和し、む
しろ靱性を劣化させるので、その含有量を0.0005
〜0.05%とした。
Al is added for the purpose of 1) refining austenite grains during induction hardening heating by forming AlN by combining with N, and 2) adding as a deoxidizing element. The effect is insufficient. On the other hand, if it exceeds 0.05%, the effect is saturated, and rather the toughness is deteriorated.
-0.05%.

【0037】Tiもやはり鋼中でNと結合してTiNと
なるが、これによる1)高周波焼入れ加熱時のオーステ
ナイト粒の微細化、および2)固溶Nの完全固定による
BN析出防止、つまり固溶Bの確保を目的として添加す
る。しかしながら、0.005%未満ではその効果は不
十分であり、一方、0.05%を超えるとその効果は飽
和し、むしろ靱性を劣化させるので、その含有量を0.
005〜0.05%とした。
[0037] Ti also combines with N in steel to form TiN. This causes 1) the refinement of austenite grains during induction hardening and heating, and 2) the prevention of BN precipitation by complete fixation of solid solution N, that is, solidification. It is added for the purpose of securing dissolved B. However, if the content is less than 0.005%, the effect is insufficient, while if it exceeds 0.05%, the effect is saturated, and the toughness is rather deteriorated.
005 to 0.05%.

【0038】Bは固溶状態でオーステナイト粒界に粒界
偏析し、P、Cu等の粒界不純物を粒界から追い出すこ
とにより粒界強度を増加させることを狙いとして添加す
る。しかしながら、0.0005%未満ではその効果は
不十分であり、一方、0.005%を超える過剰添加
は、むしろ粒界脆化を招くので、その含有量を0.00
05〜0.005%とした。
B is segregated at the austenite grain boundaries in a solid solution state, and is added for the purpose of increasing the grain boundary strength by driving out grain boundary impurities such as P and Cu from the grain boundaries. However, if the content is less than 0.0005%, the effect is insufficient. On the other hand, an excessive addition exceeding 0.005% rather causes grain boundary embrittlement, so that the content is limited to 0.005%.
05 to 0.005%.

【0039】さらに、NはAlN等の炭窒化物析出によ
る高周波加熱時のオーステナイト粒の微細化を目的とし
て添加するが、0.002%未満ではその効果は不十分
であり、一方、0.02%超では、その効果は飽和しむ
しろBNを形成して固溶Bの減少を招くので、その含有
量を0.002〜0.02%とした。
Further, N is added for the purpose of refining austenite grains at the time of high-frequency heating by precipitation of carbonitride such as AlN. If less than 0.002%, the effect is insufficient. %, The effect is not saturated but rather forms BN and causes a decrease in solid solution B, so the content was made 0.002 to 0.02%.

【0040】一方、Pはオーステナイト粒界に粒界偏析
を起こし、粒界強度を低下させて捩り応力下での脆性破
壊を起こし易くし、そのため強度を低下させる。特にP
が0.02%を超えると強度低下が顕著となるため、
0.02%を上限とした。なお、より一層高強度化を指
向する場合は、Pの含有量を0.009%以下とするの
が望ましい。
On the other hand, P causes grain boundary segregation at austenite grain boundaries, lowers the grain boundary strength, easily causes brittle fracture under torsional stress, and therefore lowers the strength. Especially P
Exceeds 0.02%, the strength is significantly reduced.
0.02% was made the upper limit. In order to further increase the strength, the content of P is desirably 0.009% or less.

【0041】また、CuもPと同様オーステナイト粒界
に粒界偏析を起こし、強度低下の原因となる。特にCu
が0.05%を超えると強度低下が顕著となるため、
0.05%を上限とした。
Further, Cu also causes grain boundary segregation at austenite grain boundaries like P, which causes a reduction in strength. Especially Cu
Exceeds 0.05%, the strength decreases markedly.
The upper limit was 0.05%.

【0042】さらに、Oは粒界偏析を起こし粒界脆化を
起こすとともに、鋼中で硬い酸化物系介在物を形成し、
捩り応力下での脆性破壊を起こし易くし、強度低下の原
因となる。特にOが0.0020%を超えると強度低下
が顕著となるため、0.0020%を上限とした。
Further, O causes grain boundary segregation to cause grain boundary embrittlement, and forms hard oxide-based inclusions in the steel.
It tends to cause brittle fracture under torsional stress and causes a decrease in strength. In particular, when O exceeds 0.0020%, the strength decreases remarkably, so the upper limit was made 0.0020%.

【0043】次に、高周波焼入れ軸部品が上記の成分か
らなり、上記で定義される断面内平均硬さHVaが56
0以上とした理由を以下に述べる。高周波焼入れ材の捩
り強度は、断面内平均硬さに比例して向上する。160
kgf/mm2 以上の優れた捩り強度を得るためには断
面内平均硬さHVaを560以上とすることが必要であ
り、それ未満では捩り強度が不足する。以上の理由か
ら、断面内平均硬さHVaが560以上とした。なお、
本発明では硬化層深さは特に限定しないが、JISG0
559で規定する高周波焼入れ硬化層深さ測定方法に基
づく有効硬化層深さtと部品半径rの比t/rを0.3
〜0.8とするのが望ましい。これは高周波焼入れ材の
ねじり強さは、高周波焼入れ深さを深くするほど向上す
るが、有効硬化層深さがt/rで0.3未満では、ねじ
り強さ向上効果が小さく、また0.8を超えると表層の
圧縮残留応力が低下するため、軸部品製造工程で焼き割
れ発生の危険性が増すためである。
Next, the induction hardened shaft part is composed of the above-mentioned components, and the average hardness HVa in the cross section defined above is 56.
The reason for setting the value to 0 or more will be described below. The torsional strength of the induction hardened material increases in proportion to the average hardness in the cross section. 160
In order to obtain an excellent torsional strength of kgf / mm 2 or more, it is necessary to set the average hardness HVa in the cross section to 560 or more. For the above reasons, the average hardness HVa in the cross section is set to 560 or more. In addition,
In the present invention, the depth of the hardened layer is not particularly limited.
The ratio t / r of the effective hardened layer depth t to the component radius r based on the induction hardened hardened layer depth measuring method specified in 559 is 0.3.
It is desirable to set it to 0.8. This means that the torsional strength of the induction hardened material is improved as the induction hardened depth is increased. However, when the effective hardened layer depth is less than 0.3 at t / r, the effect of improving the torsional strength is small, and the torsional strength is not improved. If it exceeds 8, the compressive residual stress of the surface layer will decrease, and the risk of occurrence of burn cracking in the shaft component manufacturing process will increase.

【0044】次に請求項2は、最終製品がより一層の高
い捩り強度を有し、かつ製造工程で焼き割れを起こさな
い高強度高周波焼入れ軸部品に関する発明である。請求
項2発明でSi:0.15超〜2.5%、Mn:0.6
〜2.0%を含有する鋼を用いるのは次の理由による。
A second aspect of the present invention relates to a high-strength induction hardened shaft part which has a higher torsional strength in the final product and does not cause quenching cracks in the manufacturing process. The invention according to claim 2, wherein Si: more than 0.15 to 2.5%, Mn: 0.6.
The reason for using steel containing .about.2.0% is as follows.

【0045】Siは1)オーステナイト粒界への炭化物
析出抑制による粒界強化を目的として、および2)脱酸
元素として添加する。しかしながら、0.15%以下の
添加では粒界強化の効果は不十分であり、一方、2.5
%を超える過剰添加は、むしろ粒界脆化を招くので、そ
の含有量を0.15超〜2.5%とした。なお、一層の
高強度化を図るためには、0.4%以上のSi添加が望
ましい。
Si is added 1) for the purpose of strengthening the grain boundary by suppressing carbide precipitation on the austenite grain boundary, and 2) as a deoxidizing element. However, the effect of strengthening the grain boundary is insufficient with the addition of 0.15% or less, while 2.5% or less.
%, Rather causes excessive grain boundary embrittlement, so the content was made more than 0.15 to 2.5%. In order to further increase the strength, it is desirable to add 0.4% or more of Si.

【0046】Mnは1)焼入れ性の向上、および鋼中で
MnSを形成することによる2)高周波焼入れ加熱時の
オーステナイト粒の微細化と3)被削性の向上を目的と
して添加する。しかしながら、より高い捩り強度を指向
した場合には0.60%未満の添加では不十分である。
一方、Mnはオーステナイト粒界に粒界偏析を起こし、
粒界強度を低下させて捩り応力下での脆性破壊を起こし
易くし、そのため強度を低下させる。特にこの傾向は
2.0%以上で顕著になる。以上の理由から、Mnの含
有量を0.6〜2.0%とした。
Mn is added for the purpose of 1) improving hardenability, and 2) forming MnS in steel, 2) refining austenite grains during induction hardening heating, and 3) improving machinability. However, when higher torsional strength is intended, addition of less than 0.60% is insufficient.
On the other hand, Mn causes grain boundary segregation at austenite grain boundaries,
It lowers the grain boundary strength to facilitate brittle fracture under torsional stress, thus reducing the strength. In particular, this tendency becomes remarkable at 2.0% or more. For the above reasons, the content of Mn is set to 0.6 to 2.0%.

【0047】請求項3は、Cr、Mo、Ni添加によ
り、1)焼入れ性の向上による高周波焼入れ硬さの増
加、硬化層深さの増加および2)オーステナイト粒界に
粒界偏析を起こすことによる粒界強度増加または粒界近
傍の靱性改善による脆性破壊防止により一層の高強度化
を図った軸部品用鋼材である。しかしながら、Cr:
0.03%未満、Mo:0.05%未満、Ni:0.1
%未満ではこの効果は不十分である。一方、Cr:1.
5%超、Mo:1.0%超、Ni:3.5%超ではこの
効果は飽和し、このような過剰添加は経済性の観点から
好ましくない。以上の理由から、これらの含有量をC
r:0.03〜1.5%、Mo:0.05〜1.0%、
Ni:0.1〜3.5%とした。
Claim 3 is that, by adding Cr, Mo and Ni, 1) increase of induction hardening hardness due to improvement of hardenability, increase of hardened layer depth and 2) occurrence of grain boundary segregation at austenite grain boundary. This is a steel material for shaft parts that has further enhanced strength by preventing brittle fracture by increasing the grain boundary strength or improving the toughness near the grain boundary. However, Cr:
Less than 0.03%, Mo: less than 0.05%, Ni: 0.1
%, The effect is insufficient. On the other hand, Cr: 1.
If the content exceeds 5%, the content of Mo exceeds 1.0%, and the content of Ni exceeds 3.5%, this effect is saturated, and such excessive addition is not preferable from the viewpoint of economy. For the above reasons, these contents are
r: 0.03 to 1.5%, Mo: 0.05 to 1.0%,
Ni: 0.1 to 3.5%.

【0048】請求項4は、1)高周波加熱時のオーステ
ナイト粒を一層微細化し、粒界破壊を防止するととも
に、2)析出強化により芯部の硬さを増加することによ
り高強度化を図った軸部品用鋼材である。Nb、Vは鋼
中で炭窒化物を形成し、高周波加熱時のオーステナイト
粒を微細化させる効果、および析出強化により芯部の硬
さを増加させる効果を有する。しかしながら、Nb含有
量が0.01%未満、V含有量が0.03%未満ではそ
の効果は不十分である。一方、Nb:0.30%超、
V:0.60%超では、その効果は飽和し、このような
過剰添加は経済性の観点から好ましくない。以上の理由
から、これらの含有量をNb:0.01〜0.3%、
V:0.03〜0.6%とした。
In claim 4, 1) the austenite grains during high-frequency heating are further refined to prevent grain boundary destruction, and 2) the strength of the core is increased by increasing the hardness of the core by precipitation strengthening. It is a steel material for shaft parts. Nb and V form carbonitrides in steel, have the effect of making austenite grains fine during high frequency heating, and the effect of increasing the hardness of the core by precipitation strengthening. However, if the Nb content is less than 0.01% and the V content is less than 0.03%, the effect is insufficient. On the other hand, Nb: more than 0.30%,
If V: more than 0.60%, the effect is saturated, and such an excessive addition is not preferable from the viewpoint of economy. For the above reasons, these contents are set to Nb: 0.01 to 0.3%,
V: 0.03 to 0.6%.

【0049】請求項5は、最終製品が優れた捩り強度を
有し、かつ軸部品の製造工程において加工性に優れ、焼
き割れを起こさない高強度高周波焼入れ軸部品に関する
発明である。本発明鋼では、被削性向上を目的としてC
a、Pbの1種また2種を含有させることが出来る。な
お、Caは被削性向上だけでなく、鋼中でPと結合して
燐化物を生成し、Pの粒界偏析量を低減し粒界強度を増
加させる効果も有している。しかしながら、Ca含有量
が0.0005%未満、Pb含有量が0.05%未満で
はこれら効果は不十分であり、一方、Ca:0.01%
超、Pb:0.50%超では、これらの効果は飽和し、
むしろ靱性を劣化させるので、これらの含有量をCa:
0.0005〜0.010%、Pb:0.05〜0.5
%とした。
A fifth aspect of the present invention is directed to a high-strength induction hardened shaft part which has an excellent torsional strength in the final product, has excellent workability in the manufacturing process of the shaft part, and does not cause quench cracking. In the steel of the present invention, C is used to improve machinability.
One or two of a and Pb can be contained. In addition, Ca not only improves machinability, but also has the effect of forming phosphide by combining with P in steel, reducing the amount of segregation of P at the grain boundary and increasing the grain boundary strength. However, if the Ca content is less than 0.0005% and the Pb content is less than 0.05%, these effects are insufficient, while Ca: 0.01%
When the content is more than Pb: more than 0.50%, these effects are saturated,
Rather, it deteriorates the toughness.
0.0005-0.010%, Pb: 0.05-0.5
%.

【0050】次に、請求項6は高周波加熱時のオーステ
ナイト粒を一層微細化し、粒界破壊防止による高強度化
を図った軸部品である。本発明において高周波焼入れ軸
部品の高周波焼入れ層の旧オーステナイト結晶粒度が9
番以上としたのは、高周波焼入れ層の旧オーステナイト
粒界の微細化により粒界破壊による脆性破壊が抑制され
るが、結晶粒度が9番未満ではこの効果は小さいためで
ある。
A sixth aspect of the present invention relates to a shaft component in which austenite grains during high-frequency heating are further refined to increase the strength by preventing grain boundary destruction. In the present invention, the former austenite grain size of the induction hardened layer of the induction hardened shaft part is 9
The reason why the number is higher than that is that brittle fracture due to grain boundary fracture is suppressed by miniaturization of the former austenite grain boundary of the induction hardened layer, but when the crystal grain size is less than 9, this effect is small.

【0051】請求項7は高周波焼入れ軸部品の表面に大
きな圧縮残留応力を付与し、これにより脆性破壊を抑制
して一層の高強度化を図った軸部品である。本発明にお
いて高周波焼入れ軸部品の表面の残留応力が−80kg
f/mm2 以下としたのは、圧縮残留応力の付与により
脆性破壊が抑制されて捩り強度が増加し、その効果は表
面の残留応力が−80kgf/mm2 以下で特に顕著に
なるためである。
A seventh aspect of the present invention is a shaft component which imparts a large compressive residual stress to the surface of the induction hardened shaft component, thereby suppressing brittle fracture and further increasing the strength. In the present invention, the residual stress on the surface of the induction hardened shaft part is -80 kg.
was set to f / mm 2 or less, the brittle fracture is suppressed by the application of compressive residual stress torsional strength is increased by, the effect is due to the residual stress of the surface is particularly pronounced in -80kgf / mm 2 or less .

【0052】ここで、本発明の高周波焼入れ軸部品で
は、製造のための高周波焼入れ条件および焼戻し条件は
特に限定せず、本発明の要件を満足すればいずれの条件
でも良い。例えば、本発明の要件を満足すれば焼戻し処
理を行わなくても良い。また、本発明では、本発明の要
件を満足すれば、高周波焼入れの前に焼準、焼鈍、球状
化焼鈍、焼入れ一焼戻し等の熱処理を必要に応じて行う
ことができる。なお、高周波焼入れの前に焼準、焼鈍、
球状化焼鈍を行わない場合には、鋼材素材の熱間圧延に
よる製造を仕上げ温度;700〜850℃、仕上げ圧延
後700〜500℃の温度範囲の平均冷却速度;0.0
5〜0.7℃/秒の条件で行うのが望ましい。
Here, in the induction hardened shaft component of the present invention, the induction hardening conditions and the tempering conditions for manufacturing are not particularly limited, and any conditions may be used as long as the requirements of the present invention are satisfied. For example, if the requirements of the present invention are satisfied, tempering may not be performed. In the present invention, if the requirements of the present invention are satisfied, heat treatments such as normalizing, annealing, spheroidizing annealing, quenching and tempering can be performed as necessary before induction hardening. Before induction hardening, normalizing, annealing,
When the spheroidizing annealing is not performed, the steel material is manufactured by hot rolling at a finishing temperature of 700 to 850 ° C, and an average cooling rate in a temperature range of 700 to 500 ° C after the finish rolling;
It is desirable to carry out under the condition of 5 to 0.7 ° C./sec.

【0053】また、本発明の高周波焼入れ軸部品におけ
る圧縮残留応力の付与は、高周波焼入れ−焼戻し後、ア
ークハイト1.0mmA以上の強さでのハードショット
ピーニング処理が有効である。ここで、アークハイトと
は例えば「自動車技術、Vol.41、No.7、19
87、726〜727頁」に掲載されているようにショ
ットピーニングの強さの指標である。但し、本発明で
は、圧縮残留応力の付与の条件は特に限定せず、本発明
の要件を満足すればいずれの条件でも良い。以下に、本
発明の効果を実施例により、さらに具体的に示す。
The application of the compressive residual stress to the induction hardened shaft component of the present invention is effective by hard shot peening at an arc height of 1.0 mmA or more after induction hardening and tempering. Here, the arc height is, for example, “Automotive technology, Vol. 41, No. 7, 19
87, pp. 726 to 727 ”, which is an index of the strength of shot peening. However, in the present invention, the conditions for applying the compressive residual stress are not particularly limited, and any conditions may be used as long as the requirements of the present invention are satisfied. Hereinafter, the effects of the present invention will be more specifically described with reference to examples.

【0054】[0054]

【実施例】表1〜3の組成を有する鋼材を40mmφの
棒鋼に圧延した。この棒鋼から被削性評価用ドリル穴開
け試験片、捩り試験片および焼き割れ感受性評価試験片
を採取した。被削性の評価は、送り速度0.33mm/
sで、ドリル(材質:SKH51−φ10mm)の周速
を種々変化させ、各速度においてドリル切削不能になる
総穴深さを求め、周速−ドリル寿命曲線を作成し、ドリ
ル寿命が1000mmとなる最大速度をVL1000 と規定
し、被削性の評価基準とした。表1〜3にVL1000 の評
価結果を併せて示す。被削性は、第1発明鋼等のSi:
0.01〜0.15%である鋼材が第2発明鋼等のS
i:0.15超〜2.5%である鋼材に比べて相対的に
優れており、また被削性向上元素を含有する第5発明鋼
が特に被削性が優れていることがわかる。
EXAMPLE A steel material having the composition shown in Tables 1 to 3 was rolled into a bar of 40 mmφ. From this steel bar, a test piece for drilling for evaluation of machinability, a torsion test piece, and a test piece for evaluating susceptibility to quench cracking were collected. The evaluation of machinability is based on a feed rate of 0.33 mm /
In s, the peripheral speed of the drill (material: SKH51-φ10 mm) is variously changed, the total hole depth at which drilling cannot be performed at each speed is determined, and a peripheral speed-drill life curve is created, and the drill life becomes 1000 mm. The maximum speed was defined as VL1000, which was used as an evaluation standard for machinability. Tables 1 to 3 also show the evaluation results of VL1000 . The machinability is as follows:
The steel material of 0.01 to 0.15% is S such as the second invention steel.
i: More than 0.15% to 2.5%, which is relatively superior to the steel material, and it can be seen that the fifth invention steel containing the machinability improving element is particularly excellent in machinability.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【表3】 [Table 3]

【0058】次に、対象としている軸部品はスプライン
部のような応用集中部(=切り欠き部)を有しており、
この切り欠き部で破壊する。そのため、強度評価は切り
欠き付き材での評価が必要である。そこで、捩り強度評
価用の試験片として平行部が16mmφで中央部に先端
R0.25mm、深さ2mmの切り欠きを有する切り欠
き付き捩り試験片を用いた。
Next, the target shaft component has an application concentrated portion (= notch portion) such as a spline portion.
It breaks at this notch. Therefore, it is necessary to evaluate the strength with a notched material. Accordingly, a notched torsion test piece having a notch with a parallel portion of 16 mmφ, a tip R of 0.25 mm and a depth of 2 mm at the center was used as a test piece for torsional strength evaluation.

【0059】[0059]

【表4】 [Table 4]

【0060】表4に示すA〜Cの条件で高周波焼入れを
行い、その後170℃×1時間の条件で焼戻しを行っ
た。これらの試料について捩り試験を行った。なお、一
部の試料については、高周波焼入れ−焼戻し後、アーク
ハイト1.0〜1.5mmAの条件でショットピーニン
グ処理を行った。また、焼き割れ感受性を評価するため
に、直径24mmφ、長さ200mmLで長手方向に先
端R0.25mm、深さ3mmの切り欠きを有する試験
片を用い、表4に示すDの条件で高周波焼入れを行い、
切り欠き底の焼き割れの有無を観察した。
Induction hardening was performed under the conditions A to C shown in Table 4, and thereafter tempering was performed at 170 ° C. for 1 hour. These samples were subjected to a torsion test. In addition, about some samples, after induction hardening-tempering, the shot peening process was performed on conditions of 1.0-1.5 mmA of arc heights. Further, in order to evaluate the susceptibility to quenching cracks, a test piece having a notch of 24 mmφ in diameter, 200 mmL in length, a tip R of 0.25 mm and a depth of 3 mm in a longitudinal direction was subjected to induction hardening under the conditions of D shown in Table 4. Do
The presence or absence of burning cracks at the notch bottom was observed.

【0061】表1〜3の鋼No.1〜44は本発明鋼、
鋼No.45〜63は比較鋼である。表5〜7に各鋼材
の捩り強度評価結果を、有効硬化層深さと半径の比t/
r、断面内平均硬さHVa、高周波焼入れ層の旧オース
テナイト結晶粒度Nγ、表面の残留応力、焼き割れ感受
性の評価結果とあわせて示す。なお、有効硬化層深さ
は、JISG0559で規定する高周波焼入れ硬化層深
さ測定方法に基づく有効硬化層深さである。
The steel Nos. 1 to 44 are steels of the present invention,
Steel No. 45 to 63 are comparative steels. Tables 5 to 7 show the results of the evaluation of the torsional strength of each steel material as the ratio of the effective hardened layer depth to the radius t /.
r, the average hardness in section HVa, the prior austenite grain size Nγ of the induction hardened layer, the residual stress on the surface, and the evaluation results of the susceptibility to quenching cracking. The effective hardened layer depth is the effective hardened layer depth based on the induction hardened hardened layer depth measuring method specified in JIS G0559.

【0062】[0062]

【表5】 [Table 5]

【0063】[0063]

【表6】 [Table 6]

【0064】[0064]

【表7】 [Table 7]

【0065】表5〜7から明らかなように、本発明法に
よる鋼はいずれも160kgf/mm2 以上の優れた捩
り強度を有し、また焼き割れ感受性も小さいことがわか
る。また、本発明法の中で、第2発明鋼等のSi:0.
15超〜2.5%、Mn:0.6〜2.0%である鋼材
を用いた発明例が、第1発明鋼等のSi:0.01〜
0.15%、Mn:0.2〜2.0%である鋼材を用い
た発明例に比べて相対的により高いレベルの捩り強度を
達成している。さらに高周波焼入れ層の旧オーステナイ
ト結晶粒度が9番以上であるか、さらにまたは表面の残
留応力が−80kgf/mm2 以下である場合は、より
高いレベルの捩り強度を達成していることがわかる。
As is clear from Tables 5 to 7, all of the steels according to the method of the present invention have excellent torsional strength of 160 kgf / mm 2 or more and low susceptibility to fire cracking. Also, in the method of the present invention, Si: 0.
An invention example using a steel material having a ratio of more than 15 to 2.5% and Mn: 0.6 to 2.0% is the first invention steel or the like having a Si: 0.01 to
A relatively higher level of torsional strength is achieved as compared with the invention example using a steel material having 0.15% and Mn: 0.2 to 2.0%. Further, when the former austenite grain size of the induction hardened layer is 9 or more, or when the residual stress on the surface is -80 kgf / mm 2 or less, it is understood that a higher level of torsional strength is achieved.

【0066】一方、比較例3C、7C、13C、18
C、25C、31C、41Cは、断面内平均硬さHVa
が560を下回った場合であり、いずれも160kgf
/mm2 以上の捩り強度を達成していない。比較例50
はSの含有量が本発明の範囲を下回った場合であり、1
60kgf/mm2 以上の捩り強度を有しているもの
の、表3に示したように鋼No.50は被削性が劣って
いる。
On the other hand, Comparative Examples 3C, 7C, 13C and 18
C, 25C, 31C and 41C are average hardness HVa in the cross section.
Is less than 560, all of which are 160kgf
/ Mm 2 or more. Comparative Example 50
Is the case where the content of S is lower than the range of the present invention.
Although having a torsional strength of 60 kgf / mm 2 or more, as shown in Table 3, steel No. 50 has poor machinability.

【0067】比較例45、48、53、55、57は
C、Mn、Ti、B、Nの含有量が本発明の範囲を下回
った場合であり、また、比較例46、47、49、5
1、52、54、56、58、59、60、61、6
2、63はC、Si、Mn、S、Al、Ti、B、N、
P、Cu、O、Ca、Pbの含有量が本発明の範囲を上
回った場合であり、いずれも160kgf/mm2 以上
の捩り強度を達成しておらず、また、この中の一部の粒
界強化対策の不十分な鋼材等の比較例では、焼き割れが
発生している。
Comparative Examples 45, 48, 53, 55 and 57 are cases where the contents of C, Mn, Ti, B and N are below the range of the present invention, and Comparative Examples 46, 47, 49 and 5
1, 52, 54, 56, 58, 59, 60, 61, 6
2, 63 are C, Si, Mn, S, Al, Ti, B, N,
This is the case where the contents of P, Cu, O, Ca, and Pb exceeded the range of the present invention. All of them did not achieve a torsional strength of 160 kgf / mm 2 or more. In a comparative example of a steel material or the like with insufficient measures for strengthening the field, burn cracking occurs.

【0068】[0068]

【発明の効果】以上述べたごとく、本発明法を用いれ
ば、160kgf/mm2 以上の優れた捩り強度を有
し、かつ焼き割れを起こさない高周波焼入れ軸部品の製
造が可能となり、産業上の効果は極めて顕著なるものが
ある。
As described above, by using the method of the present invention, it is possible to manufacture an induction hardened shaft component having excellent torsional strength of 160 kgf / mm 2 or more and not causing quenching cracks, The effect is very remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はセレーション部を有するシャフト、
(b)はフランジ付シャフト、(c)は外筒付シャフト
を示した図
FIG. 1 (a) is a shaft having a serration portion,
(B) shows a shaft with a flange, and (c) shows a shaft with an outer cylinder.

【図2】断面内平均硬さの定義を説明するための図であ
り、断面を半径方向に同心円状にn個のリングに分割し
た状態を示す図
FIG. 2 is a diagram for explaining the definition of average hardness in a cross-section, and shows a state in which the cross-section is divided into n rings concentrically in a radial direction.

【図3】軸部品の捩り変形過程で塑性変形が裏面から内
部へ進行する時の剪断歪と剪断力を模式的に示した図
FIG. 3 is a diagram schematically showing a shear strain and a shear force when plastic deformation progresses from the back surface to the inside during the torsional deformation process of the shaft component.

【図4】各種材料の平均硬さ(HVa)と捩り強度との
関係を示す図
FIG. 4 is a diagram showing the relationship between the average hardness (HVa) of various materials and the torsional strength.

【符号の説明】[Explanation of symbols]

10 シャフト 11、12 セレーション 20、21 シャフト 22 フランジ 30、31、32 シャフト 33 外筒部 10 Shaft 11, 12 Serration 20, 21 Shaft 22 Flange 30, 31, 32 Shaft 33 Outer cylinder

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 301 C22C 38/14 C22C 38/60 Continuation of front page (58) Field surveyed (Int. Cl. 6 , DB name) C22C 38/00 301 C22C 38/14 C22C 38/60

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比として、 C :0.35〜0.70% Si:0.01〜0.15% Mn:0.2〜2.0% S :0.005〜0.15% Al:0.0005〜0.05% Ti:0.005〜0.05% B :0.0005〜0.005% N :0.002〜0.02% を含有し、 P :0.020%以下 Cu:0.05%以下 O :0.0020%以下に制限し、 残部が鉄および不可避的不純物からなり、下記で定義さ
れる断面内平均硬さHVaが560以上であることを特
徴とする高強度高周波焼入れ軸部品。断面内平均硬さの
定義;半径aの断面を半径方向に同心円状にN個のリン
グに分割し、n番目のリング状部分の硬さをHVn 、半
径をrn 、間隔をΔrn とした時、 【数1】
1. As a weight ratio, C: 0.35 to 0.70% Si: 0.01 to 0.15% Mn: 0.2 to 2.0% S: 0.005 to 0.15% Al : 0.0005 to 0.05% Ti: 0.005 to 0.05% B: 0.0005 to 0.005% N: 0.002 to 0.02%, P: 0.020% or less Cu: 0.05% or less O: 0.0020% or less, with the balance being iron and unavoidable impurities, and having an average in-section hardness HVa defined below of 560 or more. High-strength induction hardened shaft parts. Defining cross the average hardness; the cross-section of radius a is divided into N rings concentrically in the radial direction and a hardness of n-th ring-shaped portion HV n, radius r n, and [Delta] r n apart When you do,
【請求項2】 重量比として、 C :0.35〜0.70% Si:0.15超〜2.5% Mn:0.6〜2.0% S :0.005〜0.15% Al:0.0005〜0.05% Ti:0.005〜0.05% B :0.0005〜0.005% N :0.002〜0.02% を含有し、 P :0.020%以下 Cu:0.05%以下 O :0.0020%以下に制限し、 残部が鉄および不可避的不純物からなり、下記で定義さ
れる断面内平均硬さHVaが560以上であることを特
徴とする高強度高周波焼入れ軸部品。断面内平均硬さの
定義;半径aの断面を半径方向に同心円状にN個のリン
グに分割し、n番目のリング状部分の硬さをHVn 、半
径をrn 、間隔をΔrn とした時、 【数2】
2. As a weight ratio, C: 0.35 to 0.70% Si: more than 0.15 to 2.5% Mn: 0.6 to 2.0% S: 0.005 to 0.15% Al: 0.0005 to 0.05% Ti: 0.005 to 0.05% B: 0.0005 to 0.005% N: 0.002 to 0.02%, P: 0.020% Cu: 0.05% or less O: 0.0020% or less, with the balance being iron and unavoidable impurities, and having an average in-section hardness HVa defined below of 560 or more. High strength induction hardened shaft parts. Defining cross the average hardness; the cross-section of radius a is divided into N rings concentrically in the radial direction and a hardness of n-th ring-shaped portion HV n, radius r n, and [Delta] r n apart When you do,
【請求項3】 鋼がさらに、 Cr:0.03〜1.5% Mo:0.05〜1.0% Ni:0.1〜3.5% の1種または2種以上を含有する請求項1または請求項
2記載の高強度高周波焼入れ軸部品。
3. The steel further contains one or more of Cr: 0.03 to 1.5% Mo: 0.05 to 1.0% Ni: 0.1 to 3.5%. Item 3. The high-strength induction hardened shaft component according to item 1 or 2.
【請求項4】 鋼がさらに、 Nb:0.01〜0.3% V :0.03〜0.6% の1種または2種を含有する請求項1ないし3記載の高
強度高周波焼入れ軸部品。
4. The high-strength induction hardened shaft according to claim 1, wherein the steel further contains one or two kinds of Nb: 0.01 to 0.3% V: 0.03 to 0.6%. parts.
【請求項5】 鋼がさらに、 Ca:0.0005〜0.010% Pb:0.05〜0.5% の1種または2種を含有する請求項1ないし4記載の高
強度高周波焼入れ軸部品。
5. The high-strength induction hardened shaft according to claim 1, wherein the steel further contains one or two of Ca: 0.0005 to 0.010% and Pb: 0.05 to 0.5%. parts.
【請求項6】 高周波焼入れ層の旧オーステナイト結晶
粒度が9番以上である請求項1ないし5記載の高強度高
周波焼入れ軸部品。
6. The high-strength induction hardened shaft part according to claim 1, wherein the prior-austenite crystal grain size of the induction hardened layer is 9 or more.
【請求項7】 表面の残留応力が−80kgf/mm2
以下である請求項1ないし6記載の高強度高周波焼入れ
軸部品。
7. The residual stress on the surface is -80 kgf / mm 2.
The high-strength induction hardened shaft part according to claim 1, wherein:
JP5253691A 1993-09-17 1993-09-17 High-strength induction hardened shaft parts Expired - Fee Related JP2916069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5253691A JP2916069B2 (en) 1993-09-17 1993-09-17 High-strength induction hardened shaft parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5253691A JP2916069B2 (en) 1993-09-17 1993-09-17 High-strength induction hardened shaft parts

Publications (2)

Publication Number Publication Date
JPH0790484A JPH0790484A (en) 1995-04-04
JP2916069B2 true JP2916069B2 (en) 1999-07-05

Family

ID=17254812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5253691A Expired - Fee Related JP2916069B2 (en) 1993-09-17 1993-09-17 High-strength induction hardened shaft parts

Country Status (1)

Country Link
JP (1) JP2916069B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021815A1 (en) * 2003-08-27 2005-03-10 Sumitomo Metal Industries, Ltd. Hot forged non-heat treated steel for induction hardening

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011575A (en) * 1999-06-30 2001-01-16 Nippon Steel Corp Bar steel and steel wire for machine structure excellent in cold workability and its production
WO2004065647A1 (en) * 2003-01-17 2004-08-05 Jfe Steel Corporation High-strength steel product excelling in fatigue strength and process for producing the same
WO2004065646A1 (en) * 2003-01-17 2004-08-05 Jfe Steel Corporation Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
CN100436628C (en) * 2003-01-17 2008-11-26 杰富意钢铁株式会社 Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
AU2004243752A1 (en) * 2003-05-27 2004-12-09 Jtekt Corporation Steel bar for steering rack, method for producing the same, and steering rack using the same
CN100355928C (en) * 2003-09-29 2007-12-19 杰富意钢铁株式会社 Steel parts for machine structure, material therefor, and method for manufacture thereof
JP4771745B2 (en) 2004-10-13 2011-09-14 新日本製鐵株式会社 Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
US8070890B2 (en) 2005-03-25 2011-12-06 Sumitomo Metal Industries, Ltd. Induction hardened hollow driving shaft
KR20070107140A (en) * 2005-03-25 2007-11-06 수미도모 메탈 인더스트리즈, 리미티드 Hollow driving shaft obtained through inducti0n hardening
SE527221C2 (en) * 2005-04-12 2006-01-24 Scania Cv Abp Drilling steel for induction hardening, has low alloy composition containing silicon, manganese, phosphorous, sulphur, chromium, molybdenum, nickel, titanium, aluminium and boron
JP4983098B2 (en) * 2006-05-31 2012-07-25 Jfeスチール株式会社 Steel material with excellent fatigue characteristics and method for producing the same
JP2009014203A (en) * 2008-09-17 2009-01-22 Jtekt Corp Intermediate shaft with constant velocity joints connected to both ends

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021815A1 (en) * 2003-08-27 2005-03-10 Sumitomo Metal Industries, Ltd. Hot forged non-heat treated steel for induction hardening
US7387691B2 (en) 2003-08-27 2008-06-17 Sumitomo Metal Industries, Ltd. Hot forged non-heat treated steel for induction hardening

Also Published As

Publication number Publication date
JPH0790484A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
EP0643148B1 (en) Steel material for induction-hardened shaft part and shaft part made therefrom
JP2916069B2 (en) High-strength induction hardened shaft parts
JP2000154828A (en) Outer ring for constant velocity universal joint excellent in anti-flaking characteristic and shaft strength and manufacture thereof
JPH10195589A (en) Induction hardened steel material with high torsional fatigue strength
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
US6383311B1 (en) High strength drive shaft and process for producing the same
JP3432950B2 (en) Steel material for induction hardened shaft parts that has both cold workability and torsional fatigue strength characteristics
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP3100492B2 (en) Manufacturing method of high fatigue strength hot forgings
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP3304550B2 (en) Manufacturing method of induction hardened parts with notches
JP3069256B2 (en) Nitriding steel with excellent toughness
JPH09310146A (en) Production of non-heat treated steel for high strength connecting rod and high strength connecting rod
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP4422924B2 (en) Steel for high-strength tapping bolt, high-strength tapping bolt and method for producing high-strength tapping bolt
JP2004183065A (en) High strength steel for induction hardening, and production method therefor
JP6992535B2 (en) High-strength bolts and their manufacturing methods
JPH1129836A (en) Steel for machine structural use for induction hardening
JP3320958B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP3042574B2 (en) Hot forged product having high fatigue strength and method of manufacturing the same
JP3398233B2 (en) Manufacturing method of machine structural steel and machine structural member excellent in machinability and fatigue strength after induction hardening / tempering
JPH06287677A (en) High strength non-refining steel for hot forging
JPH09235654A (en) Steel for induction hardening and induction hardened part

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees