JP5148384B2 - Constant velocity universal joint shaft and constant velocity universal joint - Google Patents

Constant velocity universal joint shaft and constant velocity universal joint Download PDF

Info

Publication number
JP5148384B2
JP5148384B2 JP2008164582A JP2008164582A JP5148384B2 JP 5148384 B2 JP5148384 B2 JP 5148384B2 JP 2008164582 A JP2008164582 A JP 2008164582A JP 2008164582 A JP2008164582 A JP 2008164582A JP 5148384 B2 JP5148384 B2 JP 5148384B2
Authority
JP
Japan
Prior art keywords
shaft
constant velocity
velocity universal
universal joint
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008164582A
Other languages
Japanese (ja)
Other versions
JP2010007694A (en
Inventor
裕志 村上
達朗 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2008164582A priority Critical patent/JP5148384B2/en
Publication of JP2010007694A publication Critical patent/JP2010007694A/en
Application granted granted Critical
Publication of JP5148384B2 publication Critical patent/JP5148384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

本発明は、等速自在継手用シャフト及び等速自在継手に関する。 The present invention relates to a constant velocity universal joint shaft and a constant velocity universal joint.

自動車等の車両のエンジン動力を車輪に伝達する動力伝達装置は、エンジンから車輪へ動力を伝達すると共に、悪路走行時における車両のバウンドや車両の旋回時に生じる車輪からの径方向や軸方向変位、およびモーメント変位を許容する必要がある。このため、例えば、図3に示すように、エンジン側と車輪側との間に介装されるドライブシャフト1の一端を、インボード側の摺動型等速自在継手2を介してディファレンシャルに連結し、他端を、アウトボード側の固定型等速自在継手3を含む車輪用軸受装置(図示省略)を介して車輪に連結している。   A power transmission device that transmits engine power of a vehicle such as an automobile to a wheel transmits power from the engine to the wheel, and also causes radial or axial displacement from the wheel that occurs when the vehicle bounces or turns when traveling on a rough road. , And moment displacement must be allowed. For this reason, for example, as shown in FIG. 3, one end of the drive shaft 1 interposed between the engine side and the wheel side is connected to the differential through the inboard side sliding type constant velocity universal joint 2. The other end is connected to the wheel via a wheel bearing device (not shown) including the fixed type constant velocity universal joint 3 on the outboard side.

すなわち、一対の等速自在継手2,3と、これら等速自在継手に連結されたドライブシャフト1と、一対の等速自在継手2,3のうちアウトボード側の等速自在継手3と車輪用軸受とがユニット化された車輪用軸受アッセンブリー(以下、アクスルモジュールと言う)を構成している。自動車等の車両に組付けた状態で車両の外側となる方をアウトボード側(図面左側)、自動車等の車両に組付けた状態で車両の内側となる方をインボード側(図面右側)という。   That is, the pair of constant velocity universal joints 2 and 3, the drive shaft 1 connected to these constant velocity universal joints, and the constant velocity universal joint 3 on the outboard side of the pair of constant velocity universal joints 2 and 3 and the wheel A wheel bearing assembly (hereinafter referred to as an axle module) in which the bearing is unitized is configured. The side that is outside the vehicle when assembled in a vehicle such as an automobile is the outboard side (left side of the drawing), and the side that is inside the vehicle when assembled in a vehicle such as an automobile is called the inboard side (right side of the drawing). .

等速自在継手3は、外側継手部材としての外輪5と、外輪5の内側に配された内側継手部材としての内輪6と、外輪5と内輪6との間に介在してトルクを伝達する複数のボール7と、外輪5と内輪6との間に介在してボール7を保持するケージ8とを主要な部材として構成される。内輪6孔部内径6aとシャフト1端部1aはトルク伝達するために、スプライン嵌合により結合されている。   The constant velocity universal joint 3 includes a plurality of outer rings 5 serving as outer joint members, an inner ring 6 serving as an inner joint member disposed on the inner side of the outer ring 5, and a plurality of torque transmissions interposed between the outer ring 5 and the inner ring 6. The ball 7 and the cage 8 that is interposed between the outer ring 5 and the inner ring 6 and holds the ball 7 are configured as main members. Inner ring 6 hole inner diameter 6a and shaft 1 end 1a are coupled by spline fitting to transmit torque.

外輪5はマウス部11とステム部(軸部)12とからなり、マウス部11は一端にて開口した椀状で、その内球面13に、軸方向に延びた複数のトラック溝14が円周方向等間隔に形成されている。そのトラック溝14はマウス部11の開口端まで延びている。内輪6は、その外球面15に、軸方向に延びた複数のトラック溝16が円周方向等間隔に形成されている。   The outer ring 5 is composed of a mouse part 11 and a stem part (shaft part) 12. The mouse part 11 has a bowl shape opened at one end, and a plurality of track grooves 14 extending in the axial direction are circumferentially formed on the inner spherical surface 13 thereof. It is formed at equal intervals in the direction. The track groove 14 extends to the open end of the mouse portion 11. In the inner ring 6, a plurality of track grooves 16 extending in the axial direction are formed on the outer spherical surface 15 at equal intervals in the circumferential direction.

また、マウス部11の開口部はブーツ20にて覆われている。ブーツ20は、大径部20aと、小径部20bと、大径部20aと小径部20bとを連結する蛇腹部20cとからなる。大径部20aがマウス部11の開口部に外嵌され、この状態でブーツバンド21にて締結され、小径部20bがシャフト1のブーツ装着部1bに外嵌され、この状態でブーツバンド21にて締結されている。   The opening of the mouse part 11 is covered with a boot 20. The boot 20 includes a large-diameter portion 20a, a small-diameter portion 20b, and a bellows portion 20c that connects the large-diameter portion 20a and the small-diameter portion 20b. The large-diameter portion 20a is externally fitted to the opening of the mouse portion 11, and is fastened by the boot band 21 in this state, and the small-diameter portion 20b is externally fitted to the boot mounting portion 1b of the shaft 1, and in this state, the boot band 21 It is concluded.

インボード側の摺動型等速自在継手は、円筒状の内径面23aに複数の直線状のトラック溝22を軸方向に形成した外側継手部材としての外輪23と、球面状の外径面26aに複数の直線状のトラック溝25を軸方向に形成した内側継手部材としての内輪26と、外輪23のトラック溝22と内輪26のトラック溝25との間に介在してトルクを伝達するボール27と、外輪23の内径面と内輪26の外径面との間に介在してボール27を保持するケージ28とを備える。   The sliding type constant velocity universal joint on the inboard side includes an outer ring 23 as an outer joint member in which a plurality of linear track grooves 22 are formed in an axial direction on a cylindrical inner surface 23a, and a spherical outer surface 26a. And an inner ring 26 as an inner joint member in which a plurality of linear track grooves 25 are formed in the axial direction, and a ball 27 that is interposed between the track groove 22 of the outer ring 23 and the track groove 25 of the inner ring 26 to transmit torque. And a cage 28 that is interposed between the inner diameter surface of the outer ring 23 and the outer diameter surface of the inner ring 26 and holds the ball 27.

外輪23は、内径面23aに前記トラック溝22が形成されたカップ部29aと、このカップ部29aの底壁から突設されるステム部29bとを備える。内輪26孔部内径26bとシャフト1端部1cはトルク伝達するために、スプライン嵌合により結合されている。   The outer ring 23 includes a cup portion 29a in which the track groove 22 is formed on the inner diameter surface 23a, and a stem portion 29b protruding from the bottom wall of the cup portion 29a. Inner ring 26 hole inner diameter 26b and shaft 1 end 1c are coupled by spline fitting to transmit torque.

また、カップ部29aの開口部はブーツ40にて覆われている。ブーツ40は、大径部40aと、小径部40bと、大径部40aと小径部40bとを連結する蛇腹部40cとからなる。大径部40aがカップ部29aの開口部に外嵌され、この状態でブーツバンド41にて締結され、小径部40bがシャフト1のブーツ装着部1dに外嵌され、この状態でブーツバンド41にて締結されている。   The opening of the cup portion 29 a is covered with the boot 40. The boot 40 includes a large diameter portion 40a, a small diameter portion 40b, and a bellows portion 40c that connects the large diameter portion 40a and the small diameter portion 40b. The large-diameter portion 40a is externally fitted to the opening of the cup portion 29a, and is fastened by the boot band 41 in this state, and the small-diameter portion 40b is externally fitted to the boot mounting portion 1d of the shaft 1, and in this state, the boot band 41 It is concluded.

このように、アウトボード側の等速自在継手(固定型等速自在継手)であっても、インボード側の等速自在継手(摺動型等速自在継手)であっても、その開口部がブーツ20、40にて覆われる。この場合、縮径可能なバンド21、41を縮径させることによって、ブーツ20、40を締め付けるものである。   In this way, the opening portion of the constant velocity universal joint on the outboard side (fixed type constant velocity universal joint) or the constant velocity universal joint on the inboard side (sliding type constant velocity universal joint) Is covered with boots 20 and 40. In this case, the boots 20 and 40 are tightened by reducing the diameters of the band 21 and 41 capable of reducing the diameter.

ところで、等速自在継手においては、軽量・コンパクト化を図ると、自動車の燃費向上や駆動系レイアウトの自由度向上に寄与するため、必要とされる機能を満たした上で、できる限り小さい方が望ましい。このため、アクスルモジュールにおけるシャフト(中間シャフト)も同様に軽量化を達成できるようにするのが好ましい。   By the way, in a constant velocity universal joint, if it is light and compact, it contributes to improving the fuel efficiency of the automobile and the freedom of the drive train layout. desirable. For this reason, it is preferable that the shaft (intermediate shaft) in the axle module can be similarly reduced in weight.

そこで、従来には、軽量化を達成でき、しかも強度の低下を補強するようにしたものがある(特許文献1)。この特許文献1に記載のものは、軸方向の全体が熱処理されている動力伝達シャフトであって、軸方向の所定部位が軸中心部に至るまでの熱処理がなされ、かつ、同シャフトの加工にともなう切欠部の根本部位がショットピーニング処理されている。   Therefore, there is a conventional technique that can achieve weight reduction and reinforce the decrease in strength (Patent Document 1). The thing of this patent document 1 is the power transmission shaft by which the whole axial direction was heat-processed, Comprising: It heat-processed until the predetermined site | part of an axial direction reaches an axial center part, and processing of the shaft The root part of the accompanying notch is shot peened.

また、優れた静的捩り強度特性、及び優れた捩り疲労強度特性を得ることを可能としたものもある(特許文献2)。この特許文献2に記載のものは、C、Si、Mn、S、Mo、B、Al、Ti、N、Cr、Pの含有率を規定するとともに、ベイナイト+マルテンサイトの組織分率を40%以上とし、さらに、硬さを250〜340HVであるようにするものである。
特開2003−307211号公報 特開2006−138007号公報
In addition, there is one that can obtain excellent static torsional strength characteristics and excellent torsional fatigue strength characteristics (Patent Document 2). The one described in Patent Document 2 defines the content ratio of C, Si, Mn, S, Mo, B, Al, Ti, N, Cr, and P, and the bainite + martensite structure fraction is 40%. Further, the hardness is set to 250 to 340 HV.
JP 2003-307111 A JP 2006-138007 A

特許文献1に記載のものでは、軸心部まで焼き入れすることによって、静的強度が向上するが、疲労強度が低下する。このため、切欠部にはショットピーニングを施して疲労強度が低下するのを防止している。このように、特許文献1に記載のものは、成形工程において、ショットピーニング加工を行う必要があり、コスト高となるとともに、成形時間が大となる欠点があった。なお、中心まで焼入することで疲労強度が落ちるのは、高周波熱処理で表面に通常生成する圧縮残留応力が、小さくなるあるいは引張残留応力となったためである。   In the thing of patent document 1, although static strength improves by quenching to an axial center part, fatigue strength falls. For this reason, shot peening is applied to the notch to prevent the fatigue strength from decreasing. Thus, the thing of patent document 1 needed to perform the shot peening process in a shaping | molding process, and while there existed a fault that a shaping time became long while it became high cost. The reason why the fatigue strength is lowered by quenching to the center is that the compressive residual stress normally generated on the surface by the high-frequency heat treatment becomes smaller or becomes the tensile residual stress.

また、特許文献2に記載のものは、非焼入部の硬度を上げるため、素材硬度を250〜340HVとしている。しかしながら、素材硬度を上げると、加工性に劣ることになり、特に、雄スプライン等の加工(転造加工)が困難となる。   Moreover, in the thing of patent document 2, in order to raise the hardness of a non-hardening part, the raw material hardness is 250-340HV. However, when the material hardness is increased, the workability is inferior, and in particular, the processing (rolling processing) of male splines or the like becomes difficult.

本発明は、前記課題に鑑みて、静的捩り強度の向上を図ることができるとともに、疲労強度の低下を防止でき、しかも加工性にも優れる等速自在継手用シャフトの提供、このような等速自在継手用シャフトの製造方法、及び、このような等速自在継手用シャフトを用いた等速自在継手を提供する。   In view of the above-mentioned problems, the present invention provides a shaft for a constant velocity universal joint that can improve static torsional strength, prevent a decrease in fatigue strength, and is excellent in workability, and the like. A method for manufacturing a shaft for a speed universal joint, and a constant speed universal joint using such a shaft for a constant speed universal joint are provided.

本発明の等速自在継手用シャフトは、高周波焼入れによる表面硬化処理が施された等速自在継手用シャフトであって、硬度が250HV〜400HVとなる調質処理を行った後に表面硬化用の高周波焼入れによる表面硬化処理が施されてなり、シャフト材質として、前記表面硬化用の高周波焼入れにて高圧縮残留応力を発生させる、炭素量が0.3wt%〜0.5wt%の中炭素鋼に限定するとともに、調質処理を行う前のシャフト材質硬度を150HV〜230HVとし、かつ、高周波焼入れ後の硬化層の硬度を550HV〜750HVとし、前記調質処理を熱調質として、この熱調質を前記表面硬化用の高周波焼入装置を用いた高周波熱処理にて行ったものである。 The shaft for constant velocity universal joints of the present invention is a shaft for constant velocity universal joints that has been subjected to surface hardening treatment by induction hardening, and after being subjected to a tempering treatment with a hardness of 250 HV to 400 HV , a high frequency for surface hardening. Ri Na and surface hardening treatment by quenching is applied, as the shaft material, to generate a high compressive residual stress in induction hardening for the surface hardening, the carbon steel carbon content of 0.3 wt% to 0.5 wt% In addition to limiting, the shaft material hardness before the tempering treatment is set to 150 HV to 230 HV, the hardness of the hardened layer after induction hardening is set to 550 HV to 750 HV, and the tempering treatment is set as the heat tempering. Is performed by induction heat treatment using the induction hardening apparatus for surface hardening .

本発明の等速自在継手用シャフトによれば、調質処理によって、硬度を250HV〜400HVとすることができる。ここで、調質とは、鋼の結晶粒を微細にして材質を均質化し、延性や靭性を向上させ性質の改善を図る操作をいう。焼入れ、焼き戻し、あるいは焼きなましを行う熱調質と、機械的作業と焼きなましを組み合わせた機械的調質がある。この調質によって、非焼入部の組織を、フェライト−パーライト組織あるいはフェライト−パーライト組織から、トルースタイト組織あるいはソルバイト組織に変化させる。   According to the constant velocity universal joint shaft of the present invention, the hardness can be set to 250 HV to 400 HV by tempering treatment. Here, the term “tempering” refers to an operation for making the crystal grains of steel finer, homogenizing the material, improving ductility and toughness, and improving the properties. There are thermal tempering that performs quenching, tempering, or annealing, and mechanical tempering that combines mechanical work and annealing. By this refining, the structure of the non-quenched part is changed from a ferrite-pearlite structure or a ferrite-pearlite structure to a troostite structure or a sorbite structure.

前記調質処理は、焼入れ焼きもどしの熱処理を施す熱調質であって、焼入れと焼きもどしの少なくとも一方を高周波熱処理にて行うようにできる。高周波熱処理とは、「高周波誘導加熱」という電磁誘導現象を利用した加熱方法で行う焼入である。高周波電流の流れるコイルのなかに金属(電気的導体)を置くと、電磁誘導によって、金属の表面に高周波磁束による誘導電流が流れる。この電流は、金属のもつ抵抗によってエネルギーを損失し、熱を発生させる。この発熱現象を熱源として利用したのが誘導加熱である。   The tempering treatment is a heat tempering for heat treatment of quenching and tempering, and at least one of quenching and tempering can be performed by high-frequency heat treatment. The induction heat treatment is quenching performed by a heating method using an electromagnetic induction phenomenon called “high-frequency induction heating”. When a metal (electrical conductor) is placed in a coil through which a high-frequency current flows, an induction current caused by a high-frequency magnetic flux flows on the surface of the metal due to electromagnetic induction. This current loses energy due to the resistance of the metal and generates heat. Induction heating uses this heat generation phenomenon as a heat source.

高周波誘導加熱は、次の利点がある。非接触で加熱でき、ワーク自体が発熱するため作業環境が良い。短時間に加熱できるため、酸化が極めて少ない。急速加熱が可能であり、エネルギー効率が良い。局部加熱ができ、焼入条件の調整も容易である。他の焼入方法に比べ、焼入歪みが少ない。自動化が容易で機械加工ラインへの組み入れも可能である。   High frequency induction heating has the following advantages. The work environment is good because it can be heated without contact and the work itself generates heat. Because it can be heated in a short time, oxidation is extremely low. Rapid heating is possible and energy efficiency is good. Local heating is possible, and the quenching conditions can be easily adjusted. Less quenching distortion than other quenching methods. It is easy to automate and can be integrated into a machining line.

本発明の等速自在継手は、外側継手部材と、内側継手部材と、外側継手部材と内側継手部材との間に介在されるトルク伝達部材とを備えた等速自在継手であって、前記等速自在継手用シャフトを前記内側継手部材に連結したものである。   The constant velocity universal joint according to the present invention is a constant velocity universal joint including an outer joint member, an inner joint member, and a torque transmission member interposed between the outer joint member and the inner joint member. A shaft for a quick universal joint is connected to the inner joint member.

本発明では、調質処理を行うことによって、非焼入れ部(シャフト内部)の硬度が上昇する。このため、非焼入れ部の引張強度が改善され、静的捩り強度が向上する。しかも、非焼入れ部の硬度は調質により上げるので、素材は低硬度でよく、素材に対して旋削及び転造等が容易であって、加工性の向上を図ることができる。特に、調質処理を行う前の材質硬度が250HV未満とすることによってより加工しやすくなる。   In the present invention, the hardness of the non-quenched portion (inside the shaft) is increased by performing the tempering treatment. For this reason, the tensile strength of a non-hardened part is improved and static torsional strength improves. In addition, since the hardness of the non-quenched part is increased by refining, the material may be low in hardness, and the material can be easily turned and rolled, and the workability can be improved. In particular, when the material hardness before the tempering treatment is less than 250 HV, the processing becomes easier.

調質を行った後の熱処理は、中心(軸心)まで高周波焼入れを行わなくてよく、熱処理後の圧縮残留応力が通常の高周波焼入れと同等に生成され、疲労強度の低下がない。また、調質処理はショットピーニングよりも安価である利点もある。炭素量が0.3wt%〜0.5wt%を含む中炭素鋼に対して高周波焼入れすると、高い圧縮残留応力が発生して疲労強度が向上する。このため、シャフトを、炭素量が0.3wt%〜0.5wt%を含む中炭素鋼とすることによって、疲労強度の向上を一層図ることができる。   The heat treatment after tempering does not need to be induction hardened to the center (axial center), the compressive residual stress after heat treatment is generated in the same way as normal induction hardening, and there is no reduction in fatigue strength. Further, the tempering process has an advantage that it is less expensive than shot peening. When induction hardening is performed on medium carbon steel containing 0.3 wt% to 0.5 wt% of carbon, high compressive residual stress is generated and fatigue strength is improved. For this reason, the fatigue strength can be further improved by making the shaft a medium carbon steel containing 0.3 wt% to 0.5 wt% of carbon.

このように、静的捩り強度の向上を図ることができかつ疲労強度の低下を防止できるシャフトを用いれば、耐久性に優れて高品質の等速自在継手を提供できる。   In this way, if a shaft that can improve static torsional strength and prevent deterioration of fatigue strength is used, a high-quality constant velocity universal joint with excellent durability can be provided.

以下本発明の実施の形態を図1と図2とに基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図2は、本発明に係る等速自在継手用シャフトを用いたアクスルモジュールを示す。アクスルモジュールは、アウトボード側の等速自在継手T1と、インボード側の等速自在継手T2と、これら等速自在継手T1、T2に連結されるシャフト(等速自在継手用シャフト)65とを備える。自動車等の車両に組付けた状態で車両の外側となる方をアウトボード側(図面左側)、自動車等の車両に組付けた状態で車両の内側となる方をインボード側(図面右側)という。   FIG. 2 shows an axle module using the constant velocity universal joint shaft according to the present invention. The axle module includes a constant velocity universal joint T1 on the outboard side, a constant velocity universal joint T2 on the inboard side, and a shaft (shaft for constant velocity universal joint) 65 connected to the constant velocity universal joints T1 and T2. Prepare. The side that is outside the vehicle when assembled in a vehicle such as an automobile is the outboard side (left side of the drawing), and the side that is inside the vehicle when assembled in a vehicle such as an automobile is called the inboard side (right side of the drawing). .

固定式等速自在継手は、図2に示すように内球面51に複数のトラック溝52が形成された外方部材(外側継手部材)としての外輪53と、外球面54に外輪53のトラック溝52と対をなす複数のトラック溝55が形成された内方部材(内側継手部材)としての内輪56と、外輪53のトラック溝52と内輪56のトラック溝55との間に介在してトルクを伝達するトルク伝達部材であるボール57と、外輪53の内球面51と内輪56の外球面54との間に介在してボール57を保持するケージ58とを備えている。   As shown in FIG. 2, the fixed type constant velocity universal joint includes an outer ring 53 as an outer member (outer joint member) in which a plurality of track grooves 52 are formed on an inner spherical surface 51, and a track groove of the outer ring 53 on an outer spherical surface 54. Torque is interposed between the inner ring 56 as an inner member (inner joint member) in which a plurality of track grooves 55 paired with the inner ring 52 are formed, and between the track grooves 52 of the outer ring 53 and the track grooves 55 of the inner ring 56. A ball 57 as a torque transmitting member for transmission and a cage 58 interposed between the inner spherical surface 51 of the outer ring 53 and the outer spherical surface 54 of the inner ring 56 to hold the ball 57 are provided.

内輪56はその孔部内径56aとシャフト65の一方の端部の雄スプライン65aが、スプライン嵌合により結合されることで、シャフト65とトルク伝達が可能になる。また、シャフト65の雄スプライン65aには抜け止め用の止め輪60が装着されている。   The inner ring 56 has a hole inner diameter 56a and a male spline 65a at one end of the shaft 65 coupled by spline fitting, so that torque transmission with the shaft 65 becomes possible. Further, a retaining ring 60 for retaining is attached to the male spline 65a of the shaft 65.

外輪53は、マウス部53aとステム部(軸部)53bとからなり、マウス部53aは一端にて開口した椀状で、その内球面51に、軸方向に延びた複数のトラック溝52が円周方向等間隔に形成されている。   The outer ring 53 includes a mouse part 53a and a stem part (shaft part) 53b. The mouse part 53a has a bowl shape opened at one end, and a plurality of track grooves 52 extending in the axial direction are circularly formed on the inner spherical surface 51 thereof. It is formed at equal intervals in the circumferential direction.

マウス部53aの開口部はブーツ70にて覆われている。ブーツ70は、大径部70aと、小径部70bと、大径部70aと小径部70bとを連結する蛇腹部70cとからなる。大径部70aがマウス部53aの開口部に外嵌され、この状態でバンド111が締結され、小径部70bがシャフト65のブーツ装着部65bに外嵌され、この状態でバンド111が締結されている。   The opening of the mouse part 53 a is covered with a boot 70. The boot 70 includes a large diameter portion 70a, a small diameter portion 70b, and a bellows portion 70c that connects the large diameter portion 70a and the small diameter portion 70b. The large-diameter portion 70a is externally fitted to the opening of the mouse portion 53a, and the band 111 is fastened in this state. The small-diameter portion 70b is externally fitted to the boot mounting portion 65b of the shaft 65, and the band 111 is fastened in this state. Yes.

摺動型等速自在継手は、円筒状の内径面83aに複数の直線状のトラック溝82を軸方向に形成した外側継手部材としての外輪83と、球面状の外径面86aに複数の直線状のトラック溝85を軸方向に形成した内側継手部材としての内輪86と、外輪83のトラック溝82と内輪86のトラック溝85との間に介在してトルクを伝達するトルク伝達部材としてのボール87と、外輪83の内径面と内輪86の外径面との間に介在してボール87を保持するケージ88とを備える。   The sliding type constant velocity universal joint includes an outer ring 83 as an outer joint member in which a plurality of linear track grooves 82 are formed in an axial direction on a cylindrical inner surface 83a, and a plurality of straight lines on a spherical outer surface 86a. A ball as a torque transmission member that transmits torque by being interposed between an inner ring 86 as an inner joint member in which an axial track groove 85 is formed in the axial direction and a track groove 82 of the outer ring 83 and a track groove 85 of the inner ring 86 87 and a cage 88 that is interposed between the inner diameter surface of the outer ring 83 and the outer diameter surface of the inner ring 86 and holds the ball 87.

外輪83は、内径面83aに前記トラック溝82が形成されたカップ部90と、このカップ部90の底壁から突設されるステム部91とを備える。内輪86はその孔部内径86bとシャフト65の他の端部の雄スプライン65cがスプライン嵌合により結合されることで、シャフト65とトルク伝達が可能になる。シャフト65の雄スプライン65cには抜け止め用の止め輪61が装着されている。   The outer ring 83 includes a cup portion 90 in which the track groove 82 is formed on the inner diameter surface 83 a and a stem portion 91 that protrudes from the bottom wall of the cup portion 90. The inner ring 86 has a hole inner diameter 86b and a male spline 65c at the other end of the shaft 65 coupled by spline fitting so that torque can be transmitted to the shaft 65. A retaining ring 61 for retaining is attached to the male spline 65c of the shaft 65.

また、カップ部90の開口部はブーツ100にて覆われている。ブーツ100は、大径部100aと、小径部100bと、大径部100aと小径部100bとを連結する蛇腹部100cとからなる。大径部100aがカップ部90の開口部に外嵌され、この状態でバンド111が締結され、小径部100bがシャフト65のブーツ装着部65dに外嵌され、この状態でバンド111が締結されている。   The opening of the cup 90 is covered with the boot 100. The boot 100 includes a large diameter portion 100a, a small diameter portion 100b, and a bellows portion 100c that connects the large diameter portion 100a and the small diameter portion 100b. The large diameter portion 100a is externally fitted to the opening of the cup portion 90, and the band 111 is fastened in this state, and the small diameter portion 100b is externally fitted to the boot mounting portion 65d of the shaft 65, and the band 111 is fastened in this state. Yes.

シャフト65は中実体であって、シャフト本体92と、このシャフト本体92の両端部に設けられる前記雄スプライン65a、65cとを備える。なお、雄スプライン65a、65cは、本体側から端部側へ向かって拡大するテーパ部93a,93cを介してシャフト本体92に連設される端部大径部に形成される。   The shaft 65 is a solid body and includes a shaft main body 92 and the male splines 65 a and 65 c provided at both ends of the shaft main body 92. The male splines 65a and 65c are formed in the large end portion of the end portion that is connected to the shaft main body 92 through tapered portions 93a and 93c that expand from the main body side toward the end portion side.

また、シャフト本体92には、ブーツ装着部65b、65dが形成されるが、この場合、シャフト本体92の雄スプライン65c側に大径部94bを形成し、この大径部94bに周方向溝95bを設けることによって、ブーツ装着部65bを構成している。また、シャフト本体92の雄スプライン65c側に大径部94dを形成し、この大径部94dに周方向溝95dを設けることによって、ブーツ装着部65dを構成している。なお、大径部94b、94dの両端部にはテーパ96b、97b、96d、97dが設けられている。雄スプライン65a、65cにはそれぞれ周方向溝98,99が形成されている。   The shaft main body 92 is formed with boot mounting portions 65b and 65d. In this case, a large diameter portion 94b is formed on the male spline 65c side of the shaft main body 92, and a circumferential groove 95b is formed in the large diameter portion 94b. The boot mounting part 65b is comprised by providing. Further, a large diameter portion 94d is formed on the male spline 65c side of the shaft body 92, and a circumferential groove 95d is provided in the large diameter portion 94d, thereby forming a boot mounting portion 65d. In addition, taper 96b, 97b, 96d, 97d is provided in the both ends of large diameter part 94b, 94d. Circumferential grooves 98 and 99 are formed in the male splines 65a and 65c, respectively.

ところで、シャフト65は図1に示すように、その表面全長に渡って硬化層120が形成される。この表面硬化層120は高周波焼入れによる表面硬化処理で形成される。なお、図例のハッチングは、シャフト65に表面硬化層120が形成されていることを示すためのものであって、実際の表面硬化層120はシャフト65の表面全体に形成されている。   By the way, as shown in FIG. 1, the shaft 65 has a hardened layer 120 formed over the entire surface thereof. The surface hardened layer 120 is formed by a surface hardening process by induction hardening. The hatching in the example is for showing that the surface hardening layer 120 is formed on the shaft 65, and the actual surface hardening layer 120 is formed on the entire surface of the shaft 65.

次にシャフト65の製造方法を説明する。まず、炭素量が0.3wt%〜0.5wt%を含む中炭素鋼からなる棒状の素材を用意する。次に、その素材に対して調質処理を行う。調質処理とは、焼入れ焼きもどしの熱処理を施す熱調質である。焼入れ焼きもどしは、高周波熱処理で行うことができる。すなわち、調質処理によって、組織を、フェライト−パーライト組織あるいはフェライト−パーライト組織から、トルースタイト組織あるいはソルバイト組織に変化させる。この調質前の素材の硬度(表面硬化層120以外の非焼入部の硬度)を150HV〜230HV程度とする。そして、調質によって、250HV以上とする。   Next, a method for manufacturing the shaft 65 will be described. First, a rod-shaped material made of medium carbon steel containing carbon content of 0.3 wt% to 0.5 wt% is prepared. Next, a tempering process is performed on the material. The tempering treatment is a heat tempering that performs a heat treatment of quenching and tempering. Quenching and tempering can be performed by induction heat treatment. That is, the tempering treatment changes the structure from a ferrite-pearlite structure or a ferrite-pearlite structure to a troostite structure or a sorbite structure. The hardness of the material before tempering (the hardness of the non-quenched portion other than the hardened surface layer 120) is about 150 HV to 230 HV. And it shall be 250HV or more by refining.

高周波熱処理とは、「高周波誘導加熱」という電磁誘導現象を利用した加熱方法で行う焼入である。高周波電流の流れるコイルのなかに金属(電気的導体)を置くと、電磁誘導によって、金属の表面に高周波磁束による誘導電流が流れる。この電流は、金属のもつ抵抗によってエネルギーを損失し、熱を発生させる。この発熱現象を熱源として利用したのが誘導加熱である。なお、高周波誘導加熱は、次の利点がある。非接触で加熱でき、ワーク自体が発熱するため作業環境が良い。短時間に加熱できるため、酸化が極めて少ない。急速加熱が可能であり、エネルギー効率が良い。局部加熱ができ、焼入条件の調整も容易である。他の焼入方法に比べ、焼入歪みが少ない。自動化が容易で機械加工ラインへの組み入れも可能である。   The induction heat treatment is quenching performed by a heating method using an electromagnetic induction phenomenon called “high-frequency induction heating”. When a metal (electrical conductor) is placed in a coil through which a high-frequency current flows, an induction current caused by a high-frequency magnetic flux flows on the surface of the metal due to electromagnetic induction. This current loses energy due to the resistance of the metal and generates heat. Induction heating uses this heat generation phenomenon as a heat source. The high frequency induction heating has the following advantages. The work environment is good because it can be heated without contact and the work itself generates heat. Because it can be heated in a short time, oxidation is extremely low. Rapid heating is possible and energy efficiency is good. Local heating is possible, and the quenching conditions can be easily adjusted. Less quenching distortion than other quenching methods. It is easy to automate and can be integrated into a machining line.

その後、加工精度が要求されるため、旋削及び転造を行うことによって、雄スプライン65a、65b、ブーツ装着部65b、65d等を備えたシャフト(硬化層形成前のシャフト)を成形する。なお、この旋削及び転造は、加工の容易性を考慮して、調質前に行ってもよい。   After that, since machining accuracy is required, a shaft including male splines 65a and 65b and boot mounting portions 65b and 65d (shaft before forming a hardened layer) is formed by turning and rolling. Note that this turning and rolling may be performed before tempering in consideration of ease of processing.

次に、高周波熱処理(高周波焼入れ)によって、表面硬化層120を形成してシャフト65を完成する。硬化層120の硬度としては、550〜750HV程度とする。この高周波焼入れによって、高い捩り強度を有するものとなる。なお、高周波焼入れ後において、必要に応じて焼き戻しを行ってもよい。ここで、焼き戻しとは、焼入れによって硬化した鋼に靭性を与える目的で行われる熱処理で、マルテンサイト組織の状態から鋼を再加熱し、一定時間保持した後に徐冷する作業をいう。   Next, the surface hardened layer 120 is formed by induction heat treatment (induction hardening) to complete the shaft 65. The hardness of the hardened layer 120 is about 550 to 750 HV. By this induction hardening, it has a high torsional strength. In addition, after induction hardening, you may temper as needed. Here, tempering is a heat treatment performed for the purpose of imparting toughness to steel hardened by quenching, and refers to an operation in which the steel is reheated from the martensite structure, held for a certain time, and then gradually cooled.

ところで、高周波熱処理で圧縮応力を生成させることになる。そこで、この高周波熱処理前における素材の硬度を調質によって250HV以上としているが、400HV以下とするのが好ましい。   By the way, a compressive stress is generated by high-frequency heat treatment. Therefore, the hardness of the material before the high-frequency heat treatment is 250 HV or higher by refining, but is preferably 400 HV or lower.

本発明によれば、調質処理を行うことによって、非焼入れ部(シャフト内部)の硬度が上昇する。このため、非焼入れ部の引張強度が改善され、静的捩り強度が向上する。しかも、非焼入れ部の硬度は調質により上げるので、素材は低硬度でよく、素材に対して旋削及び転造等が容易であって、加工性の向上を図ることができる。特に、調質処理を行う前の材質硬度が250HV未満とすることによってより加工しやすくなる。   According to the present invention, the tempering treatment increases the hardness of the non-quenched portion (inside the shaft). For this reason, the tensile strength of a non-hardened part is improved and static torsional strength improves. In addition, since the hardness of the non-quenched part is increased by refining, the material may be low in hardness, and the material can be easily turned and rolled, and the workability can be improved. In particular, when the material hardness before the tempering treatment is less than 250 HV, the processing becomes easier.

調質を行った後の熱処理は、中心(軸心)まで高周波焼入れを行わなくてよく、熱処理後の圧縮残留応力が通常の高周波焼入れと同等に生成され、疲労強度の低下がない。また、調質処理はショットピーニングよりも安価である利点もある。炭素量が0.3wt%〜0.5wt%を含む中炭素鋼に対して高周波焼入れすると、高い圧縮残留応力が発生して疲労強度が向上する。このため、シャフト65を、炭素量が0.3wt%〜0.5wt%を含む中炭素鋼とすることによって、疲労強度の向上を一層図ることができる。   The heat treatment after tempering does not need to be induction hardened to the center (axial center), the compressive residual stress after heat treatment is generated in the same way as normal induction hardening, and there is no reduction in fatigue strength. Further, the tempering process has an advantage that it is less expensive than shot peening. When induction hardening is performed on medium carbon steel containing 0.3 wt% to 0.5 wt% of carbon, high compressive residual stress is generated and fatigue strength is improved. For this reason, the fatigue strength can be further improved by making the shaft 65 a medium carbon steel containing a carbon amount of 0.3 wt% to 0.5 wt%.

このように、静的捩り強度の向上を図ることができかつ疲労強度の低下を防止できるシャフト65を用いれば、耐久性に優れて高品質の等速自在継手を提供できる。   As described above, if the shaft 65 that can improve the static torsional strength and prevent the fatigue strength from being lowered is used, a high-quality constant velocity universal joint that is excellent in durability can be provided.

本発明の等速自在継手用シャフトの製造方法では、静的捩り強度の向上を図ることができかつ疲労強度の低下を防止できるシャフトを安価に安定して製造することができる。 In the method for manufacturing a constant velocity universal joint shaft according to the present invention, it is possible to stably and inexpensively manufacture a shaft that can improve static torsional strength and prevent a decrease in fatigue strength.

前記実施形態では、調質処理における焼入れ焼きもどしは、高周波熱処理でおこなったが、浸炭焼入れ等の種々の他の熱処理を採用することができる。ここで、浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れを行う方法である。調質処理を高周波熱処理で行うことによって、硬化層形成時に使用する高周波熱処理装置をそのまま使用することができ、コスト低減を図ることができる。なお、調質処理の焼入れ焼きもどしのいずれか一方のみを高周波熱処理で行って、他方を他の熱処理手段で行ってもよい。   In the embodiment, the quenching and tempering in the tempering process is performed by induction heat treatment, but various other heat treatments such as carburizing and quenching can be employed. Here, the carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of the low carbon material and then quenched. By performing the tempering treatment by high frequency heat treatment, the high frequency heat treatment apparatus used at the time of forming the hardened layer can be used as it is, and the cost can be reduced. Note that only one of the tempering quenching and tempering may be performed by high-frequency heat treatment, and the other may be performed by other heat treatment means.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、図2に示すアクスルモジュールにおいては、アウトボード側の等速自在継手(固定式等速自在継手)T1を、トラック溝底が円弧部のものからなるバーフィールド型(BJ)としているが、トラック溝底が円弧部とストレート部とを備えたアンダーカットフリー型(UJ)であってもよい。また、インボード側の等速自在継手(摺動式等速自在継手)T2を、ダブルオフセット型等速自在継手としているが、トリポード型等速自在継手等の他の摺動式等速自在継手であってもよい。   As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above embodiment, and various modifications are possible. In the axle module shown in FIG. (Fixed constant velocity universal joint) T1 is a bar field type (BJ) in which the track groove bottom has an arc portion, but the track groove bottom has an arc portion and a straight portion (UJ). ). The constant velocity universal joint (sliding constant velocity universal joint) T2 on the inboard side is a double offset type constant velocity universal joint, but other sliding constant velocity universal joints such as a tripod type constant velocity universal joint. It may be.

本発明の実施形態を示すシャフトの側面図である。It is a side view of the shaft which shows embodiment of this invention. 前記図1に示すシャフトを用いたアクスルモジュールの断面図である。It is sectional drawing of the axle module using the shaft shown in the said FIG. 従来のシャフトを用いたアクスルモジュールの断面図である。It is sectional drawing of the axle module using the conventional shaft.

符号の説明Explanation of symbols

65 シャフト
120 硬化層
T1 等速自在継手
T2 等速自在継手
65 Shaft 120 Hardened layer T1 Constant velocity universal joint T2 Constant velocity universal joint

Claims (2)

高周波焼入れによる表面硬化処理が施された等速自在継手用シャフトであって、
硬度が250HV〜400HVとなる調質処理を行った後に高周波焼入れによる表面硬化処理が施されてなり、シャフト材質として、前記表面硬化用の高周波焼入れにて高圧縮残留応力を発生させる、炭素量が0.3wt%〜0.5wt%の中炭素鋼に限定するとともに、調質処理を行う前のシャフト材質硬度を150HV〜230HVとし、かつ、高周波焼入れ後の硬化層の硬度を550HV〜750HVとし、前記調質処理を熱調質として、この熱調質を前記表面硬化用の高周波焼入装置を用いた高周波熱処理にて行ったことを特徴とする等速自在継手用シャフト
A shaft for a constant velocity universal joint that has been surface hardened by induction hardening,
Hardness Ri Na by surface hardening treatment by induction hardening is decorated after the made refining and 250HV~400HV, as shaft material, to generate a high compressive residual stress in induction hardening for the surface hardening, the carbon content Is limited to 0.3 wt% to 0.5 wt% of medium carbon steel, the shaft material hardness before tempering is set to 150 HV to 230 HV, and the hardness of the hardened layer after induction hardening is set to 550 HV to 750 HV. A shaft for a constant velocity universal joint characterized in that the tempering treatment is a heat tempering and the heat tempering is performed by an induction heat treatment using the surface hardening induction hardening apparatus.
外側継手部材と、内側継手部材と、外側継手部材と内側継手部材との間に介在されるトルク伝達部材とを備えた等速自在継手であって、前記請求項1に記載の等速自在継手用シャフトを前記内側継手部材に連結したことを特徴とする等速自在継手。 The constant velocity universal joint according to claim 1, comprising: an outer joint member; an inner joint member; and a torque transmission member interposed between the outer joint member and the inner joint member. A constant velocity universal joint characterized in that a shaft is connected to the inner joint member .
JP2008164582A 2008-06-24 2008-06-24 Constant velocity universal joint shaft and constant velocity universal joint Expired - Fee Related JP5148384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008164582A JP5148384B2 (en) 2008-06-24 2008-06-24 Constant velocity universal joint shaft and constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164582A JP5148384B2 (en) 2008-06-24 2008-06-24 Constant velocity universal joint shaft and constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2010007694A JP2010007694A (en) 2010-01-14
JP5148384B2 true JP5148384B2 (en) 2013-02-20

Family

ID=41588443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164582A Expired - Fee Related JP5148384B2 (en) 2008-06-24 2008-06-24 Constant velocity universal joint shaft and constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP5148384B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240669A (en) * 1999-02-18 2000-09-05 Ntn Corp Power transmission shaft
JP4360178B2 (en) * 2003-11-05 2009-11-11 日本精工株式会社 Manufacturing method of toroidal type continuously variable transmission
JP5111014B2 (en) * 2006-08-23 2012-12-26 株式会社神戸製鋼所 Steel for induction-hardened shaft parts and shaft parts

Also Published As

Publication number Publication date
JP2010007694A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
WO2010082597A1 (en) Outer member of constant speed universal joint
US8714829B2 (en) Wheel bearing assembly
JP2001200314A (en) Wheel bearing device
CN100513809C (en) Method of manufacturing hollow power transmission shaft
WO2011052342A1 (en) Hollow shaft and constant velocity universal joint
KR20090046896A (en) Frictionally press-bonded member
JP5148384B2 (en) Constant velocity universal joint shaft and constant velocity universal joint
JP2005145313A (en) Rolling bearing unit for supporting vehicle wheel
JP2008169941A (en) Wheel bearing device
JP2008019983A (en) Hollow shaft and outside joint member for constant velocity universal joint
JP2007211926A (en) Inner member of constant velocity universal joint and its manufacturing method
JP2006002185A (en) Method for heat-treating hollow-power transmission shaft
JP5160316B2 (en) Constant velocity joint ball and method of manufacturing the same
JP2015152092A (en) Yoke of steering universal joint
JP2019526702A (en) Bearing steel and manufacturing method thereof
KR100727196B1 (en) A constant velocity joint cage for vehicle and method for producing it
JP2006002809A (en) Hollow power transmission shaft
JP2005146313A (en) Power transmission shaft
CN1997834A (en) Quench-hardened and tempered articulated cage
JP4855369B2 (en) Outer joint member for constant velocity universal joint and fixed constant velocity universal joint
JP6685871B2 (en) Outer joint member of constant velocity universal joint and method of manufacturing outer joint member
JP2007224981A (en) Outward member for constant speed universal joint and its manufacturing method
JP2020063784A (en) Power transmission shaft
JP5467710B2 (en) Method for manufacturing fixed type constant velocity universal joint and outer ring thereof
KR102681989B1 (en) A manufacuring method of a contant velocity inner race and a heat treatment device for the contant velocity inner race

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Ref document number: 5148384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees