JPH06287677A - High strength non-refining steel for hot forging - Google Patents

High strength non-refining steel for hot forging

Info

Publication number
JPH06287677A
JPH06287677A JP7586293A JP7586293A JPH06287677A JP H06287677 A JPH06287677 A JP H06287677A JP 7586293 A JP7586293 A JP 7586293A JP 7586293 A JP7586293 A JP 7586293A JP H06287677 A JPH06287677 A JP H06287677A
Authority
JP
Japan
Prior art keywords
steel
ceq
tensile strength
hot forging
bainite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7586293A
Other languages
Japanese (ja)
Other versions
JP2950702B2 (en
Inventor
Hirotada Takada
高田啓督
Yoshiro Koyasu
子安善郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13588488&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06287677(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7586293A priority Critical patent/JP2950702B2/en
Publication of JPH06287677A publication Critical patent/JPH06287677A/en
Application granted granted Critical
Publication of JP2950702B2 publication Critical patent/JP2950702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To stably maintain high tensile strength in non-refining steel and to miniaturize parts by specifying the content of C, Si, Mn, Cr, S, V, N, Al and Ti in steel and specifying the carbon equivalent and bainitic transformation index. CONSTITUTION:The compsn. of the non-refining steel is constituted of, by weight, 0.25 to 0.50% C, 0.40 to 2.00% Si, 0.50 to 2.50% Mn, 0.10 to 1.00% Cr, 0.03 to 0.10% S, 0.05 to 0.30% V, 0.0050 to 0.0200% N and one or two kinds of 0.005 to 0.050% Al and 0.002 to 0.050% Ti, and the balance Fe with inevitable impurities. Moreover, the carbon equivalent expressed by Ceq%=%C +(%Si)/20+(%Mn)/5+(%Cr)/9+1.54(%V) is regulated to 0.83 to 1.23. Furthermore, the value of the bainitic transformation index expressed by Bt=31.2-100(%C)-6.7(%Si)+9.0(%Mn)+4.9(%Cr)-81(%V) is regulated to <=0. In this way, >=900MPa tensile strength can be realized in a hot forging and non-refining state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車、産業機械など
の機械部品に加工される鋼素材のうち、特に熱間での鍛
造などで加工された後、熱間加工まで高強度の機械部品
となる高強度熱間鍛造用非調質鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material which is machined into machine parts such as automobiles and industrial machines, and which has high strength until hot working, especially after being processed by hot forging. The present invention relates to non-heat treated steel for high strength hot forging.

【0002】[0002]

【従来の技術】自動車、産業用機械部品の多くは素材棒
鋼を熱間で加工した後、焼入焼戻し処理(調質処理)に
よって組織を微細化し、強度と靱性を高めて使用してい
るが、近年はコスト削減のため、調質処理を省略したま
まで使用される非調質熱間鍛造品が急速に普及してきて
いる。
2. Description of the Related Art In many automobile and industrial machine parts, a material steel bar is hot-worked and then hardened and tempered (refining treatment) to make the structure finer to increase strength and toughness. In recent years, non-tempered hot forgings, which are used without tempering treatment, are rapidly becoming popular for cost reduction.

【0003】また、最近は地球環境保護のため、自動車
の低燃費化が求められており、自動車の低燃費化を達成
するための有効な方法の一つは車両軽量化であるため、
高強度化による部品の小型軽量化が指向されている。
Recently, in order to protect the global environment, it is required to reduce the fuel consumption of automobiles, and one of the effective methods for achieving the fuel consumption reduction of automobiles is to reduce the weight of the automobile.
The aim is to reduce the size and weight of parts by increasing their strength.

【0004】自動車部品の非調質化と高強度の要求に応
えるため、これまで種々の非調質鋼が施行されてきてい
る。たとえば、一般的な非調質鋼はV、Nbが添加され
ており、熱間加工後の冷却過程でV、Nbが炭窒化物と
して析出し、フェライトパーライト組織を強化する仕組
みとなっている。この型の非調質鋼の熱間鍛造ままの引
張り強さは800MPa程度であり、また熱間鍛造まま
の組織が非常に粗大であるため靱性が低いのが難点であ
る。そこで近年は特開平1−198450号公報に開示
されているように、高強度化を図りつつ、熱間鍛造まま
組織を微細化して靱性を高めた鋼も開発されている。し
かし特開平1−198450号公報に記載の鋼も熱間鍛
造ままでの引張り強さはおよそ1000MPaが限度で
ある。
Various non-heat treated steels have been used so far in order to meet the requirements for non-heat treated and high strength automobile parts. For example, general non-heat treated steel is added with V and Nb, and V and Nb are precipitated as carbonitrides in the cooling process after hot working to strengthen the ferrite pearlite structure. The hot-forged tensile strength of this type of non-heat treated steel is about 800 MPa, and since the as-hot-forged structure is very coarse, its toughness is low. Therefore, in recent years, as disclosed in JP-A-1-198450, a steel has been developed in which the structure is refined while hot forging and the toughness is enhanced while achieving high strength. However, the tensile strength of the steel described in JP-A-1-198450 as hot forging is limited to about 1000 MPa.

【0005】[0005]

【発明が解決しようとする課題】フェライトパーライト
鋼は降状比が高く、被削性に優れるなどの特徴があるた
め、熱間鍛造非調質状態で900−1200MPaの引
張り強さを安定的に実現することができれば、自動車部
品の小型軽量化による燃費の向上等、工業的な利益は多
大なものがある。
Ferrite pearlite steel is characterized by a high yield ratio and excellent machinability, so that it can stably maintain a tensile strength of 900-1200 MPa in a hot forged non-tempered state. If it can be realized, there will be great industrial benefits such as improvement in fuel efficiency due to reduction in size and weight of automobile parts.

【0006】そこで、本発明は熱間鍛造ままで900M
Pa以上の引張り強さを安定的に実現するフェライトパ
ーライト型の高強度熱間鍛造用非調質鋼を提供するもの
である。
[0006] Therefore, the present invention is 900M as hot forged
It is intended to provide a ferrite-pearlite-type high-strength non-heat treated steel for hot forging which stably realizes a tensile strength of Pa or more.

【0007】[0007]

【課題を解決するための手段】従来型のフェライトパー
ライト型非調質品の引張り強さが900ないし1000
MPaを越えることができなかったのは、高強度化のた
めに合金元素を多量に添加すると通常の空冷ではベイナ
イト組織が発生しやすくなり、品質保証ができなくなる
ためであった。しかし、フェライトパーライト型非調質
鋼のベイナイト発生に及ぼす合金元素の影響は十分検討
されているわけではない。
[Means for Solving the Problems] The tensile strength of a conventional ferrite perlite type non-heat treated product is 900 to 1000.
The reason why it was not possible to exceed MPa was that if a large amount of alloying elements were added to increase the strength, a bainite structure is likely to occur in ordinary air cooling, and the quality cannot be guaranteed. However, the effect of alloying elements on the generation of bainite in ferrite-pearlite type non-heat treated steel has not been sufficiently investigated.

【0008】そこで本発明者らは、ベイナイト発生に及
ぼす合金元素の影響を明らかとすることにより、熱間鍛
造非調質状態で高強度のフェライトパーライト鋼を実現
すべく、鋭意研究を行なった。その結果、熱間鍛造非調
質状態におけるベイナイト組織の発生はMn、Cr添加
により促進されるものの、C、Si、V添加で抑制する
ことができ、これまでの一般的認識とは異なり、引張り
強さの影響は比較的小さかった。よって、最適な成分設
計をすることで900MPa以上の高強度フェライトパ
ーライト非調質品が実現可能であるが分った。
[0008] Therefore, the inventors of the present invention have conducted intensive studies to clarify the influence of alloying elements on the generation of bainite and to realize a high-strength ferritic pearlite steel in a hot forged non-tempered state. As a result, although the generation of bainite structure in the hot forged non-heat treated state is promoted by the addition of Mn and Cr, it can be suppressed by the addition of C, Si and V. The effect of strength was relatively small. Therefore, it has been found that a non-heat treated high-strength ferrite pearlite of 900 MPa or more can be realized by optimally designing the components.

【0009】そこで、鋼の成分と熱間鍛造非調質状態の
組織の関係から、重回帰によりベイナイト変態を予測す
るベイナイト変態指数Btを求めた。
Therefore, the bainite transformation index Bt for predicting the bainite transformation was obtained by multiple regression from the relationship between the composition of the steel and the microstructure of the hot forged state.

【0010】Bt=31.2−100(%C)−6.7
(%Si)+9.0(%Mn)+4.9(%Cr)−8
1(%V) であり、Btが0以下である時にベイナイト分率が0%
である。100%フェライトパーライト組織の鋼におい
ては、 炭素当量Ceq.(%)=%C+(%Si)/20(%
Mn)/5+(%Cr)/9+1.54(%V)、 引張り強さ(MPa)=759×Ceq.(%)+26
7 と表わすことができた。
Bt = 31.2-100 (% C) -6.7
(% Si) +9.0 (% Mn) +4.9 (% Cr) -8
1 (% V), and when Bt is 0 or less, the bainite fraction is 0%
Is. In steel having a 100% ferrite pearlite structure, carbon equivalent Ceq. (%) =% C + (% Si) / 20 (%
Mn) / 5 + (% Cr) /9+1.54 (% V), tensile strength (MPa) = 759 × Ceq. (%) +26
Could be represented as 7.

【0011】組織に及ぼすベイナイト変態指数Btと炭
素当量Ceq.の関係を示したのが図1である。図1か
らCeq.>1.23%ではベイナイトでありCeq.
≦1.23%ではBtが0より大きい時にベイナイトが
発生することが分る。
Bainite transformation index Bt and carbon equivalent Ceq. FIG. 1 shows the relationship. 1 to Ceq. > 1.23% is bainite, and Ceq.
It can be seen that bainite is generated when Bt is larger than 0 when ≦ 1.23%.

【0012】以上のようにCeq.およびBtを一定範
囲に規制することでベイナイトの発生を防止しつつ高い
引張り強さが実現することの知見を得て、本発明が完成
されたのである。すなわち、本発明は請求項に示したと
おり、重量%でC:0.25−0.50%、Si:0.
40−2.00%、Mn:0.50−2.50%、C
r:0.10−1.00%、S:0.03−0.10
%、V:0.05−0.30%、N:0.0050−
0.0200%さらにAl:0.005−0.050
%、Ti:0.002−0.050%の1種もしくは2
種を含み、残部がFeおよび不可避不純物よりなり、下
式で表わされる炭素当量Ceq.(%)が0.83%−
1.23%、ベイナイト変態指数Btが0以下である高
強度熱間鍛造用非調質鋼 Ceq.(%)=%C+(%Si)/20+(%Mn)
/5+(%Cr)/9+1.54(%V) Bt=31.2−100(%C)−6.7(%Si)+
9.0(%Mn)+4.9(%Cr)−81(%V) 更にまた、重量%でC:0.25−0.50%、Si:
0.40−2.00%、Mn:0.50−2.50%、
Cr:0.10−1.00%、S:0.03−0.10
%、V:0.05−0.30%、N:0.0050−
0.0200% Ca:0.0004−0.0050%を含み、さらにA
l:0.001−0.010%、Ti:0.005−
0.020%の1種または2種以上を含み、残部がFe
および不可避不純物よりなり、下式で表わされる炭素当
量Ceq.(%)が0.83%−1.23%、ベイナイ
ト変態指数Btが0以下である高強度熱間鍛造用非調質
鋼 Ceq.(%)=%C+(%Si)/20+(%Mn)
/5+(%Cr)/9+1.54(%V) Bt=31.2−100(%C)−6.7(%Si)+
9.0(%Mn)+4.9(%Cr)−81(%V) である。
As described above, Ceq. The present invention has been completed based on the finding that by controlling Bt and Bt within a certain range, high tensile strength can be realized while preventing the generation of bainite. That is, according to the present invention, as defined in the claims, C: 0.25-0.50%, Si: 0.
40-2.00%, Mn: 0.50-2.50%, C
r: 0.10-1.00%, S: 0.03-0.10
%, V: 0.05-0.30%, N: 0.0050-
0.0200% Al: 0.005-0.050
%, Ti: 0.002-0.050%, one or two
Seeds, the balance consisting of Fe and unavoidable impurities, and the carbon equivalent Ceq. (%) Is 0.83%-
High-strength hot-forging non-heat treated steel Ceq. With 1.23% and bainite transformation index Bt of 0 or less. (%) =% C + (% Si) / 20 + (% Mn)
/5+(%Cr)/9+1.54(%V) Bt = 31.2-100 (% C) -6.7 (% Si) +
9.0 (% Mn) +4.9 (% Cr) -81 (% V) Further, C: 0.25-0.50% by weight%, Si:
0.40-2.00%, Mn: 0.50-2.50%,
Cr: 0.10-1.00%, S: 0.03-0.10
%, V: 0.05-0.30%, N: 0.0050-
0.0200% Ca: 0.0004-0.0050% included, and further A
1: 0.001-0.010%, Ti: 0.005-
0.020% of 1 type or 2 types or more, with the balance being Fe
And a carbon equivalent Ceq. (%) Is 0.83% to 1.23%, and bainite transformation index Bt is 0 or less. High-strength hot forging non-heat treated steel Ceq. (%) =% C + (% Si) / 20 + (% Mn)
/5+(%Cr)/9+1.54(%V) Bt = 31.2-100 (% C) -6.7 (% Si) +
It is 9.0 (% Mn) +4.9 (% Cr) -81 (% V).

【0013】以下に発明の限定理由について述べる。The reasons for limiting the invention will be described below.

【0014】C:Cは鋼を強化するために0.25%以
上が必要である。0.25%未満では他の合金元素が多
くなるため、熱間鍛造ままでベイナイトが発生しやすく
なる。一方Cを多量に添加した場合、延性が著しく低い
ものとなるため、上限を0.50%とする。
C: C is required to be 0.25% or more in order to strengthen the steel. If it is less than 0.25%, the amount of other alloy elements increases, so that bainite is likely to be generated during hot forging. On the other hand, when a large amount of C is added, the ductility becomes extremely low, so the upper limit is made 0.50%.

【0015】Si:Siは固溶強化元素として鋼を強化
するとともに、ベイナイトの変態を抑制する働きをす
る。強化と変態制御のため0.40%以上が必要である
が、2.0%を超えると延性が劣化する。
Si: Si strengthens the steel as a solid solution strengthening element and also serves to suppress the transformation of bainite. 0.40% or more is required for strengthening and transformation control, but if it exceeds 2.0%, ductility deteriorates.

【0016】Mn:Mnは比較的延性を劣化させずに鋼
を強化するのに有用な元素であり、強化のために少なく
とも0.50%が必要である。一方、2.5%を超える
多量の添加はベイナイトの発生をもたらす。
Mn: Mn is an element useful for strengthening steel without relatively deteriorating ductility, and at least 0.50% is required for strengthening. On the other hand, addition of a large amount exceeding 2.5% causes generation of bainite.

【0017】Cr:Crも鋼の強化のため0.1%以上
が必要であるが、多量の添加はMn同様にベイナイトを
発生させるため1.00%以下とする。
Cr: Cr is also required to be 0.1% or more for strengthening the steel, but a large amount of addition causes 1.00 as well as Mn to generate bainite, so the content is made 1.00% or less.

【0018】S:SはMnSとして晶析出して、旧オー
ステナイト粒界内にフェライトを変態させる働きがあ
り、延性、靱性を向上させる。延性、靱性向上のため
0.03%以上の添加が必要であるが、多量に添加した
場合、機械的性質に異方性を生じてしまうため上限を
0.10%とする。さらにSは被削性を向上させる。
S: S crystallizes as MnS and has a function of transforming ferrite in the former austenite grain boundaries, and improves ductility and toughness. To improve ductility and toughness, it is necessary to add 0.03% or more. However, if added in a large amount, mechanical properties become anisotropic, so the upper limit is made 0.10%. Further, S improves machinability.

【0019】N:NはVN、TiNあるいはNbNとし
て析出し、オーステナイト組織の粗大化を防止すると共
に、粒内フェライトの変態を促進し、延性を向上させ
る。0.0050%未満ではこれらの効果が小さく、延
性向上の効果は期待できない。また0.0200%を超
えて添加しても効果は飽和する。
N: N precipitates as VN, TiN or NbN, prevents coarsening of the austenite structure, promotes transformation of intragranular ferrite, and improves ductility. If it is less than 0.0050%, these effects are small and the effect of improving ductility cannot be expected. Further, the effect is saturated even if added over 0.0200%.

【0020】V:VはVNとして析出して粒内フェライ
ト変態を促進すると共に、VCとしてフェライト内に微
細に析出して鋼を強化する。強化のためには0.05%
以上が必要であるが、0.30%を超えると靱性が劣化
する。ベイナイト変態を抑制しつつ強化するのにV添加
は有効である。
V: V precipitates as VN to promote intragranular ferrite transformation, and at the same time as VC finely precipitates in ferrite to strengthen the steel. 0.05% for strengthening
The above is required, but if it exceeds 0.30%, the toughness deteriorates. V addition is effective in strengthening while suppressing bainite transformation.

【0021】Al:Alは脱酸材として添加される元素
である。請求項1において十分な脱酸効果を期待するた
めには0.005%以上が必要であるが、0.050%
を超える添加は被削性を低下させる。
Al: Al is an element added as a deoxidizer. In order to expect a sufficient deoxidizing effect in claim 1, 0.005% or more is necessary, but 0.050%
Addition of more than 10 reduces machinability.

【0022】また、特に被削性の改善のためCaを添加
する請求項2の場合には、Ca酸化物を生成させる必要
があるため0.010%以下の添加とする必要がある
が、極少量のAlは低融点の酸化物を形成させて、被削
性を向上させるため0.001%以上を添加する必要が
ある。
Further, particularly in the case of adding Ca for improving the machinability, it is necessary to add 0.010% or less because it is necessary to generate Ca oxide. It is necessary to add 0.001% or more of a small amount of Al to form a low melting point oxide and improve machinability.

【0023】Ti:Tiは脱酸材として添加されるが、
鍛造加熱時のオーステナイト組織の粗大化を防止して、
鍛造放冷まま組織を微細化し、延性、靱性を向上させる
効果もある。請求項1においては、これらの効果を狙う
ため0.002%以上の添加が必要であるが、0.05
0%を超えた添加は被削性を劣化させる。また請求項2
においては、Ca酸化物による被削性改善を狙うため、
0.020%以下とする必要があるが、0.005%未
満ではオーステナイト組織の粗大化の効果が期待されな
い。
Ti: Ti is added as a deoxidizer,
Prevents coarsening of the austenite structure during forging heating,
It is also effective in refining the structure while improving the ductility and toughness while forging and cooling. In claim 1, 0.002% or more is required to be added in order to achieve these effects.
Addition in excess of 0% deteriorates machinability. Claim 2
In order to improve the machinability with Ca oxide,
It should be 0.020% or less, but if it is less than 0.005%, the effect of coarsening the austenite structure is not expected.

【0024】Ca:特に超硬工具を用いた切削における
被削性を向上させるために、Ca0.0004−0.0
050%の添加が効果的である。0.0004%未満で
は効果なく、0.0050%を超えて添加した場合、む
しろ被削性が低下する。請求項1の鋼においても被削性
を向上させたい場合には、同量のCaの添加が有効であ
るが、Al、Tiを請求項2に記載の上限を超えて添加
した場合、被削性改善の効果は低下する。
Ca: In order to improve the machinability particularly in the cutting using a cemented carbide tool, Ca0.0004-0.0
Addition of 050% is effective. If it is less than 0.0004%, there is no effect, and if it is added more than 0.0050%, the machinability is rather lowered. When it is desired to improve the machinability in the steel of claim 1, addition of the same amount of Ca is effective, but when Al and Ti are added in excess of the upper limit of claim 2, the machinability is increased. The effect of improving sex is reduced.

【0025】Ceq.:鍛造放冷ままの引張り強さは炭
素当量Ceq.の一次式で表わすことができる。本発明
の鋼の様な高強度フェライトパーライト鋼においては、
引張り強さ(MPa)=759×Ceq.(%)+26
7であり、Ceq.が0.83%のとき引張り強さは9
00MPaである。よって、900MPa以上の引張り
強さとするため、Ceq.を0.83%以上に限定す
る。但し、Ceq.が1.23%を超えるとベイナイト
変態が起こるため上限を1.23%とする。
Ceq. : Tensile strength as forged and cooled is carbon equivalent Ceq. It can be expressed by a linear expression. In high strength ferritic pearlite steels such as the steel of the present invention,
Tensile strength (MPa) = 759 × Ceq. (%) +26
7 and Ceq. Is 0.83%, the tensile strength is 9
It is 00 MPa. Therefore, in order to obtain a tensile strength of 900 MPa or more, Ceq. Is limited to 0.83% or more. However, Ceq. Exceeds 1.23%, bainite transformation occurs, so the upper limit is made 1.23%.

【0026】Ceq.(%)=%C+(%Si)/20
+(%Mn)/5+(%Cr)/9+1.54(%V) Bt:本発明において、ベイナイト変態を予測するベイ
ナイト変態指数Btは鍛造放冷後の鋼組織を100%フ
ェライトパーライトとするために極めて重要である。ベ
イナイト変態はMn、Crの添加により促進され、C、
Si、Vの添加により抑制される。通常の鍛造後の冷却
速度範囲(1100−700Kの間の平均冷却速度が
0.5−2.0K/S)では、Bt=312−100
(%C)−67(%Si)+90(%Mn)+49(%
Cr)−810(%V)が0以下の場合に100%フェ
ライトパーライト組織となり、0を超えた場合ベイナイ
ト変態が起こる。
Ceq. (%) =% C + (% Si) / 20
+ (% Mn) / 5 + (% Cr) /9+1.54 (% V) Bt: In the present invention, the bainite transformation index Bt for predicting bainite transformation is because the steel structure after forging and cooling is 100% ferrite pearlite. Is extremely important to. Bainite transformation is promoted by the addition of Mn and Cr, and C,
It is suppressed by the addition of Si and V. In the cooling rate range after normal forging (the average cooling rate between 1100-700K is 0.5-2.0K / S), Bt = 312-100
(% C) -67 (% Si) +90 (% Mn) +49 (%
When Cr) -810 (% V) is 0 or less, a 100% ferrite pearlite structure is formed, and when it exceeds 0, bainite transformation occurs.

【0027】なお、以上の元素の他に一般に快削元素と
して知られるPb、Bi、Te、Seを適量添加した場
合、本発明鋼においても当然被削性が向上する。たとえ
ばPb、Biは0.05%以上を添加した場合、低融点
金属として鋼中に分散して被削性を向上させる。しかし
熱間加工性を低下させないため、上限は0.30%が望
ましい。
In addition to the above elements, if Pb, Bi, Te, and Se, which are generally known as free-cutting elements, are added in appropriate amounts, the machinability of the present invention steel is naturally improved. For example, when Pb and Bi are added in an amount of 0.05% or more, they are dispersed in steel as a low melting point metal to improve machinability. However, the upper limit is preferably 0.30% so as not to deteriorate the hot workability.

【0028】0.02%以上のTe、SeはSと同様に
硫化物を形成して被削性を向上させる。0.10%以下
の添加であれば機械的性質の異方性も生じない。
Te and Se of 0.02% or more form sulfides like S and improve the machinability. Addition of 0.10% or less does not cause anisotropy of mechanical properties.

【0029】[0029]

【実施例】表1に示した種々の組成の鋼を150kg真
空溶解炉で溶製し、直径30mmに成型した棒鋼を素材
とし、これらの鋼を1525Kで1200Sの加熱後、
室温まで放冷した後、組織の観察と引張り試験を行っ
た。引張り試験片はJIS4号試験片を用いた。
EXAMPLE Steels having various compositions shown in Table 1 were melted in a vacuum melting furnace of 150 kg and made of steel bars molded into a diameter of 30 mm. These steels were heated at 1525 K and 1200 S,
After allowing to cool to room temperature, the structure was observed and a tensile test was performed. A JIS No. 4 test piece was used as the tensile test piece.

【0030】さらに、表1のNo.26−31について
は、上記の加熱放冷後、JIS−P20にTiNをコー
ティングした超硬工具で長手外周旋削し、5分間加工後
の工具逃げ面摩耗を測定した。切削条件は切削速度15
0m/min.送り0.2mm/rev.切込み2.0
mmとし、乾式で加工した。
Further, in Table 1, No. With respect to Nos. 26-31, after the above-mentioned heat-cooling, the peripheral flank turning was carried out by a cemented carbide tool in which JIS-P20 was coated with TiN, and the tool flank wear after machining for 5 minutes was measured. Cutting conditions are cutting speed 15
0 m / min. Feed 0.2 mm / rev. Notch 2.0
mm and processed by dry method.

【0031】表1に示したように、本発明の鋼は熱間加
工ままで引張り強さ900MPa以上の100%フェラ
イトパーライト鋼となっている。一般に引張り強さ
(T.S.)の上昇と共に降伏比(Y.R.)は上昇
し、絞り値(R.A.)は低下する傾向があるが、同一
引張り強さで比較した場合、本発明の鋼の降伏比、絞り
値は、Bt値が0より大きいためベイナイトとなった比
較鋼No.4,8,12,13よりも優れている。比較
鋼No.5,9,15,18,21,22,23,24
は900MPa以上のフェライトパーライト鋼となって
はいるもの、同等の引張り強さを有する本発明鋼に比べ
ると降伏比、絞り値は低い。比較鋼No.25はBtは
0以下であるものの、Ceq.が1.23%を超えてい
るためベイナイト組織となっている。
As shown in Table 1, the steel of the present invention is a 100% ferrite pearlite steel having a tensile strength of 900 MPa or more as hot worked. Generally, as the tensile strength (TS) increases, the yield ratio (YR) tends to increase and the aperture value (RA) tends to decrease, but when comparing the same tensile strength, As for the yield ratio and the drawing value of the steel of the present invention, the comparative steel No. Better than 4,8,12,13. Comparative steel No. 5,9,15,18,21,22,23,24
Although it is a ferritic pearlitic steel of 900 MPa or more, the yield ratio and the drawing value are low as compared with the steel of the present invention having the same tensile strength. Comparative steel No. 25 has a Bt of 0 or less, but Ceq. Is more than 1.23%, so that it has a bainite structure.

【0032】また、請求項2の本発明鋼No.26,2
7,29,30における超硬工具摩耗は、比較鋼No.
28,31と比べて30−40μm小さい。
Further, the steel No. 2 of the present invention according to claim 2 26, 2
Cemented carbide tool wear in Nos. 7, 29, and 30 is comparative steel No.
Compared with 28 and 31, it is 30-40 μm smaller.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】以上のように、本発明の請求項1,2と
もに熱間鍛造比調質状態で、フェライトパーライト組織
で、その引張り強さが900MPa以上となる鋼素材で
あり、本発明鋼を自動車用部品に使用することにより、
熱処理コストが削減されるのみならず、部品の小型軽量
化が可能となるため、燃費の向上さらには燃費の向上に
よる地球環境の保護に役立つものである。
As described above, according to claims 1 and 2 of the present invention, the steel material according to the present invention is a steel material having a ferrite pearlite structure and a tensile strength of 900 MPa or more in the hot forging ratio temper state. Is used for automobile parts,
Not only the heat treatment cost is reduced, but also the parts can be made smaller and lighter, which contributes to the improvement of fuel consumption and further to the protection of the global environment by the improvement of fuel consumption.

【0035】また、請求項2の鋼は特に超硬工具を用い
た切削加工性に優れており、一層のコスト低減に寄与す
るものである。
The steel according to claim 2 is particularly excellent in machinability using a cemented carbide tool, and contributes to further cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】組織に及ぼすベイナイト変態指数Btと炭素当
量Ceq.の関係を示す。
FIG. 1 shows bainite transformation index Bt and carbon equivalent Ceq. Shows the relationship.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C:0.25−0.50%、 Si:0.40−2.00%、 Mn:0.50−2.50%、 Cr:0.10−1.00%、 S:0.03−0.10%、 V:0.05−0.30%、 N:0.0050−0.0200% さらに Al:0.005−0.050%、Ti:0.002−
0.050%の1種もしくは2種を含み、残部がFeお
よび不可避不純物よりなり、下式で表わされる炭素当量
Ceq.(%)が0.83%−1.23%、ベイナイト
変態指数Btが0以下である高強度熱間鍛造用非調質鋼 Ceq.(%)=%C+(%Si)/20+(%Mn)
/5+(%Cr)/9+1.54(%V) Bt=31.2−100(%C)−6.7(%Si)+
9.0(%Mn)+4.9(%Cr)−81(%V)
1. C: 0.25-0.50%, Si: 0.40-2.00%, Mn: 0.50-2.50%, Cr: 0.10-1.00% by weight. %, S: 0.03-0.10%, V: 0.05-0.30%, N: 0.0050-0.0200% Further Al: 0.005-0.050%, Ti: 0. 002-
0.050% of one or two kinds, the balance consisting of Fe and inevitable impurities, and having a carbon equivalent Ceq. (%) Is 0.83% to 1.23%, and bainite transformation index Bt is 0 or less. High-strength hot forging non-heat treated steel Ceq. (%) =% C + (% Si) / 20 + (% Mn)
/5+(%Cr)/9+1.54(%V) Bt = 31.2-100 (% C) -6.7 (% Si) +
9.0 (% Mn) +4.9 (% Cr) -81 (% V)
【請求項2】 重量%で C:0.25−0.50%、 Si:0.40−2.00%、 Mn:0.50−2.50%、 Cr:0.10−1.00%、 S:0.03−0.10%、 V:0.05−0.30%、 N:0.0050−0.0200% Ca:0.0004−0.0050% を含み、さらに Al:0.001−0.010%、Ti:0.005−
0.020%の1種または2種以上を含み、残部がFe
および不可避不純物よりなり、下式で表わされる炭素当
量Ceq.(%)が0.83%−1.23%、ベイナイ
ト変態指数Btが0以下である高強度熱間鍛造用非調質
鋼 Ceq.(%)=%C+(%Si)/20+(%Mn)
/5+(%Cr)/9+1.54(%V) Bt=31.2−100(%C)−6.7(%Si)+
9.0(%Mn)+4.9(%Cr)−81(%V)
2. C: 0.25 to 0.50% by weight, Si: 0.40 to 2.00%, Mn: 0.50 to 2.50%, Cr: 0.10 to 1.00. %, S: 0.03-0.10%, V: 0.05-0.30%, N: 0.0050-0.0200% Ca: 0.0004-0.0050%, and further Al: 0.001-0.010%, Ti: 0.005-
0.020% of 1 type or 2 types or more, with the balance being Fe
And a carbon equivalent Ceq. (%) Is 0.83% to 1.23%, and bainite transformation index Bt is 0 or less. High-strength hot forging non-heat treated steel Ceq. (%) =% C + (% Si) / 20 + (% Mn)
/5+(%Cr)/9+1.54(%V) Bt = 31.2-100 (% C) -6.7 (% Si) +
9.0 (% Mn) +4.9 (% Cr) -81 (% V)
JP7586293A 1993-04-01 1993-04-01 Non-heat treated steel for high strength hot forging Expired - Lifetime JP2950702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7586293A JP2950702B2 (en) 1993-04-01 1993-04-01 Non-heat treated steel for high strength hot forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7586293A JP2950702B2 (en) 1993-04-01 1993-04-01 Non-heat treated steel for high strength hot forging

Publications (2)

Publication Number Publication Date
JPH06287677A true JPH06287677A (en) 1994-10-11
JP2950702B2 JP2950702B2 (en) 1999-09-20

Family

ID=13588488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7586293A Expired - Lifetime JP2950702B2 (en) 1993-04-01 1993-04-01 Non-heat treated steel for high strength hot forging

Country Status (1)

Country Link
JP (1) JP2950702B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287679A (en) * 1993-04-05 1994-10-11 Nippon Steel Corp Production of non-refining steel for hot forging and non-refining hot forged product and non-refining hot forged product
WO2013027676A1 (en) * 2011-08-25 2013-02-28 山陽特殊製鋼株式会社 Untempered steel for hot forging having excellent machinability
WO2013077182A1 (en) 2011-11-21 2013-05-30 新日鐵住金株式会社 Rolled steel bar for hot forging
EP3168319A4 (en) * 2014-07-08 2018-01-24 Sidenor Investigación y Desarrollo, S.A. Microalloyed steel for heat-forming high-resistance and high-yield-strength parts, and method for producing components made of said steel
US11319609B2 (en) * 2018-10-29 2022-05-03 Hyundai Motor Company Steel for crankshaft and method of manufacturing crankshaft using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287679A (en) * 1993-04-05 1994-10-11 Nippon Steel Corp Production of non-refining steel for hot forging and non-refining hot forged product and non-refining hot forged product
WO2013027676A1 (en) * 2011-08-25 2013-02-28 山陽特殊製鋼株式会社 Untempered steel for hot forging having excellent machinability
JP2013044030A (en) * 2011-08-25 2013-03-04 Sanyo Special Steel Co Ltd Non-heat treated steel for hot forging excellent in machinability
WO2013077182A1 (en) 2011-11-21 2013-05-30 新日鐵住金株式会社 Rolled steel bar for hot forging
US9574255B2 (en) 2011-11-21 2017-02-21 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar for hot forging
EP3168319A4 (en) * 2014-07-08 2018-01-24 Sidenor Investigación y Desarrollo, S.A. Microalloyed steel for heat-forming high-resistance and high-yield-strength parts, and method for producing components made of said steel
US11319609B2 (en) * 2018-10-29 2022-05-03 Hyundai Motor Company Steel for crankshaft and method of manufacturing crankshaft using the same

Also Published As

Publication number Publication date
JP2950702B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
JP3139876B2 (en) Method of manufacturing non-heat treated steel for hot forging and non-heat treated hot forged product, and non-heat treated hot forged product
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JPH08277437A (en) Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof
JP3100492B2 (en) Manufacturing method of high fatigue strength hot forgings
JPH0925539A (en) Free cutting non-heat treated steel excellent in strength and toughness
JPH1112678A (en) Martensite-bainite type hot forged parts, and their production
JP2950702B2 (en) Non-heat treated steel for high strength hot forging
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JPH1129842A (en) Ferrite-pearlite type non-heat treated steel
JP3069256B2 (en) Nitriding steel with excellent toughness
JP2009108357A (en) Non-heat treated steel for martensite type hot-forging, and hot-forged non-heat treated steel part
JP2004183065A (en) High strength steel for induction hardening, and production method therefor
JP3874557B2 (en) Free-cutting non-tempered steel with excellent toughness
JP2000160286A (en) High-strength and high-toughness non-heat treated steel excellent in drilling machinability
JP5233848B2 (en) Non-tempered steel bar for direct cutting
JPH0873989A (en) Graphite-compositive free cutting steel
JP3059318B2 (en) Manufacturing method of high fatigue strength hot forgings
JP3042574B2 (en) Hot forged product having high fatigue strength and method of manufacturing the same
JP3543581B2 (en) Ferrite / pearlite non-heat treated steel
KR102452061B1 (en) Non-quenched and tempered steel with high strength and high touthness and manufacturing process thereof
JP3584726B2 (en) High strength non-heat treated steel
JPH10265891A (en) Ferrite/pearlite type non-heat treated steel
JPS62260042A (en) High strength unrefined tough steel
JP2563164B2 (en) High strength non-tempered tough steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 14