JP4148311B2 - Lead-free mechanical structural steel with excellent machinability and small strength anisotropy - Google Patents

Lead-free mechanical structural steel with excellent machinability and small strength anisotropy Download PDF

Info

Publication number
JP4148311B2
JP4148311B2 JP2000377856A JP2000377856A JP4148311B2 JP 4148311 B2 JP4148311 B2 JP 4148311B2 JP 2000377856 A JP2000377856 A JP 2000377856A JP 2000377856 A JP2000377856 A JP 2000377856A JP 4148311 B2 JP4148311 B2 JP 4148311B2
Authority
JP
Japan
Prior art keywords
steel
sulfide
cutting
free
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000377856A
Other languages
Japanese (ja)
Other versions
JP2002180184A (en
Inventor
元秀 森
直樹 岩間
雅夫 内山
真保 細木
典正 常陰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Sanyo Special Steel Co Ltd
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd, Toyota Motor Corp, Aichi Steel Corp filed Critical Sanyo Special Steel Co Ltd
Priority to JP2000377856A priority Critical patent/JP4148311B2/en
Publication of JP2002180184A publication Critical patent/JP2002180184A/en
Application granted granted Critical
Publication of JP4148311B2 publication Critical patent/JP4148311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼材の強度特性を大きく劣化させることなく、広範囲の切削方法や切削条件において優れた被削性を有し、特に耐超硬工具摩耗性および切粉処理性に優れた機械構造用鋼に関する。
【0002】
【従来の技術】
近年の切削加工の高速化、自動化に伴って、機械構造用部品に使用される鋼材の被削性が重要視され快削鋼の需要が高まっている。しかし、鋼材の必要強度は厳しくなりつつあり、通常は鋼材を高強度化した場合には被削性は劣化する。すなわち鋼材の高強度化と被削性という相反する特性の改善が要求されている。現在、一般的に使用されている快削鋼として、Pb、S、Caを含有させた鋼材がある。しかし、これらの快削鋼は切削加工方法によっては全く快削性を示さなかったり、あるいは材質劣化の問題があるため、その用途および快削物質の量は制限されている。
【0003】
すなわち、Pb快削鋼は、基本鋼と比較して機械的性質の劣化が小さく一般の旋削加工において切粉処理性の改善を示し、ドリル加工、リーマ加工、中ぐり加工等の工具寿命の延長、および(穴深さ/ドリル直径)≧3を深穴とした場合の深穴あけ加工時に切粉の排出を容易にし、突発的な切粉つまりによる工具の折損を防止するのに非常に有効な元素である。しかし、旋削時の工具寿命については高速度鋼、超硬工具共にPb添加の有効性は小さく、むしろ軽負荷の切削条件領域では通常鋼よりも劣化する傾向が認められる場合もある。さらに、近年の環境問題の高まりから、Pbの有毒性が問題視されており、今後Pbの使用量は削減される方向にある。
【0004】
S快削鋼は、比較的広範な切削加工に対して工具寿命を延長させる効果を示すが、Pb快削鋼に比べて切粉処理性は悪く、特に高速切削領域では改善効果は小さく、また鋼材の強度面では介在物として存在するMnSが熱間圧延あるいは熱間鍛造中に延伸するため、圧延方向から直角方向に近づくにつれて衝撃強度等の機械的性質が低下する(異方性)という問題がある。
【0005】
Ca脱酸により鋼中の酸化物系介在物を低融点化させた従来のCa快削鋼は鋼材の強度特性にほとんど影響を及ぼさず、高速切削領域の超硬工具寿命に著しい延長効果を示す。しかし、Ca脱酸快削鋼は、超硬工具寿命以外の被削性改善効果がほとんど認められないため、オールラウンドの被削性を得るためにSあるいはPbとの複合で使用される場合が一般的である。
【0006】
従来のCa脱酸鋼とは異なり、S快削鋼の欠点である異方性をCa添加によって鋼中の介在物を均一に分散、分布させることから改善し、同時に被削性も向上させた例として、特公平5−15777号公報に記載の発明がある。この場合、Ca脱酸快削鋼のような欠点はないが、十分な被削性を得るには多量のSを添加する必要があり、その場合に硫化物を形態制御させるために必要十分な量のCaを鋼材中に含有させることはCa歩留りが低いため量産鋼として製造は極めて困難である。
【0007】
この場合のCaと同様な効果を狙った例として特公昭52−7405号公報に記載されたMg、Baの第1群元素の1種または2種を0.1%以下とS、Se、Teよりなる第2群元素の1種以上を0.03%〜0.5%含有し、(第1群元素/第2群元素)の原子比が0.01以上となる快削鋼が提案されている。しかしSeとTeは毒性が強く、環境負荷が大きい。また特開昭51−63312号公報に記載の発明があり、工具鋼にZrを添加し、O+Nの量、Zr化合物の硫化物と共存する量を所定の割合にすることにより、快削工具鋼を得ている。これらはMg、Ba、Sr等を使用しているがいずれもCaと同様な問題がある。
【0008】
【発明が解決しようとする課題】
本発明は、上記の従来の問題を解消することであり、環境問題に配慮して非Pb化鋼として硫化物系介在物を快削性物質とし、最適な硫化物分散形態とすることにより靱性および被削性を向上させ、鋼材の強度特性を大きく劣化させることなく、広範囲の切削方法や切削条件において優れた被削性を有する機械構造用鋼を提供する。
【0009】
【課題を解決するための手段】
本発明の機械構造用鋼は、快削性物質として硫化物系介在物を含有する機械構造用低合金鋼からなり、該機械構造用低合金鋼の硫化物粒子は長径が1.5μm以上である長径と粒子間距離の比が0.5未満で、かつ、長径が1.5μm以上である硫化物粒子の平均面積が9μm2以上であることを特徴とする、被削性に優れ、強度異方性の小さい鉛無添加の構造溶鋼である。
【0010】
すなわち、上記の課題を解決するための本発明の手段は、請求項1の発明では、質量%で、C:0.10〜0.65%、Si:0.03〜1.00%、Mn:0.30〜2.50%、Cr:0.1〜2.0%、S:0.03〜0.35%、Al:0.020%未満、O:20ppm未満を含有し、さらにCa:0.0005〜0.020%、Mg:0.0003〜0.020%から選ばれた1種または2種を含有し、さらにMo:0.05〜1.00%、Ni:0.1〜3.5%、V:0.01〜0.50%、Nb:0.01〜0.10%、Ti:0.01〜0.10%、B:0.0005〜0.0100%から選択した1種または2種を含有し、残部Feおよび不可避不純物からなる快削性物質として硫化物系介在物を含有する機械構造用低合金鋼であり、該機械構造用低合金鋼の長径が1.5μm以上である硫化物粒子は長径と粒子間の距離の比が0.5未満で、かつ、長径が1.5μm以上である硫化物粒子の平均面積は9μm2以上であることを特徴とする被削性に優れ、強度異方性の小さい鉛無添加の機械構造用鋼である。
【0011】
次に本発明における鋼成分の限定理由を説明する。なお、%は質量%で示す。
C:0.10〜0.65%
Cは、機械構造用鋼として強度を確保するための必須元素であり、0.10%以上添加する。しかし、多すぎると硬さが増加するから靱性および被削性の劣化を招くため上限を0.65%とする。特に、非調質強靱鋼の場合には、好ましくは0.10〜0.55%であり、より好ましくは0.35〜0.50%がよい。肌焼鋼の場合には、好ましくは0.10〜0.30%であり、より好ましくは0.12〜0.28%がよい。
【0012】
Si:0.03〜1.00%
Siは、製鋼時の脱酸剤として不可欠であるため下限を0.03%とする。しかし、過剰に添加すると延性を低下させるほか、鋼中に高硬度の介在物であるSiO2を生成させて被削性も劣化させるため上限を1.00%とする。Siは上記3種のいずれの鋼種においても、好ましくは0.10〜0.50%であり、より好ましくは0.15〜0.35%がよい。
【0013】
Mn:0.30〜2.50%
Mnは、一般に鋼の強度、靱性、熱間加工性、焼入性を確保する上で重要な元素であり、かつ本発明において、硫化物系介在物生成に不可欠な元素であるため、0.30%以上添加する。しかし、多すぎると硬さ増大から被削性が劣化するため上限を2.50%とする。Mnは上記3種のいずれの鋼種においても、好ましくは0.42〜2.00%であり、より好ましくは0.60〜1.50%がよい。
【0014】
S:0.03〜0.35%
Sは、被削性を改善させる硫化物系介在物の生成元素であり、被削性改善効果を得るためには少なくとも0.03%以上添加する必要があり、Sの増大に伴い被削性は向上する。しかしながら多すぎると硫化物形態制御が困難となり、衝撃異方性が劣化するため、上限を0.35%とする。Sは上記3種のいずれの鋼種においても、好ましくは0.04〜0.30%であり、より好ましくは0.08〜0.20%がよい。
【0015】
Al:0.020%未満
Al量が0.020%以上の場合には、高硬度のAl23よりなる介在物が生成され、被削性の劣化および疲労強度の低下を招いてしまうので、0.020%未満とする。なお、Alについては、上記3種の鋼種における好適範囲の差異はほとんどない。
【0016】
O:20ppm未満
Oは、被削性に有害な酸化物系の硬質介在物の生成を抑制する点から極力低減させることが望ましい。Oが20ppm以上となると、酸化物系の硬質介在物生成量が増えて被削性を損なうと共に、疲労強度が低下するため、Oを20ppm未満とする必要がある。
【0017】
Ca:0.0005〜0.020%
CaはMn、Mgとともに硫化物生成元素であると共に、Al、Siとの複合酸化物をも生成し、被削性向上効果および硫化物形態制御による機械的性質の異方性改善効果がある。Caは単独で添加しても良いが、望ましくはMgと複合添加する方が良い。その効果を得るためには少なくとも、0.0005%以上必要である。また、製造段階でのCaの歩留りは非常に悪く、必要以上に含有させてもその効果が飽和するため、Caの上限を0.020%とする。Caは上記3種のいずれの鋼種においても、好ましくは0.0005〜0.0060%であり、より好ましくは0.0005〜0.0040%がよい。
【0018】
Mg:0.0003〜0.020%
Mgは、Caと同様の効果を示し、単独で添加しても効果は得られるが、Caと複合で存在させた場合に大きな被削性改善効果および機械的性質の異方性改善効果が得られる。その効果を得るためには少なくとも0.0003%以上必要である。一方、必要以上に含有させても、その効果が飽和状態になり、無駄であるためMgの上限を0.020%とする。Mgは上記3種のいずれの鋼種においても、好ましくは0.0003〜0.0060%であり、より好ましくは0.0005〜0.0040%がよい。
【0019】
また、上記の鉛無添加の機械構造用鋼においてCr:0.1〜2.0%を必須とし、さ らにMo:0.05〜1.00%、Ni:0.1〜3.5%、V:0.01〜0.50%、Nb:0.01〜0.10%、Ti:0.01〜0.10%、B:0.0005〜0.0100%から選択した1種または2種を含有することが望ましい。
【0020】
これらの望ましい成分の範囲限定理由を以下に示す。
Cr:0.1〜2.0%、Mo:0.05〜1.00%、Ni:0.1〜3.5%
Cr、Mo、Niは、鋼の焼入性および靱性を向上させる元素で必要な場合に添加する。その効果を得るためには、Crは0.1%以上、Moは0.05%以上、Niは0.1%以上添加することが必要である。多量に添加した場合には被削材の硬さが増加することから、被削性確保のためにはCrは2.0%以下、Moは1.00%以下、Niは3.5%以下とすることが必要である。Crは上記3種のいずれの鋼種においても、好ましくは0.10〜1.50%であり、より好ましくは0.15〜1.20%がよい。Moは上記3種のいずれの鋼種においても、好ましくは0.10〜0.40%であり、より好ましくは0.15〜0.30%がよい。また、Niは、上記3種のいずれの鋼種においても、好ましくは0.40〜3.00%であり、より好ましくは0.42〜2.00%がよい。
【0021】
V:0.01〜0.50%
Vは、析出強化作用の強い元素であるので、焼入焼戻し処理を省略する場合に添加する。この効果を得るためには0.01%以上添加することが望ましい。一方で、0.50%を超えて含有させても効果は飽和するので上限を0.50%とすることが好ましい。非調質鋼の場合には、より好ましくは0.05〜0.35%であり、さらに好ましくは0.05〜0.30%がよい。
【0022】
Nb:0.01〜0.10%、Ti:0.01〜0.10%
Nb、Tiはそれぞれ炭窒化物を生成し、ピン止め効果により結晶粒を微細化させる効果があり、必要に応じて添加する。この効果を得るためには0.01%以上必要であるが、0.10%を超えて含有させても効果は飽和するので上限を0.10%とすることが好ましい。より好ましくは、0.01〜0.08%であり、さらに好ましくは0.01〜0.06%がよい。
【0023】
B:0.0005〜0.0100%
Bは少量の含有で焼入性を向上させ、鋼の機械的性質を向上させる効果があり、必要に応じて添加する。この効果を得るためには0.0005%以上必要であるが、0.0100%を超えて含有させても効果は飽和するので上限を0.0100%とすることが望ましい。より好ましくは0.0005〜0.0060%であり、さらに好ましくは0.0005〜0.0040%がよい。
【0024】
上記の鉛無添加の機械構造用鋼は、硫化物系の介在物として、MnS、(Ca、Mn)S、(Mg、Mn)S、(Ca、Mg)S、(Ca、Mg、Mn)Sの1種または2種以上を含有することが好ましい。上記SとCa、Mg、Mnとの硫化物としては種々あるが、特にCa、Mg、Sによる複合的な硫化物(Ca、Mg)S、あるいは、Ca、Mg、Mnによる複合的な硫化物(Ca、Mg、Mn)Sの少なくとも一方を含有させることにより、被削性と機械的性質を大幅に改善することができる。ただし、これらの硫化物は、大きさや数によって被削性や衝撃特性に及ぼす影響が異なる。長径が1.5μm未満の硫化物は、被削性や衝撃特性にほとんど影響を及ぼさないため、1.5μm以上の硫化物のみを測定することにした。T方向衝撃値は、硫化物長径と粒子間距離の比が、0.5より小さい場合に改善され、被削性は硫化物の平均断面積が9μm2以上で改善される。硫化物をこれらの状態に制御するためには、Ca、Mgを複合添加し、上述の硫化物組成にする必要がある。
【0025】
【発明の実施の形態】
請求項1に係る発明の実施の形態は、快削性物質として硫化物系介在物を含有する機械構造用低合金鋼、例えばJIS SCrとして規定するクロム鋼、に快削成分としてMg、Ca、Sを含有し、さらに、Ni、Mo、V、Nb、Ti、Bの1種以上を含有した鋼を溶製し、該鋼からなる鋼材を熱間圧延あるいは熱間鍛造により該鋼材中に介在する長径が1.5μm以上である硫化物粒子の長径と粒子間距離の比を0.5より小とし、かつ、長径が1.5μm以上である硫化物粒子の平均面積を9μm2以上とし、焼入焼戻して鉛無添加の快削鋼の鋼材を得るものである。
【0026】
すなわち、請求項1の発明の実施の形態は、快削性物質として硫化物系介在物を含有する機械構造用低合金鋼が、質量%で、C:0.10〜0.65%、Si:0.03〜1.00%、Mn:0.30〜2.50%、Cr:0.1〜2.0%、S:0.03〜0.35%、Al:0.020%未満、O:20ppm未満を含有し、さらにCa:0.0005〜0.020%、Mg:0.0003〜0.020%から選択した1種または2種を含有し、さらにMo:0.05〜1.00%、Ni:0.1〜3.5%、V:0.01〜0.50%、Nb:0.01〜0.10%、Ti:0.01〜0.10%、B:0.0005〜0.0100%から選択した1種または2種を含有し、残部Feおよび不可避不純物からなるを溶製し、該鋼からなる鋼材を圧延比あるいは鍛造比4〜625の熱間圧延あるいは熱間鍛造により、該鋼材中に介在する長径が1.5μm以上である硫化物粒子の長径と粒子間の距離の比を0.5より小とし、かつ、長径が1.5μm以上である硫化物粒子の平均面積を9μm2以上とし、焼入焼戻して非鉛快削鋼材を得るものである。
【0027】
【実施例】
以下、本発明の実施例を説明する。表1に示す化学成分の鋼種の本発明例の複合添加鋼および比較例のS快削成分にさらにCaあるいはMgの単独添加鋼を溶製し、それらの鋼材を圧鍛比32.7で熱間で鍛伸し、焼入焼戻して硬さ32HRCの鋼材を得た。
【0028】
【表1】

Figure 0004148311
【0029】
得られた鋼材をハイスドリルSKH51を用い、表2に示すドリル加工条件でドリル摩耗試験を行った。図1に、ドリル逃げ面コーナー部より0.5mm位置での摩耗量と硫化物サイズ(平均面積)の関係を示す。この結果CaあるいはMg含有鋼では、硫化物サイズが大きいほど摩耗量は減少し、大きな硫化物ほど被削性に対する寄与が大きい。一方、S2鋼では硫化物サイズは小さいがその数は多く、また硫化物の偏在もある。したがって、多数の硫化物が存在することおよび硫化物の偏在も被削性には有効である。以上から、硫化物サイズが大きいほど被削性改善に効果があることから考えると、切削時の硫化物の役割は、硫化物周辺で応力・歪みを集中させ、変形と破壊を集中させることによって切削に必要なエネルギー(切削抵抗・熱)を低減させることがわかる。そして、長径が1.5μm以上である硫化物平均面積が9μm2以上であれば、摩耗量をPb:0.17%の鉛快削鋼と同等レベル以上にできる。
【0030】
【表2】
Figure 0004148311
【0031】
上記と同様に表1に示す鋼種を溶製し、それらの鋼材を圧鍛比6.3で熱間で鍛伸し、焼入焼戻して硬さ32HRCの鋼材を得た。得られた鋼材のシャルピー衝撃試験を行った。図2にこれら鋼種と鍛伸方向のT方向シャルピー衝撃値(常温)の関係を示す。この結果全てのCa、Mg含有鋼のT方向衝撃値はS1レベル(15J/cm2)以上であった。図3にS2鋼およびCa、Mg含有鋼の硫化物並びに試験後の破面の顕微鏡写真を示す。これらから判るように、S2鋼では硫化物は固−液共存状態でデンドライト樹間に数多く晶出し偏在するのに対し、Ca、Mgを添加すると溶鋼中において酸化物を核として硫化物が生成すると考えられ均一に分散する。Ca、Mgの単独添加および複合添加によって、圧延方向あるいは鍛伸方向の硫化物長さ(長径)が短くなり(アスペクト比減少)、硫化物の球状化が生じる。図3に示される一例の複合添加鋼の破面に見られるように、硫化物のアスペクト比の減少と分散によって延性的な破面となっている。なお、VNb、MoC、TiV、TiBの4鋼種について他の実施例と同様の評価を行いT方向靱性および被削性改善効果を認めている。
【0032】
以上から、硫化物による靱性の劣化は、主に硫化物の長径と硫化物の粒子間隔に支配されていると考えられる。S2鋼での粒子間距離を硫化物が局部的に偏在している部分で評価し、その他の鋼種では全体の個数から換算すると、図4のT方向シャルピー値と硫化物長径/粒子間距離の関係に見られるように、T方向衝撃値は硫化物の硫化物長径/粒子間距離が小さい方が優れており、硫化物が球状化しているほど、さらに粒子間距離が大きいほどT方向衝撃値は上昇することがわかる。
【0033】
【発明の効果】
以上に説明したとおり、本発明は、環境問題に配慮して鉛無添加鋼とし、さらに硫化物系介在物を快削性物質とし、最適な硫化物の分散形態とし、長径が1.5μm以上である硫化物粒子は長径と粒子間距離の比を0.5より小とし、かつ、長径が1.5μm以上である硫化物粒子の平均面積が9μm2以上としているので、靱性および被削性が向上し、鋼材の強度特性を大きく劣化させることなく、広範囲の切削方法や切削条件において優れた被削性を有し、特に耐超硬工具摩耗性および切粉処理性に優れた機械構造用鋼である。
【図面の簡単な説明】
【図1】 摩耗量と硫化物サイズ(平均面積)の関係を示すグラフである。
【図2】 鍛伸方向のT方向シャルピー衝撃値(常温)の関係を示すグラフである。
【図3】 S2鋼およびCa、Mg含有鋼の硫化物並びに試験後の破面の顕微鏡写真である。
【図4】 T方向シャルピー値と硫化物長径/粒子間距離の関係に示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention has excellent machinability in a wide range of cutting methods and cutting conditions without greatly degrading the strength characteristics of steel materials, and in particular for machine structures with excellent carbide tool wear resistance and chip treatment. Related to steel.
[0002]
[Prior art]
With the recent speeding up and automation of cutting, importance is attached to the machinability of steel used for machine structural parts, and the demand for free-cutting steel is increasing. However, the required strength of steel materials is becoming stricter, and usually the machinability deteriorates when the strength of steel materials is increased. In other words, there is a demand for improvement in contradictory properties such as high strength of steel and machinability. Currently, there is a steel material containing Pb, S, and Ca as a free-cutting steel that is generally used. However, these free-cutting steels do not show free-cutting properties at all depending on the cutting method, or there is a problem of material deterioration, so that their use and the amount of free-cutting substances are limited.
[0003]
In other words, Pb free-cutting steel has less deterioration of mechanical properties compared to basic steel and shows improved chip disposal in general turning, extending tool life such as drilling, reaming and boring. , And (hole depth / drill diameter) ≥3 is a deep hole, it is very effective in facilitating chip discharge during deep drilling and preventing breakage of the tool due to sudden chipping. It is an element. However, with regard to the tool life during turning, the effectiveness of Pb addition is small for both high-speed steel and cemented carbide tools, and in some cases, there is a tendency to deteriorate more than normal steel in the light load cutting condition region. Furthermore, due to the recent increase in environmental problems, toxicity of Pb is regarded as a problem, and the amount of Pb used will be reduced in the future.
[0004]
S free-cutting steel shows the effect of extending the tool life for a relatively wide range of cutting operations, but the chip-treating property is worse than that of Pb free-cutting steel, especially in the high-speed cutting region, and the improvement effect is small. On the strength side of steel materials, MnS present as inclusions is stretched during hot rolling or hot forging, so that mechanical properties such as impact strength decrease (anisotropy) as it approaches the perpendicular direction from the rolling direction. There is.
[0005]
Conventional Ca free-cutting steel in which the oxide inclusions in the steel have a low melting point by Ca deoxidation has little effect on the strength properties of the steel, and shows a significant extension effect on the carbide tool life in the high-speed cutting region. . However, since Ca deoxidized free-cutting steel has almost no machinability improving effect other than the carbide tool life, it may be used in combination with S or Pb to obtain all-round machinability. It is common.
[0006]
Unlike conventional Ca deoxidized steel, the anisotropy, which is a disadvantage of S free-cutting steel, was improved by uniformly dispersing and distributing inclusions in the steel by adding Ca, and at the same time, improved machinability. As an example, there is an invention described in Japanese Patent Publication No. 5-15777. In this case, there is no drawback like Ca deoxidized free-cutting steel, but in order to obtain sufficient machinability, it is necessary to add a large amount of S. In that case, it is necessary and sufficient to control the form of sulfide. Inclusion of an amount of Ca in a steel material is extremely difficult to manufacture as mass-produced steel because of a low Ca yield.
[0007]
As an example aiming at the same effect as Ca in this case, one or two of the first group elements of Mg and Ba described in JP-B-52-7405 are 0.1% or less and S, Se, Te A free-cutting steel containing 0.03% to 0.5% of a second group element of 0.03 to 0.5% and having an atomic ratio of (first group element / second group element) of 0.01 or more is proposed. ing. However, Se and Te are highly toxic and have a large environmental impact. Further, there is an invention described in Japanese Patent Application Laid-Open No. 51-63312. Free cutting tool steel is obtained by adding Zr to the tool steel and adjusting the amount of O + N and the coexistence with the sulfide of the Zr compound to a predetermined ratio. Have gained. These use Mg, Ba, Sr, etc., but all have the same problems as Ca.
[0008]
[Problems to be solved by the invention]
The present invention is to solve the above-mentioned conventional problems, considering the environmental problem, toughness by making sulfide inclusions as a free-cutting material as non-Pb steel and making an optimum sulfide dispersion form. Further, the present invention provides a machine structural steel having improved machinability and having excellent machinability in a wide range of cutting methods and conditions without greatly degrading the strength characteristics of the steel material.
[0009]
[Means for Solving the Problems]
The steel for machine structure of the present invention comprises a low alloy steel for machine structure containing sulfide inclusions as a free-cutting substance, and the long particle of the sulfide particles of the low alloy steel for machine structure has a major axis of 1.5 μm or more. The ratio of the major axis to the inter-particle distance is less than 0.5, and the average area of sulfide particles having a major axis of 1.5 μm or more is 9 μm 2 or more. It is a structurally molten steel with little anisotropy that does not contain lead.
[0010]
That is, the means of the present invention for solving the above-mentioned problem is that, in the invention of claim 1, in mass%, C: 0.10 to 0.65%, Si: 0.03 to 1.00%, Mn : 0.30 to 2.50%, Cr: 0.1 to 2.0%, S: 0.03 to 0.35%, Al: less than 0.020%, O: less than 20ppm, and further Ca : One or two selected from 0.0005 to 0.020%, Mg: 0.0003 to 0.020%, Mo: 0.05 to 1.00%, Ni: 0.1 ~ 3.5%, V: 0.01 ~ 0.50%, Nb: 0.01 ~ 0.10%, Ti: 0.01 ~ 0.10%, B: From 0.0005 ~ 0.0100% It contains one or two or selected, containing sulfide inclusions as a free-cutting material the balance being Fe and inevitable impurities mechanical structure The low-alloy steel is a low-alloy steel for mechanical structure having a major axis having a major axis of 1.5 μm or more. An average area of a certain sulfide particle is 9 μm 2 or more, and it is a steel for mechanical structure containing no lead and having excellent machinability and small strength anisotropy.
[0011]
Next, the reasons for limiting the steel components in the present invention will be described. In addition,% is shown in mass%.
C: 0.10 to 0.65%
C is an essential element for securing strength as steel for machine structural use, and is added in an amount of 0.10% or more. However, if the amount is too large, the hardness increases, leading to deterioration of toughness and machinability, so the upper limit is made 0.65%. In particular, in the case of non-tempered tough steel, it is preferably 0.10 to 0.55%, more preferably 0.35 to 0.50%. In the case of case-hardened steel, it is preferably 0.10 to 0.30%, more preferably 0.12 to 0.28%.
[0012]
Si: 0.03-1.00%
Since Si is indispensable as a deoxidizer during steelmaking, the lower limit is made 0.03%. However, if added excessively, the ductility is lowered, and SiO 2 which is a high-hardness inclusion is generated in the steel to deteriorate the machinability, so the upper limit is made 1.00%. Si is preferably 0.10 to 0.50% and more preferably 0.15 to 0.35% in any of the above three steel types.
[0013]
Mn: 0.30 to 2.50%
In general, Mn is an important element for securing the strength, toughness, hot workability, and hardenability of steel, and in the present invention, it is an indispensable element for the formation of sulfide inclusions. Add 30% or more. However, if the amount is too large, the machinability deteriorates due to increased hardness, so the upper limit is made 2.50%. Mn is preferably 0.42 to 2.00%, more preferably 0.60 to 1.50% in any of the above three types of steel.
[0014]
S: 0.03-0.35%
S is an element of sulfide inclusions that improve machinability, and it is necessary to add at least 0.03% or more in order to obtain an effect of improving machinability. Will improve. However, if the amount is too large, it becomes difficult to control the sulfide form and the impact anisotropy deteriorates, so the upper limit is made 0.35%. S is preferably 0.04 to 0.30% and more preferably 0.08 to 0.20% in any of the above three steel types.
[0015]
Al: less than 0.020% When the amount of Al is 0.020% or more, inclusions made of high hardness Al 2 O 3 are generated, leading to deterioration of machinability and fatigue strength. , Less than 0.020%. In addition, about Al, there is almost no difference of the suitable range in said 3 types of steel types.
[0016]
O: Less than 20 ppm It is desirable to reduce O as much as possible from the viewpoint of suppressing generation of oxide-based hard inclusions harmful to machinability. When O is 20 ppm or more, the amount of oxide-based hard inclusions increases and the machinability is impaired, and the fatigue strength decreases. Therefore, O needs to be less than 20 ppm.
[0017]
Ca: 0.0005 to 0.020%
Ca is a sulfide-forming element together with Mn and Mg, and also produces a composite oxide with Al and Si, and has an effect of improving machinability and anisotropy of mechanical properties by controlling sulfide morphology. Ca may be added singly, but it is desirable to add it in combination with Mg. In order to obtain the effect, at least 0.0005% or more is necessary. Further, the yield of Ca in the production stage is very poor, and even if contained more than necessary, the effect is saturated, so the upper limit of Ca is 0.020%. Ca is preferably 0.0005 to 0.0060%, more preferably 0.0005 to 0.0040% in any of the above three steel types.
[0018]
Mg: 0.0003 to 0.020%
Mg shows the same effect as Ca, and even if added alone, the effect can be obtained, but when it is combined with Ca, a large machinability improvement effect and anisotropy improvement effect on mechanical properties are obtained. It is done. In order to obtain the effect, at least 0.0003% or more is necessary. On the other hand, even if contained more than necessary, the effect becomes saturated and is useless, so the upper limit of Mg is made 0.020%. Mg is preferably 0.0003 to 0.0060% and more preferably 0.0005 to 0.0040% in any of the above three steel types.
[0019]
In the above-described lead additive-free steel for machine structural use Cr: and 0.1% to 2.0% of the essential, it is et to Mo: 0.05~1.00%, Ni: 0.1~3.5 %, V: 0.01 to 0.50%, Nb: 0.01 to 0.10%, Ti: 0.01 to 0.10%, B: 0.0005 to 0.0100% Or it is desirable to contain 2 types.
[0020]
The reasons for limiting the ranges of these desirable components are shown below.
Cr: 0.1-2.0%, Mo: 0.05-1.00%, Ni: 0.1-3.5%
Cr, Mo, and Ni are elements that improve the hardenability and toughness of steel and are added when necessary. In order to obtain the effect, it is necessary to add Cr 0.1% or more, Mo 0.05% or more, and Ni 0.1% or more. When added in a large amount, the hardness of the work material increases, so to ensure machinability, Cr is 2.0% or less, Mo is 1.00% or less, and Ni is 3.5% or less. Is necessary. Cr is preferably 0.10 to 1.50% and more preferably 0.15 to 1.20% in any of the above three steel types. Mo is preferably 0.10 to 0.40% and more preferably 0.15 to 0.30% in any of the above three steel types. Further, Ni is preferably 0.40 to 3.00%, more preferably 0.42 to 2.00% in any of the above three steel types.
[0021]
V: 0.01 to 0.50%
V is an element having a strong precipitation strengthening action, and is added when quenching and tempering is omitted. In order to obtain this effect, it is desirable to add 0.01% or more. On the other hand, since the effect is saturated even if the content exceeds 0.50%, the upper limit is preferably made 0.50%. In the case of non-tempered steel, it is more preferably 0.05 to 0.35%, further preferably 0.05 to 0.30%.
[0022]
Nb: 0.01 to 0.10%, Ti: 0.01 to 0.10%
Nb and Ti each produce carbonitrides and have the effect of refining crystal grains by the pinning effect, and are added as necessary. In order to acquire this effect, 0.01% or more is required, but even if it contains exceeding 0.10%, since an effect will be saturated, it is preferable to make an upper limit into 0.10%. More preferably, it is 0.01 to 0.08%, and more preferably 0.01 to 0.06%.
[0023]
B: 0.0005 to 0.0100%
B is contained in a small amount, has the effect of improving hardenability and improving the mechanical properties of steel, and is added as necessary. In order to obtain this effect, 0.0005% or more is necessary. However, if the content exceeds 0.0100%, the effect is saturated, so the upper limit is preferably made 0.0100%. More preferably, it is 0.0005 to 0.0060%, and further preferably 0.0005 to 0.0040%.
[0024]
The above lead-free steel for machine structural use includes sulfide inclusions as MnS, (Ca, Mn) S, (Mg, Mn) S, (Ca, Mg) S, (Ca, Mg, Mn). It is preferable to contain one or more of S. There are various types of sulfides of S and Ca, Mg, and Mn. In particular, complex sulfides (Ca, Mg) S of Ca, Mg, and S, or complex sulfides of Ca, Mg, and Mn. By including at least one of (Ca, Mg, Mn) S, machinability and mechanical properties can be greatly improved. However, these sulfides have different effects on machinability and impact characteristics depending on the size and number. Since sulfides having a major axis of less than 1.5 μm have little effect on machinability and impact properties, only sulfides of 1.5 μm or more were measured. The impact value in the T direction is improved when the ratio of the sulfide major axis to the interparticle distance is smaller than 0.5, and the machinability is improved when the average cross-sectional area of sulfide is 9 μm 2 or more. In order to control the sulfide to these states, it is necessary to add Ca and Mg in combination to obtain the above-described sulfide composition.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the invention according to claim 1 is a low-alloy steel for machine structure containing sulfide inclusions as a free-cutting substance, for example, chromium steel defined as JIS SCr, and free-cutting ingredients such as Mg, Ca, A steel containing S and further containing at least one of Ni, Mo, V, Nb, Ti, and B is melted , and a steel material made of the steel is interposed in the steel material by hot rolling or hot forging. The ratio of the long diameter of the sulfide particles having a long diameter of 1.5 μm or more to a distance between the particles is smaller than 0.5, and the average area of the sulfide particles having a long diameter of 1.5 μm or more is 9 μm 2 or more, The steel material of free-cutting steel with no lead added is obtained by quenching and tempering.
[0026]
That is, in the embodiment of the invention of claim 1, the low alloy steel for machine structure containing sulfide inclusions as a free-cutting substance is in mass%, C: 0.10 to 0.65%, Si : 0.03-1.00%, Mn: 0.30-2.50%, Cr : 0.1-2.0%, S: 0.03-0.35%, Al: less than 0.020% , O: less than 20 ppm, Ca: 0.0005-0.020%, Mg: One or two selected from 0.0003-0.020%, Mo: 0.05- 1.00%, Ni: 0.1-3.5%, V: 0.01-0.50%, Nb: 0.01-0.10%, Ti: 0.01-0.10%, B : contain one or two species selected from 0.0005 to 0.0100%, and steels balance consisting of Fe and unavoidable impurities, or steel Made by hot rolling or hot forging of a steel rolling ratio or forging ratio 4-625, the ratio of the distance between the major axis and the particles of the sulfide particles diameter is 1.5μm or more intervening in the steel material 0. The average area of sulfide particles having a major axis of 1.5 μm or more is set to 9 μm 2 or more and quenched and tempered to obtain a lead-free free-cutting steel material.
[0027]
【Example】
Examples of the present invention will be described below. The steel with the chemical composition shown in Table 1 is added to the composite additive steel of the present invention example and the S free-cutting component of the comparative example, and a single additive steel of Ca or Mg is melted. The steel was forged and quenched and tempered to obtain a steel material having a hardness of 32 HRC.
[0028]
[Table 1]
Figure 0004148311
[0029]
The obtained steel was subjected to a drill wear test using a high-speed drill SKH51 under the drilling conditions shown in Table 2. FIG. 1 shows the relationship between the amount of wear and the sulfide size (average area) at a position 0.5 mm from the corner of the drill flank. As a result, in Ca or Mg-containing steel, the larger the sulfide size, the smaller the wear amount, and the larger the sulfide, the greater the contribution to machinability. On the other hand, in the S2 steel, the sulfide size is small, but the number is large, and there is uneven distribution of sulfide. Therefore, the presence of a large number of sulfides and the uneven distribution of sulfides are also effective for machinability. From the above, considering that the larger the sulfide size, the better the machinability, the role of sulfide during cutting is to concentrate stress and strain around the sulfide, and concentrate deformation and fracture. It can be seen that the energy (cutting resistance / heat) required for cutting is reduced. If the average area of sulfide having a major axis of 1.5 μm or more is 9 μm 2 or more, the wear amount can be made equal to or higher than that of Pb: 0.17% lead free cutting steel.
[0030]
[Table 2]
Figure 0004148311
[0031]
In the same manner as above, the steel types shown in Table 1 were melted, and the steel materials were hot forged at a forge ratio of 6.3 and quenched and tempered to obtain a steel material having a hardness of 32 HRC. The Charpy impact test of the obtained steel material was performed. FIG. 2 shows the relationship between these steel types and the T direction Charpy impact value (normal temperature) in the forging direction. As a result, the T-direction impact value of all the Ca and Mg-containing steels was S1 level (15 J / cm 2 ) or more. FIG. 3 shows micrographs of S2 steel, sulfides of Ca and Mg-containing steel, and fracture surfaces after the test. As can be seen from the above, in S2 steel, many sulfides are crystallized and distributed unevenly between dendritic trees in the solid-liquid coexistence state, but when Ca and Mg are added, sulfides are generated in the molten steel with oxides as nuclei. It is thought to disperse uniformly. By adding Ca and Mg alone and in combination, the sulfide length (major axis) in the rolling direction or the forging direction is shortened (aspect ratio is decreased), and spheroidization of the sulfide occurs. As can be seen from the fracture surface of the composite-added steel shown in FIG. 3, the ductile fracture surface is caused by the reduction and dispersion of the sulfide aspect ratio. In addition, about 4 steel types, VNb, MoC, TiV, and TiB, the same evaluation as another Example was performed, and the T direction toughness and the machinability improvement effect were recognized.
[0032]
From the above, it is considered that the deterioration of toughness due to sulfide is mainly governed by the long diameter of sulfide and the particle interval of sulfide. When the inter-particle distance in S2 steel is evaluated at a portion where sulfides are locally unevenly distributed and converted from the total number of other steel types, the T-direction Charpy value in FIG. 4 and the sulfide long diameter / inter-particle distance As can be seen from the relationship, the impact value in the T direction is superior when the sulfide major axis / distance between the sulfides is smaller. The more the sulfide is spheroidized, the greater the interparticle distance, the greater the T direction impact value. Can be seen to rise.
[0033]
【The invention's effect】
As described above, the present invention is made of lead-free steel in consideration of environmental problems, further uses sulfide inclusions as a free-cutting material, has an optimum sulfide dispersion, and has a major axis of 1.5 μm or more. In the sulfide particles, the ratio of the major axis to the inter-particle distance is less than 0.5, and the average area of the sulfide particles having the major axis of 1.5 μm or more is 9 μm 2 or more. For machine structures that have excellent machinability in a wide range of cutting methods and cutting conditions, particularly with excellent carbide wear resistance and chip disposal, without greatly degrading the strength properties of steel materials It is steel.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of wear and sulfide size (average area).
FIG. 2 is a graph showing the relationship between the T direction Charpy impact value (normal temperature) in the forging direction.
FIG. 3 is a photomicrograph of sulfides of S2 steel and Ca, Mg-containing steel and fracture surfaces after the test.
FIG. 4 is a graph showing the relationship between T-direction Charpy value and sulfide major diameter / inter-particle distance.

Claims (1)

質量%で、C:0.10〜0.65%、Si:0.03〜1.00%、Mn:0.30〜2.50%、Cr:0.1〜2.0%、S:0.03〜0.35%、Al:0.020%未満、O:20ppm未満を含有し、さらにCa:0.0005〜0.020%、Mg:0.0003〜0.020%から選択した1種または2種を含有し、さらにMo:0.05〜1.00%、Ni:0.1〜3.5%、V:0.01〜0.50%、Nb:0.01〜0.10%、Ti:0.01〜0.10%、B:0.0005〜0.0100%から選択した1種または2種を含有し、残部Feおよび不可避不純物からなる快削性物質として硫化物系介在物を含有する機械構造用低合金鋼からなり、該機械構造用低合金鋼の長径が1.5μm以上である硫化物粒子は長径と粒子間の距離の比が0.5未満で、かつ、長径が1.5μm以上である硫化物粒子の平均面積は9μm2以上であることを特徴とする被削性に優れ、強度異方性の小さい鉛無添加の機械構造用鋼。In mass%, C: 0.10 to 0.65%, Si: 0.03 to 1.00%, Mn: 0.30 to 2.50%, Cr: 0.1 to 2.0%, S: Contains 0.03 to 0.35%, Al: less than 0.020%, O: less than 20ppm, and further selected from Ca: 0.0005-0.020%, Mg: 0.0003-0.020% 1 type or 2 types are contained, Mo: 0.05-1.00%, Ni: 0.1-3.5%, V: 0.01-0.50%, Nb: 0.01-0 .10%, Ti: 0.01 to 0.10%, B: One or two selected from 0.0005 to 0.0100%, and sulfide as a free-cutting material comprising the balance Fe and inevitable impurities A sulfide comprising a low-alloy steel for machine structure containing physical inclusions, the major axis of the low-alloy steel for machine structure being 1.5 μm or more The particles have an excellent machinability characterized in that the ratio of the long diameter to the distance between the particles is less than 0.5 and the average area of the sulfide particles whose long diameter is 1.5 μm or more is 9 μm 2 or more, Steel for machine structural use with no added lead with low strength anisotropy.
JP2000377856A 2000-12-12 2000-12-12 Lead-free mechanical structural steel with excellent machinability and small strength anisotropy Expired - Fee Related JP4148311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000377856A JP4148311B2 (en) 2000-12-12 2000-12-12 Lead-free mechanical structural steel with excellent machinability and small strength anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000377856A JP4148311B2 (en) 2000-12-12 2000-12-12 Lead-free mechanical structural steel with excellent machinability and small strength anisotropy

Publications (2)

Publication Number Publication Date
JP2002180184A JP2002180184A (en) 2002-06-26
JP4148311B2 true JP4148311B2 (en) 2008-09-10

Family

ID=18846522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000377856A Expired - Fee Related JP4148311B2 (en) 2000-12-12 2000-12-12 Lead-free mechanical structural steel with excellent machinability and small strength anisotropy

Country Status (1)

Country Link
JP (1) JP4148311B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169992C (en) 2001-11-15 2004-10-06 住友金属工业株式会社 Steel for mechanical structure
JP2004068128A (en) * 2002-08-09 2004-03-04 Daido Steel Co Ltd Steel for machine structural use having excellent chip crushability
JP2005273000A (en) * 2004-02-26 2005-10-06 Sanyo Special Steel Co Ltd Steel for machine structural use having improved machinability
JP4906245B2 (en) * 2004-06-08 2012-03-28 山陽特殊製鋼株式会社 Machine structural steel with excellent machinability
EP2357260B1 (en) 2009-01-16 2018-09-19 Nippon Steel & Sumitomo Metal Corporation Case hardening steel, carburized component, and manufacturing method of case hardening steel

Also Published As

Publication number Publication date
JP2002180184A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP4473928B2 (en) Hot-worked steel with excellent machinability and impact value
AU2007342838B2 (en) Steel for machine structure excelling in machinability and strength property
KR101280203B1 (en) Carburized steel part
JP2008013788A (en) Steel for mechanical structural use having excellent machinability and strength property
JP2009108340A (en) Quenching steel excellent in machinability and hardenability
EP1270757A1 (en) Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy
EP0930374B1 (en) Production of cold working tool steel
JP3558889B2 (en) Hot-forged machine structural steel with excellent machinability
JP2000160284A (en) Free-cutting steel
JP4148311B2 (en) Lead-free mechanical structural steel with excellent machinability and small strength anisotropy
EP1262573A1 (en) Free-cutting steel
KR100415626B1 (en) High Strength Wear Resistance Steel with Excellent Hardenability
JP3270035B2 (en) Lead-free mechanical structural steel with excellent machinability and low strength anisotropy
JPH01129952A (en) Steel for rotating parts having longer service life and exellent chip treatability
JP3442706B2 (en) Free-cutting steel
JP4263648B2 (en) Ti-added high strength steel with excellent machinability
JP3874557B2 (en) Free-cutting non-tempered steel with excellent toughness
JPH04354852A (en) High hardness shank material or barrel material for high speed steel tool
JP4282459B2 (en) Machine structural steel with excellent machinability used for quenching and tempering
JP2001192762A (en) High toughness non-heat treated steel for hot forging
JP2003293081A (en) Steel for machine structural use having excellent machinability and rolling fatigue property
JP2000328182A (en) Free-cutting steel for machine structure excellent in hot workability
EP1688512A1 (en) Lead-free steel for machine structural use with excellent machinability and low strenght anisotropy
JP3940213B2 (en) Steel for machine structure
JPH0754100A (en) Ferrite plus bainite type high strength non-heat treated steel for hot forging excellent in machinability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4148311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees