JP3256184B2 - Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them - Google Patents

Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them

Info

Publication number
JP3256184B2
JP3256184B2 JP23257198A JP23257198A JP3256184B2 JP 3256184 B2 JP3256184 B2 JP 3256184B2 JP 23257198 A JP23257198 A JP 23257198A JP 23257198 A JP23257198 A JP 23257198A JP 3256184 B2 JP3256184 B2 JP 3256184B2
Authority
JP
Japan
Prior art keywords
steel
free
graphite
less
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23257198A
Other languages
Japanese (ja)
Other versions
JP2000063948A (en
Inventor
豊明 江口
Original Assignee
エヌケーケー条鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌケーケー条鋼株式会社 filed Critical エヌケーケー条鋼株式会社
Priority to JP23257198A priority Critical patent/JP3256184B2/en
Publication of JP2000063948A publication Critical patent/JP2000063948A/en
Application granted granted Critical
Publication of JP3256184B2 publication Critical patent/JP3256184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、超快削鋼材の製
造技術に関するものであって、鋼材の熱間圧延後の焼な
らし処理により黒鉛を析出させると共に、組織を軟質な
フェライト又はフェライト+パーライトにして、被削性
の優れた超快削鋼棒線材及び超快削鋼部品を製造する技
術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for manufacturing a super free-cutting steel material, in which graphite is precipitated by a normalizing process after hot rolling of a steel material, and a soft ferrite or ferrite + The present invention relates to a technology for manufacturing a super-free-cutting steel rod and a super-free-cutting steel part having excellent machinability using pearlite.

【0002】[0002]

【従来の技術】従来の被削性に優れた超快削鋼として
は、硫黄及び鉛を複合添加したJISG 4804のS
UM23LやSUM24Lが代表的なものである。これ
ら快削鋼は強度、靱性よりも被削性が重視されるもので
あるが、これらに求められる被削性としては切削工具の
寿命と切り屑の処理性が特に重要である。
2. Description of the Related Art Conventionally, super free-cutting steels having excellent machinability include JIS G 4804 S with a combined addition of sulfur and lead.
UM23L and SUM24L are typical. In these free-cutting steels, machinability is more important than strength and toughness, but as the machinability required for them, the life of the cutting tool and the handling of chips are particularly important.

【0003】最近の鋼材の機械加工は、生産性を高める
ために従来より極めて高速で行なわれるため、鋼材特性
として工具の摩耗が小さいもの、即ち工具寿命の長い快
削鋼が求められている。
[0003] Since recent machining of steel materials is performed at a much higher speed than in the past in order to increase productivity, steel materials having low tool wear, that is, free-cutting steel having a long tool life, are required.

【0004】また最近は自動盤により無人で機械加工さ
れることが多く、切り屑が長くつながって絡まってしま
うと、機械の停止や切り屑を取り除くための余計な作業
を行なう必要が生じ、生産性を低下させることになる。
このため切り屑が適当な大きさに細かく分断するよう
な、切り屑処理性に優れた快削鋼が求められている。
Recently, automatic machines are often used for unmanned machining, and when chips are long and entangled, it is necessary to stop the machine or perform extra work for removing the chips, which leads to a problem in production. Will decrease the performance.
Therefore, there is a need for a free-cutting steel having excellent chip disposability, in which chips are finely divided into appropriate sizes.

【0005】これら工具寿命及び切り屑処理性の改善の
ために、従来はSUM23L、SUM24Lにみられる
ように、硫黄、燐複合快削鋼に更に、快削元素である鉛
を0.10〜0.35%添加して被削性を一層向上させ
てきた。
[0005] In order to improve the tool life and chip disposability, conventionally, as shown in SUM23L and SUM24L, lead, which is a free-cutting element, is added to sulfur and phosphorus composite free-cutting steel in an amount of 0.10-0. The machinability has been further improved by adding 0.35%.

【0006】Pbの融点は327℃と低いので、切削中
にPbが溶融して鋼が脆化し、切り屑処理性を向上させ
る。またPbの潤滑作用も加わり、工具の寿命が伸び
る。しかしながら、快削鋼におけるPbの使用は、Pb
ヒュームが発生する等の環境衛生上の問題から、今日無
鉛の超快削鋼が求められている。
[0006] Since the melting point of Pb is as low as 327 ° C, Pb melts during cutting and the steel becomes brittle, thereby improving the chip controllability. In addition, the lubricating action of Pb is added, and the life of the tool is extended. However, the use of Pb in free-cutting steel
Due to environmental health problems such as generation of fume, lead-free ultra-free-cutting steel is required today.

【0007】鋼材の被削性を向上させる元素としては、
Pbの他にS、Ca、Bi、Se及びTe等の元素が知
られているが、これら元素は単独では、被削性改善効
果が小さい、高価である、環境衛生上問題がある、
といった欠点を少なくとも1つは有しているために、鉛
代替の元素として使用することには制限を受ける。
[0007] As an element for improving the machinability of steel,
Elements other than Pb such as S, Ca, Bi, Se, and Te are known, but these elements alone have a small machinability improvement effect, are expensive, and have environmental health problems.
Has at least one of the drawbacks described above, which limits its use as an alternative to lead.

【0008】例えば、Sは被削性の改善に効果はある
が、Sを多量に添加すると熱間加工方向に長く伸びたM
nSが多量に形成されて、機械的性質に異方性を生じさ
せたり、靱性を低下させたりする等の問題がある。この
ため従来のSUM23L、SUM24Lにおいては、熱
間圧延に際して先端割れを起こし易く、圧延トラブルの
原因となっていた。このトラブルを回避するため圧延前
鋼片の先端を鉛筆の先端形状のように細く削る等の煩雑
な作業をする必要があった。またSUM23L、SUM
24Lは低炭素鋼であるため、機械加工した部品に耐摩
耗性を付与する場合は、900℃前後で数時間という長
時間の浸炭焼入れを施す必要があった。
For example, S is effective in improving the machinability, but when a large amount of S is added, M which is elongated in the hot working direction is elongated.
There is a problem that a large amount of nS is formed to cause anisotropy in mechanical properties or to decrease toughness. For this reason, in the conventional SUM23L and SUM24L, the tip crack is easily caused at the time of hot rolling, which causes a rolling trouble. In order to avoid this trouble, it was necessary to perform a complicated operation such as sharpening the tip of the steel slab before rolling into a shape similar to the tip of a pencil. Also SUM23L, SUM
Since 24L is a low carbon steel, when imparting wear resistance to a machined part, it was necessary to perform carburizing and quenching at around 900 ° C. for several hours.

【0009】一方、黒鉛は鋳鉄にみられるように、被削
性を極めて向上させる元素である。しかしながら、鋼に
炭素を添加するとセメンタイトを析出するので、黒鉛を
得るのは容易ではない。従来の発明における炭素濃度
0.10〜1.5%を有する鋼の場合には、例えば特開
平2−107742号公報(以下、先行技術1という)
や、特開平3−140411号公報(以下、先行技術2
という)には、600〜800℃の温度で数時間〜20
0時間という長時間の焼鈍を行なって黒鉛を析出させる
鋼材、又はそのような鋼材の製造方法が開示されてい
る。
[0009] On the other hand, graphite is an element that greatly improves machinability, as seen in cast iron. However, when carbon is added to steel, cementite precipitates, so that it is not easy to obtain graphite. In the case of steel having a carbon concentration of 0.10 to 1.5% in the conventional invention, for example, Japanese Patent Application Laid-Open No. 2-107742 (hereinafter referred to as Prior Art 1)
And JP-A-3-140411 (hereinafter referred to as prior art 2).
) At a temperature of 600 to 800 ° C for several hours to 20 hours.
A steel material that precipitates graphite by performing annealing for as long as 0 hours, or a method for producing such a steel material is disclosed.

【0010】しかしながら、このように長時間の黒鉛化
熱処理はコストの増大を招くのみならず、熱処理中に鋼
材に脱炭を起こし、最終部品の性能に悪影響を及ぼすと
いった弊害が生ずる。そこで、簡便な熱処理で所望とす
る黒鉛ならびに組織を得て、被削性の優れた無鉛の超快
削鋼が望まれている。
[0010] However, such a long-time graphitization heat treatment not only causes an increase in cost, but also causes adverse effects such as decarburization of the steel material during the heat treatment, which adversely affects the performance of the final part. Therefore, a lead-free ultra-free-cutting steel excellent in machinability by obtaining a desired graphite and structure by a simple heat treatment is desired.

【0011】[0011]

【発明が解決しようとする課題】上述した先行技術1、
2には下記問題点のいずれかが未解決となっている。 問題点1:使用されている快削元素には毒性があり、環
境対策上問題がある。
The prior art 1 described above,
2 has any of the following problems unresolved. Problem 1: The free-cutting elements used are toxic and have problems in environmental measures.

【0012】問題点2:多量のS、Pを複合して含有し
ているため、熱間加工性が劣り、圧延前鋼片に先端割れ
防止のための特殊な機械加工を必要とする。 問題点3:耐摩耗性を向上させるため、長時間の浸炭焼
入れを行う必要がある。
Problem 2: Since a large amount of S and P are contained in combination, the hot workability is poor, and special machining is required on the steel slab before rolling to prevent the tip from cracking. Problem 3: In order to improve wear resistance, it is necessary to perform carburizing and quenching for a long time.

【0013】問題点4:毒性のない快削元素として炭素
を利用し、黒鉛として析出させることにより、被削性を
向上させることができるが、長時間の黒鉛化焼鈍を施さ
ねばならず、コストが嵩む。
Problem 4: Machinability can be improved by utilizing carbon as a non-toxic free-cutting element and precipitating it as graphite, but it requires a long time graphitizing anneal and costs. Increases.

【0014】この発明では上記問題点を解決して、自動
車や産業機械の部品類の素材として用いられる鋼棒線
材、及び、その鋼棒線材を機械加工して製品とし、簡便
な熱処理により耐摩耗性の優れた上記部品類を製造する
ために、短時間の焼ならしにより、被削性が良好であ
り、高周波焼入れで表面を硬化させることができ、
安価で且つ環境衛生上問題のない方法を開発することを
目的とする。
The present invention solves the above-mentioned problems and provides a steel rod or wire used as a material for parts of an automobile or an industrial machine, and a machined product of the steel rod or wire to obtain a product by a simple heat treatment. In order to produce the above components with excellent properties, by normalizing for a short time, the machinability is good, and the surface can be hardened by induction hardening,
The purpose is to develop a method that is inexpensive and has no environmental health problems.

【0015】[0015]

【課題を解決するための手段】本発明者等は、上述した
観点から、鉛を添加することなく、従来の硫黄鉛複合快
削鋼と同等あるいはそれを上回る被削性を有する超快削
鋼を開発すべく鋭意研究を重ねた。その結果、次の知見
を得た。
SUMMARY OF THE INVENTION In view of the above, the present inventors have developed a super free-cutting steel having machinability equivalent to or higher than that of a conventional sulfur-lead composite free-cutting steel without adding lead. Intensive research to develop. As a result, the following findings were obtained.

【0016】即ち、焼ならしのような簡便な熱処理で黒
鉛を析出させるには、鋼の成分組成に関しCを1.00
%超添加して過共析鋼とし、黒鉛化促進のためSiを
1.00%以上と高めとする。また鋼の延性を確保する
ため適量のMnを添加し、且つP及びSといった不純物
元素を低位に抑えた鋼を調製する。次いで上記化学成分
を有する鋳片又は鋼片を造塊法ないし連続鋳造法で調製
し、これを熱間圧延して鋼棒線材を製造し、これを60
0〜1000℃の間、望ましくは650〜950℃の間
の温度に3hr以下加熱した後、空冷する。
That is, in order to precipitate graphite by a simple heat treatment such as normalizing, C is set to 1.00 with respect to the composition of steel.
% To make hypereutectoid steel, and Si is increased to 1.00% or more to promote graphitization. Further, a steel in which an appropriate amount of Mn is added to secure the ductility of the steel and impurity elements such as P and S are suppressed to a low level is prepared. Next, a slab or a slab having the above-mentioned chemical composition is prepared by an ingot-making method or a continuous casting method, and is hot-rolled to produce a steel rod wire.
After heating to a temperature between 0 and 1000 ° C., preferably between 650 and 950 ° C. for 3 hours or less, air cooling is performed.

【0017】以上の処理により、適度な大きさ及び量の
黒鉛と、軟質なフェライト又はフェライト+パーライト
組織との鋼棒線材を製造する。これによって、鉛を添加
することなく、被削性が従来硫黄鉛複合快削鋼に較べて
同等以上の超快削鋼棒線の製造が可能であることを見い
だした。
By the above-described treatment, a steel rod or wire having an appropriate size and amount of graphite and a soft ferrite or a ferrite + pearlite structure is manufactured. As a result, it has been found that it is possible to produce a super-free-cutting steel wire having machinability equal to or higher than that of a conventional sulfur-lead composite free-cutting steel without adding lead.

【0018】 この発明は、上記知見に基づきなされた
ものであって、下記に特徴を有するものである。請求項
1記載の発明は、重量%で、C:1.00超〜1.50
%、Si:1.00〜2.80%、Mn:0.01〜
2.00%、P:0.050%以下、S:0.10%以
下、O:0.0050%以下、及び、N:0.020%
以下を含有し、残部鉄(Fe)及び不可避的不純物から
なる化学成分組成を有し、下記(1)式で求められる黒
鉛化指数CEが1.30以上である鋳片又は鋼片を、8
50〜1150℃の範囲内の温度に加熱し、熱間圧延
し、そして室温まで冷却し、こうして得られた熱間圧延
鋼材を、600〜1000℃の範囲内の温度で3hr以
下の時間加熱した後、空冷し、前記鋼材中に平均粒径
1.0μm以上の黒鉛を100個/mm2以上析出さ
せ、且つ金属組織を70%以上のフェライトと残部パー
ライトとからなるか、又はフェライトのみからなるもの
にし、しかもブリネル硬さを200以下にすることに特
徴を有するものである。
The present invention has been made based on the above findings, and has the following features. According to the first aspect of the present invention, C: more than 1.00 to 1.50 by weight%.
%, Si: 1.00 to 2.80%, Mn: 0.01 to
2.00%, P: 0.050% or less, S: 0.10% or less, O: 0.0050% or less, and N: 0.020%
A slab or a slab having the following composition, having a chemical composition consisting of the balance of iron (Fe) and unavoidable impurities, and having a graphitization index CE of 1.30 or more determined by the following equation (1):
Heated to a temperature in the range of 50-1150 ° C, hot rolled and cooled to room temperature, the hot rolled steel thus obtained was heated at a temperature in the range of 600-1000 ° C for no more than 3 hours. after air-cooling, the average particle diameter 1.0μm or more graphite is deposited 100 / mm 2 or more, and either made of metal structure from at least 70% of ferrite and the balance pearlite, or made of ferrite alone in said steel And a Brinell hardness of 200 or less.

【0019】請求項2記載の超快削鋼棒線材の製造方法
は、請求項1記載の発明において、上記鋳片又は鋼片と
して、更に下記元素の成分組成からなる群から選ばれた
1種以上を付加して含有し、且つ、前記黒鉛化指数CE
の算出式として下記(2)式を用いた場合にその算出値
が1.30以上である化学成分組成を有するものを用い
ることに特徴を有するものである。ここで、上記元素の
成分組成からなる群とは、重量%で、Cu:0.01〜
2.0%、Ni:0.01〜1.0%、Co:0.01
〜0.50%、Cr:0.01〜0.50%、Mo:
0.01〜0.50%、及び、B:0.0005〜0.
010%である。そして、(2)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9 −Cr/9−Mo/9+B -----------------------------(2) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
According to a second aspect of the present invention, there is provided the method for manufacturing a super-cuttable steel rod or wire according to the first aspect, wherein the slab or the steel slab is one type selected from the group consisting of the following elements. In addition to the above, the graphitization index CE
Is characterized by using a compound having a chemical component composition whose calculated value is 1.30 or more when the following formula (2) is used as the calculation formula. Here, the group consisting of the component compositions of the above-mentioned elements means, in terms of% by weight, Cu: 0.01 to
2.0%, Ni: 0.01 to 1.0%, Co: 0.01
-0.50%, Cr: 0.01-0.50%, Mo:
0.01-0.50%, and B: 0.0005-0.
010%. The equation (2) is expressed as follows: CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B ----------- (2) Here, the symbol of the element in the above formula indicates that it represents the weight% of each element.

【0020】請求項3記載の超快削鋼棒線材の製造方法
は、請求項1又は2記載の発明において、上記鋳片又は
鋼片として、更に下記元素の成分組成からなる群から選
ばれた、1種以上を付加して含有し、且つ、前記黒鉛化
指数CEの算出式として下記(3)式を用いた場合にそ
の算出値が1.30以上である化学成分組成を有するも
のを用いることに特徴を有するものである。ここで、上
記元素の成分組成からなる群とは、重量%で、Al:
0.001〜0.10%、Ti:0.005〜0.05
0%、Zr:0.005〜0.050%、V:0.01
〜0.20%、及び、Nb:0.01〜0.20%であ
る。そして、(3)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 -----------------------------(3) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
According to a third aspect of the present invention, in the method for manufacturing a super-cuttable steel rod or wire according to the first or second aspect, the slab or the slab is further selected from the group consisting of the following elements. And one having a chemical component composition whose calculated value is 1.30 or more when the following formula (3) is used as a calculation formula of the graphitization index CE. In particular, it has features. Here, the group consisting of the component compositions of the above-mentioned elements means, by weight%, Al:
0.001 to 0.10%, Ti: 0.005 to 0.05
0%, Zr: 0.005 to 0.050%, V: 0.01
And Nb: 0.01 to 0.20%. And, the equation (3) is: CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 ------------------------- (3) However, the symbol of the element in the above formula indicates the weight% of each element.

【0021】請求項4記載の超快削鋼棒線材の製造方法
は、請求項1、2又は3記載の発明において、上記鋳片
又は鋼片として、更に下記元素の成分組成からなる群か
ら選ばれた、1種以上を付加して含有し、且つ、前記黒
鉛化指数CEの算出式として下記(4)式を用いた場合
にその算出値が1.30以上である化学成分組成を有す
るものを用いることに特徴を有するものである。ここ
で、上記元素の成分組成からなる群とは、重量%で、C
a:0.0010〜0.0100%、Mg:0.001
0〜0.10%、及び、REM:0.0010〜0.1
0%である。そして、(4)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 +0.07 -----------------------------(4) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
According to a fourth aspect of the present invention, there is provided a method for manufacturing a super free-cutting steel rod or wire according to the first, second or third aspect, wherein the slab or the slab is further selected from the group consisting of the following elements. One or more of the above, and having a chemical component composition whose calculated value is 1.30 or more when the following formula (4) is used as the calculation formula of the graphitization index CE. Is characterized by using. Here, the group consisting of the component compositions of the above-mentioned elements refers to C% by weight.
a: 0.0010 to 0.0100%, Mg: 0.001
0 to 0.10% and REM: 0.0010 to 0.1
0%. And, the equation (4) is: CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 + 0.07- ---------------------------- (4) However, the element symbol in the above formula indicates the weight% of each element. .

【0022】請求項5記載の超快削鋼部品の製造方法
は、請求項1〜4記載の発明の内いずれかの方法によっ
て超快削鋼棒線材を製造し、こうして製造された超快削
鋼棒線材に、直接又は冷間加工後、機械加工を施して部
品形状に仕上げることに特徴を有するものである。ここ
で、直接機械加工を施す場合とは、例えば、伸直矯正後
直接機械加工する方法が該当し、また、冷間加工後、機
械加工を施す場合とは、例えば、六角引き抜きに代表さ
れる冷間加工後に機械加工する方法が該当する。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a super free-cutting steel part, comprising the steps of: The present invention is characterized in that a steel rod or wire is machined directly or after cold working and then finished into a part shape. Here, the case of performing direct machining corresponds to, for example, a method of performing direct machining after straightening, and the case of performing machining after cold working is represented by, for example, hexagonal drawing. A method of machining after cold working is applicable.

【0023】請求項6記載の超快削鋼棒線材は、請求項
1〜4記載の発明の内いずれかの方法によって製造され
たものであることに特徴を有するものである。請求項7
記載の超快削鋼棒線材は、請求項5記載の発明の内いず
れかの方法によって製造されたものであることに特徴を
有するものである。
A super-cutting steel rod according to a sixth aspect of the present invention is characterized by being manufactured by any one of the methods according to the first to fourth aspects of the present invention. Claim 7
The ultra-free-cutting steel rod or wire described above is characterized by being produced by any one of the methods according to the fifth aspect of the present invention.

【0024】[0024]

【発明の実施の形態】この発明は、高Siの過共析炭素
鋼、及びその低合金鋼を素材として熱間圧延した棒線材
を、所定の温度に3hr以下再加熱後、空冷することに
より、黒鉛を析出させ、且つ所望の金属組織、硬さを有
する鋼棒線材を製造するというものである。即ち、適切
な鋼の成分組成を見いだし、このように簡単な工程によ
り、無鉛の被削性に優れた超快削鋼部品を製造するもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is to reheat a hot-rolled bar and wire made of a high Si hypereutectoid carbon steel and its low alloy steel to a predetermined temperature for 3 hours or less, and then air-cool. , To deposit graphite and produce a steel rod or wire having a desired metal structure and hardness. That is, a suitable steel component composition is found, and a super-free-cutting steel part having excellent lead-free machinability is manufactured by such a simple process.

【0025】次に、本発明の構成要件の限定理由につい
て説明する。 (1)炭素(C) Cは黒鉛を析出させ、強度を確保するために重要な元素
である。熱間圧延により製造された鋼材の再加熱後に、
炉冷等の徐冷を行なわずに、空冷により黒鉛を析出させ
るためには、1.00%超のC含有率を必要とする。し
かしながら、C含有率が1.50%を超えると、熱間延
性の低下が大きく、棒圧延に際して表面疵の発生が増大
する。また空冷後に析出する黒鉛粒が粗大になり、靱性
を低下させる。従って、C含有率は1.00超〜1.5
0%の範囲内に限定する。
Next, the reasons for limiting the constituent elements of the present invention will be described. (1) Carbon (C) C is an important element for precipitating graphite and securing strength. After reheating of steel material manufactured by hot rolling,
In order to precipitate graphite by air cooling without slow cooling such as furnace cooling, a C content of more than 1.00% is required. However, if the C content exceeds 1.50%, the hot ductility is greatly reduced, and the occurrence of surface flaws during bar rolling increases. In addition, graphite particles precipitated after air cooling become coarse, and the toughness is reduced. Therefore, the C content is more than 1.00 to 1.5.
Limit within the range of 0%.

【0026】(2)珪素(Si) Siは本発明において重要な役目を果たす元素である。
即ち、Siはセメンタイトの黒鉛化を促進する元素であ
る。しかし、1.00%未満ではその効果は小さい。一
方、Siが2.80%を超えると非金属介在物が増大し
て靱性の低下を招くのみならず、熱間圧延又は黒鉛化の
ための再加熱において脱炭を大きくする。従って、Si
含有量は1.00〜2.80%の範囲内に限定する。
(2) Silicon (Si) Si is an element that plays an important role in the present invention.
That is, Si is an element that promotes graphitization of cementite. However, if it is less than 1.00%, the effect is small. On the other hand, if Si exceeds 2.80%, nonmetallic inclusions increase and not only decrease in toughness, but also increase decarburization in hot rolling or reheating for graphitization. Therefore, Si
The content is limited to the range of 1.00 to 2.80%.

【0027】(3)マンガン(Mn) Mnは鋼中のSをMnSとして無害化して、鋼の熱間延
性を向上させる。またMnは焼入れ性を向上させ、パー
ライトを微細化して、鋼の延性を向上させる。この目的
で用いるので、Mnは0.01%以上の添加を必要とす
る。しかし、Mnは黒鉛の析出を阻害するので、上限は
2.00%とする。なお、Mn含有率を低めにすれば黒
鉛化のために必要なSiの量を低減させることができ
る。Mn含有率が高めの場合には部品に高い強度及び靱
性を付与することができる。そこで、Mn含有率は0.
01〜2.00%の範囲内に限定する。
(3) Manganese (Mn) Mn detoxifies S in steel as MnS and improves the hot ductility of steel. Further, Mn improves quenching properties, refines pearlite, and improves ductility of steel. Since it is used for this purpose, Mn needs to be added in an amount of 0.01% or more. However, since Mn inhibits graphite precipitation, the upper limit is set to 2.00%. If the Mn content is reduced, the amount of Si required for graphitization can be reduced. If the Mn content is high, high strength and toughness can be imparted to the component. Therefore, the Mn content is set to 0.1.
It is limited to the range of 01 to 2.00%.

【0028】(4)燐(P) Pは黒鉛化を促進する元素である。しかし、Pは粒界に
偏析して熱間延性を低下させ、表面疵の発生を助長す
る。このような悪影響を防ぐために、P含有率は0.0
50以下に限定する。一層望ましくは0.030%以下
にする。
(4) Phosphorus (P) P is an element that promotes graphitization. However, P segregates at the grain boundaries, lowers hot ductility, and promotes generation of surface defects. In order to prevent such adverse effects, the P content is set to 0.0
Limited to 50 or less. More preferably, the content is 0.030% or less.

【0029】(5)硫黄(S) Sは黒鉛化を大きく阻害する元素であり、その含有率が
0.100%を超えると、Si等の黒鉛化促進元素を多
量に添加する必要があり、また熱間延性の低下を招く。
従って、S含有率は0.100%以下に限定する。一層
望ましくは0.050%以下にするのがよい。
(5) Sulfur (S) S is an element that greatly inhibits graphitization. If its content exceeds 0.100%, it is necessary to add a large amount of a graphitization promoting element such as Si. In addition, a decrease in hot ductility is caused.
Therefore, the S content is limited to 0.100% or less. More desirably, the content should be 0.050% or less.

【0030】(6)酸素(O) Oは鋼の清浄性を低下させると共に、黒鉛化を阻害する
元素であるので出来るかぎり低く抑えるべきである。し
かしO含有率は0.0050%までは許容される。そこ
で、O含有率は上限を0.0050%とする。一層望ま
しくは0.0030%以下にする方がよい。
(6) Oxygen (O) Since O is an element that lowers the cleanliness of steel and inhibits graphitization, it should be kept as low as possible. However, the O content is acceptable up to 0.0050%. Therefore, the upper limit of the O content is set to 0.0050%. More desirably, the content is 0.0030% or less.

【0031】(7)窒素(N) Nは単独で鋼中に存在すると、黒鉛化を阻害する。N含
有率が0.020%を超えると、黒鉛の析出が困難にな
る他、鋼の凝固中に窒素ガスの発生によりブローホ─ル
が多数形成されて、圧延後の表面疵の原因になる。従っ
て、N含有率は0.020%以下にする。一層望ましく
は0.010%以下にする。
(7) Nitrogen (N) When N alone exists in steel, it inhibits graphitization. If the N content exceeds 0.020%, precipitation of graphite becomes difficult, and a large number of blowholes are formed due to generation of nitrogen gas during solidification of steel, which causes surface defects after rolling. Therefore, the N content is set to 0.020% or less. More preferably, the content is 0.010% or less.

【0032】(8)銅(Cu) Cuは黒鉛の析出を促進し、且つフェライトに固溶して
強度を高める。また、溶湯の流動性を増し、鋳造性を向
上させる。これらの目的でCuを利用するするので、
0.01%以上の添加を必要とする。しかし、Cu含有
率が2.0%を超えると、鋼中への固溶限を超えるので
未固溶Cuが残存し、熱間延性を低下させ、表面疵の発
生を助長する。従って、Cu含有率は0.01〜2.0
%の範囲内にするのが望ましい。
(8) Copper (Cu) Cu promotes the precipitation of graphite and increases the strength by dissolving in ferrite. In addition, it increases the fluidity of the molten metal and improves castability. Since Cu is used for these purposes,
Addition of 0.01% or more is required. However, when the Cu content exceeds 2.0%, the solid solubility in steel is exceeded, so that undissolved Cu remains, lowers the hot ductility and promotes the generation of surface defects. Therefore, the Cu content is 0.01 to 2.0.
% Is desirable.

【0033】(9)ニッケル(Ni) NiもCuと同様に、黒鉛の析出を促進させると共に、
フェライトに固溶して強度を高める。これらの目的で添
加するので、Niは0.01%以上の添加を必要とす
る。しかし2.0%を超えて添加すると効果は飽和す
る。また、Niは高価な元素である。従って、Ni含有
率は0.01〜2.0%の範囲内にするのが望ましい。
(9) Nickel (Ni) Like Ni, Ni promotes the precipitation of graphite.
Increases strength by dissolving in ferrite. Since Ni is added for these purposes, 0.01% or more of Ni needs to be added. However, when the content exceeds 2.0%, the effect is saturated. Ni is an expensive element. Therefore, it is desirable that the Ni content be in the range of 0.01 to 2.0%.

【0034】(10)コバルト(Co) CoもCuやNiと同じく、黒鉛の析出を促進させると
共に、フェライトを強化する。これらの目的で添加する
ので、Coは0.01%以上の添加を必要とする。しか
しCoはNiよりも高価な元素である。従って、Co含
有率は0.01〜0.50%の範囲内にするのが望まし
い。
(10) Cobalt (Co) Co, like Cu and Ni, promotes the precipitation of graphite and strengthens ferrite. Since Co is added for these purposes, 0.01% or more of Co must be added. However, Co is an element more expensive than Ni. Therefore, the Co content is desirably in the range of 0.01 to 0.50%.

【0035】(11)クロム(Cr) Crも少量添加の場合はフェライトに固溶して、鋼を強
化する。この目的で用いるので、0.01%以上の添加
を必要とする。しかしCrは、Mnよりも黒鉛化を阻害
する作用が大きい。よって、Crが0.50%を超える
と,黒鉛化促進元素を多量に必要とし、コスト高にな
る。従って、Cr含有率は0.01〜0.50%の範囲
内にするのが望ましい。
(11) Chromium (Cr) When a small amount of Cr is also added, it forms a solid solution with ferrite to strengthen the steel. Since it is used for this purpose, it is necessary to add 0.01% or more. However, Cr has a greater effect of inhibiting graphitization than Mn. Therefore, when Cr exceeds 0.50%, a large amount of the graphitization promoting element is required, and the cost is increased. Therefore, it is desirable that the Cr content be in the range of 0.01 to 0.50%.

【0036】(12)モリブデン(Mo) Moは少量添加の場合はフェライトを強化する。この目
的で用いるので、0.01%以上の添加を必要とする。
しかし、Moも黒鉛化を阻害する元素であり、0.50
%を超えると、黒鉛化促進元素を多量に必要とする。従
って、Mo含有率0.01〜0.50%の範囲内にする
のが望ましい。
(12) Molybdenum (Mo) Mo, when added in a small amount, strengthens ferrite. Since it is used for this purpose, it is necessary to add 0.01% or more.
However, Mo is also an element that inhibits graphitization, and 0.50
%, A large amount of the graphitization promoting element is required. Therefore, it is desirable to set the Mo content within the range of 0.01 to 0.50%.

【0037】(13)ボロン(B) Bは鋼中のNをBNとして固定し、Nの黒鉛化阻害作用
を軽減すると共に、BNが黒鉛析出核として作用し、黒
鉛の析出を促進する。この目的で用いるので、0.00
05%以上の添加を必要とする。しかし、Bは0.01
0%を超えて添加しても、効果が飽和するのみならず、
多量のBNや炭ほう化物を析出し、熱間延性を低下させ
る。従って、B含有率は0.0005〜0.010%の
範囲内にするのが望ましい。
(13) Boron (B) B fixes N in steel as BN, reduces the effect of N on graphitization, and acts as graphite precipitation nuclei to promote the precipitation of graphite. Because it is used for this purpose, 0.00
It requires an addition of at least 05%. However, B is 0.01
Adding more than 0% not only saturates the effect,
Precipitates a large amount of BN and carbon borides and reduces hot ductility. Therefore, the B content is desirably in the range of 0.0005 to 0.010%.

【0038】(14)アルミニウム(Al) Alは脱酸剤として重要な元素であると共に、AlNを
析出し結晶粒を微細にする元素である。またSiと同様
に黒鉛化を促進する元素である。これらの目的のために
はAlは少なくとも0.001%以上添加する必要があ
る。しかし、Alを0.10%を超えて添加すると、酸
化物系介在物の量が多くなって、鋼の清浄性を低下さ
せ、熱間加工時の割れの原因となる。また連続鋳造にお
いてAl23 がノズルに堆積して、ノズル詰まりを引
き起こすので、Al含有率は、0.001〜0.10%
の範囲内にするのが望ましい。
(14) Aluminum (Al) Al is an important element as a deoxidizing agent, and is an element that precipitates AlN to make crystal grains fine. It is an element that promotes graphitization like Si. For these purposes, it is necessary to add Al at least 0.001% or more. However, when Al is added in excess of 0.10%, the amount of oxide-based inclusions increases, thereby deteriorating the cleanliness of the steel and causing cracking during hot working. Further, in continuous casting, Al 2 O 3 accumulates on the nozzle and causes clogging of the nozzle, so that the Al content is 0.001 to 0.10%.
It is desirable to be within the range.

【0039】(15)チタン(Ti) TiはTiN及びTiCを析出させ、結晶粒を微細化す
る。またTiN及びTiCは黒鉛析出の核として作用
し、黒鉛の析出を促進する。Ti添加量が0.005%
未満ではその効果は小さく、一方、Tiを0.10%を
超えて添加すると、硬いTiNやTiCが多量に生成し
て、工具の摩耗を促進する。従って、Ti含有率は、
0.005〜0.050%の範囲内にするのが望まし
い。
(15) Titanium (Ti) Ti precipitates TiN and TiC and refines crystal grains. Further, TiN and TiC act as nuclei for graphite precipitation and promote graphite deposition. 0.005% Ti added
If the amount is less than 0.10%, the effect is small. On the other hand, if Ti is added in excess of 0.10%, a large amount of hard TiN or TiC is generated to promote tool wear. Therefore, the Ti content is
It is desirable to set it in the range of 0.005 to 0.050%.

【0040】(15)ジルコニウム(Zr) ZrもTiと同様に窒化物及び炭化物を析出させ、結晶
粒を微細化すると共に、黒鉛の析出を促進させる。Zr
添加量が0.005%未満ではその効果は小さい。一
方、Zrを0.050%を超えて添加すると、工具の摩
耗を促進する。従って、Zr含有率は0.005〜0.
050%の範囲内にするのが望ましい。
(15) Zirconium (Zr) Like Ti, Zr also precipitates nitrides and carbides, refines crystal grains, and promotes precipitation of graphite. Zr
If the added amount is less than 0.005%, the effect is small. On the other hand, if Zr exceeds 0.050%, tool wear is promoted. Therefore, the Zr content is 0.005 to 0.5.
It is desirable to be within the range of 050%.

【0041】(16)バナジウム(V) Vも窒化物及び炭化物を析出させ、結晶粒を微細化す
る。また析出物が微細であるので鋼の降伏応力を高め、
疲労限応力を向上させる。V添加量が0.01%未満で
はその効果は小さい。一方、Vは黒鉛の析出を阻害する
元素であり、0.20%を超えて添加すると、黒鉛化促
進元素を多量に必要とする。従って、V含有率は0.0
1〜0.20%の範囲内にするのが望ましい。
(16) Vanadium (V) V also precipitates nitrides and carbides and refines crystal grains. In addition, since the precipitate is fine, it increases the yield stress of the steel,
Improve fatigue limit stress. If the V content is less than 0.01%, the effect is small. On the other hand, V is an element that inhibits the precipitation of graphite, and if added in excess of 0.20%, a large amount of the graphitization promoting element is required. Therefore, the V content is 0.0
It is desirable to set it in the range of 1 to 0.20%.

【0042】(17)ニオブ(Nb) Nbも窒化物及び炭化物を析出させ、結晶粒を微細化す
ると共に、降伏応力を高める。Nbの炭窒化物は115
0℃の高温でも鋼中に溶解せず、オーステナイト粒の粗
大化を阻止し、鍛造後の結晶粒を微細にして、靱性を向
上させる。Nb添加量が0.01%未満ではその効果は
小さく、一方、0.20%を超えて添加しても、黒鉛の
析出が阻害されて、黒鉛化促進元素を多量に必要とす
る。従って、Nb含有率は0.01〜0.20%の範囲
内にするのが望ましい。
(17) Niobium (Nb) Nb also precipitates nitrides and carbides, refines crystal grains, and increases the yield stress. Nb carbonitride is 115
It does not dissolve in steel even at a high temperature of 0 ° C., prevents coarsening of austenite grains, refines crystal grains after forging, and improves toughness. If the amount of Nb is less than 0.01%, the effect is small. On the other hand, if it exceeds 0.20%, the precipitation of graphite is inhibited and a large amount of the graphitization promoting element is required. Therefore, it is desirable that the Nb content be in the range of 0.01 to 0.20%.

【0043】(18)カルシウム(Ca) Caは鋳鉄においては、接種材として使用され黒鉛化を
促進させる。これは溶鋼の温度水準でのCaの蒸気圧が
高く、鋳造中にCaの蒸気が凝固鋼内に微小な空洞を形
成し、これが黒鉛析出の核となって、球状黒鉛を析出さ
せると考えられる。鋼においてもCaは鋳鉄と同様な挙
動をして、熱間加工後の黒鉛析出を容易にする。また、
Caは酸化物系介在物として存在すると、超硬工具切削
においてベラーグを形成し、工具寿命を延長する効果が
大きいので、快削鋼への添加が望ましい元素である。こ
うした目的のためにはCaは、0.0010%以上添加
する必要がある。しかし、0.010%を超えて添加し
ても効果は飽和する。従って、Ca含有率は0.001
0〜0.010%の範囲内にするのが望ましい。
(18) Calcium (Ca) Ca is used as an inoculant in cast iron to promote graphitization. This is thought to be because the vapor pressure of Ca at the temperature level of the molten steel is high, and the vapor of Ca forms small cavities in the solidified steel during casting, which becomes the core of graphite precipitation and precipitates spheroidal graphite. . In steel, Ca behaves similarly to cast iron, and facilitates graphite precipitation after hot working. Also,
When Ca is present as an oxide-based inclusion, Ca forms a belag in the cutting of a cemented carbide tool, and has a great effect of extending the tool life. Therefore, Ca is an element desirably added to free-cutting steel. For this purpose, Ca needs to be added in an amount of 0.0010% or more. However, even if it exceeds 0.010%, the effect is saturated. Therefore, the Ca content is 0.001.
It is desirable to set it in the range of 0 to 0.010%.

【0044】(19)マグネシウム(Mg) MgもCaと同じく、鋳鉄において接種材として使用さ
れ、黒鉛化を促進させ、また、鋼においても加工後の黒
鉛析出を容易にする。その添加量が0.0010%未満
では効果は小さい。一方、Mgを0.10%を超えて添
加しても効果は飽和する。従って、Mg含有率は0.0
010〜0.10%の範囲内にするのが望ましい。
(19) Magnesium (Mg) Mg, like Ca, is used as an inoculant in cast iron, promotes graphitization, and also facilitates the precipitation of graphite after working in steel. If the added amount is less than 0.0010%, the effect is small. On the other hand, even if Mg is added in excess of 0.10%, the effect is saturated. Therefore, the Mg content is 0.0
It is desirable to be within the range of 010 to 0.10%.

【0045】(20)REM(希土類元素) Ce、La等のREMも鍛造後の黒鉛析出を促進する。
その添加量が0.0010%未満では効果は小さい。一
方、REMを0.10%を超えて添加しても効果は飽和
する。従って、REM含有率は0.0010〜0.10
%の範囲内にするのが望ましい。
(20) REM (Rare Earth Element) REM such as Ce and La also promotes graphite precipitation after forging.
If the added amount is less than 0.0010%, the effect is small. On the other hand, even if REM exceeds 0.10%, the effect is saturated. Therefore, the REM content is 0.0010 to 0.10
% Is desirable.

【0046】以上の他に、鋼にはSn、As等の不可避
的に混入する元素を含む。また環境への問題が小さい場
合には,補足的にBi、Se、Te等の快削性向上元素
を少量添加することも可能である。
In addition to the above, steel contains elements inevitably mixed, such as Sn and As. If the environmental problem is small, it is also possible to supplementarily add a small amount of a free-cutting element such as Bi, Se, or Te.

【0047】(21)黒鉛化指数 鋼材中の黒鉛はその快削性向上に効果的である。鋼材中
に黒鉛の析出を促進させるためには、黒鉛化指数CEを
大きくすることが重要である。このCEは主要元素につ
いては以下の式で表わされる。即ち、 CE=C+Si/3−Mn/12+Cu/9+Ni/9
+Co/9−Cr/9−Mo/9+B+Al/6+Ti
/3+Zr/3−V/3−Nb/3 但し、上式中の元素記号はその元素の含有重量%を表わ
す。またCa、Mg及びREMの内の少なくとも1種を
0.0010%以上含有する場合には、上記式の右辺に
0.07を加算する。
(21) Graphitization Index Graphite in steel is effective in improving its free-cutting properties. In order to promote the precipitation of graphite in a steel material, it is important to increase the graphitization index CE. This CE is represented by the following formula for the main elements. That is, CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9
+ Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti
/ 3 + Zr / 3-V / 3-Nb / 3 where the symbol of the element in the above formula represents the content% by weight of the element. When at least one of Ca, Mg, and REM is contained by 0.0010% or more, 0.07 is added to the right side of the above equation.

【0048】一方、黒鉛の析出は加熱温度、冷却速度に
よっても左右され、CEによって一義的に決定されるも
のではない。しかしながら、CEが1.30以上でない
場合は、対象高温鋼材を炉冷等により長時間の黒鉛化処
理を行なわなければならず、短時間の熱処理で黒鉛を析
出させることが困難になる。従って、黒鉛化指数CEは
1.30以上に限定する。
On the other hand, the precipitation of graphite depends on the heating temperature and the cooling rate, and is not uniquely determined by CE. However, when CE is not more than 1.30, the target high-temperature steel material must be subjected to a long-time graphitization treatment by furnace cooling or the like, and it becomes difficult to precipitate graphite by a short-time heat treatment. Therefore, the graphitization index CE is limited to 1.30 or more.

【0049】(22)熱間圧延時の加熱温度 熱間圧延前の鋳片又は鋼片の加熱温度が850℃未満で
は、鋼の変形能が不足して、棒線材に表面疵が発生し易
い。一方、加熱温度が1150℃を超えると鋼の固相線
温度に近くなってやはり熱間延性が不足して棒線材に割
れを発生する。このため熱間圧延時の加熱温度は850
〜1150℃の間とする。
(22) Heating temperature during hot rolling If the heating temperature of the slab or slab before hot rolling is less than 850 ° C., the deformability of the steel is insufficient, and surface defects are apt to occur on the rod or wire. . On the other hand, if the heating temperature exceeds 1150 ° C., the temperature becomes close to the solidus temperature of steel, and the hot ductility is also insufficient, and cracks occur in the rod or rod. Therefore, the heating temperature during hot rolling is 850.
の 間 1150 ° C.

【0050】(23)黒鉛化加熱温度 鋼材の再加熱により黒鉛の析出を促進させるためには、
黒鉛化焼ならしを行なう。黒鉛化焼ならしにおける加熱
温度は黒鉛析出に対する重要因子である。加熱温度が6
00℃未満の加熱では、炭素の拡散速度が小さい。しか
し、1000℃より高い温度に加熱すると、昇温中に一
旦析出した黒鉛は高温加熱中に再溶解して、空冷後に得
られる黒鉛の大きさが小さくなる。従って、黒鉛化焼な
らしのための加熱温度は600〜1000℃の範囲内に
限定する。一層望ましくは650〜950℃の範囲内が
よく、この温度範囲内でより短時間の加熱で、所望の大
きさ及び数の黒鉛を得ることができる。
(23) Graphitization heating temperature In order to promote the precipitation of graphite by reheating the steel,
Perform graphite normalization. The heating temperature in the graphitizing normalization is an important factor for graphite precipitation. Heating temperature is 6
Heating at less than 00 ° C. results in a low carbon diffusion rate. However, when heated to a temperature higher than 1000 ° C., the graphite once precipitated during the temperature rise is redissolved during the high-temperature heating, and the size of the graphite obtained after air cooling is reduced. Therefore, the heating temperature for graphitization normalization is limited to the range of 600 to 1000 ° C. More preferably, the temperature is in the range of 650 to 950 ° C., and within this temperature range, graphite of a desired size and number can be obtained by heating for a shorter time.

【0051】(24)黒鉛化加熱時間 黒鉛化加熱時間は短いほど生産性が向上して望ましい。
3hr以下の加熱で十分、所望とする黒鉛の大きさ及び
数、金属組織及び、硬さが得られる。従って、加熱時間
は3hr以下に限定する。
(24) Graphitization Heating Time The shorter the graphitization heating time, the better the productivity is.
Heating of 3 hours or less can provide the desired size and number of graphite, metal structure, and hardness. Therefore, the heating time is limited to 3 hours or less.

【0052】加熱後は、鋼材を炉から取り出して空冷す
れば徐冷等をしなくても十分である。コイル材の場合に
は1〜3トンの巻き取られたコイル状態で冷却される。
直棒の場合には数本〜100本程度の結束した状態で冷
却されることが大半である。従って、本発明にかかる鋼
材の場合には、このような状態での空冷による冷却速度
は、黒鉛を析出させ、且つ成長させるのに十分に小さ
く、満足すべきものである。
After the heating, the steel material is taken out of the furnace and air-cooled, which is sufficient without slow cooling. In the case of a coil material, it is cooled in the state of a wound coil of 1 to 3 tons.
In the case of a straight rod, it is mostly cooled in a state of binding several to about 100 rods. Therefore, in the case of the steel material according to the present invention, the cooling rate by air cooling in such a state is sufficiently small to precipitate and grow graphite, which is satisfactory.

【0053】(25)黒鉛の粒径 本発明における黒鉛の析出形状は、一般的に塊状と表現
されるものであるが、これが球状、粒状あるいは楕円体
状であってもよく、平均的な長さ/厚み比が5以下なら
ば特に差し支えはない。このように、塊状に析出した黒
鉛の平均粒径が1.0μm未満では、切削時に切り屑を
小さく破砕する効果が小さく、切削性向上への寄与は小
さい。従って、黒鉛の平均粒径は1.0μm以上になる
ようにする。一方、その平均粒径の上限は特に限定しな
いが、30μmを超える黒鉛が多数析出すると靱性低下
の原因となる。従って、黒鉛の平均粒径は30μm以下
にするのが望ましい。
(25) Particle Size of Graphite The precipitation form of graphite in the present invention is generally expressed as a lump, but it may be spherical, granular or elliptical, and the average length There is no particular problem if the thickness / thickness ratio is 5 or less. As described above, when the average particle size of the graphite precipitated in the form of a lump is less than 1.0 μm, the effect of breaking small chips during cutting is small, and the contribution to improving the machinability is small. Therefore, the average particle size of graphite is set to 1.0 μm or more. On the other hand, the upper limit of the average particle size is not particularly limited, but precipitation of a large amount of graphite exceeding 30 μm causes a decrease in toughness. Therefore, it is desirable that the average particle size of the graphite be 30 μm or less.

【0054】(26)黒鉛の数 単位断面積当たりの黒鉛の数は、切り屑を小さく分断さ
せるのに重要である。その数が100個/mm2 未満で
は切り屑処理性の改善効果が小さいので、黒鉛の数は1
00個/mm2 以上にする。黒鉛の数は、黒鉛の大きさ
に左右され、粒径が大きくなれば少なくなり、小さくな
れば多くなる。本発明では粒径が10〜25μmの黒鉛
が析出するとき、その数はおおよそ100〜1000個
/mm2の間であるが、1.0〜5μmの黒鉛が析出す
る場合にはおおよそ3000〜50000個/mm2
達する。
(26) Number of Graphite The number of graphite per unit sectional area is important for breaking chips into small pieces. If the number is less than 100 / mm 2 , the effect of improving the chip controllability is small.
Set to 00 pieces / mm 2 or more. The number of graphite depends on the size of graphite, and decreases as the particle size increases and increases as the particle size decreases. In the present invention, when graphite having a particle size of 10 to 25 μm is deposited, the number thereof is approximately between 100 to 1000 / mm 2 , but when graphite having a particle size of 1.0 to 5 μm is deposited, it is approximately 3000 to 50,000. Pcs / mm 2 .

【0055】 (27)金属組織工具寿命を延ばすため
には、鋼材の硬さを低くする必要がある。このような低
硬さの鋼材を得るには、黒鉛化焼ならし鋼の金属組織を
フェライト+パーライト又はフェライトのみにすること
が必要であり、フェライトの量を70%以上にすること
が必要である。金属組織をこのように制御するために、
黒鉛化加熱後の冷却速度を小さくして、黒鉛を大きく成
長させ、パーライトの量を減少させる。そして十分小さ
い冷却速度で冷却することによって、金属組織はパーラ
イトを含まない軟質なフェライト単相になる。この発明
の他の構成要件による条件下において、上記金属組織を
得るためには、前記(24)項で述べたように、黒鉛化
加熱後、空冷すればよい。
(27) To extend the life of the metallographic tool, it is necessary to lower the hardness of the steel material. In order to obtain such a low-hardness steel material, it is necessary that the metallographic structure of the graphitized normalizing steel be only ferrite + pearlite or ferrite, and the amount of ferrite must be 70% or more. is there. In order to control the metal structure in this way,
The cooling rate after the graphitization heating is reduced, so that the graphite grows larger and the amount of pearlite is reduced. By cooling at a sufficiently low cooling rate, the metal structure becomes a soft ferrite single phase containing no pearlite. In order to obtain the above metal structure under the conditions according to the other constitutional requirements of the present invention, as described in the above section (24), it is sufficient to air-cool after heating for graphitization.

【0056】(28)硬さ 黒鉛化焼ならし後のブリネル硬さ(HB)が200を超
えると、切削工具の摩耗が大きくなって、工具寿命が短
くなる。従って、ブリネル硬さは200以下であること
が必要である。金属組織がフェライト単相になった場合
にはブリネル硬さは130程度まで低下する。
(28) Hardness When the Brinell hardness (HB) after graphitizing and normalizing exceeds 200, the wear of the cutting tool increases and the tool life is shortened. Therefore, the Brinell hardness needs to be 200 or less. When the metal structure becomes a ferrite single phase, the Brinell hardness decreases to about 130.

【0057】[0057]

【実施例】 次に、この発明を、実施例によって更に詳
細に説明する。表1及び2に、試験に用いた供試鋼の化
学成分組成及び黒鉛化指数CEを示す。表1の鋼No.
1〜11および21〜23は全て、化学成分組成が本発
明の範囲内の鋼である。表2の鋼No.24〜46は全
て、化学成分組成が本発明の範囲外の鋼であり、No.2
4〜45は比較成分鋼、そしてNo.46は従来成分鋼
のSUM24Lである。
Next, the present invention will be described in more detail by way of examples. Tables 1 and 2 show the chemical composition and the graphitization index CE of the test steel used in the test. The steel No. in Table 1 was used .
1 to 11 and 21 to 23 are all steels having a chemical composition within the scope of the present invention. In Table 2, steel No. Nos. 24 to 46 are all steels whose chemical composition is out of the range of the present invention,
Nos. 4 to 45 are comparative component steels. 46 is a conventional component steel SUM24L.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】上記各成分の供試鋼(鋼No.1〜46)は
130トン電気炉により溶製後、連続鋳造又は造塊によ
り鋳片に鋳造したものである。鋳片を160mm角の鋼
片に分塊圧延後、鋼片加熱炉にて加熱後、直径24mm
又は32mmの棒鋼に熱間圧延し、これを長さ5.5m
の棒鋼に切断した後、棒鋼の表面疵有無を検査した。次
いでそれらの棒鋼を1トン単位で結束し、熱処理炉に装
入して黒鉛化焼ならし処理を行なった。
The test steels (Steel Nos. 1 to 46) of each of the above components were melted in a 130-ton electric furnace and then cast into slabs by continuous casting or ingot casting. After slab rolling the cast slab into a 160 mm square steel slab, after heating in a slab heating furnace, the diameter was 24 mm.
Or hot-rolled into a 32 mm steel bar, which is 5.5 m long
After cutting into steel bars, the steel bars were inspected for surface flaws. Then, the steel bars were united in units of 1 ton, charged into a heat treatment furnace, and subjected to a graphitization normalizing treatment.

【0061】 表3及び4に、棒鋼製造試験に用いた供
試鋼の鋼No.、鋼片の加熱温度、圧延棒鋼の表面疵の
有無、並びに棒鋼の黒鉛化加熱温度及び黒鉛化加熱時間
を示す。即ち、表3及び4の試験は、本発明の範囲内の
試験である実施例1−1〜実施例1−11、及び本発明
の範囲外の試験である比較例1−21〜比較例1−46
からなる。
Tables 3 and 4 show the steel No. of the test steel used in the steel bar production test. , The heating temperature of the billet, the presence or absence of surface flaws in the rolled bar, and the graphitizing heating temperature and graphitizing heating time of the bar. That is, the tests in Tables 3 and 4 are Examples 1-1 to 1-11 which are tests within the scope of the present invention, and Comparative Examples 1-21 to Comparative Examples 1 which are tests outside the scope of the present invention. −46
Consists of

【0062】[0062]

【表3】 [Table 3]

【0063】[0063]

【表4】 [Table 4]

【0064】上記試験で得られた黒鉛化焼ならしの施さ
れた棒鋼について、下記試験をした。 黒鉛析出状態及び金属組織を、光学顕微鏡にて観察し
た。黒鉛析出状態としては、黒鉛の平均粒径及び黒鉛粒
の数を測定した。金属組織としてはフェライト+パーラ
イト組織中のフェライト%(面積%)を測定した。 ブリネル硬さを、硬さ計にて試験した。
The following test was carried out on the graphitized and normalized steel bars obtained in the above test. The graphite precipitation state and metal structure were observed with an optical microscope. As the graphite precipitation state, the average particle size of graphite and the number of graphite particles were measured. As the metal structure, ferrite% (area%) in ferrite + pearlite structure was measured. Brinell hardness was tested with a hardness tester.

【0065】その後、棒鋼を自動盤にて切削加工し、自
動車の油圧部品であるピストンピンに機械加工した。こ
れを用いて、 被削性試験を行なった。被削性は、切り屑の処理性と
工具寿命で判定した。即ち、切り屑処理性は、切り屑が
2巻以下で分断しているものを「良好」としてランク
1、切り屑が3〜6巻で分断しているものを「普通」と
してランク2、そして切り屑が7巻以上に長くつながっ
ているものを「劣る」としてランク3と位置づけた。工
具寿命の試験は、ハイス工具で切削速度150m/mi
n、送り0・20mm/revにて切削油をかけた状態
で切削し、刃先が溶損して切削不能になるまでの時間を
測定し、工具寿命とした。
Thereafter, the steel bar was cut by an automatic lathe and machined into a piston pin which is a hydraulic component of an automobile. Using this, a machinability test was performed. The machinability was determined based on the chip disposability and the tool life. That is, the chip disposability is ranked 1 as “good” when the chip is divided in 2 or less volumes, and rank 2 as “normal” when the chip is divided in 3 to 6 volumes, and If the chips were longer than 7 rolls, they were ranked as “poor”. The tool life test was performed at a cutting speed of 150 m / mi with a high-speed tool.
n, cutting was performed at a feed rate of 0.20 mm / rev with cutting oil applied, and the time until the cutting edge was melted and became uncuttable was measured and defined as the tool life.

【0066】 上記試験結果を、表3及び4に併記し
た。以上の表1〜4より、下記事項がわかる。 (1)本発明の鋼の成分組成、並びに熱間圧延条件及び
黒鉛化焼ならし条件を全て満足している、実施例1−1
1−11は、棒鋼の表面疵発生はなく、黒鉛の平均粒
径及び黒鉛粒の数は目標値を満たし、金属組織について
も目標が満たされ、そして、硬さもHB200以下と軟
質な棒鋼となっている。このため、切り屑処理性はすべ
て評価ランク1の小さく分断した切り屑であって、工具
寿命も30分以上と優れた長寿命を有していた。
The test results are shown in Tables 3 and 4. From Tables 1 to 4 above, the following matters can be understood. (1) Example 1-1 which satisfies all the component composition of the steel of the present invention, hot rolling conditions and graphitizing and normalizing conditions.
~ 1-11 , there is no occurrence of surface flaws in the steel bar, the average particle size of graphite and the number of graphite particles meet the target value, the target is also satisfied for the metal structure, and the hardness is less than HB200 and soft bar Has become. For this reason, the chip handling properties were all small cut chips with an evaluation rank of 1, and the tool life was as long as 30 minutes or more.

【0067】(2)これに対して、本発明の範囲外の条
件が一つでも入っている試験である、比較例1−21〜
1−46では、本発明の目標が達成されなかった。詳細
は次の通りである。
(2) On the other hand, Comparative Examples 1-21 to 21-5 were tests in which at least one condition outside the scope of the present invention was included.
In 1-46, the goal of the present invention was not achieved. Details are as follows.

【0068】・比較例1−21は、化学成分は本発明の
範囲内であるが、熱間圧延時の加熱温度が本発明の範囲
より高かったために、熱間延性が不足して棒鋼に大きな
疵が発生した。また比較例1−22は同様に、化学成分
は本発明の範囲内であるが、熱間圧延時の加熱温度が逆
に本発明の範囲より低かったために、熱間延性が不足し
て棒鋼に大きな疵が発生した。
In Comparative Example 1-21, the chemical composition is within the range of the present invention, but since the heating temperature during hot rolling was higher than the range of the present invention, the hot-ductility was insufficient and the steel bar was large. Scratches occurred. Similarly, in Comparative Example 1-22, the chemical composition was within the range of the present invention, but the heating temperature during hot rolling was conversely lower than the range of the present invention. Large flaws occurred.

【0069】・比較例1−23は、化学成分及び熱間圧
延時の加熱温度共に、本発明の範囲内であるが、黒鉛化
のための加熱温度が本発明の範囲より高い。このため昇
温中に一旦析出した黒鉛が高温条件下で再溶解したため
に、黒鉛粒が1.0μmより小さくなってしまい、切り
屑処理性は評価ランク2の普通の状態のものしか得るこ
とができなかった。
In Comparative Example 1-23, both the chemical composition and the heating temperature during hot rolling are within the range of the present invention, but the heating temperature for graphitization is higher than the range of the present invention. For this reason, the graphite that once precipitated during the temperature rise was redissolved under high temperature conditions, so that the graphite particles became smaller than 1.0 μm, and the chip controllability was only obtained in the normal state of evaluation rank 2. could not.

【0070】・比較例1−24は、C含有率が本発明の
範囲を外れて低く、このため黒鉛は1.0μm以下の小
さいものしか得られず、金属組織中のフェライト量も少
なく、硬さもHB200を超えて高く、切り屑処理性、
工具寿命とも劣るものであった。特に切り屑は長くつな
がって被削材に絡まってしまったために、機械を停止し
て切り屑を除去する必要があった。C含有率が逆に、本
発明を外れて高い比較例1−25では、熱間延性が不足
して、棒鋼に割れが発生した。なお、以後の比較例にお
いては、表面疵の発生した棒鋼の切削試験は省略した。
In Comparative Example 1-24, the C content was low outside the range of the present invention, so that only graphite having a small size of 1.0 μm or less was obtained, the amount of ferrite in the metal structure was small, and Higher than HB200, chip processing,
The tool life was also inferior. In particular, since the chips were long and entangled with the work material, it was necessary to stop the machine and remove the chips. Conversely, in Comparative Example 1-25, in which the C content deviated from the present invention and was high, the hot ductility was insufficient, and the steel bar cracked. In the following comparative examples, a cutting test of a bar steel having a surface flaw was omitted.

【0071】・比較例1−26は、Si含有率が本発明
の範囲を外れて低く、このため黒鉛粒が小さく、被削性
の劣るものであった。比較例1−27は、Siが本発明
を外れて高く、このため熱間延性が不足して、棒鋼に疵
が発生した。
In Comparative Example 1-26, the Si content was low outside the range of the present invention, so that the graphite particles were small and the machinability was poor. In Comparative Example 1-27, Si deviated from the present invention and was high, so that hot ductility was insufficient, and flaws occurred in the steel bar.

【0072】・比較例1−28は、Mn含有率が2.0
%を超えて高く、やはり熱間延性が不足して、棒鋼に疵
が発生した。 ・比較例1−29は、P含有率が本発明の範囲より高
く、熱間延性不足で、棒鋼に疵が発生した。
In Comparative Example 1-28, the Mn content was 2.0
%, And the hot ductility was also insufficient, so that the steel bar was flawed. -In Comparative Example 1-29, the P content was higher than the range of the present invention, the hot ductility was insufficient, and flaws occurred in the steel bar.

【0073】・比較例1−30は、S含有率が本発明の
範囲より高く、熱間延性不足で、棒鋼に疵が発生した。 ・比較例1−31は、Cu含有率が本発明の範囲より高
く、熱間延性不足で、棒鋼に疵が発生した。
In Comparative Example 1-30, the S content was higher than the range of the present invention, the hot ductility was insufficient, and flaws occurred in the steel bar. -In Comparative Example 1-31, the Cu content was higher than the range of the present invention, the hot ductility was insufficient, and flaws occurred in the steel bar.

【0074】・比較例1−32は、Cr含有率が本発明
の範囲より高く、このため黒鉛化指数CEが1.30を
下回って低かったために小さい黒鉛しか得ることができ
ず、硬くて、被削性に劣るものであった。
In Comparative Example 1-32, since the Cr content was higher than the range of the present invention, and the graphitization index CE was lower than 1.30, only small graphite could be obtained. The machinability was poor.

【0075】・比較例1─33は、Ni及びMo含有率
が本発明の範囲より高く、このため熱間延性が不足し
て、棒鋼に疵を生じた。 ・比較例1−34は、Co及びO含有率が本発明より高
く、やはり棒鋼に疵が発生した。
Comparative Example 1 In No. 33, the content of Ni and Mo was higher than the range of the present invention, so that the hot ductility was insufficient and the steel bar was flawed. In Comparative Example 1-34, the contents of Co and O were higher than those of the present invention, and the bar also had flaws.

【0076】・比較例1−35は、B含有率が本発明の
範囲より高く、多量の炭ほう化物が析出して、延性不足
により疵が発生した。 ・比較例1−36は、N含有率が本発明の範囲より高
く、このため鋳片に発生したブローホールが原因して、
棒鋼の表面に多数の線状疵が発生した。
In Comparative Example 1-35, the B content was higher than the range of the present invention, a large amount of carbon boride was precipitated, and defects were generated due to insufficient ductility. -In Comparative Example 1-36, the N content was higher than the range of the present invention, and thus, due to blow holes generated in the slab,
Many linear flaws occurred on the surface of the steel bar.

【0077】・比較例1─37は、Zr含有率が本発明
の範囲より高く、棒鋼に疵が発生した。 ・比較例1─38は、V含有率が本発明の範囲より高
く、黒鉛化指数CEが1.30より小さく不足して、
1.0μm以下の小さい黒鉛しか得ることができなかっ
た。そのため、被削性に劣るものであった。
In Comparative Example 1-37, the Zr content was higher than the range of the present invention, and the steel bar had flaws. -Comparative Example 1 # 38 has a V content higher than the range of the present invention and a graphitization index CE of less than 1.30,
Only small graphite of 1.0 μm or less could be obtained. Therefore, the machinability was poor.

【0078】・比較例1─39は、Al含有率が本発明
の範囲より高く、棒鋼に疵が発生した。 ・比較例1─40は、Nb含有率が本発明の範囲より高
く、黒鉛化指数CEが1.30より小さく不足して、
1.0μm以下の小さい黒鉛しか得ることができなかっ
た。そのため、被削性に劣るものであった。
In Comparative Example 1-39, the Al content was higher than the range of the present invention, and the steel bar had flaws.・ Comparative Example 1-40 has an Nb content higher than the range of the present invention, and the graphitization index CE is less than 1.30, and is insufficient.
Only small graphite of 1.0 μm or less could be obtained. Therefore, the machinability was poor.

【0079】・比較例1─41はCa含有率が、比較例
1−42はMg含有率が、比較例1−43はREM含有
率が、それぞれ本発明の範囲より高く、このため酸化物
系介在物が鋼中に多量に巻き込まれ、これが棒鋼に圧延
疵として残存した。
Comparative Example 1 # 41 had a Ca content, Comparative Example 1-42 had a Mg content, and Comparative Example 1-43 had a REM content higher than the range of the present invention. Inclusions were entangled in the steel in large amounts, which remained as rolling flaws on the bar.

【0080】・比較例1−44、及び比較例1−45
は、個々の化学成分組成は本発明の範囲内にあるが、黒
鉛化指数CEが本発明の範囲より低いため、析出した黒
鉛は小さいものであった。そのため、被削性に劣るもの
であった。
Comparative Examples 1-44 and 1-45
Although the composition of each chemical component is within the range of the present invention, the graphite deposited was small because the graphitization index CE was lower than the range of the present invention. Therefore, the machinability was poor.

【0081】・比較例1−45は、従来成分鋼のSUM
24Lであり、被削性は良好なものであった。しかし、
本鋼は炭素含有率が低いので、耐摩耗性を向上させるた
めに920℃×5hrの浸炭焼入れ後、170℃×1.
5hrの焼戻しを行う必要があった。また、棒鋼に熱間
圧延するに際しては、圧延中に先端が裂けて割れたりし
て、ミスロールになるのを防ぐため、鋼片の先端を鉛筆
の先端のように細くして、圧延機に噛み込ませる必要が
あった。
Comparative Example 1-45 shows that the conventional component steel SUM
24L, and the machinability was good. But,
Since this steel has a low carbon content, after carburizing and quenching at 920 ° C. for 5 hours, 170 ° C. × 1.
It was necessary to perform tempering for 5 hours. When hot rolling into steel bars, the tip of the steel slab is made thinner like a pencil to prevent the tip from tearing and cracking during rolling, resulting in misrolling. Had to be included.

【0082】 以上のSUM24Lに対し、実施例1−
1〜1−11に示した実施例においては、簡便な高周波
焼入れ−焼戻しを施すことにより耐摩耗性を向上させる
ことができた。また、いずれの実施例においても、熱間
圧延に当たって、特殊な先端加工を必要とせず、シャー
で切断ままの鋼片を用いても何ら支障なく圧延可能であ
った。
For the SUM24L described above, the first embodiment
In Examples 1 to 1-11 , the abrasion resistance could be improved by performing simple induction hardening and tempering. Further, in any of the examples, hot rolling did not require any special tip processing, and the rolling could be performed without any problem using a steel piece that had been cut with a shear.

【0083】次に、黒鉛化焼ならしにおける加熱温度と
加熱時間の影響について詳細に試験した。供試材とし
て、鋼No.1の化学成分組成の2トン鋼片を1000
℃に加熱し、熱間圧延後コイル状に巻き取った直径18
mmφの線材を用いた。焼ならしは、加熱温度を550
〜1050℃の間で50℃間隔の11水準の温度を設定
し、加熱時間を0.5hr、1hr及び3hrの3水準
で加熱し、その後空冷した。得られた試験材について、
ブリネル硬さ、黒鉛の析出状態及び金属組織の測定・試
験をした。
Next, the effects of the heating temperature and the heating time on the graphitizing normalization were examined in detail. As a test material, steel No. 2 tons of slab with chemical composition of 1
° C, hot rolled and coiled up to a diameter of 18
A mmφ wire was used. For normalization, set the heating temperature to 550.
Eleven levels of temperature were set at an interval of 50 ° C. between 〜101050 ° C., and heating was performed at three levels of 0.5 hr, 1 hr and 3 hr, and then air-cooled. About the obtained test material,
Brinell hardness, graphite precipitation and metal structure were measured and tested.

【0084】図1に、焼ならし温度とブリネル硬さとの
関係を、加熱時間で層別して示す。これよりわかるよう
に、0.5hr加熱では700〜1000℃の間でブリ
ネル硬さHB200以下のものが得られた。1hr加熱
では650〜950℃の間で、また3hr加熱では60
0〜900℃の間で、それぞれブリネル硬さHB200
以下のものが得られた。
FIG. 1 shows the relationship between the normalizing temperature and the Brinell hardness for each heating time. As can be seen from the graph, heating for 0.5 hr resulted in a Brinell hardness HB of 200 or less between 700 and 1000 ° C. Between 650 and 950 ° C. for 1 hr heating, and 60 ° C. for 3 hr heating.
Between 0 and 900 ° C., each has a Brinell hardness HB200
The following were obtained:

【0085】 また、HB200以下の硬さが得られた
線材においては、黒鉛の平均粒径は2〜10μmの間で
あって、金属組織は70%以上のフェライトを有するフ
ェライト+パーライト組織であった。図2に、化学成分
組成が鋼No.1であって、焼ならし温度850℃、加熱
時間1hrの黒鉛化焼ならしを行なった後、空冷した線
材試験材のミクロ組織を示す。
In the wire rod having a hardness of HB 200 or less, the average particle size of graphite was between 2 and 10 μm, and the metal structure was a ferrite + pearlite structure having 70% or more of ferrite. . FIG. 2 shows the microstructure of a wire rod test material which had a chemical composition of steel No. 1 and which had been subjected to graphitizing normalization at a normalizing temperature of 850 ° C. for a heating time of 1 hour and then air-cooled.

【0086】図2にミクロ組織を示した線材を供試材と
し、16mmφに引き抜き後、ドアロックノブピンと呼
ばれるねじ部品に機械加工した。切り屑処理性及び工具
寿命共に良好な試験結果が得られた。従来、上記ねじ部
品の製造に当たり、従来成分鋼のSUM24Lを用いた
場合には、線材を引き抜き後、ドアロックノブピンに機
械加工し、そして浸炭焼入れ、焼戻しを施していたが、
本発明による線材を用いれば、当該ねじ部品において簡
便な高周波焼入れ、焼戻しで部品の耐摩耗性を向上させ
ることができた。
The wire having the microstructure shown in FIG. 2 was used as a test material, pulled out to a diameter of 16 mm, and machined into a screw part called a door lock knob pin. Good test results were obtained for both chip disposability and tool life. Conventionally, in the case of using the conventional component steel SUM24L in the manufacture of the above screw parts, after the wire was pulled out, the door lock knob pin was machined, carburized and quenched, and tempered.
When the wire according to the present invention is used, the wear resistance of the screw component can be improved by simple induction hardening and tempering.

【0087】[0087]

【発明の効果】以上述べたように、この発明によれば、
鉛を添加することなく、従来の硫黄鉛複合快削鋼と同等
以上の被削性に優れた超快削鋼部品の製造が可能であ
り、また、当該部品の機械加工後は浸炭焼入れを行なわ
なくても、簡便な高周波焼入れにより、耐摩耗性を向上
させることが可能である。このような超快削鋼棒線材及
び部品の製造技術を提供することができ、工業上有用な
効果がもたらされる。
As described above, according to the present invention,
Without adding lead, it is possible to manufacture ultra-free-cutting steel parts with excellent machinability equal to or higher than conventional sulfur-lead composite free-cutting steel, and after carburizing the parts, carburizing and quenching is performed. If not, it is possible to improve wear resistance by simple induction hardening. It is possible to provide a manufacturing technique for such a super-free-cutting steel rod or rod and a component, and an industrially useful effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】線材の黒鉛化焼ならし温度とブリネル硬さとの
関係を、加熱時間で層別して示すグラフである。
FIG. 1 is a graph showing the relationship between the graphitizing normalizing temperature of a wire and Brinell hardness, stratified by heating time.

【図2】本発明による超快削鋼部品のミクロ組織例を示
す図である。
FIG. 2 is a view showing an example of a microstructure of a super free-cutting steel part according to the present invention.

フロントページの続き (56)参考文献 特開 昭49−67817(JP,A) 特開 平6−279849(JP,A) 特開 平11−293387(JP,A) 特開 平11−293388(JP,A) 特開 平11−293389(JP,A) 特開 平11−350066(JP,A) 特開 平11−350067(JP,A) 特開 平11−350068(JP,A) 特開 平3−146618(JP,A) 特開 平8−127845(JP,A) 社団法人日本金属学会編,球状黒鉛鋳 鉄の理論と実際,日本,丸善株式会社発 行,1966年6月30日,p.438 (58)調査した分野(Int.Cl.7,DB名) C21D 6/00 C21D 8/06 - 8/08 C22C 38/00 - 38/60 Continuation of the front page (56) References JP-A-49-6817 (JP, A) JP-A-6-279849 (JP, A) JP-A-11-2933387 (JP, A) JP-A-11-293388 (JP) JP-A-11-293389 (JP, A) JP-A-11-350066 (JP, A) JP-A-11-350067 (JP, A) JP-A-11-350068 (JP, A) 3-146618 (JP, A) JP-A-8-127845 (JP, A) Edited by The Japan Institute of Metals, Theory and Practice of Spheroidal Graphite Cast Iron, published by Maruzen Co., Japan, June 30, 1966, p. 438 (58) Field surveyed (Int.Cl. 7 , DB name) C21D 6/00 C21D 8/06-8/08 C22C 38/00-38/60

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C:1.00超〜1.50%、 Si:1.00〜2.80%、 Mn:0.01〜2.00%、 P:0.050%以下、 S:0.10%以下、 O:0.0050%以下、及び、 N:0.020%以下 を含有し、残部鉄(Fe)及び不可避的不純物からなる
化学成分組成を有し、下記(1)式で求められる黒鉛化
指数CEが1.30以上である鋳片又は鋼片を、850
〜1150℃の範囲内の温度に加熱し、熱間圧延し、そ
して室温まで冷却し、こうして得られた熱間圧延鋼材
を、600〜1000℃の範囲内の温度で3hr以下の
時間加熱した後、空冷し、前記鋼材中に平均粒径1.0
μm以上の黒鉛を100個/mm2以上析出させ、且つ
金属組織を70%以上のフェライトと残部パーライトと
からなるか、又はフェライトのみからなるものにし、し
かもブリネル硬さを200以下にすることを特徴とす
る、超快削鋼棒線材の製造方法。 CE=C+Si/3−Mn/12 ---(1) 但し、上式中の元素記号は各元素の重量%を表わす。
1. In weight%, C: more than 1.00 to 1.50%, Si: 1.00 to 2.80%, Mn: 0.01 to 2.00%, P: 0.050% or less , S: 0.10% or less, O: 0.0050% or less, and N: 0.020% or less, and has a chemical composition composed of a balance of iron (Fe) and unavoidable impurities. A slab or a slab having a graphitization index CE of 1.30 or more determined by the equation 1) was used for 850
After heating to a temperature in the range of 11150 ° C., hot rolling and cooling to room temperature, the hot rolled steel thus obtained is heated at a temperature in the range of 600 to 1000 ° C. for a time of 3 hours or less. , Air-cooled, average particle size of 1.0
It is necessary to precipitate 100 μm / mm 2 or more of graphite having a size of 70 μm or more, and to make the metal structure consist of 70% or more of ferrite and the balance of pearlite, or only ferrite, and have a Brinell hardness of 200 or less. Characterized by the method for manufacturing super-cutting steel rods and wires. CE = C + Si / 3-Mn / 12 --- (1) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項2】 前記鋳片又は鋼片として、更に下記元素
の成分組成からなる群から選ばれた1種以上を付加して
含有し、且つ、前記黒鉛化指数CEの算出式として下記
(2)式を用いた場合にその算出値が1.30以上であ
る化学成分組成を有するものを用いることを特徴とす
る、請求項1記載の超快削鋼棒線材の製造方法。重量%
で、 Cu:0.01〜2.0%、 Ni:0.01〜1.0%、 Co:0.01〜0.50%、 Cr:0.01〜0.50%、 Mo:0.01〜0.50%、及び、 B:0.0005〜0.010%。 なおCEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9 −Cr/9−Mo/9+B -----------------------------(2) 但し、上式中の元素記号は各元素の重量%を表わす。
2. The cast slab or the steel slab further contains at least one element selected from the group consisting of the following elements, and the graphitization index CE is calculated by the following formula (2). The method according to claim 1, wherein the calculated value of the formula (1) is 1.30 or more, and the calculated value is 1.30 or more. weight%
Cu: 0.01 to 2.0%, Ni: 0.01 to 1.0%, Co: 0.01 to 0.50%, Cr: 0.01 to 0.50%, Mo: 0. 01 to 0.50%, and B: 0.0005 to 0.010%. Note that CE is given by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9 -Cr / 9-Mo / 9 + B --------------------------- -(2) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項3】 前記鋳片又は鋼片として、更に下記元素
の成分組成からなる群から選ばれた、1種以上を付加し
て含有し、且つ、前記黒鉛化指数CEの算出式として下
記(3)式を用いた場合にその算出値が1.30以上で
ある化学成分組成を有するものを用いることを特徴とす
る、請求項1又は2記載の超快削鋼棒線材の製造方法。
重量%で、 Al:0.001〜0.10%、 Ti:0.005〜0.050%、 Zr:0.005〜0.050%、 V:0.01〜0.20%、及び、 Nb:0.01〜0.20% なおCEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 -----------------------------(3) 但し、上式中の元素記号は各元素の重量%を表わす。
3. The cast slab or the steel slab further contains one or more elements selected from the group consisting of the following elements, and the graphitization index CE is calculated as follows: 3) The method for manufacturing a super-cuttable steel rod or rod according to claim 1 or 2, wherein a material having a chemical component composition whose calculated value is equal to or greater than 1.30 when using equation (3) is used.
% By weight, Al: 0.001 to 0.10%, Ti: 0.005 to 0.050%, Zr: 0.005 to 0.050%, V: 0.01 to 0.20%, and Nb: 0.01 to 0.20% CE is calculated by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 ------------- ---------------- (3) Here, the symbol of the element in the above formula represents the weight% of each element.
【請求項4】 前記鋳片又は鋼片として、更に下記元素
の成分組成からなる群から選ばれた、1種以上を付加し
て含有し、且つ、前記黒鉛化指数CEの算出式として下
記(4)式を用いた場合にその算出値が1.30以上で
ある化学成分組成を有するものを用いることを特徴とす
る、請求項1、2又は3記載の超快削鋼棒線材の製造方
法。重量%で、 Ca:0.0010〜0.0100%、 Mg:0.0010〜0.10%、及び、 REM:0.0010〜0.10%。 なおCEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 +0.07 -----------------------------(4) 但し、上式中の元素記号は各元素の重量%を表わす。
4. The cast slab or the steel slab further contains at least one element selected from the group consisting of the following elements, and the graphitization index CE is calculated as follows: 4) The method for producing a super-cuttable steel rod or wire according to claim 1, 2 or 3, wherein a material having a chemical component composition whose calculated value is 1.30 or more when equation (4) is used is used. . Ca: 0.0010-0.0100%, Mg: 0.0010-0.10%, and REM: 0.0010-0.10% by weight. Note that CE is given by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 + 0.07 ---------- ------------------- (4) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項5】 請求項1〜4記載の発明の内いずれかの
方法によって超快削鋼棒線材を製造し、こうして製造さ
れた超快削鋼棒線材に、直接又は冷間加工後、機械加工
を施すことを特徴とする、超快削鋼部品の製造方法。
5. An ultra-free-cutting steel rod or wire manufactured by the method according to any one of claims 1 to 4, and directly or after cold-working the manufactured super-cutting steel rod or wire. A method for manufacturing a super-free-cutting steel part, characterized by performing processing.
【請求項6】 請求項1〜4記載の発明の内いずれかの
方法によって製造されたものであることを特徴とする超
快削鋼棒線材。
6. An ultra-free-cutting steel rod or wire made by the method according to any one of claims 1 to 4.
【請求項7】 請求項5記載の発明の内いずれかの方法
によって製造されたものであることを特徴とする超快削
鋼部品。
7. A super free-cutting steel part manufactured by the method according to claim 5. Description:
JP23257198A 1998-08-19 1998-08-19 Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them Expired - Fee Related JP3256184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23257198A JP3256184B2 (en) 1998-08-19 1998-08-19 Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23257198A JP3256184B2 (en) 1998-08-19 1998-08-19 Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them

Publications (2)

Publication Number Publication Date
JP2000063948A JP2000063948A (en) 2000-02-29
JP3256184B2 true JP3256184B2 (en) 2002-02-12

Family

ID=16941439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23257198A Expired - Fee Related JP3256184B2 (en) 1998-08-19 1998-08-19 Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them

Country Status (1)

Country Link
JP (1) JP3256184B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699133B1 (en) * 2005-10-07 2007-03-22 동부제강주식회사 Manufacturing method of normalizing-treated free-cutting steel wire rod excellent in working
KR101187942B1 (en) 2010-07-19 2012-10-04 주식회사 포스코 LOW CARBON Pb FREE FREE-CUTTING STEEL WIRE ROD HAVING EXCELLENT MACHINABILITY
KR101676142B1 (en) * 2014-12-24 2016-11-15 주식회사 포스코 Steel having excellent machinability and vibration damping ability and manufacturing method thereof
CN107475492B (en) * 2017-07-20 2019-02-22 首钢集团有限公司 A kind of heating means of control automatic steel surface high-temp vulcanization defect

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315451B2 (en) * 1972-11-06 1978-05-25
JP2938101B2 (en) * 1989-10-30 1999-08-23 川崎製鉄株式会社 Manufacturing method of steel for cold forging
JPH06279849A (en) * 1993-01-26 1994-10-04 Kawasaki Steel Corp Production of steel for machine structure excellent in machinability
US5478523A (en) * 1994-01-24 1995-12-26 The Timken Company Graphitic steel compositions
JP3842430B2 (en) * 1998-04-08 2006-11-08 Jfe条鋼株式会社 Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JP3874533B2 (en) * 1998-04-08 2007-01-31 Jfe条鋼株式会社 Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JP3874532B2 (en) * 1998-04-08 2007-01-31 Jfe条鋼株式会社 Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JP3764273B2 (en) * 1998-06-04 2006-04-05 Jfe条鋼株式会社 Manufacturing method of hot forged steel part excellent in machinability, its part, hot rolled steel material used therefor, and manufacturing method of steel material
JP3764274B2 (en) * 1998-06-04 2006-04-05 Jfe条鋼株式会社 Free-cutting hot-worked steel material and rough profile, manufacturing methods thereof, free-cutting hot-worked product, and manufacturing method thereof
JP4084462B2 (en) * 1998-06-04 2008-04-30 Jfe条鋼株式会社 Free-cutting hot-worked steel and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
社団法人日本金属学会編,球状黒鉛鋳鉄の理論と実際,日本,丸善株式会社発行,1966年6月30日,p.438

Also Published As

Publication number Publication date
JP2000063948A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP5114689B2 (en) Case-hardened steel and method for producing the same
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
KR100740414B1 (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JPH11350066A (en) Production of hot forged steel parts excellent in machinability, the parts and hot rolled steel used therefor
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP2017066460A (en) Age hardening steel
JP3255612B2 (en) Method of manufacturing super-cuttable steel rod and wire and super-cuttable steel rod and wire thereby
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JP2005336553A (en) Hot tool steel
JP2017057474A (en) Free cutting steel
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP3255611B2 (en) Free-cutting steel rod and wire excellent in drilling workability and method for producing the same
JP3489656B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP4243852B2 (en) Steel for carburized parts or carbonitrided parts, method for producing carburized parts or carbonitrided parts
JP3395642B2 (en) Coarse-grained case hardened steel material, surface-hardened part excellent in strength and toughness, and method for producing the same
JPH10330836A (en) Production of hot forged parts excellent in machinability and fatigue characteristic
JP2021172875A (en) Manufacturing method of abrasion resistant steel
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
JP3325146B2 (en) Manufacturing method for high yield strength steel sheet with low yield ratio
JPH11293387A (en) Hot worked steel excellent in machinability, and product, and their production
JP5937852B2 (en) Case-hardening steel parts

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees