JP4263648B2 - Ti-added high strength steel with excellent machinability - Google Patents

Ti-added high strength steel with excellent machinability Download PDF

Info

Publication number
JP4263648B2
JP4263648B2 JP2004085805A JP2004085805A JP4263648B2 JP 4263648 B2 JP4263648 B2 JP 4263648B2 JP 2004085805 A JP2004085805 A JP 2004085805A JP 2004085805 A JP2004085805 A JP 2004085805A JP 4263648 B2 JP4263648 B2 JP 4263648B2
Authority
JP
Japan
Prior art keywords
steel
machinability
strength
added
added high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004085805A
Other languages
Japanese (ja)
Other versions
JP2005272903A (en
Inventor
典正 常陰
辰郎 磯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2004085805A priority Critical patent/JP4263648B2/en
Publication of JP2005272903A publication Critical patent/JP2005272903A/en
Application granted granted Critical
Publication of JP4263648B2 publication Critical patent/JP4263648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

この発明は、例えば自動車のシャフトや歯車等、動力を伝達する高強度部品用鋼で、かつ、切削加工を必要とする高強度部品用鋼に関する。   The present invention relates to steel for high-strength parts that transmits power, such as automobile shafts and gears, and that requires cutting work.

一般に、自動車の小型軽量化や高出力化に対応するため、シャフトや歯車などの動力を伝達する部品の高強度化が必要となっている。   In general, in order to cope with miniaturization and weight reduction and high output of automobiles, it is necessary to increase the strength of components that transmit power such as shafts and gears.

そこで、材料化学成分からの高強度化手段としてTi添加鋼がある(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照)。これらの先行の技術では、従来鋼と同様な表面処理、例えば、調質、非調質、浸炭、浸炭窒化等の熱処理やショットピーニング処理等を施すことが前提であるが、一般的な機械構造用鋼よりも大量のTiを添加しているため、微細析出した大量のTiCによる分散強化、あるいは結晶粒度微細安定化効果によって強度改善が可能となった。   Therefore, Ti-added steel is available as a means for increasing strength from material chemical components (see, for example, Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4). These prior technologies are premised on surface treatment similar to that of conventional steel, for example, heat treatment such as tempering, non-tempering, carburizing, carbonitriding, etc. Since a larger amount of Ti was added than steel for steel, the strength could be improved by the dispersion strengthening by the large amount of finely precipitated TiC or the effect of finely stabilizing the crystal grain size.

ところが、Tiを大量添加した場合の弊害として、従来鋼と比較して切削条件によっては切削加工時の工具寿命が低下したり、切屑が微細に分断されず、工具に巻き付くトラブルが発生することがある。   However, as a negative effect when adding a large amount of Ti, the tool life during cutting may be reduced depending on the cutting conditions compared to conventional steel, or the chips may not be finely divided, causing troubles around the tool. There is.

そして、従来のTi大量添加鋼において、被削性改善を目的としてCaを添加した鋼が開発されている(例えば、特許文献5、特許文献6参照。)。ところがCaを単純に添加してもその効果は必ずしも十分に現れるとは限らない。   And in the conventional Ti mass addition steel, the steel which added Ca for the purpose of machinability improvement is developed (for example, refer patent document 5 and patent document 6). However, even if Ca is simply added, the effect does not always appear sufficiently.

特開平10−251806号公報Japanese Patent Laid-Open No. 10-251806 特開平11−302727号公報JP-A-11-302727 特開平11−71630号公報Japanese Patent Laid-Open No. 11-71630 特開2002−266053号公報JP 2002-266053 A 特開平10−324952号公報Japanese Patent Laid-Open No. 10-324952 特開平10−152752号公報Japanese Patent Laid-Open No. 10-152752

本願発明が解決しようとする課題は、自動車のシャフトや歯車等、動力を伝達する高強度部品用鋼、例えばJISで規定するSC、SMn、SCr、SCM、SNC、SNCMやこれらにB、V、Nbなど強化元素を添加した鋼あるいはPb、Bi、Mgなどの快削元素を添加した鋼にTiを添加してなる高強度部品用鋼の被削性を向上させることを目的とするものである。   The problems to be solved by the present invention are steels for high-strength parts that transmit power, such as automobile shafts and gears, such as SC, SMn, SCr, SCM, SNC, SNCM, and B, V, It is intended to improve the machinability of steel for high strength parts formed by adding Ti to steel added with strengthening elements such as Nb or free cutting elements such as Pb, Bi and Mg. .

Tiを大量に添加した鋼は被削性が悪いが、その理由は硬質なTi系炭窒化物が増加すること、そして、快削性物質である硫化物が改質されることに原因があると考えられる。一般的な機械構造用鋼、例えばJIS規格のSC、SMn、SCr、SCM、SNC、SNCM、および、これらにB、V、Nb、あるいはPb、Bi、Mgなどの快削元素を添加した鋼では、介在物としてMnSを含有する。このMnSは切削加工時に応力集中源となって亀裂発生や伝播を促進させて被削性を改善する効果を有する。しかし、強度上昇のためTiを大量添加すると、MnSが生成せずにTi硫化物あるいはTi炭硫化物が生成する。これらTi硫化物やTi炭硫化物はMnSと比較して小さく、かつ硬いために、被削性改善効果が弱いという欠点がある。   Steel added with a large amount of Ti has poor machinability due to the increase in hard Ti-based carbonitrides and the modification of sulfides, which are free-cutting materials. it is conceivable that. For general structural steels such as JIS standard SC, SMn, SCr, SCM, SNC, SNCM, and steels to which free cutting elements such as B, V, Nb or Pb, Bi, Mg are added In addition, MnS is contained as an inclusion. This MnS has an effect of improving machinability by becoming a stress concentration source during cutting and promoting crack generation and propagation. However, when a large amount of Ti is added to increase the strength, Ti sulfide or Ti carbon sulfide is generated without generating MnS. Since these Ti sulfides and Ti carbon sulfides are smaller and harder than MnS, there is a drawback that the effect of improving machinability is weak.

ところが発明者らは、同量のS量でも、Ti添加鋼のOを一定量に調整し、特定の範囲の量のCaを添加することにより、被削性が大幅に改善されることを見いだした。これはTiよりもCaの方が硫化物生成能力が高いためにTi硫化物組成あるいはTi炭硫化物組成が改質されることと同時に生成するCa系酸化物との複合効果によるものである。これは、一定の酸素量およびTi量のもとでCaを添加すると、被削性に有効なCa系硫化物とCa系酸化物を共存させることができるため、被削性が上昇するものである。   However, the inventors have found that even with the same amount of S, the machinability is greatly improved by adjusting O of Ti-added steel to a certain amount and adding a specific range of amount of Ca. It was. This is due to the combined effect with Ca-based oxides that are generated simultaneously with the modification of the Ti sulfide composition or Ti carbon sulfide composition because Ca has a higher sulfide generation capacity than Ti. This is because, when Ca is added under a constant oxygen amount and Ti amount, since the Ca-based sulfide and Ca-based oxide effective for machinability can coexist, the machinability increases. is there.

そこで上記の課題を解決するための本発明の請求項1の手段では、質量%で、C:0.10〜1.20%、Si:0.05〜1.25%、Mn:0.30〜1.50%、P:0.035%以下、S:0.003〜0.070%、Al:0.005〜0.050%、Ti:0.10〜0.30%、N:0.015%以下、Ca:0.0005〜0.01%、O:0.0005〜0.01%を含有し、残部Fe及び不可避不純物からなり、100×Ti×O/Ca=1〜100………(1)の式を満足する鋼であり、Ca処理により生成のCa系硫化物あるいはCa系酸化物を含有する機械構造用鋼からなることを特徴とする被削性に優れるTi添加高強度鋼である。 Therefore, in the means of claim 1 of the present invention for solving the above-mentioned problems , C: 0.10 to 1.20%, Si: 0.05 to 1.25%, Mn: 0.30 in mass%. To 1.50%, P: 0.035% or less, S: 0.003 to 0.070%, Al: 0.005 to 0.050%, Ti: 0.10 to 0.30%, N: 0 0.15% or less, Ca: 0.0005 to 0.01%, O: 0.0005 to 0.01%, consisting of the balance Fe and inevitable impurities, 100 × Ti × O / Ca = 1 to 100 ...... Steel that satisfies the formula of (1), and is made of mechanical structural steel containing Ca-based sulfides or Ca-based oxides produced by Ca treatment. It is a strength steel.

請求項2の手段では、機械構造用鋼は、請求項1の手段の鋼成分に加えて、質量%で、さらにCr:0.1〜3.0%、Mo:0.15〜1.5%、Ni:0.25〜3.0%、B:0.0003〜0.0080%、Nb:0.01〜0.15%、V:0.03〜0.30%のうち1種又は2種以上を含有し、残部Fe及び不可避不純物からなり、100×Ti×O/Ca=1〜100………(1)の式を満足する鋼であり、Ca処理により生成のCa系硫化物あるいはCa系酸化物を含有する機械構造用鋼からなることを特徴とする被削性に優れるTi添加高強度鋼である。 According to the second aspect of the present invention, the mechanical structural steel is, in addition to the steel components of the first aspect, in mass%, further Cr: 0.1 to 3.0%, Mo: 0.15 to 1.5. %, Ni: 0.25 to 3.0%, B: 0.0003 to 0.0080%, Nb: 0.01 to 0.15%, V: 0.03 to 0.30% or one type Ca-based sulfide containing two or more types, balance Fe and inevitable impurities, and satisfying the formula of 100 × Ti × O / Ca = 1 to 100 (1), and formed by Ca treatment Alternatively, it is a Ti-added high-strength steel excellent in machinability, characterized by comprising a mechanical structural steel containing a Ca-based oxide .

請求項3の手段では、機械構造用鋼は、請求項1または2の手段の鋼成分に加えて、質量%で、Bi:0.01〜0.30%、Pb:0.01〜0.30%、Mg:0.0005〜0.01%のうち1種又は2種以上を含有し、残部Fe及び不可避不純物からなり、100×Ti×O/Ca=1〜100………(1)の式を満足する鋼であり、Ca処理により生成のCa系硫化物あるいはCa系酸化物を含有する機械構造用鋼からなることを特徴とする被削性に優れるTi添加高強度鋼である。 According to the third aspect of the present invention, in addition to the steel components of the first or second aspect, the mechanical structural steel is, in mass%, Bi: 0.01-0.30%, Pb: 0.01-0. 30%, Mg: contains one or more of 0.0005 to 0.01%, consists of remaining Fe and inevitable impurities, 100 × Ti × O / Ca = 1 to 100 (1) The Ti-added high-strength steel excellent in machinability, characterized in that it is made of a steel for mechanical structures containing a Ca-based sulfide or Ca-based oxide produced by Ca treatment .

上記のTi添加高強度鋼の成分元素の添加理由について以下に説明する。なお、%は質量%を示す。   The reason for adding the component elements of the Ti-added high-strength steel will be described below. In addition,% shows the mass%.

C:0.10〜1.20%
Cは、強度確保に必要な元素である。しかし、多すぎると被削性を阻害する。そこでCは0.10〜1.20%とし、望ましくは0.15〜0.65%とする。
C: 0.10 to 1.20%
C is an element necessary for ensuring strength. However, if too much, machinability is hindered. Therefore, C is 0.10 to 1.20%, preferably 0.15 to 0.65%.

Si:0.05〜1.25%
Siは、脱酸材として必要な元素である。しかし、多すぎると被削性を阻害する。そこでSiは0.05〜1.25%とし、望ましくは0.10〜1.00%とする。
Si: 0.05-1.25%
Si is an element necessary as a deoxidizing material. However, if too much, machinability is hindered. Therefore, Si is set to 0.05 to 1.25%, preferably 0.10 to 1.00%.

Mn:0.30〜1.50%
Mnは、焼入性確保に必要な元素である。しかし、多すぎると被削性を阻害する。そこでMnは0.30〜1.50%とし、望ましくは0.35〜1.00%とする。
Mn: 0.30 to 1.50%
Mn is an element necessary for ensuring hardenability. However, if too much, machinability is hindered. Therefore, Mn is 0.30 to 1.50%, preferably 0.35 to 1.00%.

P:0.035%以下
Pは、不純物として含有されるが、多すぎると衝撃強度を低下する。そこでPは0.035%以下とし、望ましくは0.030%以下とする。
P: 0.035% or less P is contained as an impurity, but if it is too much, the impact strength is lowered. Therefore, P is set to 0.035% or less, preferably 0.030% or less.

S:0.003〜0.070%
Sは、硫化物を生成して被削性を改善する元素である。しかし、多すぎると熱間加工性および衝撃強度を低下する。そこでSは0.003〜0.070%とし、望ましくは0.005〜0.045%、より望ましくは0.010〜0.030%とする。
S: 0.003-0.070%
S is an element that generates sulfide and improves machinability. However, when the amount is too large, the hot workability and impact strength are lowered. Therefore, S is 0.003 to 0.070%, preferably 0.005 to 0.045%, and more preferably 0.010 to 0.030%.

Al:0.005〜0.050%
Alは、脱酸材として必要な元素である。しかし、上限は電気炉による溶製の際の通常の電気炉レベルとする。そこでAlは0.005〜0.050%とし、望ましくは0.005〜0.035%とする。
Al: 0.005 to 0.050%
Al is an element necessary as a deoxidizing material. However, the upper limit is the normal electric furnace level at the time of melting by an electric furnace. Therefore, Al is made 0.005 to 0.050%, preferably 0.005 to 0.035%.

Ti:0.10〜0.30%
Tiは、TiCによる結晶粒粗大化防止に必要な元素である。しかし、多すぎると製造製が低下する。そこでTiは0.10〜0.30%とし、望ましくは0.11〜0.20%とする。
Ti: 0.10 to 0.30%
Ti is an element necessary for preventing grain coarsening due to TiC. However, if it is too much, the production is reduced. Therefore, Ti is 0.10 to 0.30%, preferably 0.11 to 0.20%.

N:0.015%以下
Nは、不純物として含有されるが、多すぎるとTiNを生成し被削性を低下する。そこでNは0.015%以下とし、望ましくは0.010%以下とする。
N: 0.015% or less N is contained as an impurity, but if it is too much, TiN is generated and machinability is lowered. Therefore, N is set to 0.015% or less, preferably 0.010% or less.

Ca:0.0005〜0.01%
Caは、Ca系硫化物とCa系酸化物を生成し、被削性を確保する元素である。そこで、製鋼段階において、溶鋼中にCaを含有する合金を塊状あるいはワイヤーで添加することでCa処理を施す。Ca処理によって硫化物と酸化物が改質され被削性改善効果が現れるが、鋼中に0.0005%以上含有すると効果は明確となる。しかし、多すぎるとコストを高め、かつ、大型CaO生成により強度特性に悪影響する。そこでCaは0.0005〜0.01%とし、望ましくは0.001〜0.005%とする。
Ca: 0.0005 to 0.01%
Ca is an element that generates a Ca-based sulfide and a Ca-based oxide to ensure machinability. Therefore, in the steelmaking stage, Ca treatment is performed by adding an alloy containing Ca in the molten steel in a lump or wire. Although the sulfide and oxide are modified by Ca treatment and an effect of improving machinability appears, the effect becomes clear when contained in steel by 0.0005% or more. However, if the amount is too large, the cost is increased, and the strength characteristics are adversely affected by the generation of large-scale CaO. Therefore, Ca is 0.0005 to 0.01%, preferably 0.001 to 0.005%.

O:0.0005〜0.01%
Oは、Caと結合してCa系酸化物を生成して被削性を改善する。しかし、多すぎると大型酸化物の生成により強度を低下する。そこでOは0.0005〜0.01%とし、望ましくは0.001〜0.005%とする。
O: 0.0005 to 0.01%
O couple | bonds with Ca and produces | generates Ca type | system | group oxide and improves machinability. However, if the amount is too large, the strength decreases due to the formation of large oxides. Therefore, O is set to 0.0005 to 0.01%, preferably 0.001 to 0.005%.

Cr:0.1〜3.0%
Crは、焼入性確保に必要な元素である。しかし、多すぎると被削性を阻害する。そこでCrは0.1〜3.0%とし、望ましくは0.6〜2.0%とする。
Cr: 0.1-3.0%
Cr is an element necessary for ensuring hardenability. However, if too much, machinability is hindered. Therefore, Cr is set to 0.1 to 3.0%, preferably 0.6 to 2.0%.

Mo:0.15〜1.5%
Moは、高温硬さおよび焼入性確保に必要な元素である。しかし、多すぎると被削性を低下し、コスト的に不利となる。そこでMoは0.15〜1.5%とし、望ましくは0.25〜1.0%とする。
Mo: 0.15-1.5%
Mo is an element necessary for ensuring high-temperature hardness and hardenability. However, if the amount is too large, the machinability is lowered, which is disadvantageous in terms of cost. Therefore, Mo is set to 0.15 to 1.5%, preferably 0.25 to 1.0%.

Ni:0.25〜3.0%
Niは、歯車などの歯元曲げ疲労強度の確保に必要な元素である。しかし、多すぎると被削性を低下し、コスト的に不利となる。そこでNiは0.25〜3.0%とし、望ましくは0.3〜1.0%とする。
Ni: 0.25 to 3.0%
Ni is an element necessary for ensuring the root bending fatigue strength of gears and the like. However, if the amount is too large, the machinability is lowered, which is disadvantageous in terms of cost. Therefore, Ni is set to 0.25 to 3.0%, preferably 0.3 to 1.0%.

B:0.0003〜0.0080%
Bは、焼入性確保に必要な元素である。しかし、多すぎるとホウ炭化物析出により強度低下をもたらす。そこでBは0.0003〜0.0080%とし、望ましくは0.0010〜0.0030%とする。
B: 0.0003 to 0.0080%
B is an element necessary for ensuring hardenability. However, when the amount is too large, the strength decreases due to precipitation of borocarbides. Therefore, B is 0.0003 to 0.0080%, preferably 0.0010 to 0.0030%.

Nb:0.01〜0.15%
Nbは、結晶粒微細安定化による曲げ疲労強度を改善する元素である。しかし多すぎるとコスト的に不利となる。そこでNbは0.01〜0.15%とし、望ましくは0.02〜0.10%とする。
Nb: 0.01 to 0.15%
Nb is an element that improves the bending fatigue strength by stabilizing the crystal grains. However, too much is disadvantageous in cost. Therefore, Nb is set to 0.01 to 0.15%, preferably 0.02 to 0.10%.

V:0.03〜0.30%
Vは、高温硬さの確保に必要な元素である。しかし、多すぎるとコスト的に不利となる。そこでVは0.03〜0.30%とし、望ましくは0.10〜0.25%とする。
V: 0.03-0.30%
V is an element necessary for ensuring high-temperature hardness. However, too much is disadvantageous in terms of cost. Therefore, V is 0.03 to 0.30%, preferably 0.10 to 0.25%.

Bi:0.01〜0.30%
Biは、被削性の改善に必要な元素である。しかし、多すぎると熱間加工性を低下する。そこでBiは0.01〜0.30%とし、望ましくは0.03〜0.25%とする。
Bi: 0.01-0.30%
Bi is an element necessary for improving machinability. However, when too much, hot workability will fall. Therefore, Bi is set to 0.01 to 0.30%, preferably 0.03 to 0.25%.

Pb:0.01〜0.30%
Pbは、被削性の改善に必要な元素である。しかし、多すぎると熱間加工性を低下する。そこでPbは0.01〜0.30%とし、望ましくは0.03〜0.25%とする。
Pb: 0.01-0.30%
Pb is an element necessary for improving machinability. However, when too much, hot workability will fall. Therefore, Pb is set to 0.01 to 0.30%, preferably 0.03 to 0.25%.

Mg:0.0005〜0.01%
Mgは、硫化物、酸化物の制御により被削性を改善する元素である。しかし、多すぎるとコスト的に不利である。そこでMgは0.0005〜0.01%とし、望ましくは0.001〜0.005%とする。
Mg: 0.0005 to 0.01%
Mg is an element that improves machinability by controlling sulfides and oxides. However, too much is disadvantageous in terms of cost. Therefore, Mg is 0.0005 to 0.01%, preferably 0.001 to 0.005%.

さらに上記成分において、Ti、O、Caは、100×Ti×O/Ca=1〜100………(1)の式を満足する理由を以下に説明すると、Ti、O、Caが上記式を満足するとき被削性改善効果が得られることである。なお、上記(1)式の値は、望ましくは1〜25である。   Further, in the above components, Ti, O, and Ca satisfy the formula of 100 × Ti × O / Ca = 1 to 100 (1). When satisfied, a machinability improving effect is obtained. The value of the above expression (1) is preferably 1 to 25.

本願の発明は、Tiを高強度化手段として含有した自動車用のシャフトや歯車などの動力伝達する高強度部品用鋼に鋼成分としてCaを添加することによりCa系硫化物あるいはCa系酸化物を生成した本願の鋼組成とし、さらにその組成中のTi、O、Caの成分割合の関係を一定範囲に規定することにより、従来困難であったTi添加鋼の被削性を大幅に改善することができ、切削加工の容易な高強度部品用鋼が得られるという優れた効果を奏するものである。   In the invention of the present application, a Ca-based sulfide or a Ca-based oxide is added by adding Ca as a steel component to a steel for high-strength parts that transmits power such as a shaft or gear for automobiles containing Ti as a means for increasing the strength. The machinability of Ti-added steel, which has been difficult in the past, is greatly improved by defining the steel composition of the present application and further defining the relation of the proportions of Ti, O, and Ca in the composition within a certain range. Therefore, an excellent effect is obtained in that a steel for high-strength parts that can be easily machined can be obtained.

本発明を実施するための最良の形態を、以下に記載する被削性試験などを通じて、実施例により説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described by way of examples through a machinability test described below.

100kg真空溶解炉にて、溶鋼中にCa−Si合金を添加して製造した表1に示す化学成分の本発明鋼と、比較鋼のそれぞれの鋼を溶製して鋼塊を得た。得られた鋼塊を1250℃でφ40mmの棒鋼に鍛伸した。その後、920℃に1時間保持した後、空冷し、被削性試験に供した。   In the 100 kg vacuum melting furnace, the steel of the present invention having the chemical composition shown in Table 1 produced by adding a Ca—Si alloy to molten steel and the steel of comparative steel were melted to obtain a steel ingot. The obtained steel ingot was forged into a steel bar having a diameter of 40 mm at 1250 ° C. Then, after hold | maintaining at 920 degreeC for 1 hour, it air-cooled and used for the machinability test.

Figure 0004263648
Figure 0004263648

表1においては、式(1)の100×Ti×O/Caの値は、小数点第1位を四捨五入した。さらにCaは0.0001質量%未満でも0.0001質量%で計算した。なお、網掛け部は、本発明の請求項の範囲外を示す。   In Table 1, the value of 100 × Ti × O / Ca in formula (1) is rounded off to the first decimal place. Furthermore, even if Ca was less than 0.0001 mass%, it was calculated at 0.0001 mass%. The shaded portion is outside the scope of the claims of the present invention.

被削性試験として、1)旋削超硬工具寿命試験、2)ドリル寿命試験、3)切屑処理性試験を行い、表2に被削性試験結果を示す。   As the machinability test, 1) a turning carbide tool life test, 2) a drill life test, and 3) a chip disposal test were performed. Table 2 shows the machinability test results.

1)旋削超硬工具寿命試験は、超硬工具としてP20工具を使用し、切削速度:200m/min、送り:0.1mm/rev、切込み:0.5mm、評価方法:乾式で逃げ面摩耗量VB=0.2mmに達するまでの時間で評価した。   1) Turning carbide tool life test uses a P20 tool as a carbide tool, cutting speed: 200 m / min, feed: 0.1 mm / rev, depth of cut: 0.5 mm, evaluation method: dry type flank wear Evaluation was made by the time required to reach VB = 0.2 mm.

2)ドリル寿命試験は、φ5mmハイスドリルを使用し、切削速度:25m/min、送り:0.1mm/rev、穴深さ:15mm、評価方法:乾式でドリル折損までの穿孔穴数で評価した。   2) The drill life test was performed using a φ5 mm high-speed drill, cutting speed: 25 m / min, feed: 0.1 mm / rev, hole depth: 15 mm, evaluation method: dry method, and the number of drilled holes until drill breakage.

3)切屑処理性試験、上記1)の条件において、送りを0.1、0.15、0.20mm/revに変化させて旋削を行い、その際に得られた切屑を採取し、切屑1あたりの切屑個数で評価した。   3) Under the condition of the chip disposal test and 1) above, turning was performed while changing the feed to 0.1, 0.15, 0.20 mm / rev, and the chips obtained at that time were collected to obtain chips 1 The number of chips per piece was evaluated.

Figure 0004263648
Figure 0004263648

表2において、被削性試験結果は以下のように、No.16〜18を基準鋼として相対指数で示す。No.1〜5およびNo.13、No.14はNo.17の、No.6〜10およびNo.15はNo.18の、No.11、No.12はNo.16のそれぞれ被削性試験結果を1とする。なお、網掛け部は2未満を示す。目標値は2以上である。   In Table 2, the machinability test results are as follows. 16 to 18 are shown as relative steels as relative steels. No. 1-5 and no. 13, no. 14 is No.14. No. 17, no. 6-10 and no. 15 is No.15. No. 18, no. 11, no. No. 12 is No. 12. Each of the 16 machinability test results is 1. The shaded portion indicates less than 2. The target value is 2 or more.

被削性試験結果における表2の発明鋼のNo.1〜12は本発明の請求鋼に係るものである。本発明鋼の被削性は、ドリル寿命、超硬工具寿命、切屑処理性のいずれにおいても2以上の高い指数を示している。これに対して比較鋼のNo.13〜18の6例の中で2以上の指数を示したものは、ドリル寿命でNo.13の1例のみ、超硬工具寿命は1例もなく、切屑処理性でNo.13とNo.15の2例のみで、その他はいずれも2に達しておらず、本発明が被削性に極めて優れていることを示している。   No. of invention steel of Table 2 in a machinability test result. 1 to 12 relate to the claimed steel of the present invention. The machinability of the steel of the present invention shows a high index of 2 or more in any of the drill life, the carbide tool life, and the chip disposal. On the other hand, No. of comparative steel. Among the six cases 13 to 18, those showing an index of 2 or more were No. in drill life. No. 13 in No. 13 has no carbide tool life, and the chip disposal is No. 13 and no. Only two of 15 examples, none of them reached 2, indicating that the present invention is extremely excellent in machinability.

Claims (3)

機械構造用鋼は、質量%で、C:0.10〜1.20%、Si:0.05〜1.25%、Mn:0.30〜1.50%、P:0.035%以下、S:0.003〜0.070%、Al:0.005〜0.050%、Ti:0.10〜0.30%、N:0.015%以下、Ca:0.0005〜0.01%、O:0.0005〜0.01%を含有し、残部Fe及び不可避不純物からなり、下記の式(1)を満足する鋼であり、Ca処理により生成のCa系硫化物あるいはCa系酸化物を含有する機械構造用鋼からなることを特徴とする被削性に優れるTi添加高強度鋼。Steel for machine structure is mass%, C: 0.10 to 1.20%, Si: 0.05 to 1.25%, Mn: 0.30 to 1.50%, P: 0.035% or less , S: 0.003-0.070%, Al: 0.005-0.050%, Ti: 0.10-0.30%, N: 0.015% or less, Ca: 0.0005-0. 01%, O: 0.0005-0.01% in steel, balance Fe and inevitable impurities, satisfying the following formula (1), Ca-based sulfide or Ca-based produced by Ca treatment A Ti-added high-strength steel excellent in machinability, characterized by comprising mechanical structural steel containing an oxide.
100×Ti×O/Ca=1〜100………(1)100 × Ti × O / Ca = 1 to 100 (1)
機械構造用鋼は、請求項1に記載の鋼成分に加えて、質量%で、さらにCr:0.1〜3.0%、Mo:0.15〜1.5%、Ni:0.25〜3.0%、B:0.0003〜0.0080%、Nb:0.01〜0.15%、V:0.03〜0.30%のうち1種又は2種以上を含有し、残部Fe及び不可避不純物からなり、下記の式(1)を満足する鋼であり、Ca処理により生成のCa系硫化物あるいはCa系酸化物を含有する機械構造用鋼からなることを特徴とする被削性に優れるTi添加高強度鋼。
100×Ti×O/Ca=1〜100………(1)
In addition to the steel components according to claim 1, the steel for machine structure is in mass%, and Cr: 0.1 to 3.0%, Mo: 0.15 to 1.5%, Ni: 0.25 ~ 3.0%, B: 0.0003 to 0.0080%, Nb: 0.01 to 0.15%, V: 0.03 to 0.30% of one type or two or more types, A steel comprising the balance Fe and unavoidable impurities and satisfying the following formula (1), comprising a steel for mechanical structure containing Ca-based sulfide or Ca-based oxide produced by Ca treatment. Ti-added high-strength steel with excellent machinability.
100 × Ti × O / Ca = 1 to 100 (1)
機械構造用鋼は、請求項1または2に記載の鋼成分に加えて、質量%で、さらにBi:0.01〜0.30%、Pb:0.01〜0.30%、Mg:0.0005〜0.01%のうち1種又は2種以上を含有し、残部Fe及び不可避不純物からなり、下記の式(1)を満足する鋼であり、Ca処理により生成のCa系硫化物あるいはCa系酸化物を含有する機械構造用鋼からなることを特徴とする被削性に優れるTi添加高強度鋼。
100×Ti×O/Ca=1〜100………(1)
In addition to the steel components according to claim 1 or 2, the steel for machine structure is in mass%, Bi: 0.01 to 0.30%, Pb: 0.01 to 0.30%, Mg: 0 A steel containing one or more of 0.05 to 0.01%, the balance being Fe and inevitable impurities, and satisfying the following formula (1): A Ti-added high-strength steel excellent in machinability, characterized by comprising a mechanical structural steel containing a Ca-based oxide.
100 × Ti × O / Ca = 1 to 100 (1)
JP2004085805A 2004-03-23 2004-03-23 Ti-added high strength steel with excellent machinability Expired - Fee Related JP4263648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085805A JP4263648B2 (en) 2004-03-23 2004-03-23 Ti-added high strength steel with excellent machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085805A JP4263648B2 (en) 2004-03-23 2004-03-23 Ti-added high strength steel with excellent machinability

Publications (2)

Publication Number Publication Date
JP2005272903A JP2005272903A (en) 2005-10-06
JP4263648B2 true JP4263648B2 (en) 2009-05-13

Family

ID=35172881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085805A Expired - Fee Related JP4263648B2 (en) 2004-03-23 2004-03-23 Ti-added high strength steel with excellent machinability

Country Status (1)

Country Link
JP (1) JP4263648B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111037B2 (en) * 2007-09-27 2012-12-26 株式会社神戸製鋼所 Machine structural steel and machine structural parts for machining
JP2009174033A (en) 2008-01-28 2009-08-06 Kobe Steel Ltd Steel for machine structure having excellent machinability
JP6668741B2 (en) * 2015-12-22 2020-03-18 日本製鉄株式会社 Hot rolled bar
JP6791179B2 (en) * 2018-02-28 2020-11-25 Jfeスチール株式会社 Non-microalloyed steel and its manufacturing method
JP7189053B2 (en) * 2019-03-14 2022-12-13 株式会社神戸製鋼所 Non-tempered forging steel and non-tempered forged parts

Also Published As

Publication number Publication date
JP2005272903A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
KR101280203B1 (en) Carburized steel part
JP4267260B2 (en) Steel with excellent machinability
JP5655366B2 (en) Bainite steel
JP5368885B2 (en) Machine structural steel with excellent hot workability and machinability
JP2004332078A (en) Free-cutting steel for machine structure use excellent in scrap disposal
EP1518939B1 (en) Sulfur free cutting steel for machine structural use
JP3687370B2 (en) Free-cutting steel
JP3680674B2 (en) Machine structural steel and machine structural parts with excellent machinability and toughness
JP4084462B2 (en) Free-cutting hot-worked steel and its manufacturing method
JP4263648B2 (en) Ti-added high strength steel with excellent machinability
JP3874557B2 (en) Free-cutting non-tempered steel with excellent toughness
JP4964060B2 (en) Mechanical structural steel and mechanical structural parts with excellent strength anisotropy and machinability
JP2615126B2 (en) Gear steel
JP3764274B2 (en) Free-cutting hot-worked steel material and rough profile, manufacturing methods thereof, free-cutting hot-worked product, and manufacturing method thereof
JP4148311B2 (en) Lead-free mechanical structural steel with excellent machinability and small strength anisotropy
JP3834127B2 (en) Free-cutting high toughness non-tempered steel
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3565428B2 (en) Steel for machine structure
JP3763934B2 (en) Non-tempered steel for free cutting hot forging
JP4906245B2 (en) Machine structural steel with excellent machinability
JPH0310047A (en) Free cutting steel for carburizing and quenching
JPH11293387A (en) Hot worked steel excellent in machinability, and product, and their production
JP4049969B2 (en) Free-cutting steel for machine structure
JP5318638B2 (en) Machine structural steel with excellent machinability
JP4936639B2 (en) Free-cutting steel for machine structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees