JP2009014203A - Intermediate shaft with constant velocity joints connected to both ends - Google Patents

Intermediate shaft with constant velocity joints connected to both ends Download PDF

Info

Publication number
JP2009014203A
JP2009014203A JP2008238278A JP2008238278A JP2009014203A JP 2009014203 A JP2009014203 A JP 2009014203A JP 2008238278 A JP2008238278 A JP 2008238278A JP 2008238278 A JP2008238278 A JP 2008238278A JP 2009014203 A JP2009014203 A JP 2009014203A
Authority
JP
Japan
Prior art keywords
shaft
hollow shaft
constant velocity
quenching
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008238278A
Other languages
Japanese (ja)
Other versions
JP2009014203A5 (en
Inventor
Seiji Hojo
成司 放生
Hideki Akita
秀樹 秋田
Tomoaki Suzuki
知朗 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2008238278A priority Critical patent/JP2009014203A/en
Publication of JP2009014203A publication Critical patent/JP2009014203A/en
Publication of JP2009014203A5 publication Critical patent/JP2009014203A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow intermediate shaft having static strength and torsional fatigue strength greater than a solid one. <P>SOLUTION: The intermediate shaft with constant velocity joints 14, 15 connected to both ends is formed as a hollow shaft 11 where the ratio of the inner diameter to the outer diameter is 0.15-0.8. Induction hardening is applied to the outer peripheral surface of the hollow shaft 11 so that a hardening ratio as a ratio h/t of a hardening depth h from the hardened outer peripheral surface to the thickness t of the hollow shaft is 0.7-0.9. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車等のドライブシャフトに用いられる等速ジョイントが両端に連結された中間シャフトに関するものである。   The present invention relates to an intermediate shaft in which a constant velocity joint used for a drive shaft of an automobile or the like is connected to both ends.

前輪駆動自動車用ドライブシャフトは、図6に示すように、エンジン側及び車輪側の等速ジョイント1,2と該等速ジョイントのインナレース3,4が両端に連結された中間シャフト5により構成されている。エンジン側の等速ジョイント1は軸方向の相体運動が可能なタイプで、車輪を懸架するサスペンション動作時の両ジョイント間の長さ及び角度変化を許容してトルクを伝達する。車輪側の等速ジョイント2は大角度タイプで、主として操舵による車輪の偏向を可能にしている。等速ジョイント1,2の軸動、角度変位時に中間シャフト5がジョイントのアウタレース6,7に干渉しないようにするために中間シャフト5の両端部外径は制限され、その中で所定の静的強度とねじり疲労強度が要求される。 As shown in FIG. 6 , the drive shaft for a front-wheel drive vehicle is constituted by an intermediate shaft 5 in which constant velocity joints 1 and 2 on the engine side and the wheel side and inner races 3 and 4 of the constant velocity joint are connected to both ends. ing. The constant velocity joint 1 on the engine side is a type capable of moving in the axial direction, and transmits torque by allowing changes in length and angle between the two joints when the suspension is suspended. The constant velocity joint 2 on the wheel side is a large angle type, and mainly enables deflection of the wheel by steering. In order to prevent the intermediate shaft 5 from interfering with the outer races 6 and 7 of the joint during the axial movement and angular displacement of the constant velocity joints 1 and 2, the outer diameters at both ends of the intermediate shaft 5 are limited, Strength and torsional fatigue strength are required.

従来、制限された外径のなかで静的強度、ねじり疲労強度を確保するために、係る中間シャフト5は中実にされ、シャフト表面を高周波コイルで加熱して急冷し表面焼入れしていた。静的強度の向上には、焼入れ率を高くするのが有効であるが、焼入れ率を高くし過ぎるとシャフト表面部分の残留圧縮応力が小さくなり、ねじり疲労強度が低下する。中実シャフトの焼入れ率は、硬度がHv400以上に焼入れされている外周表面からの焼き入れ深さとシャフトの半径との比である。中間シャフト5は、その静的強度及びねじり疲労強度の要求値を満たすために、高周波焼入れにより焼入れ率0.4〜0.6に表面焼入れを施されていた。   Conventionally, in order to ensure static strength and torsional fatigue strength within a limited outer diameter, the intermediate shaft 5 is made solid, and the surface of the shaft is rapidly cooled by heating with a high-frequency coil. In order to improve the static strength, it is effective to increase the quenching rate. However, if the quenching rate is excessively increased, the residual compressive stress on the shaft surface portion is reduced and the torsional fatigue strength is reduced. The quenching rate of the solid shaft is a ratio of the quenching depth from the outer peripheral surface that has been hardened to Hv 400 or more and the radius of the shaft. In order to satisfy the required values of the static strength and torsional fatigue strength, the intermediate shaft 5 has been subjected to surface quenching to a quenching rate of 0.4 to 0.6 by induction quenching.

近年、軽量化と高剛性化のために中間シャフトの中空化が図られている。しかし、中実シャフトと同径の中空シャフトに焼入れ率0.4〜0.6で表面焼入れを施すと中実シャフトに比して強度が著しく低下する不具合があった。中空シャフトの焼入れ率は、硬度がHv400以上に焼入れされている外周表面からの焼き入れ深さとシャフトの肉厚との比である。   In recent years, hollowing of the intermediate shaft has been attempted in order to reduce the weight and increase the rigidity. However, when surface quenching is performed on a hollow shaft having the same diameter as that of the solid shaft at a quenching rate of 0.4 to 0.6, there is a problem that the strength is remarkably reduced as compared with the solid shaft. The quenching rate of the hollow shaft is a ratio of the quenching depth from the outer peripheral surface that is hardened to Hv 400 or more and the thickness of the shaft.

本発明は、係る従来の不具合を解消するためになされたもので、中空の中間シャフトの静的強度及びねじり疲労強度を中実のもの以上にすることである。   The present invention has been made in order to eliminate such a conventional problem, and is to make the static strength and torsional fatigue strength of a hollow intermediate shaft more than solid.

上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、等速ジョイントが両端に連結された中間シャフトにおいて、前記中間シャフトを内径と外径との比が0.15〜0.8の中空シャフトにし、該中空シャフトの外周表面を高周波焼入れすることにより、焼入れされている外周表面からの焼き入れ深さと該中空シャフトの肉厚との比である焼入れ率を0.7〜0.9とすることである。 In order to solve the above problems, the structural feature of the invention according to claim 1 is that in the intermediate shaft in which constant velocity joints are connected to both ends, the intermediate shaft has a ratio of the inner diameter to the outer diameter of 0.15 to 0.15. By making the hollow shaft of 0.8 and induction hardening the outer peripheral surface of the hollow shaft , the quenching rate which is the ratio of the quenching depth from the outer peripheral surface being quenched and the thickness of the hollow shaft is 0.7 It is set to -0.9 .

請求項2に係る発明の構成上の特徴は、請求項1に記載の等速ジョイントが両端に連結された中間シャフトにおいて、前記高周波焼入れによって硬度がHv400以上に焼入れされている前記中空シャフトの外周表面からの焼き入れ深さと該中空シャフトの肉厚との比である焼入れ率を0.7〜0.9とすることである。 The structural feature of the invention according to claim 2 is that the outer circumference of the hollow shaft, wherein the constant velocity joint according to claim 1 is connected to both ends, the hardness is quenched to Hv400 or more by the induction hardening. The quenching rate, which is the ratio between the quenching depth from the surface and the thickness of the hollow shaft, is 0.7 to 0.9 .

請求項3に係る発明の構成上の特徴は、請求項2に記載の等速ジョイントが両端に連結された中間シャフトにおいて、前記中空シャフトを0.9〜2.0%のマンガン、0.06〜0.2%のクロム及び0.0005〜0.005%の硼素を含有し、硫黄の含有量を0.001〜0.005%に低減した炭素鋼で形成したことである。 The structural feature of the invention according to claim 3 is that in the intermediate shaft in which the constant velocity joint according to claim 2 is connected to both ends, the hollow shaft is made of 0.9 to 2.0% manganese, 0.06 It is formed of carbon steel containing ˜0.2% chromium and 0.0005˜0.005% boron and having a sulfur content reduced to 0.001˜0.005%.

上記のように構成した請求項1に係る発明においては、等速ジョイントが両端に連結された中間シャフトを内径と外径との比が0.15〜0.8の中空にし、該中空シャフトを0.7〜0.9の焼入れ率で外周表面を高周波焼入れした。焼入れ率を高くするために中空シャフトは軸穴に接する内周表面の近傍まで加熱されるが、中空シャフトは軸穴内に空気が存在し、この空気が加熱時に加熱され且つ鋼材から空気層への熱伝導率の低下により中空シャフトの内周表面近傍では急冷されないので、硬度は直線的に低下する。従って、焼入れ条件を適切に設定することにより中空シャフトを0.7〜0.9の焼入れ率で表面焼入れすることができ、静的強度及びねじり疲労強度を中実シャフト以上或いは同定度に維持して軽量化と高剛性化を可能にすることができるIn the invention according to claim 1 configured as described above, an intermediate shaft having constant velocity joints connected to both ends is made hollow with a ratio of inner diameter to outer diameter of 0.15 to 0.8, and the hollow shaft is The outer peripheral surface was induction- hardened at a quenching rate of 0.7 to 0.9 . In order to increase the quenching rate, the hollow shaft is heated to the vicinity of the inner peripheral surface in contact with the shaft hole, but the hollow shaft has air in the shaft hole, and this air is heated at the time of heating and from the steel material to the air layer. The hardness is linearly decreased because the heat conductivity is not rapidly cooled in the vicinity of the inner peripheral surface of the hollow shaft. Therefore, by appropriately setting the quenching conditions, the hollow shaft can be surface hardened at a quenching rate of 0.7 to 0.9, and the static strength and torsional fatigue strength can be maintained higher than those of the solid shaft or at the degree of identification. Can be made lighter and more rigid.

上記のように構成した請求項2に係る発明においては、高周波焼入れによって硬度がHv400以上に焼入れされている中空シャフトの外周表面からの焼き入れ深さと該中空シャフトの肉厚との比を0.7〜0.9としたので、自動車等のドライブシャフトに用いられる中空シャフトを外周表面から必要な深さだけHv400以上の必要硬度に高周波焼入れし、中空シャフトの静的強度及びねじり疲労強度を中実シャフト以上或いは同定度に維持して軽量化と高剛性化を可能にすることができる。 In the invention according to claim 2 configured as described above, the ratio between the quenching depth from the outer peripheral surface of the hollow shaft that has been hardened to Hv 400 or more by induction hardening and the thickness of the hollow shaft is set to 0. Since it is 7 to 0.9, the hollow shaft used for the drive shaft of automobiles, etc. is induction-hardened to the required hardness of Hv400 or more by the required depth from the outer peripheral surface, and the static strength and torsional fatigue strength of the hollow shaft are medium It is possible to reduce the weight and increase the rigidity while maintaining the actual shaft or more or the identification degree .

上記のように構成した請求項3に係る発明においては、前記中空シャフトを0.9〜2.0%のマンガン、0.06〜0.2%のクロム及び0.0005〜0.005%の硼素を含有し、硫黄の含有量を0.001〜0.005%に低減した炭素鋼で形成したので、高周波焼入れの安定性及び焼入れ性が向上し、中空シャフトを0.7〜0.9の焼入れ率に正確に表面焼入れし、靭性の高い焼き入れ層を得ることができる。 In the invention which concerns on Claim 3 comprised as mentioned above, the said hollow shaft is 0.9-2.0% manganese, 0.06-0.2% chromium, and 0.0005-0.005%. Since it is formed of carbon steel containing boron and sulfur content reduced to 0.001 to 0.005% , the induction hardening stability and hardenability are improved, and the hollow shaft is made 0.7 to 0.9. Thus, a hardened layer with high toughness can be obtained.

以下、図面に基づいて本発明の実施形態を説明する。図1において、10はエンジンの回転を車輪に伝達するドライブシャフトで、中間シャフトである中空シャフト11、中空シャフト11の両端にインナレース12,13が夫々スプライン嵌合されたエンジン側及び車輪側の等速ジョイント14,15により構成されている。中空シャフト11の両端部18は、等速ジョイント14,15が角度変位したときに中空シャフト11が等速ジョイント14,15のアウタレース16,17と干渉しないように中央部分19より外径が小さく形成されている。中央部分19は外径を大きくして剛性アップを図っている。中空シャフト11は、一例として、炭素鋼のパイプ材を軸線方向に延びないように両端を規制した状態で、外周を殴打して外径を所定寸法に収縮させ軸線上に軸穴20を設けてスエージングにより形成され、両端の小径部分18は中央の大径部分19より外径を収縮された分だけ肉厚が厚くなっている。中空シャフト11の寸法は車種によって異なるが、一般的には全長200〜650mm、両端部18の外径16〜30mm、内径3〜21mm、中央部分の外径29〜39mm、内径20〜31mmに形成され、中空シャフト11の内径と外径との比は0.15〜0.8である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1 , reference numeral 10 denotes a drive shaft for transmitting the rotation of the engine to a wheel. The hollow shaft 11 is an intermediate shaft, and inner races 12 and 13 are spline-fitted on both ends of the hollow shaft 11, respectively. It is composed of constant velocity joints 14 and 15. Both end portions 18 of the hollow shaft 11 are formed to have an outer diameter smaller than that of the central portion 19 so that the hollow shaft 11 does not interfere with the outer races 16 and 17 of the constant velocity joints 14 and 15 when the constant velocity joints 14 and 15 are angularly displaced. Has been. The central portion 19 has an increased outer diameter to increase rigidity. As an example, the hollow shaft 11 is provided with a shaft hole 20 on the axis by striking the outer periphery and shrinking the outer diameter to a predetermined dimension in a state where both ends are restricted so that the pipe material of carbon steel does not extend in the axis direction. It is formed by swaging, and the small-diameter portion 18 at both ends is thicker than the large-diameter portion 19 at the center by the contraction of the outer diameter. The dimensions of the hollow shaft 11 vary depending on the vehicle type, but generally the length is 200 to 650 mm, the outer diameters 16 to 30 mm at both ends 18, the inner diameter 3 to 21 mm, the outer diameter 29 to 39 mm at the central portion, and the inner diameter 20 to 31 mm. The ratio between the inner diameter and the outer diameter of the hollow shaft 11 is 0.15 to 0.8.

中空シャフト11は前述のように炭素鋼で形成され、該炭素鋼の含有成分及びその含有量(重量%)の一例を示すと、炭素(C)0.3〜0.5%、珪素(Si)0.01〜0.2%、マンガン(Mn)0.9〜2.0%、燐(P)0.001〜0.015、硫黄(S)0.001〜0.005%、クロム(Cr)0.06〜0.20、チタン(Ti)0.005〜0.2%、硼素(B)0.0005〜0.005%である。この中、マンガンは高周波焼入れの安定性を確保し、クロム及び硼素は高周波焼入れ性を向上する。硫黄は含有量を低減することにより高周波焼入れ層の靭性が向上する。   The hollow shaft 11 is formed of carbon steel as described above. An example of the components contained in the carbon steel and the content (% by weight) thereof is as follows: carbon (C) 0.3 to 0.5%, silicon (Si ) 0.01-0.2%, manganese (Mn) 0.9-2.0%, phosphorus (P) 0.001-0.015, sulfur (S) 0.001-0.005%, chromium ( Cr) is 0.06 to 0.20, titanium (Ti) is 0.005 to 0.2%, and boron (B) is 0.0005 to 0.005%. Among these, manganese secures the stability of induction hardening, and chromium and boron improve induction hardening. By reducing the content of sulfur, the toughness of the induction-hardened layer is improved.

中空シャフト11は、上述のような材料、形状で形成された中間品の外周表面を高周波コイルで加熱して急冷し、0.7〜0.9の焼入れ率で表面焼入れされている。焼入れ率を高くするために中空シャフト11は軸穴20に接する内周表面の近傍まで加熱されるが、中空シャフト11は軸穴20内に空気が存在し、この空気が加熱時に加熱され且つ鋼材から空気層への熱伝導率の低下により中空シャフト11の内周表面近傍では急冷されない。中実シャフトの場合は、加熱された層の熱は外周表面からの急冷時に非加熱層にも急激に伝達されて急冷されるので、焼入れ硬度は加熱された深さまで高くなりそれより深い部分では階段状に低下するが、中空シャフトの場合は、上述のように内周表面近傍では急冷されないので、図2に示すように、硬度は直線的に低下する。従って、焼入れ条件を最適化することにより中空シャフト11を0.7〜0.9の焼入れ率で表面焼入れすることができる。中空シャフト11の焼入れ率は、硬度がHv400以上に焼入れされている外周表面からの焼き入れ深さhとシャフトの肉厚tとの比h/tである。高周波焼入れは焼入れ条件の設定、コントロールを正確に行なうことができるので、中空シャフト11を0.7〜0.9の焼入れ率で表面焼入れする焼入れ条件の最適化に適している。   The hollow shaft 11 is quenched by heating the outer peripheral surface of an intermediate product formed of the above-described material and shape with a high-frequency coil and quenching it with a quenching rate of 0.7 to 0.9. In order to increase the quenching rate, the hollow shaft 11 is heated to the vicinity of the inner peripheral surface in contact with the shaft hole 20. However, the hollow shaft 11 has air in the shaft hole 20, and this air is heated at the time of heating. In the vicinity of the inner peripheral surface of the hollow shaft 11, it is not rapidly cooled due to a decrease in the thermal conductivity from the air layer to the air layer. In the case of a solid shaft, the heat of the heated layer is rapidly transferred to the non-heated layer during quenching from the outer peripheral surface and is quenched, so the quenching hardness is increased to the heated depth and in the deeper part In the case of a hollow shaft, the hardness decreases linearly as shown in FIG. 2 because it is not rapidly cooled in the vicinity of the inner peripheral surface as described above. Therefore, the hollow shaft 11 can be surface quenched at a quenching rate of 0.7 to 0.9 by optimizing the quenching conditions. The quenching rate of the hollow shaft 11 is a ratio h / t between the quenching depth h from the outer peripheral surface hardened to a hardness of Hv400 or more and the shaft thickness t. Induction hardening is suitable for optimizing the quenching conditions for quenching the surface of the hollow shaft 11 at a quenching rate of 0.7 to 0.9 because the quenching conditions can be set and controlled accurately.

本発明に係る等速ジョイントが両端に連結された中間シャフトによれば、中空シャフト11の両端部18の外径が同径の従来の中実のものに比して、両端部11の静的強度及びねじり疲労強度が同定度以上となる。図3は、横軸に焼入れ率、縦軸に中実及び中空シャフトの同径の両端部のねじり疲労強度を示したもので、白丸で示す中実シャフトのねじり疲労強度は、焼入れ率が0.4〜0.6の範囲で要求値以上になっているが、焼入れ率の増加につれて低下し0.6以上では要求値以下となる。これに対し、黒丸で示す中空シャフト11のねじり疲労強度は焼入れ率が0.7〜0.9の範囲において要求値以上に山状に高くなっている。図4は焼入れ率0.5で表面焼入れした従来の中実シャフトと焼入れ率0.8で表面焼入れした本発明に係る中空シャフトの残留圧縮応力を示すもので、中空シャフトの方が中実シャフトより残留圧縮応力が18%増加している。   According to the intermediate shaft in which the constant velocity joint according to the present invention is connected to both ends, the outer diameters of the both end portions 18 of the hollow shaft 11 are static in the both end portions 11 as compared with the conventional solid one having the same diameter. The strength and torsional fatigue strength are equal to or higher than the identification level. In FIG. 3, the horizontal axis shows the quenching rate, and the vertical axis shows the torsional fatigue strength of both ends of the solid and hollow shafts having the same diameter. It is above the required value in the range of 4 to 0.6, but decreases with increasing quenching rate and below the required value at 0.6 or higher. On the other hand, the torsional fatigue strength of the hollow shaft 11 indicated by a black circle is higher in a mountain shape than the required value when the quenching rate is in the range of 0.7 to 0.9. FIG. 4 shows the residual compressive stress of a conventional solid shaft surface hardened at a quenching rate of 0.5 and a hollow shaft according to the present invention surface hardened at a quenching rate of 0.8. The hollow shaft is a solid shaft. The residual compressive stress is increased by 18%.

図5は、焼入れ率0.5の中実及び中空シャフト、焼入れ率0.8の中空シャフト11の同径の端部の静的強度を示すもので、中間シャフトを中空シャフトにして焼入れ率を中実シャフトと同じ0.5にすると静的強度が約1割低下するが、0.8にすると従来の中実シャフトで焼入れ率0.5で表面焼入れした中間シャフトと同程度以上の静的強度になる。   FIG. 5 shows the static strength of a solid and hollow shaft with a quenching rate of 0.5 and an end portion of the same diameter of the hollow shaft 11 with a quenching rate of 0.8. If the same 0.5 as the solid shaft is used, the static strength will be reduced by about 10%. Become strength.

このように本発明に係る等速ジョイントが両端に連結された中間シャフトは、端部の外径が従来の中実シャフトと同一で、内径と外径との比が0.15〜0.8の中空シャフト11にすることによって軽量化し、中空シャフト11を0.7〜0.9の焼入れ率で表面焼入れすることによって静的強度及びねじり疲労強度を中実のもの以上或いは同程度にし、さらに、中央部分19の外径を大きくして剛性アップしたので、エンジンの回転を車輪に確実に効率的に応答性よく伝達することができる。   Thus, the intermediate shaft in which the constant velocity joint according to the present invention is connected to both ends has the same outer diameter as that of the conventional solid shaft, and the ratio of the inner diameter to the outer diameter is 0.15 to 0.8. The hollow shaft 11 is reduced in weight, and the surface of the hollow shaft 11 is quenched at a quenching rate of 0.7 to 0.9 so that the static strength and the torsional fatigue strength are equal to or higher than those of a solid one, and Since the outer diameter of the central portion 19 is increased to increase the rigidity, the rotation of the engine can be reliably and efficiently transmitted to the wheels with good responsiveness.

本発明に係る等速ジョイントが両端に連結された中間シャフトの正面図である。It is a front view of the intermediate shaft with which the constant velocity joint which concerns on this invention was connected with both ends. 中空シャフトの外周表面から内周表面の間の硬度変化を示す図である。It is a figure which shows the hardness change between the outer peripheral surface of a hollow shaft, and an inner peripheral surface. 焼入れ率とねじり疲労強度との関係を示すグラフである。It is a graph which shows the relationship between a hardening rate and torsional fatigue strength. 従来の中実シャフトと本発明に係る中空シャフトの残留圧縮応力を示すグラフである。It is a graph which shows the residual compressive stress of the conventional solid shaft and the hollow shaft which concerns on this invention. 焼入れ率と静的強度の関係を示すグラフである。It is a graph which shows the relationship between a hardening rate and static strength. 従来の等速ジョイントが両端に連結された中間シャフトを示す図である。It is a figure which shows the intermediate shaft with which the conventional constant velocity joint was connected with both ends.

符号の説明Explanation of symbols

10・・・ドライブシャフト、11・・・中空シャフト(中間シャフト)、14,15・・・等速ジョイント、18・・・両端部、19・・・中央部分、21・・・軸穴。 DESCRIPTION OF SYMBOLS 10 ... Drive shaft, 11 ... Hollow shaft (intermediate shaft), 14, 15 ... Constant velocity joint, 18 ... Both ends, 19 ... Center part, 21 ... Shaft hole.

Claims (3)

等速ジョイントが両端に連結された中間シャフトにおいて、前記中間シャフトを内径と外径との比が0.15〜0.8の中空シャフトにし、該中空シャフトの外周表面を高周波焼入れすることにより、焼入れされている外周表面からの焼き入れ深さと該中空シャフトの肉厚との比である焼入れ率を0.7〜0.9とすることを特徴とする等速ジョイントが両端に連結された中間シャフト。 In the intermediate shaft in which the constant velocity joint is connected to both ends, the intermediate shaft is a hollow shaft having a ratio of the inner diameter to the outer diameter of 0.15 to 0.8, and the outer peripheral surface of the hollow shaft is induction-quenched, An intermediate in which constant velocity joints are connected to both ends , wherein the quenching rate, which is the ratio of the quenching depth from the quenched outer peripheral surface and the thickness of the hollow shaft, is 0.7 to 0.9 shaft. 前記高周波焼入れによって硬度がHv400以上に焼入れされている前記中空シャフトの外周表面からの焼き入れ深さと該中空シャフトの肉厚との比である焼入れ率を0.7〜0.9とすることを特徴とする請求項1に記載の等速ジョイントが両端に連結された中間シャフト。 The quenching rate, which is the ratio of the quenching depth from the outer peripheral surface of the hollow shaft that has been hardened to Hv400 or higher by induction hardening and the wall thickness of the hollow shaft, is 0.7 to 0.9. An intermediate shaft in which the constant velocity joint according to claim 1 is connected to both ends. 前記中空シャフトを0.9〜2.0%のマンガン、0.06〜0.2%のクロム及び0.0005〜0.005%の硼素を含有し、硫黄の含有量を0.001〜0.005%に低減した炭素鋼で形成したことを特徴とする請求項に記載の等速ジョイントが両端に連結された中間シャフト。 The hollow shaft contains 0.9 to 2.0% manganese, 0.06 to 0.2% chromium and 0.0005 to 0.005% boron, and has a sulfur content of 0.001 to 0. The intermediate shaft having the constant velocity joint according to claim 1 connected to both ends, formed of carbon steel reduced to 0.005% .
JP2008238278A 2008-09-17 2008-09-17 Intermediate shaft with constant velocity joints connected to both ends Pending JP2009014203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008238278A JP2009014203A (en) 2008-09-17 2008-09-17 Intermediate shaft with constant velocity joints connected to both ends

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238278A JP2009014203A (en) 2008-09-17 2008-09-17 Intermediate shaft with constant velocity joints connected to both ends

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001283537A Division JP2003090325A (en) 2001-09-18 2001-09-18 Intermediate shaft with constant velocity joint connected to both ends thereof

Publications (2)

Publication Number Publication Date
JP2009014203A true JP2009014203A (en) 2009-01-22
JP2009014203A5 JP2009014203A5 (en) 2009-03-05

Family

ID=40355322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238278A Pending JP2009014203A (en) 2008-09-17 2008-09-17 Intermediate shaft with constant velocity joints connected to both ends

Country Status (1)

Country Link
JP (1) JP2009014203A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790484A (en) * 1993-09-17 1995-04-04 Nippon Steel Corp High strength induction-hardened shaft parts
JPH1036937A (en) * 1996-07-19 1998-02-10 Daido Steel Co Ltd Induction-hardened parts
JPH10310823A (en) * 1997-05-09 1998-11-24 Daido Steel Co Ltd Manufacture of shaft-shaped parts for machine structural use, excellent in fatigue characteristic
JP2001032818A (en) * 1999-06-25 2001-02-06 Gkn Loebro Gmbh Monolithic hollow shaft
JP2003090325A (en) * 2001-09-18 2003-03-28 Toyoda Mach Works Ltd Intermediate shaft with constant velocity joint connected to both ends thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790484A (en) * 1993-09-17 1995-04-04 Nippon Steel Corp High strength induction-hardened shaft parts
JPH1036937A (en) * 1996-07-19 1998-02-10 Daido Steel Co Ltd Induction-hardened parts
JPH10310823A (en) * 1997-05-09 1998-11-24 Daido Steel Co Ltd Manufacture of shaft-shaped parts for machine structural use, excellent in fatigue characteristic
JP2001032818A (en) * 1999-06-25 2001-02-06 Gkn Loebro Gmbh Monolithic hollow shaft
JP2003090325A (en) * 2001-09-18 2003-03-28 Toyoda Mach Works Ltd Intermediate shaft with constant velocity joint connected to both ends thereof

Similar Documents

Publication Publication Date Title
JP5718003B2 (en) Outer joint member of constant velocity universal joint and friction welding method thereof
JP5231266B2 (en) Outer member of constant velocity universal joint
US20080044223A1 (en) Endpiece For A Welded Tube Shaft, A Corresponding Shaft And Method Of Manufacture
WO2010029841A1 (en) Power transmission shaft, drive shaft, and propeller shaft
WO2008032626A1 (en) Power transmission spline
US9097284B2 (en) Wheel bearing apparatus for a vehicle
JP2004076790A (en) Constant velocity universal joint and wheel bearing device using the same
WO2006030709A1 (en) Hollow power transmission shaft
JP2003090325A (en) Intermediate shaft with constant velocity joint connected to both ends thereof
JP2006002185A (en) Method for heat-treating hollow-power transmission shaft
JP2009014203A (en) Intermediate shaft with constant velocity joints connected to both ends
JP2007211926A (en) Inner member of constant velocity universal joint and its manufacturing method
US7399230B2 (en) Power transmission shaft
JP5160316B2 (en) Constant velocity joint ball and method of manufacturing the same
JPH10267027A (en) Tube shaft and manufacture thereof
JP2000240669A (en) Power transmission shaft
KR20110121400A (en) Shaft for constant velocity joint and producing method thereof
JP2009275878A (en) Spline shaft, power transmission shaft, and outer ring of constant velocity universal joint
JP2020063784A (en) Power transmission shaft
JP2006002809A (en) Hollow power transmission shaft
JP4855369B2 (en) Outer joint member for constant velocity universal joint and fixed constant velocity universal joint
JP2006250332A (en) Hollow power transmission shaft
US11965548B2 (en) Drive shaft and method of producing drive shaft
KR20230155679A (en) Gun drilled hollow shaft and method for production thereof
JP5148384B2 (en) Constant velocity universal joint shaft and constant velocity universal joint

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

A131 Notification of reasons for refusal

Effective date: 20110809

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110928

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Effective date: 20120516

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717