JP3874557B2 - Free-cutting non-tempered steel with excellent toughness - Google Patents

Free-cutting non-tempered steel with excellent toughness Download PDF

Info

Publication number
JP3874557B2
JP3874557B2 JP35302498A JP35302498A JP3874557B2 JP 3874557 B2 JP3874557 B2 JP 3874557B2 JP 35302498 A JP35302498 A JP 35302498A JP 35302498 A JP35302498 A JP 35302498A JP 3874557 B2 JP3874557 B2 JP 3874557B2
Authority
JP
Japan
Prior art keywords
mass
content
steel
free
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35302498A
Other languages
Japanese (ja)
Other versions
JP2000178683A (en
Inventor
和明 福岡
俊之 村上
弘忠 大鈴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Bars and Shapes Corp
Original Assignee
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Bars and Shapes Corp filed Critical JFE Bars and Shapes Corp
Priority to JP35302498A priority Critical patent/JP3874557B2/en
Publication of JP2000178683A publication Critical patent/JP2000178683A/en
Application granted granted Critical
Publication of JP3874557B2 publication Critical patent/JP3874557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車部品のクランクシャフトや各種足回り部品等の素材として用いられる非調質鋼に関するものであって、Pbを添加しなくてもPb添加非調質鋼と同等以上の被削性及び一定レベルの靱性を有する快削非調質鋼に関するものである。
【0002】
【従来の技術】
非調質鋼は焼入れ焼戻しの熱処理を省略することが可能であることから、近年、その需要が高まり、自動車部品のクランクシャフトや各種足回り部品等の素材として用いられている。現状では、その快削化を図る場合、快削元素としてPbを添加した非調質鋼が最も多く生産され使用されている。しかしながら、Pbは地球環境問題からその使用を抑制しようとする動きが出ている。そこで、これに対応するため、特開平9−25539号公報には、Pb非添加型の快削非調質鋼が開示されている(先行技術1という)。しかしながら、先行技術1では、特殊な元素であるNdを用いているため、低コスト化を考えた場合に不利であると共に、Pb添加鋼の最大の特徴である切り屑処理性に対する記述が見当たらない。また、特開平1−219148号公報には、Pb以外の快削性介在物としてBNを使用した非調質鋼が開示されている(先行技術2という)。しかしながら、先行技術1と同様、Pb添加鋼の最大の特徴である切り屑処理性に対する記述が見当たらないと共に、当該鋼材として一定レベルまで必要不可欠な靱性に対する記述も見当たらない。
【0003】
【発明が解決しようとする課題】
上述した先行技術はいずれもPbを添加しない成分系の快削鋼である点において環境対策上有益なものであるが、上述した通り、快削鋼の被削性評価で極めて重要な項目である切り屑処理性についての評価に問題がある。また、先行技術1では製造コストが高くなること、そして先行技術2では靱性確保に問題がある。
【0004】
そこで、この発明は上記問題点を解決するために、Pbを添加しない快削鋼の製造を前提とし、当該快削鋼の化学成分には特殊で高価な添加元素を使用せず、従来快削鋼としては汎用的に用いられている成分元素の範囲内において、切り屑処理性を含む切削性に優れ、且つ、自動車部品のクランクシャフトや各種足回り部品等の素材に供される快削鋼として備えるべき鋼材特性の内、特に靱性を所定レベルに維持した、高品質の快削非調質鋼を開発することを目的とする。
【0005】
【課題を解決するための手段】
本発明者等は、上述した観点から鋭意研究を重ねた結果、鋼の化学成分組成を適切に定めることにより、切削性の確保をBN析出物の生成とその分布の制御で行ない、そして靱性の確保をCu+Ni+Cr+Moの合計含有率の制限で、あるいは更にこの制限にTiN析出物の生成とその分布の制御の付加で行なえば、上記目的を達成し得る高品質の快削非調質鋼を製造することができる。更に、Ca+S系介在物の生成とその適切な分布により、切削性が一層向上した高品質の快削非調質鋼を製造することができることを見い出した。
【0006】
即ち、快削非調質鋼として所定の機械的性質を満たす基本的成分組成の鋼において、
(イ)Ti無添加鋼において、B及びN含有率のそれぞれ、並びに、B/Nの含有率比を適切な範囲内に制限し、且つ、Cu+Ni+Cr+Moの合計含有率に上限を設けた成分組成を設計する、及び、
(ロ)Ti添加鋼において、B、Ti及びN含有率のそれぞれ、並びに、B/(BNの析出物生成に対してTiN生成に消費されるNを差し引いた有効なN)の含有率比とを適切な範囲内に制限し、且つ、Cu+Ni+Cr+Moの合計含有率に上記(イ)よりも制限を緩和した上限を設けた成分組成を設計することにより、所期目標通り、靱性を確保し、切り屑処理性を含む切削性に優れた快削非調質鋼を得ることができるとの知見を得た。そして、適切なCa+S系介在物分布により切削性は一層向上する。
【0007】
この発明は、上記知見に基づきなされたものであり、その要旨は次の通りである。請求項1記載の靭性に優れた快削非調質鋼は、
C :0.30〜0.55mass%、
Si:0.15〜0.40mass%、
Mn:0.80〜1.60mass%、
P :0.005〜0.050mass%、
S :0.040mass%以下、
Al:0.005〜0.035mass%、
V :0.04 〜0.15mass%、
Cu+Ni+Cr+Mo:0.45mass%以下、
B :0.0050〜0.0150mass%、及び、
N :0.008〜0.018mass%、
を含有し、Cu、Ni、CrおよびMoは、それぞれ不可避不純物であり、残部がFe及びCu、Ni、CrおよびMo以外の不可避不純物からなり、且つ、B/N:0.5〜1.5の範囲内にあることに特徴を有するものである。
【0008】
請求項2記載の靭性に優れた快削非調質鋼は、
C :0.30〜0.55mass%、
Si:0.15〜0.40mass%、
Mn:0.80〜1.60mass%、
P :0.005〜0.050mass%、
S :0.040mass%以下、
Al:0.005〜0.035mass%、
V :0.04 〜0.15mass%、
Cu+Ni+Cr+Mo:0.60mass%以下、
B :0.0050〜0.0150mass%、
Ti:0.005〜0.020mass%、及び、
N :0.010〜0.020mass%、
を含有し、Cu、Ni、CrおよびMoは、それぞれ不可避不純物であり、残部がFe及びCu、Ni、CrおよびMo以外の不可避的不純物からなり、且つ、B/(N−Ti/3.42):0.5〜1.5の範囲内にあることに特徴を有するものである。
【0009】
請求項2記載の靱性に優れた快削非調質鋼は、請求項1又は請求項2記載の発明において、
S :0.040〜0.08mass%、及び、
Ca :0.001〜0.003mass%
を含有することに特徴を有するものである。
【0010】
【発明の実施の形態】
この発明は、自動車部品のクランクシャフトや各種足回り部品等の素材として用いるのに適した快削非調質鋼であり、その機械的性質として、引張強さ:800MPa 以上、絞り:30%以上、そしてシャルピー衝撃試験値:30J/cm2 以上を有し、疲労特性及び切削性に優れたものである。この発明の快削非調質鋼の化学成分組成を上述した通り限定する理由を説明する。
【0011】
(1)C:0.30〜0.55mass%
Cは、鋼の強度及び被削性に大きな影響を及ぼす重要な元素であり、C含有率が0.30mass%未満では十分な強度が得られない。一方、C含有率が0.55mass%を超えると、パーライト量が多くなり過ぎて、被削性が劣化する。従って、C含有率は、0.30〜0.55mass%の範囲内に限定する。
【0012】
(2)Si:0.15〜0.40mass%
Siは、鋼の脱酸に必要な元素であり、Si含有率が0.15mass%未満では十分な脱酸効果が得られない。一方、Si含有率が0.40mass%を超えると、フェライトが硬化して、被削性が劣化する。従って、Si含有率は、0.15〜0.40mass%の範囲内に限定する。
【0013】
(3)Mn:0.80〜1.60mass%
Mnは、鋼の強度及び靱性に大きな影響を及ぼす元素であり、Mn含有率が0.80mass%未満では、十分な強度が得られない。一方、Mn含有率が1.60mass%を超えると、十分な靱性が得られず、また切削性も低下する。従って、Mn含有率は、0.80〜1.60mass%の範囲内に限定する。
【0014】
(4)P:0.005〜0.050mass%
Pは、鋼中に不可避的に混入して含有される元素であり、P含有率が0.050mass%を超えると、十分な靱性が得られない。但し、P含有率は低すぎると切削性が劣化する傾向がある。また、P含有率を低下させるほど脱Pコストがかかる。従って、P含有率は0.005〜0.050mass%の範囲内に限定する。
【0015】
(5)S:0.040mass%以下、又は、
S:0.04〜0.08mass%、且つCa:0.001〜0.003mass%
Sは、鋼中に不可避的に混入して含有される元素であり、その含有率が0.040mass%を超えると、十分な靱性が得られない。従って、S含有率は0.040mass%以下に制限する。
【0016】
他方、Sは、Caと複合添加するとCa+S系介在物が生成し、適切量の分布により鋼の切削性向上効果を発揮する。なお、このCa+S系介在物の靱性低下作用はあまり大きくない。このCa+S系介在物生成による切削性の向上のためには、Sが0.04mass%未満でCaが0.001mass%未満では十分な効果が発揮されない。一方、Sが0.08mass%超えでCaが0.003mass%超えでは、この切削性向上効果が飽和し、また製造コストの上昇により不利となる。従って、切削性を一層向上させるときには、Sを0.04〜0.08mass%の範囲内で、且つCaを0.001〜0.003mass%の範囲内となるよう複合添加するのが望ましい。
【0017】
(6)Al:0.005〜0.035mass%
Alは鋼の脱酸に必要な元素であり、Alの脱酸作用としてはその含有率が0.005mass%未満では効果が不十分であり、一方0.035mass%を超えてもその効果は飽和する。従って、Al含有率は0.005〜0.035mass%の範囲内に限定する。
【0018】
(7)V:0.04 〜0.15mass%
Vは、析出強化元素であるが、V含有率が0.04mass%未満では十分な析出硬化が得られない。一方、その含有率が0.15mass%を超えると、Vの析出物が粗大化するために靱性が低下する。従って、V含有率は0.04〜0.15mass%の範囲内に限定する。
【0019】
(8)Cu+Ni+Cr+Mo:0.45mass%以下(Ti無添加鋼の場合)
Cu+Ni+Cr+Mo:0.60mass%以下(Ti添加鋼の場合)
Cu、Ni、Cr及びMoは、鋼の溶製過程で原料のスクラップから不可避的に混入する元素であり、特に、製鋼用電気炉において装入主原料に占めるスクラップ比率が高いので、これらトランプエレメントの混入量を制限するために、スクラップ品位の制限を要する。このように、製造コスト低減の観点からも、上記トランプエレメントの合計含有率の許容上限値の決定は重要となる。一方、本発明者等の試験によれば、これらトランプエレメントの合計含有率が0.45mass%を超えると、靱性を著しく劣化させる。また、切削性も劣化させる傾向にある。従って、Cu+Ni+Cr+Moの含有率は、0.45mass%以下に限定する。
【0020】
但し、後述するTiを所定量添加した鋼においては、TiN析出物により靱性の向上効果が発揮されるので、Cu+Ni+Cr+Moの含有率を、0.60mass%以下に制限を緩和することができる。また、上記制限を緩和しないときは、靱性に一層優れた快削非調質鋼が得られる。
【0021】
(9)B:0.0050 〜0.0150mass%
Bは、この発明において切削性向上のために重要な役割を果たす元素である。即ち、Bは切削性を向上させるBN析出物を生成させるために、Nの存在と共に必要な元素である。しかし、B含有率が0.0050mass%未満では、十分な量のBNを生成させることができない。一方、B含有率が0.0150mass%を超えると、靱性が低下する。従って、B含有率は0.0050〜0.0150mass%の範囲内にあることが必要である。
【0022】
ここで、上記含有率のBが切削性向上効果を発揮するのに十分な量のBNとして析出するためには、B含有率に応じて当該Bと結合し得る所定量のN含有率が存在することが必要である。これに必要なN含有率については、N含有率限定理由の項、及びB/N比の限定理由の項で説明する。
【0023】
(10)Ti:0.005〜0.020mass%
Tiは、この発明において、上述したCu+Ni+Cr+Moの合計含有率を、0.45mass%以下に限定することにより靱性の向上を図り、更に一層、靱性を向上させようとする場合に、重要な役割を果たす元素である。即ち、Tiは靱性を向上させるTiN析出物を生成させるために、Nの存在と共に必要な元素である。しかし、Ti含有率が0.005mass%未満では、十分な量のTiNを生成させることができないので靱性向上が不十分である。一方、Ti含有率が0.020mass%を超えると、粗大なTiNが多くなり、これが疲労破壊の起点となるために、疲労寿命が低下し、更に、切削性も劣化する傾向にある。従って、Ti含有率は、0.005〜0.020mass%の範囲内にあることが必要である。
【0024】
ここで、この含有率のTiが靱性向上効果を発揮するのに十分な量のTiNとして析出するためには、Ti含有率に応じて当該Tiと結合し得る所定量のN含有率が存在することが必要である。これに必要なN含有率については、N含有率限定理由の項、及びB/(N−Ti/3.42)比の限定理由の項で説明する。
【0025】
(11)N:0.008〜0.018mass%以下(Ti無添加鋼の場合)
N:0.010〜0.020mass%以下(Ti添加鋼の場合)
Nは、Bと結合してBN析出物を生成し、切削性を向上させると共に、Ti添加鋼にあっては、TiN析出物を生成し、靱性を向上させる重要な元素である。
【0026】
しかしながら、(イ)Ti無添加鋼においては、N含有率が0.008mass%未満では上記各析出物の生成量が十分でないので、各効果が十分に発揮されない。一方、N含有率が0.018mass%を超えると、靱性及び疲労特性を劣化させる。従って、N含有率は0.008〜0.018mass%の範囲内に限定する。
【0027】
これに対して、(ロ)Ti添加鋼においては、N含有率が0.010mass%未満では上記各析出物の生成量が十分でないので、各効果が十分に発揮されない。一方、N含有率が0.020mass%を超えると、靱性及び疲労特性を劣化させる。従って、N含有率は0.010〜0.020mass%の範囲内に限定する。
【0028】
(12)B/N:0.5〜1.5(Ti無添加鋼の場合)
B/(N−Ti/3.42):0.5〜1.5(Ti添加鋼の場合)
Ti無添加鋼の場合には、B含有率とN含有率との比であるB/Nは、切削性向上に効果的なBN析出物の生成量を決定する主要な因子である。これに対して、Ti添加鋼の場合には、鋼中Nは、Nとの親和力の大きいTiとの結合に消費される。よって、BNの生成に有効な含有率は、全N含有率からTiN生成に消費されるN含有率の化学量論値を差し引いた実効N含有率、N−Ti/{(Tiの原子量)/(Nの原子量)}、即ち、N−Ti/3.42で表わされる。従って、Ti添加鋼の場合には、B含有率と実効N含有率との比であるB/(N−Ti/3.42)が、切削性向上に効果的なBN析出物の生成量を決定する主要な因子となる。上記B/N又はB/(N−Ti/3.42)が、0.5未満ではBN生成量が十分に確保されないので切削性向上が十分でなく、一方、それらがが、1.5超えでは熱間加工性が劣化する。従って、B、N及びTiの含有率は、上述した各含有率の範囲内にあって、しかも、B/N又はB/(N−Ti/3.42)が、0.5〜1.5の範囲内に入るように限定する。
【0029】
【実施例】
次に、この発明を、実施例によって更に詳細に説明する。
表1に示す本発明の範囲内の化学成分組成を有する本発明例No.1〜13、並びに、本発明の範囲外の化学成分組成を有する比較例No.14〜27及び参考例No.28〜29を、真空溶解炉で溶製し、鋼塊に鋳造した後、それぞれを径80mmφの棒鋼に熱間圧延した。更に、本発明例No.1〜13、比較例No.14〜27及び参考例No.28については、1200℃に加熱した後、径70mmφまで熱間鍛造し、室温まで空冷した。参考例No.29のJIS S50C相当鋼については、上記と同一条件で熱間鍛造した後、焼入れ・焼戻しを行なった。
【0030】
【表1】

Figure 0003874557
【0031】
上記のようにして本発明例、比較例及び参考例から製造された各棒鋼について、下記試験を行なった。
引張試験:JIS4号試験片を採取し、引張試験を行なった。
【0032】
疲労試験:小野式回転曲げ試験を行なった。
切削試験:
・表2に示す条件で、外周旋削試験は、超硬工具(材質P20)とハイス工具(材質SKH4)の2種類を用いて行ない、ドリル穴開け試験をハイスドリル(材質SKH4)で行なった。
【0033】
・切削性の評価については、超硬工具による外周試験では、横逃げ面磨耗量VBが0.2mmになる切削時間で工具寿命を評価し、ハイス工具による外削試験においては、切削不能になるまでの時間で工具寿命を評価した。
【0034】
・ドリル試験では、穴あけ総深さが1000mmで切削不能となる切削速度を求め、工具寿命(ドリル寿命速度)の指標とした。
【0035】
【表2】
Figure 0003874557
【0036】
【表3】
Figure 0003874557
【0037】
表3に、上記試験結果を示す。各特性値の目標値として、参考例No.28であるPb系非調質快削鋼をベースにし、引張強さ800MPa以上、疲労限400MPa以上、シャルピー衝撃値30J/cm2 以上、ドリル寿命速度55m/min以上とした。
【0038】
本発明例No.1〜13ではいずれも試験値は、上記目標値を満たしており、良好な特性を有する。これに対して、比較例No.14〜27及び参考例28〜29ではいずれも、少なくともいずれか一つの試験値が上記目標値を満たしていない。
【0039】
比較例No.14では、C含有率が本発明の下限値以下のため、引張強さが本発明例より低くなっている。また比較例No.15では、C含有率が本発明の上限値以上のため、絞り及び衝撃値が低く、切削性も劣る。
【0040】
比較例No.16では、Si含有率が本発明の上限値以上のため、絞り及び衝撃値が低く、切削性も劣る。
比較例No.17では、Mn含有率が本発明の下限値以下のため、引張強さが本発明例よりも低くなっている。比較例No.18では、Mn含有率が本発明の上限値以上のため、絞り及び衝撃値が低く、切削性も劣る。
【0041】
比較例No.19では、Cu+Ni+Cr+Mo含有率が本発明の上限値以上のため、衝撃値が低く、切削性も劣る。特に、本発明例No.1や本発明例No.3に比較して、衝撃値の低下が著しい。
【0042】
比較例No.20では、V含有率が本発明の下限値以下のため、引張強さ及び衝撃値が本発明例よりも低くなっている。比較例No.21では、V含有率が本発明の上限値以上のため、絞り及び衝撃値が低く、切削性が不良である。
【0043】
比較例No.22では、B含有率が本発明の下限値以下のため、切削性が不良である。比較例No.23では、B含有率が本発明の上限値以上のため、衝撃値が低下している。
【0044】
比較例No.24では、Ti含有率が本発明の上限値以上のため、疲労特性が劣化し、切削性も劣る。
比較例No.25では、S含有率が本発明の上限値以上のため、衝撃値が低下している。
【0045】
比較例No.26では、N含有率が本発明の下限値以下のため、切削性が不良である。
比較例No.27では、N含有率が本発明の上限値以上のため、衝撃値が低下しており、疲労特性も不良である。
【0046】
なお、上記試験で得られたデータに基づき、ドリル寿命速度とシャルピー衝撃値との関係を、図1にプロットした。本発明例は全て、ドリル寿命速度及びシャルピー衝撃値共に目標値を満たしている。
【0047】
【発明の効果】
以上述べたように、この発明によれば、自動車部品のクランクシャフトや各種足回り部品等の素材として用いられる非調質鋼を、Pbを添加しなくてもPb添加非調質鋼と同等以上の被削性及び一定レベルの靱性を有する快削非調質鋼を得ることができるので、地球環境維持に寄与する。また、高価で特別な元素を添加特殊で高価な添加元素を使用せずに、従来快削鋼として汎用的に用いられている成分元素で、切り屑処理性を含む切削性に優れており、靱性も望ましい所定レベルに維持された、高品質の快削非調質鋼が得られる。このような靱性に優れた快削非調質鋼を提供することがで、工業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明例及び比較例の試験データより得られたドリル寿命速度とシャルピー衝撃値との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-heat treated steel used as a material for a crankshaft of automobile parts, various underbody parts, etc., and has machinability equivalent to or better than that of Pb-added non-heat treated steel without adding Pb. And a free-cutting non-tempered steel having a certain level of toughness.
[0002]
[Prior art]
Since non-heat treated steel can omit the heat treatment for quenching and tempering, the demand for non-tempered steel has increased in recent years and is used as a material for crankshafts of automobile parts, various undercarriage parts, and the like. At present, when making free-cutting, non-tempered steel to which Pb is added as a free-cutting element is most often produced and used. However, there is a movement to suppress the use of Pb due to global environmental problems. In order to cope with this, Japanese Patent Laid-Open No. 9-25539 discloses a Pb non-added type free-cutting non-heat treated steel (referred to as Prior Art 1). However, since the prior art 1 uses Nd, which is a special element, it is disadvantageous when considering cost reduction, and there is no description of the chip disposal property that is the greatest feature of Pb-added steel. . JP-A-1-219148 discloses non-heat treated steel using BN as a free-cutting inclusion other than Pb (referred to as Prior Art 2). However, like the prior art 1, there is no description about the chip disposability, which is the greatest feature of Pb-added steel, and there is no description about toughness that is indispensable to a certain level as the steel material.
[0003]
[Problems to be solved by the invention]
All of the above-mentioned prior arts are beneficial in terms of environmental measures in that they are component-based free-cutting steels to which Pb is not added, but as described above, they are extremely important items in the machinability evaluation of free-cutting steels. There is a problem in the evaluation of chip disposal. Further, the prior art 1 has a high manufacturing cost, and the prior art 2 has a problem in securing toughness.
[0004]
Therefore, in order to solve the above-mentioned problems, the present invention is based on the premise of producing free-cutting steel without adding Pb, and does not use special and expensive additive elements as chemical components of the free-cutting steel. Free-cutting steel that is excellent in machinability including chip disposal and used for materials such as crankshafts of automobile parts and various undercarriage parts, within the range of component elements used for general purposes. The objective is to develop high-quality free-cutting non-heat-treated steel that maintains the toughness at a predetermined level among the steel material characteristics to be provided.
[0005]
[Means for Solving the Problems]
As a result of intensive research from the above-mentioned viewpoints, the present inventors have secured the machinability by appropriately determining the chemical composition of the steel, by controlling the generation of BN precipitates and their distribution, and toughness If securing is performed by limiting the total content of Cu + Ni + Cr + Mo, or further by adding TiN precipitate generation and control of its distribution to this limit, a high-quality free-cutting non-heat treated steel that can achieve the above-mentioned purpose is manufactured. be able to. Furthermore, it has been found that high-quality free-cutting non-heat-treated steel with further improved machinability can be produced by the generation of Ca + S inclusions and their appropriate distribution.
[0006]
That is, in the steel of the basic composition that satisfies the predetermined mechanical properties as a free-cutting non-heat treated steel,
(B) In the Ti-free steel, each of the B and N content ratios and the B / N content ratio ratio is limited to an appropriate range, and the component composition is provided with an upper limit for the total content ratio of Cu + Ni + Cr + Mo. Designing and
(B) In Ti-added steel, each of B, Ti and N contents, and B / (content ratio of B / (effective N obtained by subtracting N consumed for TiN production from BN precipitate production) By designing a component composition in which the upper limit of the total content of Cu + Ni + Cr + Mo is relaxed more than the above (A), the toughness is secured and cut according to the intended target. The knowledge that the free-cutting non-heat-treated steel excellent in machinability including scrap disposal was obtained. And machinability improves further by appropriate Ca + S type inclusion distribution.
[0007]
The present invention has been made based on the above findings, and the gist thereof is as follows. The free-cutting non-tempered steel excellent in toughness according to claim 1 is:
C: 0.30 to 0.55 mass%,
Si: 0.15-0.40 mass%,
Mn: 0.80 to 1.60 mass%
P: 0.005-0.050 mass%,
S: 0.040 mass% or less,
Al: 0.005-0.035 mass%,
V: 0.04 to 0.15 mass%,
Cu + Ni + Cr + Mo: 0.45 mass% or less,
B: 0.0050 to 0.0150 mass%, and
N: 0.008 to 0.018 mass%,
Cu, Ni, Cr and Mo are unavoidable impurities, the balance is made of unavoidable impurities other than Fe and Cu, Ni, Cr and Mo , and B / N: 0.5 to 1.5 It is characterized by being in the range.
[0008]
The free-cutting non-tempered steel excellent in toughness according to claim 2 is:
C: 0.30 to 0.55 mass%,
Si: 0.15-0.40 mass%,
Mn: 0.80 to 1.60 mass%
P: 0.005-0.050 mass%,
S: 0.040 mass% or less,
Al: 0.005-0.035 mass%,
V: 0.04 to 0.15 mass%,
Cu + Ni + Cr + Mo: 0.60 mass% or less,
B: 0.0050 to 0.0150 mass%,
Ti: 0.005-0.020 mass%, and
N: 0.010-0.020 mass%,
Cu, Ni, Cr and Mo are inevitable impurities, the balance is made of inevitable impurities other than Fe and Cu, Ni, Cr and Mo , and B / (N-Ti / 3.42 ): It is characterized by being in the range of 0.5 to 1.5.
[0009]
The free-cutting non-heat-treated steel excellent in toughness according to claim 2 is the invention according to claim 1 or 2,
S: 0.040-0.08 mass% and
Ca: 0.001 to 0.003 mass%
It has the characteristics in containing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
This invention is a free-cutting non-heat-treated steel suitable for use as a material for automobile parts such as crankshafts and various undercarriage parts. Its mechanical properties include tensile strength: 800 MPa or more, drawing: 30% or more. And, it has Charpy impact test value: 30 J / cm 2 or more, and is excellent in fatigue characteristics and machinability. The reason for limiting the chemical composition of the free-cutting non-heat treated steel of the present invention as described above will be described.
[0011]
(1) C: 0.30 to 0.55 mass%
C is an important element that greatly affects the strength and machinability of the steel, and if the C content is less than 0.30 mass%, sufficient strength cannot be obtained. On the other hand, if the C content exceeds 0.55 mass%, the amount of pearlite increases too much, and the machinability deteriorates. Therefore, the C content is limited to a range of 0.30 to 0.55 mass%.
[0012]
(2) Si: 0.15 to 0.40 mass%
Si is an element necessary for deoxidation of steel, and if the Si content is less than 0.15 mass%, a sufficient deoxidation effect cannot be obtained. On the other hand, if the Si content exceeds 0.40 mass%, the ferrite is cured and the machinability deteriorates. Therefore, the Si content is limited to a range of 0.15 to 0.40 mass%.
[0013]
(3) Mn: 0.80 to 1.60 mass%
Mn is an element having a great influence on the strength and toughness of steel. When the Mn content is less than 0.80 mass%, sufficient strength cannot be obtained. On the other hand, if the Mn content exceeds 1.60 mass%, sufficient toughness cannot be obtained, and the machinability also decreases. Therefore, the Mn content is limited to the range of 0.80 to 1.60 mass%.
[0014]
(4) P: 0.005 to 0.050 mass%
P is an element that is inevitably mixed and contained in the steel. When the P content exceeds 0.050 mass%, sufficient toughness cannot be obtained. However, if the P content is too low, the machinability tends to deteriorate. Moreover, the P removal cost increases as the P content decreases. Therefore, the P content is limited to a range of 0.005 to 0.050 mass%.
[0015]
(5) S: 0.040 mass% or less, or
S: 0.04-0.08 mass% and Ca: 0.001-0.003 mass%
S is an element that is inevitably mixed in the steel, and if its content exceeds 0.040 mass%, sufficient toughness cannot be obtained. Therefore, the S content is limited to 0.040 mass% or less.
[0016]
On the other hand, when S is added in combination with Ca, Ca + S inclusions are produced, and the effect of improving the machinability of steel is exhibited by an appropriate amount of distribution. In addition, the toughness lowering effect of this Ca + S inclusion is not so great. In order to improve the machinability by generating the Ca + S inclusions, if S is less than 0.04 mass% and Ca is less than 0.001 mass%, sufficient effects are not exhibited. On the other hand, when S exceeds 0.08 mass% and Ca exceeds 0.003 mass%, this machinability improving effect is saturated and disadvantageous due to an increase in manufacturing cost. Therefore, when further improving the machinability, it is desirable to add in a composite manner so that S is in the range of 0.04 to 0.08 mass% and Ca is in the range of 0.001 to 0.003 mass%.
[0017]
(6) Al: 0.005-0.035 mass%
Al is an element necessary for deoxidation of steel, and the deoxidation effect of Al is insufficient if its content is less than 0.005 mass%, while the effect is saturated even if it exceeds 0.035 mass%. To do. Therefore, the Al content is limited to a range of 0.005 to 0.035 mass%.
[0018]
(7) V: 0.04 to 0.15 mass%
V is a precipitation strengthening element, but if the V content is less than 0.04 mass%, sufficient precipitation hardening cannot be obtained. On the other hand, if the content exceeds 0.15 mass%, the precipitates of V are coarsened and the toughness is lowered. Therefore, the V content is limited to a range of 0.04 to 0.15 mass%.
[0019]
(8) Cu + Ni + Cr + Mo: 0.45 mass% or less (in the case of Ti-free steel)
Cu + Ni + Cr + Mo: 0.60 mass% or less (in the case of Ti-added steel)
Cu, Ni, Cr and Mo are elements that are inevitably mixed in from the raw material scrap during the steel melting process, and in particular, since these scrap cards account for a high proportion of the main raw material used in steelmaking electric furnaces, these trump elements In order to limit the amount of mixing, scrap quality must be limited. Thus, also from the viewpoint of manufacturing cost reduction, it is important to determine the allowable upper limit of the total content of the playing elements. On the other hand, according to the tests by the present inventors, when the total content of these trump elements exceeds 0.45 mass%, the toughness is remarkably deteriorated. In addition, the machinability tends to deteriorate. Therefore, the content rate of Cu + Ni + Cr + Mo is limited to 0.45 mass% or less.
[0020]
However, in steel to which a predetermined amount of Ti described later is added, the effect of improving toughness is exhibited by TiN precipitates, so the restriction of Cu + Ni + Cr + Mo content can be relaxed to 0.60 mass% or less. Moreover, when the said restriction | limiting is not eased, the free-cutting non-tempered steel further excellent in toughness is obtained.
[0021]
(9) B: 0.0050 to 0.0150 mass%
B is an element that plays an important role in improving the machinability in the present invention. That is, B is an element necessary together with the presence of N in order to generate BN precipitates that improve machinability. However, if the B content is less than 0.0050 mass%, a sufficient amount of BN cannot be generated. On the other hand, if the B content exceeds 0.0150 mass%, the toughness decreases. Therefore, the B content needs to be in the range of 0.0050 to 0.0150 mass%.
[0022]
Here, in order for B of the said content rate to precipitate as BN of sufficient quantity to exhibit the machinability improvement effect, there exists a predetermined amount of N content which can couple | bond with the said B according to B content rate. It is necessary to. The N content necessary for this will be described in the section on the reason for limiting the N content and the section on the reason for limiting the B / N ratio.
[0023]
(10) Ti: 0.005-0.020 mass%
In the present invention, Ti plays an important role in improving toughness by limiting the total content of Cu + Ni + Cr + Mo described above to 0.45 mass% or less, and further improving toughness. It is an element. That is, Ti is an element necessary together with the presence of N in order to generate TiN precipitates that improve toughness. However, if the Ti content is less than 0.005 mass%, a sufficient amount of TiN cannot be generated, and the toughness improvement is insufficient. On the other hand, when the Ti content exceeds 0.020 mass%, coarse TiN increases, and this becomes a starting point for fatigue failure, so that the fatigue life is reduced and the machinability also tends to deteriorate. Therefore, the Ti content needs to be in the range of 0.005 to 0.020 mass%.
[0024]
Here, in order for Ti of this content rate to precipitate as a sufficient amount of TiN to exhibit the effect of improving toughness, there is a predetermined amount of N content that can be combined with Ti according to the Ti content rate. It is necessary. The N content necessary for this will be described in the N content limitation reason section and the B / (N-Ti / 3.42) ratio limitation reason section.
[0025]
(11) N: 0.008 to 0.018 mass% or less (in the case of Ti-free steel)
N: 0.010 to 0.020 mass% or less (in the case of Ti-added steel)
N is an important element that combines with B to generate BN precipitates to improve machinability and, in Ti-added steel, to generate TiN precipitates and improve toughness.
[0026]
However, in (i) Ti-free steel, if the N content is less than 0.008 mass%, the amount of the precipitates generated is not sufficient, so that each effect is not sufficiently exhibited. On the other hand, if the N content exceeds 0.018 mass%, the toughness and fatigue characteristics are deteriorated. Therefore, the N content is limited to a range of 0.008 to 0.018 mass%.
[0027]
On the other hand, in (b) Ti-added steel, if the N content is less than 0.010 mass%, the amount of each precipitate generated is not sufficient, so that each effect is not sufficiently exhibited. On the other hand, if the N content exceeds 0.020 mass%, the toughness and fatigue characteristics are deteriorated. Therefore, the N content is limited to a range of 0.010 to 0.020 mass%.
[0028]
(12) B / N: 0.5 to 1.5 (in the case of Ti-free steel)
B / (N-Ti / 3.42): 0.5 to 1.5 (in the case of Ti-added steel)
In the case of Ti-free steel, B / N, which is the ratio between the B content and the N content, is a major factor that determines the amount of BN precipitates that is effective for improving machinability. On the other hand, in the case of Ti-added steel, N in the steel is consumed for bonding with Ti having a high affinity for N. Therefore, the effective content for producing BN is the effective N content obtained by subtracting the stoichiometric value of the N content consumed for TiN production from the total N content, N-Ti / {(atomic weight of Ti) / (N atomic weight)}, that is, N-Ti / 3.42. Therefore, in the case of Ti-added steel, B / (N-Ti / 3.42), which is the ratio between the B content and the effective N content, is the amount of BN precipitates that is effective in improving machinability. It will be the main factor to decide. If the above B / N or B / (N-Ti / 3.42) is less than 0.5, the amount of BN produced is not sufficiently secured, so that the machinability is not sufficiently improved. Then, hot workability deteriorates. Therefore, the content ratios of B, N, and Ti are within the above-described content ratio ranges, and B / N or B / (N-Ti / 3.42) is 0.5 to 1.5. It is limited to be within the range of.
[0029]
【Example】
Next, the present invention will be described in further detail with reference to examples.
Invention Example Nos. 1 to 13 having chemical component compositions within the scope of the present invention shown in Table 1, and Comparative Examples No. 14 to 27 and Reference Example No. 28 having chemical component compositions outside the scope of the present invention. -29 were melted in a vacuum melting furnace and cast into a steel ingot, and each was hot-rolled into a steel bar having a diameter of 80 mm. Further, Invention Examples No. 1-13, Comparative Examples No. 14-27 and Reference Example No. 28 were heated to 1200 ° C., hot forged to a diameter of 70 mmφ, and air-cooled to room temperature. The JIS S50C equivalent steel of Reference Example No. 29 was quenched and tempered after hot forging under the same conditions as above.
[0030]
[Table 1]
Figure 0003874557
[0031]
The following tests were performed on the steel bars manufactured from the inventive examples, comparative examples, and reference examples as described above.
Tensile test: A JIS No. 4 test piece was collected and subjected to a tensile test.
[0032]
Fatigue test: An Ono rotary bending test was performed.
Cutting test:
-Under the conditions shown in Table 2, the peripheral turning test was performed using two types of carbide tools (material P20) and high-speed tools (material SKH4), and drilling tests were performed with high-speed drills (material SKH4).
[0033]
・ As for the evaluation of cutting performance, the tool life is evaluated based on the cutting time when the lateral flank wear amount VB is 0.2 mm in the outer periphery test using a carbide tool, and in the external cutting test using a high-speed tool, cutting becomes impossible. The tool life was evaluated by the time until.
[0034]
In the drill test, the cutting speed at which cutting is impossible when the total drilling depth is 1000 mm was obtained and used as an index of tool life (drill life speed).
[0035]
[Table 2]
Figure 0003874557
[0036]
[Table 3]
Figure 0003874557
[0037]
Table 3 shows the test results. As target values of each characteristic value, based on Pb-based non-tempered free cutting steel of Reference Example No. 28, tensile strength 800 MPa or more, fatigue limit 400 MPa or more, Charpy impact value 30 J / cm 2 or more, drill life speed It was set to 55 m / min or more.
[0038]
In all of the inventive examples No. 1 to 13, the test values satisfy the above target values and have good characteristics. On the other hand, in Comparative Examples No. 14 to 27 and Reference Examples 28 to 29, at least any one test value does not satisfy the target value.
[0039]
In Comparative Example No. 14, the C content is equal to or lower than the lower limit of the present invention, so that the tensile strength is lower than that of the present invention. In Comparative Example No. 15, since the C content is not less than the upper limit of the present invention, the drawing and impact value are low, and the machinability is also poor.
[0040]
In Comparative Example No. 16, since the Si content is not less than the upper limit of the present invention, the drawing and impact values are low, and the machinability is also poor.
In Comparative Example No. 17, since the Mn content is not more than the lower limit of the present invention, the tensile strength is lower than that of the present invention. In Comparative Example No. 18, since the Mn content is not less than the upper limit of the present invention, the drawing and impact values are low, and the machinability is also inferior.
[0041]
In Comparative Example No. 19, since the Cu + Ni + Cr + Mo content is not less than the upper limit of the present invention, the impact value is low and the machinability is also inferior. In particular, as compared with Invention Example No. 1 and Invention Example No. 3, the impact value is significantly reduced.
[0042]
In Comparative Example No. 20, since the V content is equal to or lower than the lower limit value of the present invention, the tensile strength and the impact value are lower than those of the present invention example. In Comparative Example No. 21, since the V content is not less than the upper limit of the present invention, the drawing and impact values are low, and the machinability is poor.
[0043]
In Comparative Example No. 22, since the B content is not more than the lower limit of the present invention, the machinability is poor. In Comparative Example No. 23, since the B content is not less than the upper limit of the present invention, the impact value is lowered.
[0044]
In Comparative Example No. 24, since the Ti content is not less than the upper limit of the present invention, the fatigue characteristics are deteriorated and the machinability is also inferior.
In Comparative Example No. 25, since the S content is not less than the upper limit of the present invention, the impact value is lowered.
[0045]
In Comparative Example No. 26, the N content is equal to or lower than the lower limit of the present invention, so that the machinability is poor.
In Comparative Example No. 27, since the N content is not less than the upper limit of the present invention, the impact value is lowered and the fatigue characteristics are also poor.
[0046]
In addition, based on the data obtained by the said test, the relationship between a drill life speed and a Charpy impact value was plotted in FIG. All examples of the present invention satisfy the target values for both the drill life speed and the Charpy impact value.
[0047]
【The invention's effect】
As described above, according to the present invention, non-heat treated steel used as a material for a crankshaft of automobile parts, various undercarriage parts, etc. is equal to or more than Pb-added non-heat treated steel without adding Pb. It is possible to obtain a free-cutting non-tempered steel having a machinability and a certain level of toughness, which contributes to the maintenance of the global environment. Addition of expensive and special elements Without using special and expensive additive elements, it is a component element that has been widely used as conventional free-cutting steel, and has excellent machinability including chip disposal. A high-quality free-cutting non-tempered steel with toughness maintained at a desired level is obtained. Providing such a free-cutting non-tempered steel excellent in toughness brings about an industrially useful effect.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between drill life speed and Charpy impact value obtained from test data of examples of the present invention and comparative examples.

Claims (3)

C :0.30〜0.55mass%、
Si:0.15〜0.40mass%、
Mn:0.80〜1.60mass%、
P :0.005〜0.050mass%、
S :0.040mass%以下、
Al:0.005〜0.035mass%、
V :0.04 〜0.15mass%、
Cu+Ni+Cr+Mo:0.45mass%以下、
B :0.0050〜0.0150mass%、及び、
N :0.008〜0.018mass%、
を含有し、Cu、Ni、CrおよびMoは、それぞれ不可避不純物であり、残部がFe及びCu、Ni、CrおよびMo以外の不可避不純物からなり、且つ、B/N:0.5〜1.5の範囲内にあることを特徴とする快削非調質鋼。
C: 0.30 to 0.55 mass%,
Si: 0.15-0.40 mass%,
Mn: 0.80 to 1.60 mass%
P: 0.005-0.050 mass%,
S: 0.040 mass% or less,
Al: 0.005-0.035 mass%,
V: 0.04 to 0.15 mass%,
Cu + Ni + Cr + Mo: 0.45 mass% or less,
B: 0.0050 to 0.0150 mass%, and
N: 0.008 to 0.018 mass%,
Cu, Ni, Cr and Mo are unavoidable impurities, the balance is made of unavoidable impurities other than Fe and Cu, Ni, Cr and Mo , and B / N: 0.5 to 1.5 Free-cutting non-tempered steel characterized by being in the range of
C :0.30〜0.55mass%、
Si:0.15〜0.40mass%、
Mn:0.80〜1.60mass%、
P :0.005〜0.050mass%、
S :0.040mass%以下、
Al:0.005〜0.035mass%、
V :0.04 〜0.15mass%、
Cu+Ni+Cr+Mo:0.60mass%以下、
B :0.0050〜0.0150mass%、
Ti:0.005〜0.020mass%、及び、
N :0.010〜0.020mass%、
を含有し、Cu、Ni、CrおよびMoは、それぞれ不可避不純物であり、残部がFe及びCu、Ni、CrおよびMo以外の不可避的不純物からなり、且つ、B/(N−Ti/3.42):0.5〜1.5の範囲内にあることを特徴とする快削非調質鋼。
C: 0.30 to 0.55 mass%,
Si: 0.15-0.40 mass%,
Mn: 0.80 to 1.60 mass%
P: 0.005-0.050 mass%,
S: 0.040 mass% or less,
Al: 0.005-0.035 mass%,
V: 0.04 to 0.15 mass%,
Cu + Ni + Cr + Mo: 0.60 mass% or less,
B: 0.0050 to 0.0150 mass%,
Ti: 0.005-0.020 mass%, and
N: 0.010-0.020 mass%,
Cu, Ni, Cr and Mo are inevitable impurities, the balance is made of inevitable impurities other than Fe and Cu, Ni, Cr and Mo , and B / (N-Ti / 3.42 ): Free-cutting non-tempered steel characterized by being in the range of 0.5 to 1.5.
請求項1又は請求項2記載の発明において、
S :0.04〜0.08mass%、及び、
Ca:0.001〜0.003mass%
を含有することを特徴とする快削非調質鋼。
In the invention of claim 1 or claim 2,
S: 0.04-0.08 mass%, and
Ca: 0.001 to 0.003 mass%
A free-cutting non-tempered steel characterized by containing.
JP35302498A 1998-12-11 1998-12-11 Free-cutting non-tempered steel with excellent toughness Expired - Fee Related JP3874557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35302498A JP3874557B2 (en) 1998-12-11 1998-12-11 Free-cutting non-tempered steel with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35302498A JP3874557B2 (en) 1998-12-11 1998-12-11 Free-cutting non-tempered steel with excellent toughness

Publications (2)

Publication Number Publication Date
JP2000178683A JP2000178683A (en) 2000-06-27
JP3874557B2 true JP3874557B2 (en) 2007-01-31

Family

ID=18428059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35302498A Expired - Fee Related JP3874557B2 (en) 1998-12-11 1998-12-11 Free-cutting non-tempered steel with excellent toughness

Country Status (1)

Country Link
JP (1) JP3874557B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500709B2 (en) * 2005-03-08 2010-07-14 Jfe条鋼株式会社 BN free-cutting steel
JP4986203B2 (en) * 2005-10-11 2012-07-25 Jfe条鋼株式会社 BN free-cutting steel with excellent tool life
JP4546917B2 (en) * 2005-11-28 2010-09-22 新日本製鐵株式会社 Free-cutting steel with excellent hot ductility
BRPI0719310B1 (en) 2006-11-28 2018-01-23 Nippon Steel Corporation STEEL FOR HIGHER MACHINING AT PRODUCTION CAPACITY.
JP6477383B2 (en) * 2015-09-18 2019-03-06 Jfeスチール株式会社 Free-cutting steel

Also Published As

Publication number Publication date
JP2000178683A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
JP5079788B2 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
CN102741440B (en) Steel material for quenching and method of producing same
CN102459656B (en) Process for producing thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding and thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding
JP5655366B2 (en) Bainite steel
JP3464356B2 (en) Boron steel gear excellent in fatigue resistance and method of manufacturing the same
JP5080708B2 (en) Non-tempered steel forged product, method for producing the same, and connecting rod component for internal combustion engine using the same
JP4084462B2 (en) Free-cutting hot-worked steel and its manufacturing method
JP6620490B2 (en) Age-hardening steel
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JP3874557B2 (en) Free-cutting non-tempered steel with excellent toughness
KR100415626B1 (en) High Strength Wear Resistance Steel with Excellent Hardenability
JP5181621B2 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
JPH0925539A (en) Free cutting non-heat treated steel excellent in strength and toughness
JP2005336553A (en) Hot tool steel
JP3764274B2 (en) Free-cutting hot-worked steel material and rough profile, manufacturing methods thereof, free-cutting hot-worked product, and manufacturing method thereof
JP4263648B2 (en) Ti-added high strength steel with excellent machinability
JPH0790380A (en) Production of induction-hardened part
JP3534146B2 (en) Non-heat treated steel excellent in fatigue resistance and method for producing the same
JP2950702B2 (en) Non-heat treated steel for high strength hot forging
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
JP3834127B2 (en) Free-cutting high toughness non-tempered steel
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
KR101302693B1 (en) Plastic mold steel with uniform hardness and workability by reducing segregation
JPH09310152A (en) Non-heat treated steel for hot forging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141102

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees