JP3255611B2 - Free-cutting steel rod and wire excellent in drilling workability and method for producing the same - Google Patents

Free-cutting steel rod and wire excellent in drilling workability and method for producing the same

Info

Publication number
JP3255611B2
JP3255611B2 JP23257298A JP23257298A JP3255611B2 JP 3255611 B2 JP3255611 B2 JP 3255611B2 JP 23257298 A JP23257298 A JP 23257298A JP 23257298 A JP23257298 A JP 23257298A JP 3255611 B2 JP3255611 B2 JP 3255611B2
Authority
JP
Japan
Prior art keywords
steel
weight
slab
less
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23257298A
Other languages
Japanese (ja)
Other versions
JP2000063988A (en
Inventor
豊明 江口
Original Assignee
エヌケーケー条鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌケーケー条鋼株式会社 filed Critical エヌケーケー条鋼株式会社
Priority to JP23257298A priority Critical patent/JP3255611B2/en
Publication of JP2000063988A publication Critical patent/JP2000063988A/en
Application granted granted Critical
Publication of JP3255611B2 publication Critical patent/JP3255611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、鋼材の断面中心
部の穴明け加工性に優れた超快削鋼棒線材に関するもの
で、鋳片の中心偏析を利用して周囲よりも中心部に黒鉛
が容易に析出するようにし、更に硬さも周囲より中心部
が低くくなるように調節して、芯ずれが発生しない、穴
明け加工性に優れた超快削鋼棒線材を製造する技術に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-free-cutting steel rod or wire having excellent drilling workability at the center of a cross section of a steel material. Technology for producing ultra-free-cutting steel rods and wires with excellent drilling properties that do not cause misalignment by adjusting the hardness so that the central part is lower than the surroundings so that the steel can be easily precipitated. It is.

【0002】[0002]

【従来の技術】従来の被削性に優れた超快削鋼として
は、硫黄及び鉛を複合添加したJISG 4804のS
UM24LやSUM43にPbを添加したSUM43L
が代表的なものとして挙げられる。これら快削鋼は衝撃
値や伸び等の延靱性よりも被削性が重視されるものであ
るが、これらに求められる被削性としては外周部の旋削
加工や突っ切り加工と共に、ドリル等の工具による鋼材
断面中心の穴明け加工性に優れていることが重要であ
る。
2. Description of the Related Art Conventionally, super free-cutting steels having excellent machinability include JIS G 4804 S with a combined addition of sulfur and lead.
UM24L or SUM43L with Pb added to SUM43
Are typical examples. In these free-cutting steels, machinability is more important than toughness such as impact value and elongation, but the machinability required for these is not only turning and parting off the outer periphery, but also tools such as drills. It is important that the steel has excellent drilling workability at the center of the cross section of the steel material.

【0003】一方、連続鋳造法や造塊法で鋳造された鋳
片や鋼塊の軸心部中央部の最終凝固部分には、一般に成
分の中心偏析が形成される。そしてこれらは熱間加工さ
れても当初の中心偏析は残留する。棒線材の製造には通
常、連続鋳造法や造塊法で鋳造された鋳片、及びそれを
分塊圧延した鋼片が使用されるが、鋳片及び鋼片のいず
れにも成分濃度の高い中心偏析部が形成されている。こ
のような中心偏析部の硬さは通常その周囲の部分よりも
硬さが高い。
On the other hand, in the final solidified portion at the center of the axial center of a slab or a steel ingot cast by a continuous casting method or an ingot casting method, center segregation of components is generally formed. And even if these are hot worked, the initial center segregation remains. For the production of rods and wires, slabs cast by the continuous casting method or ingot casting method and slabs obtained by slab-rolling the slabs are used, but both the slabs and the slabs have a high component concentration. A center segregation part is formed. The hardness of such a center segregation portion is usually higher than the surrounding portion.

【0004】穴明け加工においては、被削材の中心が硬
いと、工具先端の磨耗が大きく、工具寿命が短くなる。
また周囲よりも中心部での硬さが硬いと、穴明け加工に
おいては工具先端が軟質な周囲の部分にずれてしまう、
所謂芯ずれを起こしたりして製品として使用することが
できなくなる。そこで、穴明け加工が施される快削鋼棒
線材としては、その中心部の硬さは周囲の部分に比べて
同等ないしそれよりも低いことが必要である。
[0004] In drilling, if the center of the work material is hard, wear of the tool tip is large, and the tool life is shortened.
Also, if the hardness at the center is harder than the surroundings, the tool tip will shift to the soft surrounding part in drilling,
The product cannot be used as a product due to so-called misalignment. Therefore, as for a free-cutting steel rod wire to be subjected to drilling, it is necessary that the hardness at the center is equal to or lower than that of the surrounding part.

【0005】また、穴明け加工においては、切り屑が適
当に細かく分断しないと穴からの切り屑排出性が悪く、
工具折損の原因となる。また、最近は自動盤により無人
で機械加工されることが多く、切り屑が長くつながって
絡まってしまうと、機械の停止や切り屑を取り除くため
の余計な作業を行なう必要が生じ、生産性を低下させる
ことになる。そのため、工具の寿命が長いことと共に、
切り屑が適当な大きさに細かく分断するような、切り屑
処理性に優れた快削鋼が求められている。
[0005] In drilling, if the chips are not properly divided into small pieces, the discharge of chips from the holes is poor.
It may cause tool breakage. In recent years, automatic machines are often used for unmanned machining.If chips are long and entangled, it becomes necessary to stop the machine and perform extra work to remove the chips, thereby reducing productivity. Will be reduced. Therefore, along with the long tool life,
There is a need for a free-cutting steel with excellent chip disposability, in which the chips are finely divided into appropriate sizes.

【0006】これら工具寿命及び切り屑処理性の改善の
ために、従来はSUM23L、SUM43Lにみられる
ように、硫黄、燐複合快削鋼に更に、快削元素である鉛
を0.10〜0.35%添加して被削性を向上させてき
た。
[0006] In order to improve the tool life and chip disposability, conventionally, as shown in SUM23L and SUM43L, lead, which is a free-cutting element, is added to sulfur-phosphorus combined free-cutting steel in an amount of 0.10-0. The machinability has been improved by adding 0.35%.

【0007】Pbの融点は327℃と低いので、切削中
にPbが溶融して鋼が脆化し、切り屑処理性を向上させ
る。またPbの潤滑作用も加わり、工具の寿命が伸び
る。しかしながら、快削鋼におけるPbの使用は、Pb
ヒュームが発生する等の環境衛生上の問題から、今日無
鉛の超快削鋼が求められている。
[0007] Since the melting point of Pb is as low as 327 ° C, Pb melts during cutting and the steel becomes brittle, thereby improving chip controllability. In addition, the lubricating action of Pb is added, and the life of the tool is extended. However, the use of Pb in free-cutting steel
Due to environmental health problems such as generation of fume, lead-free ultra-free-cutting steel is required today.

【0008】鋼材の被削性を向上させる元素としては、
Pbの他にS、Ca、Bi、Se及びTe等の元素が知
られているが、これら元素は単独では、被削性改善効
果が小さい、高価である、環境衛生上問題がある、
といった欠点を少なくとも1つは有しているために、鉛
代替の元素として使用することには制限を受ける。
Elements that improve the machinability of steel materials include:
Elements other than Pb such as S, Ca, Bi, Se, and Te are known, but these elements alone have a small machinability improvement effect, are expensive, and have environmental health problems.
Has at least one of the drawbacks described above, which limits its use as an alternative to lead.

【0009】例えば、Sは被削性の改善に効果はある
が、Sを多量に添加すると熱間加工方向に長く伸びたM
nSが多量に形成されて、機械的性質に異方性を生じさ
せたり、靱性を低下させたりする等の問題がある。この
ため従来のSUM24L、SUM43Lにおいては、熱
間圧延に際して先端割れを起こし易く、圧延トラブルの
原因となっていた。このトラブルを回避するため圧延前
鋼片の先端を鉛筆の先端形状のように細く削る等の煩雑
な作業をする必要があった。またSUM24Lは低炭素
鋼であるため、機械加工した部品に耐摩耗性を付与する
場合は、900℃前後で数時間という長時間の浸炭焼入
れを施す必要があった。
For example, S is effective in improving machinability, but when a large amount of S is added, M elongates in the hot working direction.
There is a problem that a large amount of nS is formed to cause anisotropy in mechanical properties or to decrease toughness. For this reason, in the conventional SUM24L and SUM43L, the tip crack is easily caused at the time of hot rolling, which causes a rolling trouble. In order to avoid this trouble, it was necessary to perform a complicated operation such as sharpening the tip of the steel slab before rolling into a shape similar to the tip of a pencil. Further, since SUM24L is a low-carbon steel, when imparting wear resistance to a machined part, it was necessary to perform carburizing and quenching at around 900 ° C. for several hours for a long time.

【0010】一方、黒鉛は鋳鉄にみられるように、被削
性を極めて向上させる元素である。しかしながら、鋼に
炭素を添加するとセメンタイトを析出するので、黒鉛を
得るのは容易ではない。従来の発明における炭素濃度
0.10〜1.5%を有する鋼の場合には、例えば特開
平2−107742号公報(以下、先行技術1という)
や、特開平3−140411号公報(以下、先行技術2
という)には、600〜800℃の温度で数時間〜20
0時間という長時間の焼鈍を行なって黒鉛を析出させる
鋼材、又はそのような鋼材の製造方法が開示されてい
る。
[0010] On the other hand, graphite is an element that greatly improves machinability, as seen in cast iron. However, when carbon is added to steel, cementite precipitates, so that it is not easy to obtain graphite. In the case of steel having a carbon concentration of 0.10 to 1.5% in the conventional invention, for example, Japanese Patent Application Laid-Open No. 2-107742 (hereinafter referred to as Prior Art 1)
And JP-A-3-140411 (hereinafter referred to as prior art 2).
) At a temperature of 600 to 800 ° C for several hours to 20 hours.
A steel material that precipitates graphite by performing annealing for as long as 0 hours, or a method for producing such a steel material is disclosed.

【0011】しかしながら、このように長時間の黒鉛化
熱処理はコストの増大を招くのみならず、熱処理中に鋼
材に脱炭を起こし、最終部品の性能に悪影響を及ぼすと
いった弊害が生ずる。そこで、従来よりも簡便な熱処理
で、できれば熱処理を施すことなく、所望とする中心穴
明け性の優れた無鉛の超快削鋼が望まれている。
However, such a long-time graphitization heat treatment not only causes an increase in cost, but also causes a problem that the steel material is decarburized during the heat treatment and adversely affects the performance of the final part. Therefore, there is a demand for a lead-free ultra-free-cutting steel excellent in the desired center drilling property by a simpler heat treatment than before, preferably without heat treatment.

【0012】[0012]

【発明が解決しようとする課題】上述した先行技術1、
2には下記問題点のいずれかが未解決となっている。 問題点1:中心偏析により中心部の硬さが高く、従って
工具寿命が短く、また芯ずれを起こしたりする。
The prior art 1 described above,
2 has any of the following problems unresolved. Problem 1: Due to the center segregation, the hardness of the center is high, so that the tool life is short and the center is misaligned.

【0013】問題点2:使用されている快削元素には毒
性があり、環境対策上問題がある。 問題点3:多量のS、Pを複合して含有しているため、
熱間加工性が劣り、圧延前鋼片に先端割れ防止のための
特殊な機械加工を必要とする。
Problem 2: The free-cutting elements used are toxic and have problems in environmental measures. Problem 3: Since a large amount of S and P are contained in a complex manner,
It has poor hot workability and requires special machining to prevent cracks at the end of the slab before rolling.

【0014】問題点4:低炭素の快削鋼においては、耐
摩耗性を向上させるため、長時間の浸炭焼入れを行う必
要がある。 問題点5:毒性のない快削元素として炭素を利用し、黒
鉛として析出させることにより、被削性を向上させるこ
とができるが、長時間の黒鉛化焼鈍を施さねばならず、
コストが嵩む。
Problem 4: It is necessary to perform carburizing and quenching for a long time in low-carbon free-cutting steel in order to improve wear resistance. Problem 5: Machinability can be improved by using carbon as a non-toxic free-cutting element and precipitating it as graphite, but it must be subjected to long-time graphitizing annealing.
Cost increases.

【0015】従って、この発明では上記問題点を解決し
て、機械加工性に優れた自動車や産業機械用の部品類を
製造するために、熱間圧延後の鋼材徐冷、又は短時間の
焼ならしにより、鉛を含有せず、外周機械加工のみ
ならず、断面中心部の穴明け加工性にも優れ、安価で
且つ環境衛生上問題のない快削鋼棒線材を提供すること
を目的とする。
Therefore, in order to solve the above-mentioned problems and to produce parts for automobiles and industrial machines excellent in machinability, the present invention is intended to gradually cool steel after hot rolling or to heat it for a short time. The purpose of the present invention is to provide a free-cutting steel rod and wire that does not contain lead, is excellent in not only peripheral machining but also has excellent drilling workability at the center of the cross section, is inexpensive, and has no environmental health problems. I do.

【0016】[0016]

【課題を解決するための手段】本発明者等は、上述した
背景及び観点から、鉛を添加することなく、従来の硫黄
鉛複合快削鋼と同等あるいはそれを上回る穴明け加工性
に優れた超快削鋼を開発すべく鋭意研究を重ねた。その
結果、次の知見を得た。
SUMMARY OF THE INVENTION In view of the above-mentioned background and viewpoint, the present inventors have achieved excellent drilling workability equal to or higher than that of conventional sulfur-lead composite free-cutting steel without adding lead. We worked diligently to develop super free cutting steel. As a result, the following findings were obtained.

【0017】即ち、圧延後の空冷まま、あるいは焼なら
しのような簡便な熱処理で黒鉛を析出させるには、鋼の
成分組成に関しCを1.00%超添加して過共析鋼と
し、黒鉛化促進のためSiを1.00%以上と高めとす
る。また鋼の延性を確保するため適量のMnを添加し、
且つP及びSといった不純物元素を低位に抑えた鋼を調
製する。連続鋳造法あるいは造塊法における溶鋼の凝固
過程においては鋳片の軸心中心部には不可避的に成分偏
析が形成される。この中心偏析は従来、鋼材品質上有害
なものであったが、この発明では中心偏析を次のように
利用する技術を廃発明した。中心偏析部における炭素濃
度の偏析度〔C〕/〔C〕0 (但し〔C〕は対象位置の
炭素含有率、〔C〕0 は素鋼分析の炭素含有率である)
を1.01〜2.00の範囲内に調整した鋳片又は、鋳
片を分塊圧延した鋼片を製造する。但し、鋼塊も鋳片と
同等に扱ってもよい。
That is, in order to precipitate graphite by air-cooling after rolling or by a simple heat treatment such as normalizing, a steel is added to the steel in a composition of more than 1.00% to obtain a hypereutectoid steel, Si is increased to 1.00% or more to promote graphitization. Also, an appropriate amount of Mn is added to secure the ductility of the steel,
Further, a steel in which impurity elements such as P and S are suppressed to a low level is prepared. In the solidification process of molten steel in the continuous casting method or the ingot casting method, component segregation is inevitably formed at the center of the axis of the slab. Conventionally, this center segregation was harmful to the quality of the steel material. However, in the present invention, the technology utilizing the center segregation as follows is abolished. Degree of segregation of carbon concentration [C] / [C] 0 at the center segregation part (where [C] is the carbon content of the target position, and [C] 0 is the carbon content of raw steel analysis)
In the range of 1.01 to 2.00, or a slab obtained by slab rolling the slab. However, the steel ingot may be treated in the same manner as the slab.

【0018】次いで、上記鋳片又は鋼片を所定温度で加
熱後、熱間圧延し、そして、所定の冷却速度以下の徐
冷をするか、又は任意の冷却速度で冷却した後、60
0〜900℃の間の温度に3hr以下加熱した後、空冷
するか、のいずれかの処理をする。
Next, the slab or the slab is heated at a predetermined temperature and then hot-rolled, and then slowly cooled at a predetermined cooling rate or lower, or cooled at an arbitrary cooling rate, and then cooled to 60 ° C.
After heating to a temperature between 0 and 900 ° C. for 3 hours or less, air cooling or any of the treatments is performed.

【0019】上記処理により、この発明の目的を達成す
るのに必要な適切な大きさ及び量の黒鉛と、軟質なフェ
ライト又はフェライト+セメンタイト組織の鋼棒線材が
得られる。そして棒線材断面中心部はC、Si等が偏析
しているので黒鉛化指数CEが大きく、よって黒鉛の析
出が促進され、周囲部分より黒鉛が多く、またセメンタ
イトの量が減少しフェライトが増加して、硬さが低下す
る。
By the above-mentioned treatment, a graphite rod having an appropriate size and amount necessary for achieving the object of the present invention and a soft ferrite or a ferrite or ferrite + cementite structure steel bar is obtained. In the center of the cross section of the rod and wire, C, Si, etc. are segregated, so that the graphitization index CE is large, so that the precipitation of graphite is promoted, the amount of graphite is larger than the surrounding portion, and the amount of cementite is reduced and ferrite is increased. And the hardness decreases.

【0020】これにより、鉛を添加することなく、従来
有害とされている中心偏析を活用することにより、穴明
け加工性が従来の硫黄鉛複合快削鋼に較べて同等以上の
超快削鋼棒線材の製造が可能であることを見い出し
た。。
[0020] Thus, by utilizing the center segregation, which has been regarded as harmful, without adding lead, a super free-cutting steel whose drilling workability is equal to or higher than that of the conventional sulfur-lead composite free-cutting steel. It has been found that it is possible to produce rods and wires. .

【0021】この発明は、上記知見に基づきなされたも
のであって、下記に特徴を有するものである。請求項1
記載の発明は、重量%で、C:1.00超〜1.50
%、Si:1.00〜2.80%、Mn:0.01〜
2.00%、P:0.050%以下、S:0.10%以
下、O:0.0050%以下、及び、N:0.020%
以下を含有し、残部Fe及び不可避的不純物からなる化
学成分組成を有し、下記(1)式で求められる黒鉛化指
数CEが1.30以上であって、炭素の中心偏析度
〔C〕/〔C〕0(但し〔C〕は対象位置の炭素含有
率、〔C〕0(素鋼分析の炭素含有率である)が1.0
1〜2.00の範囲内にある鋳片又は鋼片を、850〜
1150℃の範囲内の温度に加熱し、熱間圧延し、こう
して熱間圧延された高温の鋼材を800℃から600℃
まで冷却する時間を5分以上に調整し、こうして得られ
た鋼材の特性値に関し、平均粒径1.0μm以上の黒鉛
が100個/mm2以上析出し、金属組織が70%以上
のフェライトと残部セメンタイトとからなるか、又はフ
ェライトのみからなり、断面中心部の硬さが断面中間部
の硬さ以下であって、且つ前記断面中間部の硬さがビッ
カース硬さHV300以下となっていることに特徴を有
するものである。なお黒鉛化指数CEは次の式による。
The present invention has been made based on the above findings, and has the following features. Claim 1
According to the invention described, C: more than 1.00 to 1.50 by weight%.
%, Si: 1.00 to 2.80%, Mn: 0.01 to
2.00%, P: 0.050% or less, S: 0.10% or less, O: 0.0050% or less, and N: 0.020%
It contains the following, has a chemical component composition consisting of the balance of Fe and inevitable impurities, has a graphitization index CE of 1.30 or more determined by the following equation (1), and has a carbon segregation degree [C] / [C] 0 (where [C] is the carbon content at the target position, and [C] 0 (the carbon content of the raw steel analysis) is 1.0
A slab or slab within the range of 1 to 2.00
The steel is heated to a temperature in the range of 1150 ° C., hot-rolled, and the hot-rolled hot steel is heated to 800 ° C. to 600 ° C.
The cooling time was adjusted to 5 minutes or more, and with respect to the characteristic values of the steel material thus obtained, 100 particles / mm 2 or more of graphite having an average particle size of 1.0 μm or more were precipitated, and the metal structure was reduced to 70% or more of ferrite. or consisting of the remainder cementite, or only consists of ferrite, the hardness of the cross-sectional center portion is equal to or less than the hardness of the cross-section intermediate portion, and the cross-sectional hardness of the intermediate portion becomes Vickers hardness H V 300 or less Is characterized by the fact that The graphitization index CE is calculated by the following equation.

【0022】 CE=C+Si/3−Mn/12 -----------------------------(1) 但し、上式中の元素記号は各元素の重量%を表わす。な
お、黒鉛は地鉄中の炭素を凝集することにより成長する
ので、フェライトは黒鉛のまわりに層状のセメンタイト
を浸食するような形で析出する。中心部は成分偏析によ
り黒鉛化指数CEが高くなっているので、一層黒鉛の析
出が促進され、黒鉛の量が多いと共に、フェライト量が
多くその周囲より軟質となる。
CE = C + Si / 3-Mn / 12 (1) where: Element symbols represent weight% of each element. Since graphite grows by aggregating carbon in the base iron, ferrite precipitates in a form that erodes layered cementite around the graphite. Since the graphitization index CE is higher at the center due to component segregation, the precipitation of graphite is further promoted, and the amount of graphite is large, the amount of ferrite is large, and the periphery is softer than its surroundings.

【0023】以上の処理により、中間部のビッカース硬
さを300以下の軟質なものとして、穴明け加工性に優
れた超快削鋼棒線材を得ることができる。請求項2記載
の快削鋼棒線材は、特に、棒線材の直径が細く、冷却速
度が十分に小さくない場合に適用する。
[0023] By the above-mentioned treatment, a Vickers hardness of the intermediate portion is set to a soft value of 300 or less, and an ultra-free-cutting steel rod having excellent drilling workability can be obtained. The free-cutting steel rod or wire according to claim 2 is particularly applied when the diameter of the rod or rod is small and the cooling rate is not sufficiently small.

【0024】重量%で、C:1.00超〜1.50%、
Si:1.00〜2.80%、Mn:0.01〜2.0
0%、P:0.050%以下、S:0.10%以下、
O:0.0050%以下、及び、N:0.020%以下
を含有し、残部Fe及び不可避的不純物からなる化学成
分組成を有し、下記(1)式で求められる黒鉛化指数C
Eが1.30以上であって、炭素の中心偏析度〔C〕/
〔C〕0(但し〔C〕は対象位置の炭素含有率、〔C〕0
は素鋼分析の炭素含有率である)が1.01〜2.00
の範囲内にある鋳片又は鋼片を、850〜1150℃の
範囲内の温度に加熱し、熱間圧延し、こうして熱間圧延
された高温の鋼材を800℃から600℃までを任意の
時間をかけて冷却した後、更に加熱して600〜900
℃の範囲内の温度に3hr以下の時間保持後、空冷し、
こうして得られた鋼材の特性値に関し、平均粒径1.0
μm以上の黒鉛が100個/mm2以上析出し、金属組
織が80%以上のフェライトと残部セメンタイトとから
なるか、又はフェライトのみからなり、断面中心部の硬
さが断面中間部の硬さ以下であって、且つ前記断面中間
部の硬さがビッカース硬さHV250以下となっている
ことに特徴を有するものである。なお黒鉛化指数CEは
次の式による。
C: more than 1.00 to 1.50% by weight
Si: 1.00 to 2.80%, Mn: 0.01 to 2.0
0%, P: 0.050% or less, S: 0.10% or less,
It contains O: 0.0050% or less and N: 0.020% or less, has a chemical composition composed of a balance of Fe and unavoidable impurities, and has a graphitization index C obtained by the following equation (1).
E is not less than 1.30 and the degree of central segregation of carbon [C] /
[C] 0 (where [C] is the carbon content of the target position, [C] 0
Is the carbon content in raw steel analysis) of 1.01 to 2.00
Is heated to a temperature in the range of 850 to 1150 ° C., hot-rolled, and the hot-rolled hot steel is heated from 800 ° C. to 600 ° C. for an arbitrary time. And then further heated to 600-900
After holding for 3 hours or less at a temperature within the range of ° C., air-cooled,
Regarding the characteristic values of the steel material thus obtained, the average particle size is 1.0
100 μm / mm 2 or more of graphite of μm or more is precipitated, and the metal structure is composed of 80% or more of ferrite and the remaining cementite, or is composed only of ferrite, and the hardness at the center of the cross section is less than the hardness at the middle of the cross section. And the hardness of the intermediate portion of the cross section is Vickers hardness H V 250 or less. The graphitization index CE is calculated by the following equation.

【0025】 CE=C+Si/3−Mn/12 -----------------------------(1) 但し、上式中の元素記号は各元素の重量%を表わす。上
記において、熱間圧延後800〜600℃の間を任意の
時間で冷却するが、その方法は、単なる空冷でもよい
が、水や衝風により冷却して、転位等の格子欠陥を多量
含むマルテンサイト、ベイナイトあるいは微細パーライ
トにすると、黒鉛の析出が促進され、その後の処理時間
が短くて済む。
CE = C + Si / 3-Mn / 12— (1) where: Element symbols represent weight% of each element. In the above, after hot rolling, cooling is performed at an arbitrary time between 800 and 600 ° C. The method may be simple air cooling. The use of site, bainite or fine pearlite promotes the precipitation of graphite, and the subsequent processing time is short.

【0026】請求項3記載の快削鋼棒線材は、請求項1
又は2記載の発明において、上記鋳片又は鋼片として、
更に下記元素の成分組成からなる群から選ばれた1種以
上を付加して含有し、且つ、前記黒鉛化指数CEの算出
式の代わりに下記(2)式を用いることに特徴を有する
ものである。
[0026] The free-cutting steel rod or wire according to the third aspect is the first aspect of the invention.
Or in the invention according to 2, as the slab or steel slab,
Furthermore, one or more selected from the group consisting of the following components are added and contained, and the following equation (2) is used in place of the equation for calculating the graphitization index CE. is there.

【0027】ここで、上記元素の成分組成からなる群と
は、重量%で、Cu:0.01〜2.0%、Ni:0.
01〜1.0%、Co:0.01〜0.50%、Cr:
0.01〜0.50%、Mo:0.01〜0.50%、
及び、B:0.0005〜0.010%である。そし
て、上記(2)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9 −Cr/9−Mo/9+B -----------------------------(2) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
Here, the group consisting of the component compositions of the above-mentioned elements means, by weight%, Cu: 0.01 to 2.0%, Ni: 0.
01 to 1.0%, Co: 0.01 to 0.50%, Cr:
0.01 to 0.50%, Mo: 0.01 to 0.50%,
And B: 0.0005 to 0.010%. Then, the above equation (2) means that CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B ----------------- ------------ (2) Here, the symbol of the element in the above formula indicates the weight% of each element.

【0028】請求項4記載の快削鋼棒線材は、請求項
1、2又は3記載の発明において、上記鋳片又は鋼片と
して、更に下記元素の成分組成からなる群から選ばれた
1種以上を付加して含有し、且つ、前記黒鉛化指数CE
の算出式の代わりに下記(3)式を用いることに特徴を
有するものである。
[0028] The free-cutting steel rod wire according to the fourth aspect is the invention according to the first, second or third aspect, wherein the slab or the steel slab is one type selected from the group consisting of the following components. In addition to the above, the graphitization index CE
Is characterized by using the following equation (3) instead of the calculation equation.

【0029】ここで、上記元素の成分組成からなる群と
は、重量%で、Al:0.001〜0.10%、Ti:
0.005〜0.050%、Zr:0.005〜0.0
50%、V:0.01〜0.20%、及び、Nb:0.
01〜0.20%である。そして、上記(3)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 -----------------------------(3) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
Here, the group consisting of the component compositions of the above elements means, by weight%, Al: 0.001 to 0.10%, Ti:
0.005 to 0.050%, Zr: 0.005 to 0.0
50%, V: 0.01 to 0.20%, and Nb: 0.
01 to 0.20%. Then, the above equation (3) means that CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 -------------------------- (3) However, the symbol of the element in the above formula indicates the weight% of each element.

【0030】請求項5記載の快削鋼棒線材は、請求項1
〜4記載の発明の内いずれかにおいて、上記鋳片又は鋼
片として、更に下記元素の成分組成からなる群から選ば
れた1種以上を付加して含有し、且つ、前記黒鉛化指数
CEの算出式の代わりに下記(4)式を用いることに特
徴を有するものである。
[0030] The free-cutting steel rod or wire according to the fifth aspect is the first aspect of the invention.
In any one of the inventions of (1) to (4), the cast slab or the steel slab further contains at least one element selected from the group consisting of the following element compositions, and has a graphitization index CE. It is characterized by using the following equation (4) instead of the calculation equation.

【0031】ここで、上記元素の成分組成からなる群と
は、重量%で、Ca:0.0010〜0.0100%、
Mg:0.0010〜0.10%、及び、REM:0.
0010〜0.10%である。そして、(4)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 +0.07 -----------------------------(4) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
Here, the group consisting of the component compositions of the above-mentioned elements means, by weight%, Ca: 0.0010 to 0.0100%,
Mg: 0.0010 to 0.10%;
0010 to 0.10%. And, the equation (4) is: CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 + 0.07- ---------------------------- (4) However, the element symbol in the above formula indicates the weight% of each element. .

【0032】重量%で、C:1.00超〜1.50%、
Si:1.00〜2.80%、Mn:0.01〜2.0
0%、P:0.050%以下、S:0.10%以下、
O:0.0050%以下、及び、N:0.020%以下
を含有し、残部Fe及び不可避的不純物からなる化学成
分組成を有し、下記(1)式で求められる黒鉛化指数C
Eが1.30以上であって、炭素の中心偏析度〔C〕/
〔C〕0(但し〔C〕は対象位置の炭素含有率、〔C〕0
は素鋼分析の炭素含有率である)が1.01〜2.00
の範囲内にある鋳片又は鋼片を、850〜1150℃の
範囲内の温度に加熱し、熱間圧延し、こうして熱間圧延
された高温の鋼材をカバー徐冷により800℃から60
0℃まで冷却する時間を5分以上に調整し、前記鋼材中
に平均粒径1.0μm以上の黒鉛を100個/mm2
上析出させ、金属組織を70%以上のフェライトと残部
セメンタイトとからなるか、又はフェライトのみからな
り、断面中心部の硬さを断面中間部の硬さ以下にし、且
つ前記断面中間部の硬さをビッカース硬さHV300以
下に調整することに特徴を有するものである。なお黒鉛
化指数CEは次の式による。
C: more than 1.00 to 1.50% by weight
Si: 1.00 to 2.80%, Mn: 0.01 to 2.0
0%, P: 0.050% or less, S: 0.10% or less,
It contains O: 0.0050% or less and N: 0.020% or less, has a chemical composition composed of a balance of Fe and unavoidable impurities, and has a graphitization index C obtained by the following equation (1).
E is not less than 1.30 and the degree of central segregation of carbon [C] /
[C] 0 (where [C] is the carbon content of the target position, [C] 0
Is the carbon content in raw steel analysis) of 1.01 to 2.00
Is heated to a temperature in the range of 850 to 1150 ° C., hot-rolled, and the hot-rolled hot steel is gradually cooled from 800 ° C. to 60 ° C.
The time for cooling to 0 ° C. was adjusted to 5 minutes or more, and graphite having an average particle size of 1.0 μm or more was precipitated in the steel material at 100 pieces / mm 2 or more, and the metal structure was reduced from 70% or more of ferrite and the remaining cementite. made or only made of ferrite, the hardness of the cross-sectional center portion and below the hardness of the cross-section intermediate portion, and the hardness of the cross-section intermediate portion having a feature to adjust the following Vickers hardness H V 300 It is. The graphitization index CE is calculated by the following equation.

【0033】 CE=C+Si/3−Mn/12 -----------------------------(1) 但し、上式中の元素記号は各元素の重量%を表わす。請
求項7記載の快削鋼棒線材の製造方法は、請求項6記載
の発明において、上記鋳片又は鋼片として、更に下記元
素の成分組成からなる群から選ばれた1種以上を付加し
て含有し、且つ、前記黒鉛化指数CEの算出式の代わり
に下記(2)式を用いることに特徴を有するものであ
る。
CE = C + Si / 3-Mn / 12 ----------------------------- (1) where: Element symbols represent weight% of each element. According to a seventh aspect of the present invention, in the method for manufacturing a free-cutting steel rod or wire according to the sixth aspect, at least one selected from the group consisting of the following elements is added as the slab or the steel slab. And the following formula (2) is used in place of the calculation formula of the graphitization index CE.

【0034】ここで、上記元素の成分組成からなる群と
は、重量%で、Cu:0.01〜2.0%、Ni:0.
01〜1.0%、Co:0.01〜0.50%、Cr:
0.01〜0.50%、Mo:0.01〜0.50%、
及び、B:0.0005〜0.010%である。そし
て、上記(2)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9 −Cr/9−Mo/9+B -----------------------------(2) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
Here, the group consisting of the component compositions of the above-mentioned elements means, in terms of% by weight, Cu: 0.01 to 2.0%, Ni: 0.
01 to 1.0%, Co: 0.01 to 0.50%, Cr:
0.01 to 0.50%, Mo: 0.01 to 0.50%,
And B: 0.0005 to 0.010%. Then, the above equation (2) means that CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B ----------------- ------------ (2) Here, the symbol of the element in the above formula indicates the weight% of each element.

【0035】請求項8記載の快削鋼棒線材の製造方法
は、6又は7記載の発明において、前記鋳片又は鋼片と
して、更に下記元素の成分組成からなる群から選ばれた
1種以上を付加して含有し、且つ、前記黒鉛化指数CE
の算出式の代わりに下記(3)式を用いることに特徴を
有するものである。
According to a eighth aspect of the present invention, in the method for producing a free-cutting steel rod or wire according to the sixth or seventh aspect, the slab or the slab is at least one selected from the group consisting of the following element compositions. And the graphitization index CE
Is characterized by using the following equation (3) instead of the calculation equation.

【0036】ここで、上記元素の成分組成からなる群と
は、重量%で、Al:0.001〜0.10%、Ti:
0.005〜0.050%、Zr:0.005〜0.0
50%、V:0.01〜0.20%、及び、Nb:0.
01〜0.20%である。そして、上記(3)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 -----------------------------(3) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
Here, the group consisting of the component compositions of the above-mentioned elements means, by weight%, Al: 0.001 to 0.10%, Ti:
0.005 to 0.050%, Zr: 0.005 to 0.0
50%, V: 0.01 to 0.20%, and Nb: 0.
01 to 0.20%. Then, the above equation (3) means that CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 -------------------------- (3) However, the symbol of the element in the above formula indicates the weight% of each element.

【0037】請求項9記載の快削鋼棒線材の製造方法
は、請求項6、7又は8記載の発明において、前記鋳片
又は鋼片として、更に下記元素の成分組成からなる群か
ら選ばれた1種以上を付加して含有し、且つ、前記黒鉛
化指数CEの算出式の代わりに下記(4)式を用いるこ
とに特徴を有するものである。
According to a ninth aspect of the present invention, in the method for producing a free-cutting steel rod or wire according to the sixth, seventh or eighth aspect, the slab or the steel slab is further selected from the group consisting of the following elements. In addition, one or more of these are added and contained, and the following formula (4) is used in place of the calculation formula of the graphitization index CE.

【0038】ここで、上記元素の成分組成からなる群と
は、重量%で、Ca:0.0010〜0.0100%、
Mg:0.0010〜0.10%、及び、REM:0.
0010〜0.10%である。そして、(4)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 +0.07 -----------------------------(4) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
Here, the group consisting of the component compositions of the above-mentioned elements means, by weight%, Ca: 0.0010 to 0.0100%,
Mg: 0.0010 to 0.10%;
0010 to 0.10%. And, the equation (4) is: CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 + 0.07- ---------------------------- (4) However, the element symbol in the above formula indicates the weight% of each element. .

【0039】重量%で、C :1.00超〜1.50
%、Si:1.00〜2.80%、Mn:0.01〜
2.00%、P:0.050%以下、S:0.10%以
下、O:0.0050%以下、及び、N:0.020%
以下を含有し、残部Fe及び不可避的不純物からなる化
学成分組成を有し、下記(1)式で求められる黒鉛化指
数CEが1.30以上であって、炭素の中心偏析度
〔C〕/〔C〕0(但し〔C〕は対象位置の炭素含有
率、〔C〕0は素鋼分析の炭素含有率である)が1.0
1〜2.00の範囲内にある鋳片又は鋼片を、850〜
1150℃の範囲内の温度に加熱し、熱間圧延し、こう
して熱間圧延された高温の鋼材を冷却媒体により冷却す
ることによって800℃から600℃まで冷却する時間
を1分以下に調整し、更に加熱して600〜900℃の
範囲内の温度に3hr以下の時間保持後、空冷し、前記
鋼材中に平均粒径1.0μm以上の黒鉛を100個/m
2以上析出させ、金属組織を80%以上のフェライト
と残部セメンタイトとからなるか、又はフェライトのみ
からなり、断面中心部の硬さを断面中間部の硬さ以下に
し、且つ前記断面中間部の硬さをビッカース硬さHV
50以下に調整することに特徴を有するものである。な
お黒鉛化指数CEは次の式による。
By weight%, C: more than 1.00 to 1.50
%, Si: 1.00 to 2.80%, Mn: 0.01 to
2.00%, P: 0.050% or less, S: 0.10% or less, O: 0.0050% or less, and N: 0.020%
It contains the following, has a chemical component composition consisting of the balance of Fe and inevitable impurities, has a graphitization index CE of 1.30 or more determined by the following equation (1), and has a carbon segregation degree [C] / [C] 0 (where [C] is the carbon content of the target position and [C] 0 is the carbon content of the raw steel analysis) is 1.0
A slab or slab within the range of 1 to 2.00
Heating to a temperature in the range of 1150 ° C., hot rolling, and adjusting the time for cooling from 800 ° C. to 600 ° C. to 1 minute or less by cooling the hot-rolled hot steel with a cooling medium, After further heating and holding at a temperature within the range of 600 to 900 ° C. for 3 hours or less, air-cooled, and 100 graphite / m 2 having an average particle size of 1.0 μm or more in the steel material.
m 2 is deposited over, become the metal structure of 80% or more of ferrite and the balance cementite, or made of ferrite alone, the hardness of the cross-sectional center portion and below the hardness of the cross-section intermediate portion, and the cross-section intermediate portion Vickers hardness H V 2
It is characterized in that it is adjusted to 50 or less. The graphitization index CE is calculated by the following equation.

【0040】 CE=C+Si/3−Mn/12 -----------------------------(1) 但し、上式中の元素記号は各元素の重量%を表わす。上
記方法においては特に、再加熱処理による黒鉛の析出を
促進させるために、熱間圧延後の棒線材を800〜60
0℃の間を1分以下で急速冷却するものである。
CE = C + Si / 3−Mn / 12— (1) where: Element symbols represent weight% of each element. In the above method, in particular, in order to promote the precipitation of graphite by the reheating treatment, the rod or wire after hot rolling is 800 to 60%.
Rapid cooling in less than 1 minute between 0 ° C.

【0041】請求項11記載の快削鋼棒線材の製造方法
は、請求項10記載の発明において、上記鋳片又は鋼片
として、更に下記元素の成分組成からなる群から選ばれ
た1種以上を付加して含有し、且つ、前記黒鉛化指数C
Eの算出式の代わりに下記(2)式を用いることに特徴
を有するものである。
[0041] The method for producing a free-cutting steel rod or wire according to the eleventh aspect is characterized in that, in the invention according to the tenth aspect, the slab or the slab further comprises at least one selected from the group consisting of the following element compositions. And the graphitization index C
It is characterized by using the following equation (2) instead of the equation for calculating E.

【0042】ここで、上記元素の成分組成からなる群と
は、重量%で、Cu:0.01〜2.0%、Ni:0.
01〜1.0%、Co:0.01〜0.50%、Cr:
0.01〜0.50%、Mo:0.01〜0.50%、
及び、B:0.0005〜0.010%である。そし
て、上記(2)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9 −Cr/9−Mo/9+B -----------------------------(2) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
Here, the group consisting of the component compositions of the above-mentioned elements means, by weight%, Cu: 0.01 to 2.0%, Ni: 0.
01 to 1.0%, Co: 0.01 to 0.50%, Cr:
0.01 to 0.50%, Mo: 0.01 to 0.50%,
And B: 0.0005 to 0.010%. Then, the above equation (2) means that CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B ----------------- ------------ (2) Here, the symbol of the element in the above formula indicates the weight% of each element.

【0043】請求項12記載の快削鋼棒線材の製造方法
は、請求項10又は11記載の発明において、上記鋳片
又は鋼片として、更に下記元素の成分組成からなる群か
ら選ばれた1種以上を付加して含有し、且つ、前記黒鉛
化指数CEの算出式の代わりに下記(3)式を用いるこ
とに特徴を有するものである。
According to a twelfth aspect of the present invention, there is provided a method for manufacturing a free-cutting steel rod or wire according to the tenth or eleventh aspect, wherein the slab or the slab is further selected from the group consisting of the following components. It is characterized by containing at least one or more species and using the following equation (3) instead of the equation for calculating the graphitization index CE.

【0044】ここで、上記元素の成分組成からなる群と
は、重量%で、Al:0.001〜0.10%、Ti:
0.005〜0.050%、Zr:0.005〜0.0
50%、V:0.01〜0.20%、及び、Nb:0.
01〜0.20%である。そして、上記(3)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 -----------------------------(3) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
Here, the group consisting of the component compositions of the above-mentioned elements means, by weight%, Al: 0.001 to 0.10%, Ti:
0.005 to 0.050%, Zr: 0.005 to 0.0
50%, V: 0.01 to 0.20%, and Nb: 0.
01 to 0.20%. Then, the above equation (3) means that CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 -------------------------- (3) However, the symbol of the element in the above formula indicates the weight% of each element.

【0045】請求項13記載の快削鋼棒線材の製造方法
は、請求項10、11又は12記載の発明において、上
記鋳片又は鋼片として、更に下記元素の成分組成からな
る群から選ばれた1種以上を付加して含有し、且つ、前
記黒鉛化指数CEの算出式の代わりに下記(4)式を用
いることに特徴を有するものである。
The method for producing a free-cutting steel rod or wire according to the thirteenth aspect is the invention according to the tenth, eleventh or twelfth aspect, wherein the slab or the slab is further selected from the group consisting of the following elements. In addition, one or more of these are added and contained, and the following formula (4) is used in place of the calculation formula of the graphitization index CE.

【0046】ここで、上記元素の成分組成からなる群と
は、重量%で、Ca:0.0010〜0.0100%、
Mg:0.0010〜0.10%、及び、REM:0.
0010〜0.10%である。そして、(4)式とは、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 +0.07 -----------------------------(4) 但し、上式中の元素記号は各元素の重量%を表わす、を
指す。
Here, the group consisting of the component compositions of the above-mentioned elements means, by weight%, Ca: 0.0010 to 0.0100%,
Mg: 0.0010 to 0.10%;
0010 to 0.10%. And, the equation (4) is: CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 + 0.07- ---------------------------- (4) However, the element symbol in the above formula indicates the weight% of each element. .

【0047】[0047]

【発明の実施の形態】この発明は、所定の中心偏析度を
有する高Siの過共析炭素鋼、及びその低合金鋼鋳片又
は鋼片を素材として、熱間圧延した棒線材を、所定の時
間以上をかけて徐冷するか、所定の温度範囲内に3hr
以下再加熱した後空冷するかにより、中心部が軟質で黒
鉛の多い組織を有する棒線材を製造する。このような簡
単な工程により、無鉛の穴明け加工性に優れた超快削棒
線材を製造するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a hot-rolled rod or wire from a high Si hypereutectoid carbon steel having a predetermined degree of center segregation and a low alloy steel slab or slab thereof. For at least 3 hours or within a predetermined temperature range for 3 hours.
Thereafter, a rod or wire having a structure in which the center is soft and has a lot of graphite is manufactured by air cooling after reheating. By such a simple process, a super-free-cutting rod or wire having excellent lead-free drilling properties is manufactured.

【0048】次に、本発明の構成要件の限定理由につい
て、以下に述べる。 (1)炭素(C) Cは黒鉛を析出させ、強度を確保するために重要な元素
である。熱間圧延により製造された鋼材の再加熱後に、
炉冷等の徐冷を行なわずに、空冷により黒鉛を析出させ
るためには、1.00%超のC含有率を必要とする。し
かしながら、C含有率が1.50%を超えると、熱間延
性の低下が大きく、棒圧延に際して表面疵の発生が増大
する。また空冷後に析出する黒鉛粒が粗大になり、靱性
を低下させる。従って、C含有率は1.00超〜1.5
0%の範囲内に限定する。
Next, the reasons for limiting the constituent elements of the present invention will be described below. (1) Carbon (C) C is an important element for precipitating graphite and securing strength. After reheating of steel material manufactured by hot rolling,
In order to precipitate graphite by air cooling without slow cooling such as furnace cooling, a C content of more than 1.00% is required. However, if the C content exceeds 1.50%, the hot ductility is greatly reduced, and the occurrence of surface flaws during bar rolling increases. In addition, graphite particles precipitated after air cooling become coarse, and the toughness is reduced. Therefore, the C content is more than 1.00 to 1.5.
Limit within the range of 0%.

【0049】(2)珪素(Si) Siは本発明において重要な役目を果たす元素である。
即ち、Siはセメンタイトの黒鉛化を促進する元素であ
る。しかし、1.00%未満ではその効果は小さい。一
方、Siが2.80%を超えると非金属介在物が増大し
て靱性の低下を招くのみならず、熱間圧延又は黒鉛化の
ための再加熱において脱炭を大きくする。従って、Si
含有量は1.00〜2.80%の範囲内に限定する。
(2) Silicon (Si) Si is an element that plays an important role in the present invention.
That is, Si is an element that promotes graphitization of cementite. However, if it is less than 1.00%, the effect is small. On the other hand, if Si exceeds 2.80%, nonmetallic inclusions increase and not only decrease in toughness, but also increase decarburization in hot rolling or reheating for graphitization. Therefore, Si
The content is limited to the range of 1.00 to 2.80%.

【0050】(3)マンガン(Mn) Mnは鋼中のSをMnSとして無害化して、鋼の熱間延
性を向上させる。この目的で用いるので、Mnは0.0
1%以上の添加を必要とする。しかし、Mnは黒鉛の析
出を阻害するので、上限は2.00%とする。なお、M
n含有率を低めにすれば黒鉛化のために必要なSiの量
を低減させることができる。Mn含有率が高めの場合に
は部品に高い強度及び靱性を付与することができる。そ
こで、Mn含有率は0.01〜2.00%の範囲内に限
定する。
(3) Manganese (Mn) Mn detoxifies S in steel as MnS and improves the hot ductility of steel. For this purpose, Mn is 0.0
Requires addition of 1% or more. However, since Mn inhibits graphite precipitation, the upper limit is set to 2.00%. Note that M
If the n content is reduced, the amount of Si required for graphitization can be reduced. If the Mn content is high, high strength and toughness can be imparted to the component. Therefore, the Mn content is limited to the range of 0.01 to 2.00%.

【0051】(4)燐(P) Pは黒鉛化を促進する元素である。しかし、Pは粒界に
偏析して熱間延性を低下させ、表面疵の発生を助長す
る。このような悪影響を防ぐために、P含有率は0.0
50以下に限定する。一層望ましくは0.030%以下
にする。
(4) Phosphorus (P) P is an element that promotes graphitization. However, P segregates at the grain boundaries, lowers hot ductility, and promotes generation of surface defects. In order to prevent such adverse effects, the P content is set to 0.0
Limited to 50 or less. More preferably, the content is 0.030% or less.

【0052】(5)硫黄(S) Sは黒鉛化を大きく阻害する元素であり、その含有率が
0.100%を超えると、Si等の黒鉛化促進元素を多
量に添加する必要があり、また熱間延性の低下を招く。
従って、S含有率は0.100%以下に限定する。一層
望ましくは0.050%以下にするのがよい。
(5) Sulfur (S) S is an element which greatly inhibits graphitization. If its content exceeds 0.100%, it is necessary to add a large amount of a graphitization promoting element such as Si. In addition, a decrease in hot ductility is caused.
Therefore, the S content is limited to 0.100% or less. More desirably, the content should be 0.050% or less.

【0053】(6)酸素(O) Oは鋼の清浄性を低下させると共に、黒鉛化を阻害する
元素であるので出来るかぎり低く抑えるべきである。し
かしO含有率は0.0050%までは許容される。そこ
で、O含有率は上限を0.0050%とする。一層望ま
しくは0.0030%以下にする方がよい。
(6) Oxygen (O) Since O is an element that lowers the cleanliness of steel and inhibits graphitization, it should be kept as low as possible. However, the O content is acceptable up to 0.0050%. Therefore, the upper limit of the O content is set to 0.0050%. More desirably, the content is 0.0030% or less.

【0054】(7)窒素(N) Nは単独で鋼中に存在すると、黒鉛化を阻害する。N含
有率が0.020%を超えると、黒鉛の析出が困難にな
る他、鋼の凝固中に窒素ガスの発生によりブローホ─ル
が多数形成されて、圧延後の表面疵の原因になる。従っ
て、N含有率は0.020%以下にする。一層望ましく
は0.010%以下にする。
(7) Nitrogen (N) When N alone exists in steel, it inhibits graphitization. If the N content exceeds 0.020%, precipitation of graphite becomes difficult, and a large number of blowholes are formed due to generation of nitrogen gas during solidification of steel, which causes surface defects after rolling. Therefore, the N content is set to 0.020% or less. More preferably, the content is 0.010% or less.

【0055】(8)銅(Cu) Cuは黒鉛の析出を促進し、且つフェライトに固溶して
鋼の靱性を高める。この目的でCuを利用するするの
で、0.01%以上の添加を必要とする。しかし、Cu
含有率が2.0%を超えると、鋼中への固溶限を超える
ので未固溶Cuが残存し、熱間延性を低下させ、表面疵
の発生を助長する。従って、Cu含有率は0.01〜
2.0%の範囲内にするのが望ましい。
(8) Copper (Cu) Cu promotes the precipitation of graphite and increases the toughness of steel by dissolving in ferrite. Since Cu is used for this purpose, it is necessary to add 0.01% or more. However, Cu
If the content exceeds 2.0%, the solid solubility in steel is exceeded, so that undissolved Cu remains, reducing hot ductility and promoting the generation of surface flaws. Therefore, the Cu content is 0.01 to
It is desirable to be within the range of 2.0%.

【0056】(9)ニッケル(Ni) NiもCuと同様に、黒鉛の析出を促進させると共に、
フェライトに固溶して鋼の靱性を高める。これらの目的
で添加するので、Niは0.01%以上の添加を必要と
する。しかし2.0%を超えて添加すると効果は飽和す
る。また、Niは高価な元素である。従って、Ni含有
率は0.01〜2.0%の範囲内にするのが望ましい。
(9) Nickel (Ni) Ni also promotes the precipitation of graphite, like Cu,
Solid solution in ferrite to increase steel toughness. Since Ni is added for these purposes, 0.01% or more of Ni needs to be added. However, when the content exceeds 2.0%, the effect is saturated. Ni is an expensive element. Therefore, it is desirable that the Ni content be in the range of 0.01 to 2.0%.

【0057】(10)コバルト(Co) CoもCuやNiと同じく、黒鉛の析出を促進させると
共に、鋼の靱性を高める。これらの目的で添加するの
で、Coは0.01%以上の添加を必要とする。しかし
CoはNiよりも高価な元素である。従って、Co含有
率は0.01〜0.50%の範囲内にするのが望まし
い。
(10) Cobalt (Co) Co, like Cu and Ni, promotes the precipitation of graphite and increases the toughness of steel. Since Co is added for these purposes, 0.01% or more of Co must be added. However, Co is an element more expensive than Ni. Therefore, the Co content is desirably in the range of 0.01 to 0.50%.

【0058】(11)クロム(Cr) Crも少量添加の場合はフェライトに固溶して、鋼の靱
性を高める。この目的で用いるので、0.01%以上の
添加を必要とする。しかしCrは、Mnよりも黒鉛化を
阻害する作用が大きい。よって、Crが0.50%を超
えると,黒鉛化促進元素を多量に必要とし、コスト高に
なる。従って、Cr含有率は0.01〜0.50%の範
囲内にするのが望ましい。
(11) Chromium (Cr) When a small amount of Cr is also added, it forms a solid solution with ferrite to increase the toughness of the steel. Since it is used for this purpose, it is necessary to add 0.01% or more. However, Cr has a greater effect of inhibiting graphitization than Mn. Therefore, when Cr exceeds 0.50%, a large amount of the graphitization promoting element is required, and the cost is increased. Therefore, it is desirable that the Cr content be in the range of 0.01 to 0.50%.

【0059】(12)モリブデン(Mo) Moは少量添加の場合は鋼の靱性を高める。この目的で
用いるので、0.01%以上の添加を必要とする。しか
し、Moも黒鉛化を阻害する元素であり、0.50%を
超えると、黒鉛化促進元素を多量に必要とする。従っ
て、Mo含有率0.01〜0.50%の範囲内にするの
が望ましい。
(12) Molybdenum (Mo) Mo, when added in a small amount, increases the toughness of the steel. Since it is used for this purpose, it is necessary to add 0.01% or more. However, Mo is also an element that inhibits graphitization, and if it exceeds 0.50%, a large amount of graphitization promoting element is required. Therefore, it is desirable to set the Mo content within the range of 0.01 to 0.50%.

【0060】(13)ボロン(B) Bは鋼中のNをBNとして固定し、Nの黒鉛化阻害作用
を軽減すると共に、BNが黒鉛析出核として作用し、黒
鉛の析出を促進する。この目的で用いるので、0.00
05%以上の添加を必要とする。しかし、Bは0.01
0%を超えて添加しても、効果が飽和するのみならず、
多量のBNや炭ほう化物を析出し、熱間延性を低下させ
る。従って、B含有率は0.0005〜0.010%の
範囲内にするのが望ましい。
(13) Boron (B) B fixes N in steel as BN to reduce the graphitization inhibiting effect of N, and BN acts as a graphite nucleus to promote graphite precipitation. Because it is used for this purpose, 0.00
It requires an addition of at least 05%. However, B is 0.01
Adding more than 0% not only saturates the effect,
Precipitates a large amount of BN and carbon borides and reduces hot ductility. Therefore, the B content is desirably in the range of 0.0005 to 0.010%.

【0061】(14)アルミニウム(Al) Alは脱酸剤として重要な元素であると共に、AlNを
析出し結晶粒を微細にする元素である。またSiと同様
に黒鉛化を促進する元素である。これらの目的のために
はAlは少なくとも0.001%以上添加する必要があ
る。しかし、Alを0.10%を超えて添加すると、酸
化物系介在物の量が多くなって、鋼の清浄性を低下さ
せ、熱間加工時の割れの原因となる。また連続鋳造にお
いてAl23 がノズルに堆積して、ノズル詰まりを引
き起こすので、Al含有率は、0.001〜0.10%
の範囲内にするのが望ましい。
(14) Aluminum (Al) Al is an important element as a deoxidizing agent and an element that precipitates AlN to make crystal grains fine. It is an element that promotes graphitization like Si. For these purposes, it is necessary to add Al at least 0.001% or more. However, when Al is added in excess of 0.10%, the amount of oxide-based inclusions increases, thereby deteriorating the cleanliness of the steel and causing cracking during hot working. Further, in continuous casting, Al 2 O 3 accumulates on the nozzle and causes clogging of the nozzle, so that the Al content is 0.001 to 0.10%.
It is desirable to be within the range.

【0062】(15)チタン(Ti) TiはTiN及びTiCを析出させ、結晶粒を微細化す
る。またTiN及びTiCは黒鉛析出の核として作用
し、黒鉛の析出を促進する。Ti添加量が0.005%
未満ではその効果は小さく、一方、Tiを0.10%を
超えて添加すると、硬いTiNやTiCが多量に生成し
て、工具の摩耗を促進する。従って、Ti含有率は、
0.005〜0.050%の範囲内にするのが望まし
い。
(15) Titanium (Ti) Ti precipitates TiN and TiC and refines crystal grains. Further, TiN and TiC act as nuclei for graphite precipitation and promote graphite deposition. 0.005% Ti added
If the amount is less than 0.10%, the effect is small. On the other hand, if Ti is added in excess of 0.10%, a large amount of hard TiN or TiC is generated to promote tool wear. Therefore, the Ti content is
It is desirable to set it in the range of 0.005 to 0.050%.

【0063】(15)ジルコニウム(Zr) ZrもTiと同様に窒化物及び炭化物を析出させ、結晶
粒を微細化すると共に、黒鉛の析出を促進させる。Zr
添加量が0.005%未満ではその効果は小さい。一
方、Zrを0.050%を超えて添加すると、工具の摩
耗を促進する。従って、Zr含有率は0.005〜0.
050%の範囲内にするのが望ましい。
(15) Zirconium (Zr) Like Zr, Zr also precipitates nitrides and carbides, refines crystal grains, and promotes the precipitation of graphite. Zr
If the added amount is less than 0.005%, the effect is small. On the other hand, if Zr exceeds 0.050%, tool wear is promoted. Therefore, the Zr content is 0.005 to 0.5.
It is desirable to be within the range of 050%.

【0064】(16)バナジウム(V) Vも窒化物及び炭化物を析出させ、結晶粒を微細化す
る。また析出物が微細であるので鋼の降伏応力を高め、
疲労限応力を向上させる。V添加量が0.01%未満で
はその効果は小さい。一方、Vは黒鉛の析出を阻害する
元素であり、0.20%を超えて添加すると、黒鉛化促
進元素を多量に必要とする。従って、V含有率は0.0
1〜0.20%の範囲内にするのが望ましい。
(16) Vanadium (V) V also precipitates nitrides and carbides and refines crystal grains. In addition, since the precipitate is fine, it increases the yield stress of the steel,
Improve fatigue limit stress. If the V content is less than 0.01%, the effect is small. On the other hand, V is an element that inhibits the precipitation of graphite, and if added in excess of 0.20%, a large amount of the graphitization promoting element is required. Therefore, the V content is 0.0
It is desirable to set it in the range of 1 to 0.20%.

【0065】(17)ニオブ(Nb) Nbも窒化物及び炭化物を析出させ、結晶粒を微細化す
ると共に、降伏応力を高める。Nbの炭窒化物は115
0℃の高温でも鋼中に溶解せず、オーステナイト粒の粗
大化を阻止し、鍛造後の結晶粒を微細にして、靱性を向
上させる。Nb添加量が0.01%未満ではその効果は
小さく、一方、0.20%を超えて添加しても、黒鉛の
析出が阻害されて、黒鉛化促進元素を多量に必要とす
る。従って、Nb含有率は0.01〜0.20%の範囲
内にするのが望ましい。
(17) Niobium (Nb) Nb also precipitates nitrides and carbides, refines crystal grains, and increases the yield stress. Nb carbonitride is 115
It does not dissolve in steel even at a high temperature of 0 ° C., prevents coarsening of austenite grains, refines crystal grains after forging, and improves toughness. If the amount of Nb is less than 0.01%, the effect is small. On the other hand, if it exceeds 0.20%, the precipitation of graphite is inhibited and a large amount of the graphitization promoting element is required. Therefore, it is desirable that the Nb content be in the range of 0.01 to 0.20%.

【0066】(18)カルシウム(Ca) Caは鋳鉄においては、接種材として使用され黒鉛化を
促進させる。これは溶鋼の温度水準でのCaの蒸気圧が
高く、鋳造中にCaの蒸気が凝固鋼内に微小な空洞を形
成し、これが黒鉛析出の核となって、球状黒鉛を析出さ
せると考えられる。鋼においてもCaは鋳鉄と同様な挙
動をして、熱間加工後の黒鉛析出を容易にする。また、
Caは酸化物系介在物として存在すると、超硬工具切削
においてベラーグを形成し、工具寿命を延長する効果が
大きいので、快削鋼への添加が望ましい元素である。こ
うした目的のためにはCaは、0.0010%以上添加
する必要がある。しかし、0.010%を超えて添加し
ても効果は飽和する。従って、Ca含有率は0.001
0〜0.010%の範囲内にするのが望ましい。
(18) Calcium (Ca) Ca is used as an inoculant in cast iron to promote graphitization. This is thought to be because the vapor pressure of Ca at the temperature level of the molten steel is high, and the vapor of Ca forms small cavities in the solidified steel during casting, which becomes the core of graphite precipitation and precipitates spheroidal graphite. . In steel, Ca behaves similarly to cast iron, and facilitates graphite precipitation after hot working. Also,
When Ca is present as an oxide-based inclusion, Ca forms a belag in the cutting of a cemented carbide tool, and has a great effect of extending the tool life. Therefore, Ca is an element desirably added to free-cutting steel. For this purpose, Ca needs to be added in an amount of 0.0010% or more. However, even if it exceeds 0.010%, the effect is saturated. Therefore, the Ca content is 0.001.
It is desirable to set it in the range of 0 to 0.010%.

【0067】(19)マグネシウム(Mg) MgもCaと同じく、鋳鉄において接種材として使用さ
れ、黒鉛化を促進させ、また、鋼においても加工後の黒
鉛析出を容易にする。その添加量が0.0010%未満
では効果は小さい。一方、Mgを0.10%を超えて添
加しても効果は飽和する。従って、Mg含有率は0.0
010〜0.10%の範囲内にするのが望ましい。
(19) Magnesium (Mg) Mg, like Ca, is used as an inoculant in cast iron, promotes graphitization, and also facilitates the precipitation of graphite after working in steel. If the added amount is less than 0.0010%, the effect is small. On the other hand, even if Mg is added in excess of 0.10%, the effect is saturated. Therefore, the Mg content is 0.0
It is desirable to be within the range of 010 to 0.10%.

【0068】(20)REM(希土類元素) Ce、La等のREMも鍛造後の黒鉛析出を促進する。
その添加量が0.0010%未満では効果は小さい。一
方、REMを0.10%を超えて添加しても効果は飽和
する。従って、REM含有率は0.0010〜0.10
%の範囲内にするのが望ましい。
(20) REM (Rare Earth Element) REM such as Ce and La also promotes graphite precipitation after forging.
If the added amount is less than 0.0010%, the effect is small. On the other hand, even if REM exceeds 0.10%, the effect is saturated. Therefore, the REM content is 0.0010 to 0.10
% Is desirable.

【0069】以上の他に、鋼にはSn、As等の不可避
的に混入する元素を含む。また環境への問題が小さい場
合には,補足的にBi、Se、Te等の快削性向上元素
を少量添加することも可能である。
In addition to the above, steel contains elements inevitably mixed, such as Sn and As. If the environmental problem is small, it is also possible to supplementarily add a small amount of a free-cutting element such as Bi, Se, or Te.

【0070】(21)黒鉛化指数 鋼材中の黒鉛はその快削性向上に効果的である。鋼材中
に黒鉛の析出を促進させるためには、黒鉛化指数CEを
大きくすることが重要である。このCEは主要元素につ
いては以下の式で表わされる。即ち、 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 -----------------------------(3) 但し、上式中の元素記号はその元素の含有重量%を表わ
す。またCa、Mg及びREMの内の少なくとも1種を
0.0010%以上含有する場合には、上記(3)式の
右辺に0.07を加算する。
(21) Graphitization Index Graphite in steel is effective in improving its free-cutting properties. In order to promote the precipitation of graphite in a steel material, it is important to increase the graphitization index CE. This CE is represented by the following formula for the main elements. That is, CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 ----------- ------------------ (3) However, the symbol of the element in the above formula indicates the content% by weight of the element. When at least one of Ca, Mg and REM is contained in an amount of 0.0010% or more, 0.07 is added to the right side of the above equation (3).

【0071】一方、黒鉛の析出は加熱温度、冷却速度に
よっても左右され、CEによって一義的に決定されるも
のではない。しかしながら、CEが1.30以上でない
場合は、対象高温鋼材を炉冷等により長時間の黒鉛化処
理を行なわなければならず、短時間の熱処理で黒鉛を析
出させることが困難になる。従って、黒鉛化指数CEは
1.30以上に限定する。
On the other hand, the precipitation of graphite depends on the heating temperature and the cooling rate, and is not uniquely determined by CE. However, when CE is not more than 1.30, the target high-temperature steel material must be subjected to a long-time graphitization treatment by furnace cooling or the like, and it becomes difficult to precipitate graphite by a short-time heat treatment. Therefore, the graphitization index CE is limited to 1.30 or more.

【0072】(22)炭素の中心偏析度〔C〕/
〔C0 〕 一般に、鋳片又は鋼片に成分の中心偏析が存在すると、
即ち中心部のC等成分元素の含有率が他の部分における
よりも高いと、その部分の硬さは高くなる。そのため、
棒線材の断面中心に穴を明けたときにドリル先端がその
周囲にずれて、穴の芯がずれてしまう。しかしながら、
この発明においては、中心部のCやSiの偏析が上記
(3)式により黒鉛化指数CEを高めることを利用し
て、中心部での黒鉛析出量を多くし、これに伴ってフェ
ライトの量も多くなる。こうして中心部ではその周囲よ
りも硬さが低くなるので、穴明け加工には好ましいもの
となる。こうして、本発明においては中心偏析を積極的
に活用する点も大きな特徴である。
(22) Degree of central segregation of carbon [C] /
[C 0 ] In general, when there is a center segregation of components in a slab or a slab,
In other words, when the content of the component element such as C in the central portion is higher than in other portions, the hardness of that portion becomes higher. for that reason,
When a hole is drilled at the center of the cross section of the rod or wire, the tip of the drill shifts around it and the center of the hole shifts. However,
In the present invention, the segregation of C and Si at the center increases the graphitization index CE according to the above equation (3), thereby increasing the amount of graphite precipitated at the center and the amount of ferrite. Also increase. Thus, the hardness at the central portion is lower than that at the periphery thereof, which is preferable for drilling. Thus, the present invention is also greatly characterized in that center segregation is actively utilized.

【0073】鋳片又は鋼片のCの中心偏析度が、1.0
1未満の偏析では、その周囲の部分におけるよりも、穴
明け加工に有利な程度に黒鉛を多く析出させて、金属組
織を軟質なフェライト割合の多いものにするという効果
を発揮させることができない。一方、Cの中心偏析度が
2.00を超えると、中心部の延性が不足して熱間圧延
時に中心から裂けたりして圧延作業に支障をきたす。し
かしながら、Cの中心偏析度は、1.01〜2.00の
範囲内に限定する。
The degree of center segregation of C in a slab or a slab is 1.0
If the segregation is less than 1, the effect of precipitating a larger amount of graphite to an extent advantageous for drilling than in the surrounding area and making the metal structure have a higher ratio of soft ferrite cannot be exerted. On the other hand, if the degree of center segregation of C exceeds 2.00, the ductility of the center is insufficient and the center is torn at the time of hot rolling, which hinders the rolling operation. However, the degree of center segregation of C is limited to the range of 1.01 to 2.00.

【0074】なお、中心偏析度の測定は次の通り行な
う。即ち、鋳片又は鋼片の長さ方向に直角な断面の中心
部を5mmφ程度のドリルにより分析用試料を採取し、
これを分析して中心部のC含有率〔C〕とする。一方、
断面中間部のC分析値又はレードル分析値をもって素鋼
分析のC含有率〔C〕0 とする。そして〔C〕/〔C〕
0 を算出し、これをCの中心偏析度とする。
The measurement of the degree of center segregation was performed as follows.
U. That is, the center of the cross section perpendicular to the length direction of the slab or slab
The part is sampled for analysis using a drill of about 5 mmφ,
This is analyzed to determine the C content rate [C] at the center. on the other hand,
Base steel with C analysis value or ladle analysis value of middle section
Analysis C content [C]0And And [C] / [C]
0Is calculated, and this is defined as the center segregation degree of C.

【0075】(23)熱間圧延時の加熱温度 熱間圧延前の鋼材加熱温度が850℃未満では、鋼の変
形能が不足して、棒線材に表面疵が発生し易い。一方、
加熱温度が1150℃を超えると鋼の固相線温度に近く
なってやはり熱間延性が不足して棒線材に割れを発生す
る。このため熱間圧延時の加熱温度は850〜1150
℃の間とする。鋳片又は鋼片は上記温度範囲内に加熱し
た後、熱間圧延されるが、熱間圧延終了温度は低い方
が、格子欠陥が多く、黒鉛の析出が促進されるので好ま
しい。そのため圧延機群の中間で水冷して仕上温度を下
げる手段は有効である。
(23) Heating temperature at the time of hot rolling If the heating temperature of the steel material before the hot rolling is lower than 850 ° C., the deformability of the steel is insufficient, and surface flaws are liable to be generated on the rod or wire. on the other hand,
If the heating temperature exceeds 1150 ° C., the temperature becomes close to the solidus temperature of steel, so that the hot ductility is also insufficient and cracks occur in the rod or wire. Therefore, the heating temperature during hot rolling is 850 to 1150.
C. The slab or the slab is hot-rolled after being heated within the above-mentioned temperature range. A lower hot-rolling ending temperature is preferable because the number of lattice defects increases and the precipitation of graphite is promoted. Therefore, a means of lowering the finishing temperature by water cooling in the middle of the rolling mill group is effective.

【0076】(24)熱間圧延後の冷却時間 熱間圧延後はできるだけゆっくり冷却することにより、
黒鉛の析出が促進され、フェライト量が多くなって、鋼
は軟化する。800℃から600℃に至る間の冷却時間
が5分未満では、所望とする大きさ及び数の黒鉛が得ら
れず、また硬さも高いものになってしまう。従って、8
00℃から600℃までの冷却時間は5分以上とする。
即ち、平均冷却速度で0.67℃/sec以下とする。
(24) Cooling time after hot rolling After hot rolling, cooling is performed as slowly as possible.
The precipitation of graphite is promoted, the amount of ferrite increases, and the steel softens. If the cooling time from 800 ° C. to 600 ° C. is less than 5 minutes, the desired size and number of graphite cannot be obtained and the hardness will be high. Therefore, 8
The cooling time from 00 ° C to 600 ° C is 5 minutes or more.
That is, the average cooling rate is 0.67 ° C./sec or less.

【0077】棒線材の直径が80mmφ程度の太い場合
には、熱間圧延後、単に空冷しても、上記冷却時間は5
分以上かかるので、上記条件を満たすことができる。し
かし、直径が5〜25mmφ程度の細い棒鋼や線材の場
合には、空冷では上記冷却時間を5分以上とすることは
できない。従って、直棒(真直ぐに伸ばされた一本の
棒)において直径が細い場合には、冷却床をカバーで覆
って棒線材を徐冷するか、あるいは、熱間圧延材をコイ
ル状に巻き取って冷却する。更には、コイル状に巻き取
った棒線材にカバーを掛けて徐冷する。熱間圧延線材が
非同心リング状態でコンベア上を流れるステルモアライ
ンのような冷却設備の場合には、コンベアをカバーで覆
って、熱間圧延線材を徐冷する。以上のような手段によ
り、径の細い棒線材においても800℃から600℃ま
での間を5分以上かけて冷却することができる。
In the case where the diameter of the rod or wire is as large as about 80 mmφ, the above cooling time is 5 hours even if the air is simply cooled after hot rolling.
Since it takes more than a minute, the above condition can be satisfied. However, in the case of a thin steel bar or wire having a diameter of about 5 to 25 mmφ, the cooling time cannot be set to 5 minutes or more by air cooling. Therefore, when the diameter of a straight bar (a single straight bar) is small, the cooling wire is covered with a cover to gradually cool the bar or the hot rolled material is wound into a coil. And cool. Further, the rod-shaped wire wound into a coil is covered with a cover and gradually cooled. In the case of a cooling facility such as a stermore line in which a hot-rolled wire flows on a conveyor in a non-concentric ring state, the conveyor is covered with a cover and the hot-rolled wire is gradually cooled. By the means as described above, it is possible to cool even a rod having a small diameter from 800 ° C. to 600 ° C. in 5 minutes or more.

【0078】また、棒線材を再加熱して黒鉛化を促進す
る場合には、熱間圧延後の棒線材は金属組織が微細で、
転位等の格子欠陥を多量に含んでいることが望ましい。
この場合には、熱間圧延線材の800℃から600℃ま
でを1分以下の短時間で冷却して、金属組織をマルテン
サイト、ベイナイト、あるいは微細なパーライトに調整
すると、黒鉛化を促進に効果がある。
In the case where the rod or wire is reheated to promote graphitization, the rod or wire after hot rolling has a fine metal structure.
It is desirable to contain a large amount of lattice defects such as dislocations.
In this case, when the hot rolled wire is cooled from 800 ° C. to 600 ° C. in a short time of 1 minute or less to adjust the metal structure to martensite, bainite, or fine pearlite, the effect of promoting graphitization is improved. There is.

【0079】(25)黒鉛化加熱温度 径の細い棒線材を上記のようなカバーで徐冷しない場合
には、800〜600℃の冷却時間が短く、十分に黒鉛
を析出させることができず、優れた穴明け加工性を有す
る棒線材を得ることができない。従って、再加熱により
黒鉛の析出を促進させる。所望とする大きさ及び数の黒
鉛を得るには、加熱温度が600℃未満では、炭素の拡
散速度が小さいので、黒鉛化のために3時間を超える長
時間を要する。一方、900℃より高い温度に加熱する
と、昇温中に一旦析出した黒鉛は高温加熱中に再溶解し
て、空冷後に得られる黒鉛の大きさが小さくなる。従っ
て、加熱後に炉冷等を行なってゆっくり冷やす必要が生
じ、黒鉛化処理時間が長くなってしまう。従って、再加
熱温度は600〜900℃の範囲内とする。黒鉛の析出
は650〜800℃の間の温度で最も促進されるので、
この温度範囲内で処理することにより、より短時間で目
的を達成することができる。
(25) Heating temperature for graphitization In the case where a rod having a small diameter is not gradually cooled by the cover as described above, the cooling time at 800 to 600 ° C. is short, and graphite cannot be sufficiently precipitated. It is not possible to obtain a rod wire having excellent drilling workability. Therefore, graphite is promoted by reheating. In order to obtain the desired size and number of graphite, if the heating temperature is lower than 600 ° C., the carbon diffusion rate is low, so that it takes more than 3 hours for graphitization. On the other hand, when heated to a temperature higher than 900 ° C., the graphite once precipitated during the temperature rise is redissolved during the high-temperature heating, and the size of the graphite obtained after air cooling is reduced. Therefore, it is necessary to cool the furnace slowly after heating, for example, so that the graphitization processing time becomes longer. Therefore, the reheating temperature is in the range of 600 to 900 ° C. The precipitation of graphite is most promoted at temperatures between 650 and 800 ° C,
By processing within this temperature range, the object can be achieved in a shorter time.

【0080】(26)黒鉛化加熱時間 上記温度範囲内での加熱時間が、3hrを超えるような
長時間の処理ではコスト高になってしまうので、処理時
間は3hr以下とする。そして3hr以下の加熱で十
分、所望とする黒鉛の大きさ及び数、金属組織及び、硬
さが得られる。従って、加熱時間は3hr以下に限定す
る。
(26) Graphitization Heating Time The heating time within the above temperature range is prolonged in which the heating time exceeds 3 hours, so that the cost increases. Therefore, the processing time is set to 3 hours or less. Then, the desired size and number of graphite, metal structure and hardness can be sufficiently obtained by heating for 3 hours or less. Therefore, the heating time is limited to 3 hours or less.

【0081】加熱後は、鋼材を炉から取り出して空冷す
れば徐冷等をしなくても十分である。コイル材の場合に
は1〜3トンの巻き取られたコイル状態で冷却される。
直棒の場合には数本〜100本程度の結束した状態で冷
却されることが大半である。従って、本発明にかかる鋼
材の場合には、このような状態での空冷による冷却速度
は、黒鉛を析出させ、且つ成長させるのに十分に小さ
く、満足すべきものである。
After heating, the steel material is taken out of the furnace and air-cooled, which is sufficient without slow cooling. In the case of a coil material, it is cooled in the state of a wound coil of 1 to 3 tons.
In the case of a straight rod, it is mostly cooled in a state of binding several to about 100 rods. Therefore, in the case of the steel material according to the present invention, the cooling rate by air cooling in such a state is sufficiently small to precipitate and grow graphite, which is satisfactory.

【0082】(27)黒鉛の粒径 本発明における黒鉛の析出形状は、一般的に塊状と表現
されるものであるが、これが球状、粒状あるいは楕円体
状であってもよく、平均的な長さ/厚み比が5以下なら
ば特に差し支えはない。このように、塊状に析出した黒
鉛の平均粒径が1.0μm未満では、穴明け加工時に切
り屑を小さく粉砕する作用が小さく、切削処理性改善へ
の寄与は小さい。従って、黒鉛の平均粒径は1.0μm
以上になるよう調整する。一方、その平均粒径の上限は
特に限定しないが、30μmを超える黒鉛が多数析出す
ると靱性低下の原因となる。従って、黒鉛の平均粒径は
30μm以下にするのが望ましい。
(27) Graphite Particle Size The precipitation form of graphite in the present invention is generally expressed as a lump, but it may be spherical, granular or elliptical, and the average length is There is no particular problem if the thickness / thickness ratio is 5 or less. As described above, when the average particle size of the graphite precipitated in a lump is less than 1.0 μm, the effect of pulverizing the chips into small pieces during drilling is small, and the contribution to the improvement of the cutting processability is small. Therefore, the average particle size of graphite is 1.0 μm
Make adjustments as described above. On the other hand, the upper limit of the average particle size is not particularly limited, but precipitation of a large amount of graphite exceeding 30 μm causes a decrease in toughness. Therefore, it is desirable that the average particle size of the graphite be 30 μm or less.

【0083】(28)黒鉛の数 単位断面積当たりの黒鉛の数は、切り屑を小さく分断さ
せるのに重要である。その数が100個/mm2 未満で
は切り屑処理性の改善効果が小さいので、黒鉛の数は1
00個/mm2 以上にする。黒鉛の数は、黒鉛の大きさ
に左右され、粒径が大きくなれば少なくなり、小さくな
れば多くなる。本発明では粒径が10〜25μmの黒鉛
が析出するとき、その数はおおよそ100〜1000個
/mm2の間であるが、1.0〜5μmの黒鉛が析出す
る場合にはおおよそ3000〜50000個/mm2
達する。
(28) Number of Graphite The number of graphite per unit sectional area is important for breaking chips into small pieces. If the number is less than 100 / mm 2 , the effect of improving the chip controllability is small.
Set to 00 pieces / mm 2 or more. The number of graphite depends on the size of graphite, and decreases as the particle size increases and increases as the particle size decreases. In the present invention, when graphite having a particle size of 10 to 25 μm is deposited, the number thereof is approximately between 100 to 1000 / mm 2 , but when graphite having a particle size of 1.0 to 5 μm is deposited, it is approximately 3000 to 50,000. Pcs / mm 2 .

【0084】(29)金属組織工具寿命を延ばすために
は、鋼材の硬さを低くする必要があり、鋼棒線材の金属
組織はフェライト+パーライト又はフェライトのみにす
ることが必要である。この際、フェライトの量は70%
以上にすることが必要である。熱間圧延後の冷却速度が
小さくなるにつれて、黒鉛が大きく成長し、フェライト
の量が増加するので、セメンタイトの量は減少する。そ
して十分小さい冷却速度で冷却することによって、金属
組織は層状のセメンタイトを含まない軟質なフェライト
単相になる。従って、金属組織は70%以上のフェライ
トと残部セメンタイト、又は、フェライトのみとなるよ
う調整する。
(29) Metal Structure In order to prolong the tool life, it is necessary to reduce the hardness of the steel material, and it is necessary that the metal structure of the steel rod or wire is only ferrite + pearlite or ferrite. At this time, the amount of ferrite was 70%
It is necessary to do the above. As the cooling rate after hot rolling decreases, the amount of cementite decreases because the graphite grows larger and the amount of ferrite increases. By cooling at a sufficiently low cooling rate, the metal structure becomes a soft ferrite single phase containing no layered cementite. Therefore, the metal structure is adjusted to be 70% or more of ferrite and the remaining cementite or only ferrite.

【0085】また、黒鉛化熱処理を施した場合には更
に、工具の寿命を長くするために、即ち、棒線材の硬さ
を更に低いものにするために、金属組織は80%以上の
フェライトを含み、残部がセメンタイトか、又は、フェ
ライトのみとする必要がある。
Further, in the case of performing the graphitization heat treatment, the metal structure further contains 80% or more ferrite in order to prolong the service life of the tool, that is, to further reduce the hardness of the rod or wire. It is necessary to include cementite as the remainder or ferrite only.

【0086】A1 点からA1 点−100℃付近までの範
囲内の温度に加熱することにより、黒鉛化せずに残留す
るセメンタイトの球状化が進行し、層状のセメンタイト
は球状又は粒状のセメンタイトになる。
[0086] By heating to a temperature in the range from 1 point A to the vicinity of A 1 point -100 ° C., and proceeds spheroidized cementite remaining without graphitization, cementite layered spherical or granular cementite become.

【0087】また、A1 点より高い温度に加熱し冷却す
ると、オーステナイトからフェライト、セメンタイトの
析出が起こるが、十分小さい冷却速度で冷却することに
より、黒鉛+フェライトの組織が得られる。
When heating to a temperature higher than the point A 1 and cooling, ferrite and cementite precipitate from austenite, but by cooling at a sufficiently low cooling rate, a graphite + ferrite structure can be obtained.

【0088】(30)硬さ 熱間圧延後、徐冷材の断面中間部のビッカース硬さ(H
V )が300を超えると、工具の摩耗が大きくなって、
工具寿命が短くなる。従って、中間部でのビッカース硬
さは300以下であることが必要である。また、黒鉛化
熱処理材においては、一層工具寿命を延ばすためには、
ビッカース硬さは250以下に調整する。金属組織がフ
ェライト単相になった場合には、ビッカース硬さは13
0程度まで低下する。黒鉛及びフェライトの量を中間部
よりも中心部の方が多くなるように調整することによ
り、中心部の硬さは中間部の硬さ以下にする。
(30) Hardness After hot rolling, the Vickers hardness (H
When V ) exceeds 300, tool wear increases,
Tool life is shortened. Therefore, the Vickers hardness at the intermediate portion needs to be 300 or less. In the case of graphitized heat treatment materials, in order to further extend tool life,
Vickers hardness is adjusted to 250 or less. When the metal structure becomes a ferrite single phase, the Vickers hardness is 13
It drops to about 0. By adjusting the amounts of graphite and ferrite such that the center portion is larger than the middle portion, the hardness of the center portion is set to be equal to or less than the hardness of the middle portion.

【0089】[0089]

【実施例】次に、この発明を、実施例によって更に詳細
に説明する。表1及び2に、試験に用いた供試鋼の化学
成分組成及び黒鉛化指数CEを示す。
Next, the present invention will be described in more detail with reference to examples. Tables 1 and 2 show the chemical composition and the graphitization index CE of the test steel used in the test.

【0090】[0090]

【表1】 [Table 1]

【0091】[0091]

【表2】 [Table 2]

【0092】表1の鋼No.1〜17はすべて本発明の範
囲内の成分組成(本発明成分)の鋼であり、鋼No.24
〜27は本発明の範囲外の鋼である。この内、鋼No.2
4は、成分組成は本発明の範囲内にあるが、鋳片凝固時
の溶鋼温度が高過ぎたためにCの中心偏析度が2.00
を超えたもの、鋼No.25は、連続鋳造時の鋳片に対す
るロール圧下量が大き過ぎたために中心部に負偏析が形
成され、Cの中心偏析度が1.0未満になったものであ
る。鋼No.26及び27はいずれも、個々の成分組成は
本発明の範囲内にあるが、黒鉛化指数CEが1.30未
満と本発明の範囲より低いものである。表2の鋼No.2
8〜50はすべて本発明の範囲外の成分組成の鋼であ
る。この内、鋼No.48は従来成分鋼のSUM24L、
鋼No.49は従来成分鋼のSUM43L、そして鋼No.
50は従来成分鋼の亜共析黒鉛鋼である。
Steel Nos. 1 to 17 in Table 1 are all steels having a component composition (components of the present invention) within the scope of the present invention.
-27 are steels outside the scope of the present invention. Among them, Steel No.2
In No. 4, although the component composition was within the range of the present invention, the central segregation degree of C was 2.00 because the molten steel temperature during solidification of the slab was too high.
In steel No. 25, negative segregation was formed at the center part due to too large roll reduction with respect to the slab during continuous casting, and the degree of central segregation of C was less than 1.0. is there. Steel Nos. 26 and 27 both have individual component compositions within the scope of the present invention, but have a graphitization index CE of less than 1.30, which is lower than the scope of the present invention. Steel No. 2 in Table 2
Nos. 8 to 50 are steels having a component composition outside the scope of the present invention. Among these, steel No. 48 is SUM24L of the conventional component steel,
Steel No. 49 is a conventional component steel SUM43L, and steel No. 49.
50 is a hypoeutectoid graphite steel of the conventional component steel.

【0093】上記各成分の供試鋼(鋼No.1〜17、2
4〜50)は130トン電気炉により溶製後、連続鋳造
又は造塊により鋳片に鋳造したものである。鋼No.1
は、160mm角鋳片に鋳造した後、直接棒線圧延に供
した。その他の鋼No.は、鋳片又は鋼塊を160mm角
の鋼片に分塊圧延後、棒線圧延に供した。棒線圧延はす
べて、鋳片又は鋼片を加熱炉にて所定温度に加熱後、各
種直径の棒鋼又は線材に熱間圧延した。
The test steels (Steel Nos. 1 to 17, 2
Nos. 4 to 50 ) are obtained by melting in a 130-ton electric furnace and then casting into slabs by continuous casting or ingot making. Steel No.1
Was cast directly into a 160 mm square slab and then directly subjected to bar rolling. The other steel No. was subjected to bar-rolling after slab-rolling a slab or a steel ingot into a 160 mm square steel slab. In all the bar and wire rolling, a slab or a slab was heated to a predetermined temperature in a heating furnace, and then hot-rolled into a bar or a wire having various diameters.

【0094】〔試験1〕試験1では、鋼No. 1〜1
7、24〜50につき、本発明の範囲内の試験である実
施例1−1、1−3〜1−9、1−11〜1−14、並
びに、本発明の範囲外の試験である比較例1−15〜1
−17、1−24〜1−47及び従来例1−48〜1−
50を試験した。いずれも、棒線材に熱間圧延した後、
所定の試験条件の冷却を行ない、こうして棒線材を製造
した。即ち、径20mm以上の圧延材はすべて直棒に圧
延して空冷か、又は冷却床でのカバー徐冷をした。こう
して製造された棒線材につき、鋼材の特性試験及び穴明
け試験を行なった。試験内容は、 (1)圧延材を目視で表面疵や割れの有無判定をし、圧
延後冷却された棒線材について、 (2)黒鉛析出状態及び金属組織の光学顕微鏡による測
定観察試験:黒鉛析出状態として黒鉛の平均粒径及び黒
鉛粒の数の測定、また、金属組織としてフェライト+セ
メンタイト組織中のフェライト%(面積%)の測定を
し、 (3)断面中心部及び中間部のビッカース硬さ測定試験
を行ない、更に、 (4)棒線材の穴明け試験を次の要領で行なった。自動
盤にて棒線材に穴明け加工を施した。径13〜20mm
の棒線材には、5mmφのドリルを用い、径25mm以
上の棒鋼には10mmφのドリルを用い、ドリル径の5
倍の深さの穴を明けた。穴明け条件は、ドリルの外周速
度150m/min、送り0.30mm/revとし、
ハイスドリルを用いた。ドリル寿命の判定は工具が溶損
して穴明け不能になる寿命を測定し、その穴明け個数を
もって寿命とした。また加工後の穴の芯ずれをチェック
した。
[0094] In the [Test 1] Test 1, steel No. 1~1
7 , 24-50 , Examples 1-1 , 1-3-1-9 , 1-11-1-14 which are tests within the scope of the present invention, and comparisons which are tests outside the scope of the present invention Examples 1-15-1
-17, 1-24 to 1-47 and Conventional Examples 1-48 to 1-
50 were tested. In any case, after hot rolling to a rod wire,
Cooling was performed under predetermined test conditions, thus producing a rod or wire. That is, all rolled materials having a diameter of 20 mm or more were rolled into straight bars and air-cooled, or gradually cooled with a cooling floor. With respect to the rod and wire thus manufactured, a property test and a drilling test of a steel material were performed. The test contents were as follows: (1) The rolled material was visually checked for surface flaws or cracks, and the rod and wire cooled after rolling was tested. (2) Measurement and observation test of graphite precipitation state and metal structure by optical microscope: Graphite precipitation The average particle size of graphite and the number of graphite particles were measured as the state, and the ferrite + ferrite% (area%) in the cementite structure was measured as the metal structure. (3) Vickers hardness at the center and middle of the cross section A measurement test was performed, and (4) a drilling test of a rod or wire was performed as follows. Drilling was performed on the rod and wire using an automatic lathe. Diameter 13-20mm
Use a 5 mmφ drill for the rod and wire, and use a 10 mmφ drill for the steel bar with a diameter of 25 mm or more.
Drilled a hole twice as deep. The drilling conditions were as follows: the outer peripheral speed of the drill was 150 m / min, the feed was 0.30 mm / rev,
A high speed drill was used. The life of the drill was determined by measuring the life when the tool was melted and the hole could not be drilled, and the number of drilled holes was defined as the life. Also, the misalignment of the hole after processing was checked.

【0095】表3及び4に、供試鋼の鋼No.、棒線材製
造試験条件及び試験結果を示す。
Tables 3 and 4 show the steel No. of the test steels, the conditions and the test results for the production of rods and rods.

【0096】[0096]

【表3】 [Table 3]

【0097】[0097]

【表4】 [Table 4]

【0098】上記試験より、下記事項がわかる。 (1)本発明の実施例1−1、1−3〜1−9、1−1
1〜1−14は、成分組成及び圧延加熱温度が本発明の
範囲内であるから、表面疵の発生がなく、また圧延後の
800〜600℃の冷却時間が5分以上であるから、目
標とする黒鉛の大きさ及び数を有し、金属組織も要件が
満たされ、また、ビッカース硬さは中間部より中心部の
方が低く、且つ中間部でHV 300以下が満たされ、軟
質な棒線材が得られている。
From the above test, the following items can be understood. (1) Examples 1-1, 1-3 to 1-9, 1-1 of the present invention
Nos. 1 to 1-14 have a target composition since the component composition and the rolling heating temperature are within the range of the present invention, so that there is no occurrence of surface flaws and the cooling time at 800 to 600 ° C. after rolling is 5 minutes or more. has a size and number of graphite and metal organization requirements are met, also Vickers hardness it is low in the central portion than the middle portion, H V 300 or less is satisfied and an intermediate portion, soft A rod is obtained.

【0099】図1に、本発明の快削鋼棒線材の顕微鏡組
織を示す例として、実施例1−1の黒鉛とフェライト+
粒状セメンタイトとからなるミクロ組織を示す図を示
す。また、適度な中心偏析の活用により、ドリルの芯ず
れは発生せず、工具寿命も穴明け数50個以上と良好で
あった。
[0099] Figure 1, as an example showing the microstructure of the free-cutting steel bar wire rod of the present invention, the graphite of Example 1-1 and ferrite +
The figure which shows the microstructure which consists of granular cementite is shown. In addition, by utilizing moderate center segregation, the center of the drill did not shift, and the tool life was as good as 50 or more drilled holes.

【0100】(2)これに対して、本発明の範囲外の条
件が一つでも入っている試験である、比較例及び従来例
では、本発明の目標が達成されなかった。詳細は次の通
りである。
(2) On the other hand, in the comparative example and the conventional example in which at least one condition out of the range of the present invention was included, the target of the present invention was not achieved. Details are as follows.

【0101】比較例1−15は、化学成分は本発明の範
囲内であるが、熱間圧延時の加熱温度が本発明の範囲よ
り低かったために、熱間延性が不足して棒鋼に大きな疵
が発生した。また比較例1−16は同様に、化学成分は
本発明の範囲内であるが、熱間圧延時の加熱温度が逆に
本発明の範囲より低かったために、熱間延性が不足して
棒鋼に大きな疵が発生した。
In Comparative Example 1-15 , the chemical composition was within the range of the present invention, but the heating temperature at the time of hot rolling was lower than the range of the present invention. There has occurred. Similarly, in Comparative Example 1-16 , the chemical composition was within the range of the present invention, but the heating temperature during hot rolling was conversely lower than the range of the present invention. Large flaws occurred.

【0102】比較例1−17は、化学成分及び熱間圧延
時の加熱温度共に、本発明の範囲内であるが、圧延後の
冷却時間が3.1分と短かったために、黒鉛の成長が十
分でなく、黒鉛の平均粒径が1.0μmより小さく、金
属組織中のフェライト量が少なく、また軟化不十分で中
心部の硬さは中間部より高く、中間部の硬さもHV30
0を超えた。このため穴明け加工において芯ずれが発生
し、ドリル寿命も穴明け数24個と短いものであった。
In Comparative Example 1-17 , both the chemical composition and the heating temperature during hot rolling were within the scope of the present invention, but the cooling time after rolling was as short as 3.1 minutes. sufficient and not average particle size of the graphite is smaller than 1.0 .mu.m, less ferrite content of metal structure, also the hardness of the insufficient heart softening is higher than the intermediate portion, H V 30 also hardness of the intermediate portion
Exceeded zero. For this reason, misalignment occurred during drilling, and the drill life was as short as 24 holes.

【0103】・比較例1−24は、Cの中心偏析度が
2.00を超えたために、中心部の延性不足で、熱間圧
延時に中心から裂けてしまった。比較例1−25は逆に
Cの中心偏析度が1.01より小さかったために、中心
部の硬さが中間部の硬さより高く、従ってドリルの芯ず
れを起こした。
In Comparative Example 1-24, since the center segregation degree of C exceeded 2.00, the center part was insufficient in ductility, and thus was torn from the center during hot rolling. In Comparative Example 1-25, on the contrary, the center segregation degree of C was smaller than 1.01, so that the hardness of the center part was higher than the hardness of the middle part, and thus the center of the drill was misaligned.

【0104】・比較例1−26及び比較例1−27は、
化学成分は本発明の範囲内であるが、黒鉛化指数CEが
本発明の範囲より低かったため、黒鉛の析出は見られな
かった。
Comparative Examples 1-26 and 1-27
Although the chemical components were within the range of the present invention, no graphite deposition was observed because the graphitization index CE was lower than the range of the present invention.

【0105】・比較例1−28は、C含有率が本発明を
外れて低く、このため黒鉛は1.0μm未満の小さいも
のしか得られず、金属組織中のフェライト量が少なく、
中間部の硬さもHV 300を超えて高く、ドリルの芯ず
れが発生し、工具寿命も短いものであった。比較例1−
29は、逆にC含有率が本発明を外れて高く、このため
熱間延性が不足して、棒鋼に疵が発生した。
In Comparative Example 1-28, the C content was low outside the scope of the present invention, so that only graphite having a small size of less than 1.0 μm was obtained, and the amount of ferrite in the metal structure was small.
The hardness of the intermediate portion was higher than HV 300, and the center of the drill was misaligned, and the tool life was short. Comparative Example 1
No. 29, on the contrary, had a high C content outside of the present invention, resulting in insufficient hot ductility and flaws in the steel bar.

【0106】・比較例1−30は、Si含有率が本発明
の範囲より低く、このため黒鉛粒が小さく、穴明け加工
性に劣るものであった。比較例1−31は、Si含有率
が本発明の範囲より高く、このため熱間延性が不足し
て、棒鋼に疵が発生した。
In Comparative Example 1-30, the Si content was lower than the range of the present invention, so that the graphite grains were small and the drilling workability was poor. In Comparative Example 1-31, the Si content was higher than the range of the present invention, so that the hot ductility was insufficient, and the steel bar had flaws.

【0107】・比較例1−32は、Mn含有率が2.0
0%を超えて高く、このため熱間延性不足で、棒鋼に疵
が発生した。比較例1−33は、P含有率が本発明の範
囲より高く、比較例1−34は、S含有率が本発明の範
囲より高く、比較例1−35は、Cu含有率が本発明の
範囲より高かったために、いずれも熱間延性が不足し
て、棒鋼に疵が発生した。
In Comparative Example 1-32, the Mn content was 2.0
It was higher than 0%, so that the hot-ductility was insufficient, and the steel bar had flaws. Comparative Example 1-33 has a P content higher than the range of the present invention, Comparative Example 1-34 has an S content higher than the range of the present invention, and Comparative Example 1-35 has a Cu content of the present invention. Since they were higher than the range, the hot ductility was insufficient in all cases, and the steel bars were flawed.

【0108】・比較例1−36は、Cr含有率が本発明
の範囲より高く、このため黒鉛化指数CEが1.30よ
り小さかったために、小さい黒鉛しか得ることができ
ず。中間部の硬さが高く、穴明け加工性に劣るものであ
った。
In Comparative Example 1-36, since the Cr content was higher than the range of the present invention, and the graphitization index CE was smaller than 1.30, only small graphite could be obtained. The hardness of the middle portion was high, and the drilling workability was poor.

【0109】・比較例1─37は、Ni及びMo含有率
が本発明の範囲より高く、このため、熱間延性が不足し
て、棒鋼に疵が発生した。 ・比較例1─38は、Co及びO含有率が本発明の範囲
より高く、やはり熱間延性が不足して、棒鋼に疵が発生
した。
In Comparative Example 1-37, the content of Ni and Mo was higher than the range of the present invention, so that the hot ductility was insufficient and the steel bar was flawed. Comparative Example 1 No. 38 had Co and O contents higher than the range of the present invention, and also had insufficient hot ductility, and the steel bar had flaws.

【0110】・比較例1─39は、B含有率が本発明の
範囲より高く、多量の炭ほう化物が析出して、延性が不
足して、棒鋼に疵が発生した。 ・比較例1─40は、N含有率が本発明の範囲より高
く、このため鋳片に発生したブローホールが原因して、
棒鋼の表面に多数の線状疵が発生した。
In Comparative Example 1-39, the B content was higher than the range of the present invention, a large amount of carbon boride was precipitated, the ductility was insufficient, and the steel bar was flawed. Comparative Example 1 No. 40 has a higher N content than the range of the present invention, and therefore, due to blow holes generated in the slab,
Many linear flaws occurred on the surface of the steel bar.

【0111】・比較例1─41はZr及びTi含有率
が、本発明の範囲より高く、棒鋼に疵が発生した。 ・比較例1−42はV含有率が、本発明の範囲より高
く、黒鉛化指数CEが1.30より小さく1.0μm以
下の小さい黒鉛しか得ることができなかった。そのた
め、穴明け加工性に劣るものであった。
Comparative Example 1 In No. 41, the content of Zr and Ti was higher than the range of the present invention, and the steel bar had flaws. -In Comparative Example 1-42, the V content was higher than the range of the present invention, and only a small graphite having a graphitization index CE of less than 1.30 and 1.0 µm or less could be obtained. Therefore, the drilling workability was poor.

【0112】・比較例1−43はAlM含有率が、本発
明の範囲より高く、棒鋼に疵が発生した。 ・比較例1−44は、Nb含有率が本発明の範囲より高
く、黒鉛化指数CEが1.30より小さく1.0μm以
下の小さい黒鉛しか得ることができなかった。そのた
め、穴明け加工性に劣るものであった。
In Comparative Example 1-43, the AlM content was higher than the range of the present invention, and the steel bar had flaws. In Comparative Example 1-44, the Nb content was higher than the range of the present invention, and only a small graphite having a graphitization index CE of less than 1.30 and 1.0 μm or less could be obtained. Therefore, the drilling workability was poor.

【0113】・比較例1−45はCa含有率が、比較例
1−46はMg含有率が、比較例1−47はREM含有
率が、本発明の範囲より高く、このため鋼中に酸化物系
介在物が多量に巻き込まれ、これが棒鋼に圧延疵として
残存した。
Comparative Example 1-45 has a Ca content, Comparative Example 1-46 has a Mg content, and Comparative Example 1-47 has a REM content higher than the range of the present invention. A large amount of material-based inclusions were involved, and this remained as rolling scratches on the steel bar.

【0114】・比較例1−48は、従来成分鋼のSUM
24Lであり、また、比較例1−49は従来成分鋼のS
UM43Lであり、穴明け工具寿命は良好なものであっ
た。しかしながら、中心部の硬さが中間部の硬さより高
く、芯ずれを起こした。また、棒鋼に熱間圧延するにさ
いしては、圧延中に先端が裂けて割れたりして、ミスロ
ールになるのを防ぐため、鋼片の先端を鉛筆の先のよう
に細くして、圧延機に噛み込ませる必要があった。
Comparative Example 1-48 shows that the conventional component steel SUM
24L, and Comparative Example 1-49 shows S of the conventional component steel.
UM43L, and the drilling tool life was good. However, the hardness of the central portion was higher than the hardness of the middle portion, causing misalignment. When hot rolling into steel bars, the tip of the billet is made thinner like a pencil to prevent the tip from tearing and cracking during rolling, resulting in misrolling. Had to be bitten.

【0115】上記従来成分鋼のSUM24L及びSUM
43Lに対して、本発明の実施例1−1、1−3〜1−
9、1−11〜1−14においては、特殊な鋼片先端加
工を必要とせず、シャーによる切断ままの鋼片を用いて
も何ら支障なく、圧延可能であった。
SUM24L and SUM of the above conventional component steels
For 43L, Examples 1-1, 1-3 to 1-1-1 of the present invention were used.
9 , 1-11 to 1-14 did not require any special steel slab tip processing, and could be rolled without any trouble using a steel slab that had been cut by a shear.

【0116】・比較例1−50は、従来黒鉛鋼の例であ
るが、コイル状に巻き取った後、カバー徐冷をしたが、
黒鉛の析出は認められず、穴明け加工性に劣るものであ
った。
Comparative Example 1-50 is an example of conventional graphite steel. After winding into a coil, the cover was gradually cooled.
No precipitation of graphite was observed, and the drilling workability was poor.

【0117】〔試験2〕試験2では、鋼No.2〜15
つき、本発明の範囲内の試験である実施例2−2〜2−
15、並びに、鋼No.16、17、26、27及び50
につき、本発明の範囲外の試験である比較例2−16、
2−17、2−26、2−27及び従来例2−50を試
験した。いずれも、棒線材に熱間圧延した後、所定の試
験条件の冷却を行ない、次いで、黒鉛化処理を施すため
に再加熱して所定時間保持した後、空冷した。こうして
棒線材を製造した。こうして製造された棒線材につき、
鋼材の特性試験及び穴明け試験を行なった。試験項目
は、 (1)圧延材の目視による表面疵や割れの有無判定、 (2)黒鉛析出状態及び金属組織の光学顕微鏡による測
定観察試験、 (3)断面中心部及び中間部のビッカース硬さ測定試
験、及び、 (4)棒線材の穴明け試験 であり、内容は試験1におけると同じである。
[Test 2] In Test 2, steel Nos. 2 to 15 were tested in Examples 2-2 to 2-2, which are tests within the scope of the present invention.
15 and steel Nos. 16 , 17 , 26, 27 and 50
Comparative Examples 2-16, which are tests outside the scope of the present invention ,
2-17, 2-26, 2-27 and Conventional Example 2-50 were tested. In each case, after being hot-rolled into a rod or wire, the rod was cooled under predetermined test conditions, then reheated for graphitization treatment, held for a predetermined time, and air-cooled. Thus, a rod wire was manufactured. For the rod and wire manufactured in this way,
A property test and a drilling test of the steel material were performed. The test items were (1) visual judgment of the presence or absence of surface flaws and cracks of the rolled material, (2) measurement observation test of the graphite precipitation state and metal structure by an optical microscope, and (3) Vickers hardness at the center and intermediate part of the cross section. Measurement test and (4) Drilling test of rods and wires, the contents of which are the same as in Test 1.

【0118】表5に、供試鋼の鋼No.、棒線材製造試験
条件及び試験結果を示す。
Table 5 shows the steel No. of the test steels, the test conditions for the production of rods and wires, and the test results.

【0119】[0119]

【表5】 [Table 5]

【0120】上記試験より、下記事項がわかる。 (1)本発明の実施例2−2〜2−15においては、熱
間圧延後の棒線材を、600〜900℃の範囲内に、1
5分〜180分の範囲内で再加熱することにより、所望
の大きさ且つ数の黒鉛及び金属組織が得られ、また中心
部の硬さは中間部の硬さより低く、中間部の硬さはHV
250以下であった。そのため、穴明け加工性も良好な
ものであった。
From the above test, the following matters can be understood. (1) In Examples 2-2 to 2-15 of the present invention, the rod or wire after hot rolling is set to a temperature within the range of 600 to 900 ° C.
By reheating in the range of 5 minutes to 180 minutes, a desired size and number of graphite and metal structure can be obtained, and the hardness of the central portion is lower than the hardness of the intermediate portion, and the hardness of the intermediate portion is H V
It was 250 or less. Therefore, drilling workability was also good.

【0121】(2)これに対して、本発明の範囲外の条
件が一つでも入っている試験である、比較例及び従来例
では、本発明の目標が達成されなかった。詳細は次の通
りである。
(2) On the other hand, the comparative example and the conventional example, which are tests in which at least one condition outside the scope of the present invention is included, did not achieve the objective of the present invention. Details are as follows.

【0122】比較例2−16は、加熱温度が900℃を
超えて高かったため、1.0μm未満の小さい黒鉛しか
得ることができず、穴明け加工性に劣るものであった。
比較例2−17は逆に、加熱温度が600℃未満で低か
ったので、上記同様、1.0μm未満の小さい黒鉛しか
得ることができず、穴明け加工性に劣るものであった。
In Comparative Example 2-16 , since the heating temperature was higher than 900 ° C., only small graphite of less than 1.0 μm could be obtained, and the drilling workability was poor.
On the contrary, in Comparative Example 2-17 , since the heating temperature was low at less than 600 ° C., only graphite as small as less than 1.0 μm could be obtained as in the above, and the drilling workability was poor.

【0123】・比較例2−26及び比較例2−27は、
黒鉛化指数CEが1.30未満であったので、黒鉛の析
出はみられず、穴明け加工性に劣るものであった。 ・比較例2−50は、従来黒鉛鋼を700℃で900分
という長時間の黒鉛化熱処理を施した例である。このよ
うな長時間熱処理を行なうことによりはじめて、黒鉛を
析出させ、鋼材を軟化させて、穴明け加工性に優れたも
のとすることができた。
The comparative examples 2-26 and 2-27
Since the graphitization index CE was less than 1.30, no precipitation of graphite was observed, and the drilling workability was poor. Comparative Example 2-50 is an example in which conventional graphite steel was subjected to a graphitization heat treatment at 700 ° C. for 900 minutes for a long time. Only by performing such a long-time heat treatment, graphite was precipitated and the steel material was softened, so that excellent drilling workability was obtained.

【0124】〔試験3〕試験1で行なった実施例1−9
及び従来例1−48で製造された線材(いずれも径13
mmφ)を用いて自動車のエンジン部品であるコネクタ
ーボルトを加工した。従来例におけるコネクターボルト
の加工工程は、線材→冷間引抜→ボルト頭部冷間鍛造→
ねじ転造→外周切削→ドリル穴明け→ばり取り→浸炭焼
入れである。従来SUM24Lを用いた場合には、穴明
け後に生じるばりを除去するため、人手によりやすりが
けを行なう必要があった。また耐摩耗性を向上させるた
め、930℃×5hrの浸炭焼入れ後、180℃×15
0分の焼戻しを行なう必要があり、大きなコストアップ
要因になっていた。
[Test 3] Examples 1-9 Performed in Test 1
And the wires manufactured in Conventional Examples 1-48 (both having a diameter of 13
mmφ) to process a connector bolt which is an engine part of an automobile. The process of processing the connector bolt in the conventional example is as follows: wire rod → cold drawing → bolt head cold forging →
Thread rolling → peripheral cutting → drilling → deburring → carburizing and quenching. Conventionally, when SUM24L was used, it was necessary to perform rasping manually to remove burrs generated after drilling. In addition, to improve wear resistance, after carburizing and quenching at 930 ° C. × 5 hours,
It was necessary to perform tempering for 0 minutes, which was a major cost increase factor.

【0125】これに対して実施例1−9の線材を用いた
場合には、ばり取り工程を省略することができ、省力化
が可能となった。また、切削、ドリルの工具寿命も従来
の約2倍と大きく延びた。また、長時間の浸炭焼入れ焼
戻しを簡便な高周波焼入れに切り換えて、部品の耐摩耗
性を向上させることができた。これらによって大幅なコ
ストダウンを図ることができた。
On the other hand, when the wire of Example 1-9 was used, the deburring step could be omitted, and the labor could be saved. In addition, the tool life of cutting and drilling has been greatly extended to about twice that of conventional ones. Further, the wear resistance of the parts could be improved by switching the long-time carburizing quenching and tempering to simple induction hardening. As a result, significant cost reduction was achieved.

【0126】[0126]

【発明の効果】以上述べたように、この発明によれば、
鉛を添加することなく、従来の硫黄鉛複合快削鋼と同等
以上の穴明け加工性に優れた超快削鋼部品の製造が可能
であり、また、当該部品の機械加工後は浸炭焼入れを行
なわなくても、簡便な高周波焼入れにより、耐摩耗性を
向上させることが可能である。従来黒鉛鋼に比較して、
黒鉛化熱処理が不要か、又は短時間の熱処理で黒鉛化が
可能となる。このような穴明け加工性に優れた快削鋼棒
線材の製造技術を提供することができ、工業上有用な効
果がもたらされる。
As described above, according to the present invention,
Without the addition of lead, it is possible to manufacture ultra-free-cutting steel parts with excellent drilling workability equal to or better than conventional sulfur-lead composite free-cutting steel, and carburizing and quenching after machining the parts. Even if not performed, the abrasion resistance can be improved by simple induction hardening. Compared to conventional graphite steel,
No graphitization heat treatment is required, or graphitization becomes possible with a short heat treatment. It is possible to provide a manufacturing technique for a free-cutting steel rod or wire excellent in such drilling workability, and an industrially useful effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の快削棒鋼の顕微鏡組織を示す例であっ
て、実施例1−1の黒鉛とフェライト+粒状セメンタイ
トとからなるミクロ組織を示す図である。
FIG. 1 is an example showing a microstructure of a free-cutting steel bar of the present invention, and is a diagram showing a microstructure composed of graphite and ferrite + granular cementite of Example 1-1 .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−293387(JP,A) 特開 平11−293388(JP,A) 特開 平11−293389(JP,A) 特開 平11−350066(JP,A) 特開 平11−350067(JP,A) 特開 平11−350068(JP,A) 特開 昭49−67817(JP,A) 特開 平3−146618(JP,A) 特開 平6−279849(JP,A) 特開 平8−127845(JP,A) 社団法人日本金属学会編,球状黒鉛鋳 鉄の理論と実際,日本,丸善株式会社発 行,1966年6月30日,p.438 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 6/00,8/06,8/08 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-11-2933387 (JP, A) JP-A-11-293388 (JP, A) JP-A-11-293389 (JP, A) JP-A-11-293389 JP-A-11-350067 (JP, A) JP-A-11-350068 (JP, A) JP-A-49-67817 (JP, A) JP-A-3-146618 (JP, A) JP-A-6-279849 (JP, A) JP-A-8-127845 (JP, A) Edited by The Japan Institute of Metals, Theory and Practice of Spheroidal Graphite Cast Iron, published by Maruzen Co., Japan, June 1966 30 days, p. 438 (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21D 6/00, 8/06, 8/08

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、 C:1.00超〜1.50%、 Si:1.00〜2.80%、 Mn:0.01〜2.00%、 P:0.050%以下、 S:0.10%以下、 O:0.0050%以下、及び、 N:0.020%以下を含有し、 残部Fe及び不可避的不純物からなる化学成分組成を有
し、下記(1)式で求められる黒鉛化指数CEが1.3
0以上であって、炭素の中心偏析度〔C〕/〔C〕
0(但し〔C〕は対象位置の炭素含有率、〔C〕0(素鋼
分析の炭素含有率である)が1.01〜2.00の範囲
内にある鋳片又は鋼片を、850〜1150℃の範囲内
の温度に加熱し、熱間圧延し、こうして熱間圧延された
高温の鋼材を800℃から600℃まで冷却する時間を
5分以上に調整し、こうして得られた鋼材の特性値に関
し、平均粒径1.0μm以上の黒鉛が100個/mm2
以上析出し、金属組織が70%以上のフェライトと残部
セメンタイトとからなるか、又はフェライトのみからな
り、断面中心部の硬さが断面中間部の硬さ以下であっ
て、且つ前記断面中間部の硬さがビッカース硬さHV
00以下となっていることを特徴とする、穴明け加工性
に優れた快削鋼棒線材。なお黒鉛化指数CEは次の式に
よる。 CE=C+Si/3−Mn/12 ---(1) 但し、上式中の元素記号は各元素の重量%を表わす。
1. Weight%: C: more than 1.00 to 1.50%, Si: 1.00 to 2.80%, Mn: 0.01 to 2.00%, P: 0.050% or less , S: 0.10% or less, O: 0.0050% or less, and N: 0.020% or less, and has a chemical component composition comprising the balance of Fe and inevitable impurities, and has the following formula (1) The graphitization index CE obtained by 1.3 is 1.3.
0 or more, and the center segregation degree of carbon [C] / [C]
0 (however, [C] is the carbon content of the target position, and [C] 0 (the carbon content of the raw steel analysis) is in the range of 1.01 to 2.00. 11150 ° C., heated to a temperature in the range of 1150 ° C., hot-rolled, and the time for cooling the hot-rolled hot steel from 800 ° C. to 600 ° C. was adjusted to 5 minutes or more. Regarding the characteristic values, 100 particles / mm 2 of graphite having an average particle size of 1.0 μm or more were used.
Precipitated above, the metal structure consists of 70% or more of ferrite and the remainder cementite, or consists only of ferrite, the hardness of the center of the cross section is not more than the hardness of the middle of the cross section, and the middle of the cross section is Hardness is Vickers hardness H V 3
A free-cutting steel rod and wire excellent in drilling workability, characterized in that it is not more than 00. The graphitization index CE is calculated by the following equation. CE = C + Si / 3-Mn / 12 --- (1) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項2】重量%で、 C:1.00超〜1.50%、 Si:1.00〜2.80%、 Mn:0.01〜2.00%、 P:0.050%以下、 S:0.10%以下、 O:0.0050%以下、及び、 N:0.020%以下を含有し、 残部Fe及び不可避的不純物からなる化学成分組成を有
し、下記(1)式で求められる黒鉛化指数CEが1.3
0以上であって、炭素の中心偏析度〔C〕/〔C〕
0(但し〔C〕は対象位置の炭素含有率、〔C〕0は素鋼
分析の炭素含有率である)が1.01〜2.00の範囲
内にある鋳片又は鋼片を、850〜1150℃の範囲内
の温度に加熱し、熱間圧延し、こうして熱間圧延された
高温の鋼材を800℃から600℃までを任意の時間を
かけて冷却した後、更に加熱して600〜900℃の範
囲内の温度に3hr以下の時間保持後、空冷し、こうし
て得られた鋼材の特性値に関し、平均粒径1.0μm以
上の黒鉛が100個/mm2以上析出し、金属組織が
0%以上のフェライトと残部セメンタイトとからなる
か、又はフェライトのみからなり、断面中心部の硬さが
断面中間部の硬さ以下であって、且つ前記断面中間部の
硬さがビッカース硬さHV250以下となっていること
を特徴とする、穴明け加工性に優れた快削鋼棒線材。な
お黒鉛化指数CEは次の式による。 CE=C+Si/3−Mn/12 ---(1) 但し、上式中の元素記号は各元素の重量%を表わす。
2. In% by weight, C: more than 1.00 to 1.50%, Si: 1.00 to 2.80%, Mn: 0.01 to 2.00%, P: 0.050% or less , S: 0.10% or less, O: 0.0050% or less, and N: 0.020% or less, and has a chemical component composition comprising the balance of Fe and inevitable impurities, and has the following formula (1) The graphitization index CE obtained by 1.3 is 1.3.
0 or more, and the center segregation degree of carbon [C] / [C]
0 (however, [C] is the carbon content of the target position, [C] 0 is the carbon content of the raw steel analysis) in the range of 1.01-2.00, After heating to a temperature in the range of 11150 ° C. and hot rolling, the hot-rolled high-temperature steel material is cooled from 800 ° C. to 600 ° C. over an arbitrary period of time, and further heated to 600600 after holding the temperature in 3hr following times in the range of 900 ° C., air cooled, thus relates characteristic values of the resulting steel, precipitated average particle diameter 1.0μm or more graphite 100 / mm 2 or more, the metal structure 8
0% or more of ferrite and the remainder of cementite or only ferrite, the hardness of the center of the cross section is not more than the hardness of the middle of the cross section, and the hardness of the middle of the cross section is Vickers hardness H A free-cutting steel wire rod excellent in drilling workability, having a V of 250 or less. The graphitization index CE is calculated by the following equation. CE = C + Si / 3-Mn / 12 --- (1) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項3】 前記鋳片又は鋼片として、更に下記元素
の成分組成からなる群から選ばれた1種以上を付加して
含有し、且つ、前記黒鉛化指数CEの算出式の代わりに
下記(2)式を用いることを特徴とする、請求項1又は
2記載の穴明け加工性に優れた快削鋼棒線材。重量%
で、 Cu:0.01〜2.0%、 Ni:0.01〜1.0%、 Co:0.01〜0.50%、 Cr:0.01〜0.50%、 Mo:0.01〜0.50%、及び、 B:0.0005〜0.010%。 また黒鉛化指数CEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9 −Cr/9−Mo/9+B -----------------------------(2) 但し、上式中の元素記号は各元素の重量%を表わす。
3. The slab or steel slab further contains at least one element selected from the group consisting of the following elements, and the following formula is used instead of the graphitization index CE. The free-cutting steel rod or wire according to claim 1 or 2, characterized by using formula (2). weight%
Cu: 0.01 to 2.0%, Ni: 0.01 to 1.0%, Co: 0.01 to 0.50%, Cr: 0.01 to 0.50%, Mo: 0. 01 to 0.50%, and B: 0.0005 to 0.010%. The graphitization index CE is given by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9 -Cr / 9-Mo / 9 + B --------------------------- -(2) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項4】 前記鋳片又は鋼片として、更に下記元素
の成分組成からなる群から選ばれた1種以上を付加して
含有し、且つ、前記黒鉛化指数CEの算出式の代わりに
下記(3)式を用いることを特徴とする、請求項1、2
又は3記載の穴明け加工性に優れた快削鋼棒線材。重量
%で、 Al:0.001〜0.10%、 Ti:0.005〜0.050%、 Zr:0.005〜0.050%、 V :0.01〜0.20%、及び、 Nb:0.01〜0.20%。 また黒鉛化指数CEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 -----------------------------(3) 但し、上式中の元素記号は各元素の重量%を表わす。
4. The slab or steel slab further contains at least one element selected from the group consisting of the following element compositions, and, instead of the formula for calculating the graphitization index CE, 3. The method according to claim 1, wherein equation (3) is used.
Or a free-cutting steel rod or wire excellent in drilling workability described in 3. % By weight, Al: 0.001 to 0.10%, Ti: 0.005 to 0.050%, Zr: 0.005 to 0.050%, V: 0.01 to 0.20%, and Nb: 0.01 to 0.20%. The graphitization index CE is given by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 ------------- ---------------- (3) Here, the symbol of the element in the above formula represents the weight% of each element.
【請求項5】 前記鋳片又は鋼片として、更に下記元素
の成分組成からなる群から選ばれた1種以上を付加して
含有し、且つ、前記黒鉛化指数CEの算出式の代わりに
下記(4)式を用いることを特徴とする、請求項1〜4
記載の発明の内いずれかの穴明け加工性に優れた快削鋼
棒線材。重量%で、 Ca:0.0010〜0.0100%、 Mg:0.0010〜0.10%、及び、 REM:0.0010〜0.10%。 また黒鉛化指数CEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 +0.07 -----------------------------(4) 但し、上式中の元素記号は各元素の重量%を表わす。
5. The slab or the steel slab further contains at least one element selected from the group consisting of the following element compositions, and the following formula is used instead of the graphitization index CE. 5. The method according to claim 1, wherein equation (4) is used.
A free-cutting steel rod or wire according to any of the described inventions, which is excellent in drilling workability. Ca: 0.0010-0.0100%, Mg: 0.0010-0.10%, and REM: 0.0010-0.10% by weight. The graphitization index CE is given by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 + 0.07 ---------- ------------------- (4) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項6】重量%で、 C:1.00超〜1.50%、 Si:1.00〜2.80%、 Mn:0.01〜2.00%、 P:0.050%以下、 S:0.10%以下、 O:0.0050%以下、及び、 N:0.020%以下を含有し、残部Fe及び不可避的
不純物からなる化学成分組成を有し、下記(1)式で求
められる黒鉛化指数CEが1.30以上であって、炭素
の中心偏析度〔C〕/〔C〕0(但し〔C〕は対象位置
の炭素含有率、〔C〕0は素鋼分析の炭素含有率であ
る)が1.01〜2.00の範囲内にある鋳片又は鋼片
を、850〜1150℃の範囲内の温度に加熱し、熱間
圧延し、こうして熱間圧延された高温の鋼材をカバー徐
冷により800℃から600℃まで冷却する時間を5分
以上に調整し、前記鋼材中に平均粒径1.0μm以上の
黒鉛を100個/mm2以上析出させ、金属組織を70
以上のフェライトと残部セメンタイトとからなるか、
又はフェライトのみからなり、断面中心部の硬さを断面
中間部の硬さ以下にし、且つ前記断面中間部の硬さをビ
ッカース硬さHV300以下に調整することを特徴とす
る、穴明け加工性に優れた快削鋼棒線材の製造方法。な
お黒鉛化指数CEは次の式による。 CE=C+Si/3−Mn/12 ---(1) 但し、上式中の元素記号は各元素の重量%を表わす。
6. In% by weight, C: more than 1.00 to 1.50%, Si: 1.00 to 2.80%, Mn: 0.01 to 2.00%, P: 0.050% or less , S: 0.10% or less, O: 0.0050% or less, and N: 0.020% or less, and has a chemical component composition consisting of a balance of Fe and unavoidable impurities. The graphitization index CE obtained by the above is 1.30 or more, and the degree of central segregation of carbon [C] / [C] 0 (where [C] is the carbon content at the target position, and [C] 0 is the elemental steel analysis The slab or slab having a carbon content of 1.01 to 2.00 is heated to a temperature in the range of 850 to 1150 ° C., hot-rolled, and thus hot-rolled. The time for cooling the high-temperature steel material from 800 ° C. to 600 ° C. by gradually cooling the cover was adjusted to 5 minutes or more, and the average particle size in the steel material was 1 μm. The above graphite 0μm to precipitate 100 / mm 2 or more, 70 metallographic
% Or more of ferrite and the balance cementite,
Or made of ferrite alone, the hardness of the cross-sectional center portion and below the hardness of the cross-section intermediate portion, characterized in that it and adjusting the hardness of the cross-section intermediate portion below Vickers hardness H V 300, drilling Method for manufacturing free-cutting steel rods and wires with excellent properties. The graphitization index CE is calculated by the following equation. CE = C + Si / 3-Mn / 12 --- (1) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項7】 前記鋳片又は鋼片として、更に下記元素
の成分組成からなる群から選ばれた1種以上を付加して
含有し、且つ、前記黒鉛化指数CEの算出式の代わりに
下記(2)式を用いることを特徴とする、請求項6記載
の穴明け加工性に優れた快削鋼棒線材の製造方法。重量
%で、 Cu:0.01〜2.0%、 Ni:0.01〜1.0%、 Co:0.01〜0.50%、 Cr:0.01〜0.50%、 Mo:0.01〜0.50%、及び、 B:0.0005〜0.010%。 また黒鉛化指数CEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9 −Cr/9−Mo/9+B -----------------------------(2) 但し、上式中の元素記号は各元素の重量%を表わす。
7. The slab or steel slab further contains at least one element selected from the group consisting of the following elements, and, instead of the formula for calculating the graphitization index CE, The method for producing a free-cutting steel rod and wire having excellent drilling workability according to claim 6, wherein the formula (2) is used. By weight%, Cu: 0.01 to 2.0%, Ni: 0.01 to 1.0%, Co: 0.01 to 0.50%, Cr: 0.01 to 0.50%, Mo: 0.01 to 0.50%, and B: 0.0005 to 0.010%. The graphitization index CE is given by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9 -Cr / 9-Mo / 9 + B --------------------------- -(2) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項8】 前記鋳片又は鋼片として、更に下記元素
の成分組成からなる群から選ばれた1種以上を付加して
含有し、且つ、前記黒鉛化指数CEの算出式の代わりに
下記(3)式を用いることを特徴とする、請求項6又は
7記載の穴明け加工性に優れた快削鋼棒線材の製造方
法。重量%で、 Al:0.001〜0.10%、 Ti:0.005〜0.050%、 Zr:0.005〜0.050%、 V:0.01〜0.20%、及び、 Nb:0.01〜0.20%。 また黒鉛化指数CEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 -----------------------------(3) 但し、上式中の元素記号は各元素の重量%を表わす。
8. The slab or steel slab further contains at least one element selected from the group consisting of the following elements, and the following formula is used instead of the formula for calculating the graphitization index CE. The method for producing a free-cutting steel rod and wire having excellent drilling workability according to claim 6 or 7, wherein the formula (3) is used. % By weight, Al: 0.001 to 0.10%, Ti: 0.005 to 0.050%, Zr: 0.005 to 0.050%, V: 0.01 to 0.20%, and Nb: 0.01 to 0.20%. The graphitization index CE is given by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 ------------- ---------------- (3) Here, the symbol of the element in the above formula represents the weight% of each element.
【請求項9】 前記鋳片又は鋼片として、更に下記元素
の成分組成からなる群から選ばれた1種以上を付加して
含有し、且つ、前記黒鉛化指数CEの算出式の代わりに
下記(4)式を用いることを特徴とする、請求項6、7
又は8記載の穴明け加工性に優れた快削鋼棒線材の製造
方法。重量%で、 Ca:0.0010〜0.0100%、 Mg:0.0010〜0.10%、及び、 REM:0.0010〜0.10%。 また黒鉛化指数CEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 +0.07 -----------------------------(4) 但し、上式中の元素記号は各元素の重量%を表わす。
9. The slab or steel slab further contains one or more elements selected from the group consisting of the following element compositions, and, instead of the formula for calculating the graphitization index CE, 8. The method according to claim 6, wherein equation (4) is used.
Or a method for producing a free-cutting steel rod or wire excellent in drilling workability according to item 8. Ca: 0.0010-0.0100%, Mg: 0.0010-0.10%, and REM: 0.0010-0.10% by weight. The graphitization index CE is given by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 + 0.07 ---------- ------------------- (4) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項10】重量%で、 C :1.00超〜1.50%、 Si:1.00〜2.80%、 Mn:0.01〜2.00%、 P:0.050%以下、 S:0.10%以下、 O:0.0050%以下、及び、 N:0.020%以下を含有し、残部Fe及び不可避的
不純物からなる化学成分組成を有し、下記(1)式で求
められる黒鉛化指数CEが1.30以上であって、炭素
の中心偏析度〔C〕/〔C〕0(但し〔C〕は対象位置
の炭素含有率、〔C〕0は素鋼分析の炭素含有率であ
る)が1.01〜2.00の範囲内にある鋳片又は鋼片
を、850〜1150℃の範囲内の温度に加熱し、熱間
圧延し、こうして熱間圧延された高温の鋼材を冷却媒体
により冷却することによって800℃から600℃まで
冷却する時間を1分以下に調整し、更に加熱して600
〜900℃の範囲内の温度に3hr以下の時間保持後、
空冷し、前記鋼材中に平均粒径1.0μm以上の黒鉛を
100個/mm2以上析出させ、金属組織を80%以上
のフェライトと残部セメンタイトとからなるか、又はフ
ェライトのみからなり、断面中心部の硬さを断面中間部
の硬さ以下にし、且つ前記断面中間部の硬さをビッカー
ス硬さHV250以下に調整することを特徴とする、穴
明け加工性に優れた快削鋼棒線材の製造方法。なお黒鉛
化指数CEは次の式による。 CE=C+Si/3−Mn/12 ---(1) 但し、上式中の元素記号は各元素の重量%を表わす。
10. In% by weight, C: more than 1.00 to 1.50%, Si: 1.00 to 2.80%, Mn: 0.01 to 2.00%, P: 0.050% or less , S: 0.10% or less, O: 0.0050% or less, and N: 0.020% or less, and has a chemical component composition consisting of a balance of Fe and unavoidable impurities. The graphitization index CE obtained by the above is 1.30 or more, and the degree of central segregation of carbon [C] / [C] 0 (where [C] is the carbon content at the target position, and [C] 0 is the elemental steel analysis The slab or slab having a carbon content of 1.01 to 2.00 is heated to a temperature in the range of 850 to 1150 ° C., hot-rolled, and thus hot-rolled. The time for cooling from 800 ° C. to 600 ° C. by cooling the hot steel material with a cooling medium is adjusted to 1 minute or less. Heated to 600
After holding for 3 hours or less at a temperature within the range of ~ 900 ° C,
After air cooling, graphite having an average particle size of 1.0 μm or more was precipitated in the steel material at a rate of 100 particles / mm 2 or more, and the metal structure was composed of 80% or more of ferrite and the remainder cementite, or consisted only of ferrite, the hardness of the parts is below the hardness of the cross-section intermediate portion, and the hardness of the cross-section intermediate portion and adjusting the following Vickers hardness H V 250, free cutting steel bars with excellent drilling processability Wire rod manufacturing method. The graphitization index CE is calculated by the following equation. CE = C + Si / 3-Mn / 12 --- (1) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項11】 前記鋳片又は鋼片として、更に下記元
素の成分組成からなる群から選ばれた1種以上を付加し
て含有し、且つ、前記黒鉛化指数CEの算出式の代わり
に下記(2)式を用いることを特徴とする、請求項10
記載の穴明け加工性に優れた快削鋼棒線材の製造方法。
重量%で、 Cu:0.01〜2.0%、 Ni:0.01〜1.0%、 Co:0.01〜0.50%、 Cr:0.01〜0.50%、 Mo:0.01〜0.50%、及び、 B:0.0005〜0.010%。 また黒鉛化指数CEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9 −Cr/9−Mo/9+B -----------------------------(2) 但し、上式中の元素記号は各元素の重量%を表わす。
11. The slab or slab further contains one or more elements selected from the group consisting of the following elements and the following slabs or steel slabs: 11. The method according to claim 10, wherein equation (2) is used.
A method for producing a free-cutting steel rod and wire having excellent drilling workability as described.
By weight%, Cu: 0.01 to 2.0%, Ni: 0.01 to 1.0%, Co: 0.01 to 0.50%, Cr: 0.01 to 0.50%, Mo: 0.01 to 0.50%, and B: 0.0005 to 0.010%. The graphitization index CE is given by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9 -Cr / 9-Mo / 9 + B --------------------------- -(2) However, the symbol of the element in the above formula represents the weight% of each element.
【請求項12】 前記鋳片又は鋼片として、更に下記元
素の成分組成からなる群から選ばれた1種以上を付加し
て含有し、且つ、前記黒鉛化指数CEの算出式の代わり
に下記(3)式を用いることを特徴とする、請求項10
又は11記載の穴明け加工性に優れた快削鋼棒線材の製
造方法。重量%で、 Al:0.001〜0.10%、 Ti:0.005〜0.050%、 Zr:0.005〜0.050%、 V:0.01〜0.20%、及び、 Nb:0.01〜0.20%。 また黒鉛化指数CEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 -----------------------------(3) 但し、上式中の元素記号は各元素の重量%を表わす。
12. The slab or steel slab further contains at least one element selected from the group consisting of the following element compositions, and, instead of the formula for calculating the graphitization index CE, 11. The method according to claim 10, wherein equation (3) is used.
Or the method for producing a free-cutting steel rod or wire excellent in drilling workability described in 11; % By weight, Al: 0.001 to 0.10%, Ti: 0.005 to 0.050%, Zr: 0.005 to 0.050%, V: 0.01 to 0.20%, and Nb: 0.01 to 0.20%. The graphitization index CE is given by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 ------------- ---------------- (3) Here, the symbol of the element in the above formula represents the weight% of each element.
【請求項13】 前記鋳片又は鋼片として、更に下記元
素の成分組成からなる群から選ばれた1種以上を付加し
て含有し、且つ、前記黒鉛化指数CEの算出式の代わり
に下記(4)式を用いることを特徴とする、請求項1
0、11又は12記載の穴明け加工性に優れた快削鋼棒
線材の製造方法。重量%で、 Ca:0.0010〜0.0100%、 Mg:0.0010〜0.10%、及び、 REM:0.0010〜0.10%。 また黒鉛化指数CEは次の式による。 CE=C+Si/3−Mn/12+Cu/9+Ni/9+Co/9−Cr/9 −Mo/9+B+Al/6+Ti/3+Zr/3−V/3−Nb/3 +0.07 -----------------------------(4) 但し、上式中の元素記号は各元素の重量%を表わす。
13. The slab or steel slab further contains at least one element selected from the group consisting of the following elements and the following slab or steel slab: 2. The method according to claim 1, wherein equation (4) is used.
13. A method for producing a free-cutting steel rod or wire according to 0, 11 or 12, which is excellent in drilling workability. Ca: 0.0010-0.0100%, Mg: 0.0010-0.10%, and REM: 0.0010-0.10% by weight. The graphitization index CE is given by the following equation. CE = C + Si / 3-Mn / 12 + Cu / 9 + Ni / 9 + Co / 9-Cr / 9-Mo / 9 + B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 + 0.07 ---------- ------------------- (4) However, the symbol of the element in the above formula represents the weight% of each element.
JP23257298A 1998-08-19 1998-08-19 Free-cutting steel rod and wire excellent in drilling workability and method for producing the same Expired - Fee Related JP3255611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23257298A JP3255611B2 (en) 1998-08-19 1998-08-19 Free-cutting steel rod and wire excellent in drilling workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23257298A JP3255611B2 (en) 1998-08-19 1998-08-19 Free-cutting steel rod and wire excellent in drilling workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000063988A JP2000063988A (en) 2000-02-29
JP3255611B2 true JP3255611B2 (en) 2002-02-12

Family

ID=16941455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23257298A Expired - Fee Related JP3255611B2 (en) 1998-08-19 1998-08-19 Free-cutting steel rod and wire excellent in drilling workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3255611B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657782B1 (en) 2014-11-27 2016-09-20 주식회사 포스코 Surface graphite steel rod and method for manufacturing the same
KR101545846B1 (en) 2015-04-28 2015-08-20 고려제강 주식회사 Pre- stressed concrete steel strand with superior resistance against hydrogen delayed fracture and method for producing the same
KR101758501B1 (en) * 2015-12-22 2017-07-17 주식회사 포스코 Wire rod having decreased center segregation, steel wire and method for manufacturing the same
KR102042063B1 (en) * 2017-12-21 2019-11-08 주식회사 포스코 Steel material for graphitization and graphite steel with improved machinability
CN110777244B (en) * 2019-11-28 2021-04-02 广东韶钢松山股份有限公司 Medium-carbon high-sulfur free-cutting steel and preparation process thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315451B2 (en) * 1972-11-06 1978-05-25
JP2938101B2 (en) * 1989-10-30 1999-08-23 川崎製鉄株式会社 Manufacturing method of steel for cold forging
JPH06279849A (en) * 1993-01-26 1994-10-04 Kawasaki Steel Corp Production of steel for machine structure excellent in machinability
US5478523A (en) * 1994-01-24 1995-12-26 The Timken Company Graphitic steel compositions
JP3842430B2 (en) * 1998-04-08 2006-11-08 Jfe条鋼株式会社 Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JP3874533B2 (en) * 1998-04-08 2007-01-31 Jfe条鋼株式会社 Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JP3874532B2 (en) * 1998-04-08 2007-01-31 Jfe条鋼株式会社 Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JP4084462B2 (en) * 1998-06-04 2008-04-30 Jfe条鋼株式会社 Free-cutting hot-worked steel and its manufacturing method
JP3764273B2 (en) * 1998-06-04 2006-04-05 Jfe条鋼株式会社 Manufacturing method of hot forged steel part excellent in machinability, its part, hot rolled steel material used therefor, and manufacturing method of steel material
JP3764274B2 (en) * 1998-06-04 2006-04-05 Jfe条鋼株式会社 Free-cutting hot-worked steel material and rough profile, manufacturing methods thereof, free-cutting hot-worked product, and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
社団法人日本金属学会編,球状黒鉛鋳鉄の理論と実際,日本,丸善株式会社発行,1966年6月30日,p.438

Also Published As

Publication number Publication date
JP2000063988A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP5114689B2 (en) Case-hardened steel and method for producing the same
JP4267260B2 (en) Steel with excellent machinability
KR101965520B1 (en) Rolled steel bar or rolled wire material for cold-forged component
KR100740414B1 (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
JPH11350066A (en) Production of hot forged steel parts excellent in machinability, the parts and hot rolled steel used therefor
KR20190034594A (en) Steel for machine structural use
JP3489434B2 (en) High-strength free-cut non-heat treated steel
JP4084462B2 (en) Free-cutting hot-worked steel and its manufacturing method
JP3255611B2 (en) Free-cutting steel rod and wire excellent in drilling workability and method for producing the same
JP3255612B2 (en) Method of manufacturing super-cuttable steel rod and wire and super-cuttable steel rod and wire thereby
JP2005336553A (en) Hot tool steel
JP6668741B2 (en) Hot rolled bar
JP3716073B2 (en) Manufacturing method of hot forged parts with excellent machinability and fatigue characteristics
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JP3489656B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP3764274B2 (en) Free-cutting hot-worked steel material and rough profile, manufacturing methods thereof, free-cutting hot-worked product, and manufacturing method thereof
JP4243852B2 (en) Steel for carburized parts or carbonitrided parts, method for producing carburized parts or carbonitrided parts
JP3494271B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JP2021134418A (en) Steel for machine structure and cutting method therefor
JP5363827B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP3472675B2 (en) High-strength free-cut non-heat treated steel
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JPH11293387A (en) Hot worked steel excellent in machinability, and product, and their production
JP2002012952A (en) Tool steel for cold working
JP3842430B2 (en) Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees