JP3270035B2 - Lead-free mechanical structural steel with excellent machinability and low strength anisotropy - Google Patents

Lead-free mechanical structural steel with excellent machinability and low strength anisotropy

Info

Publication number
JP3270035B2
JP3270035B2 JP2000025516A JP2000025516A JP3270035B2 JP 3270035 B2 JP3270035 B2 JP 3270035B2 JP 2000025516 A JP2000025516 A JP 2000025516A JP 2000025516 A JP2000025516 A JP 2000025516A JP 3270035 B2 JP3270035 B2 JP 3270035B2
Authority
JP
Japan
Prior art keywords
steel
free
cutting
machinability
steels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2000025516A
Other languages
Japanese (ja)
Other versions
JP2001220645A (en
Inventor
直樹 岩間
進 大脇
雅夫 内山
伊佐夫 藤井
勝司 西門
典正 常陰
一博 小林
和孝 大庫
国雄 内藤
元秀 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Toyota Motor Corp
Toyota Central R&D Labs Inc
Aichi Steel Corp
Original Assignee
Sanyo Special Steel Co Ltd
Toyota Motor Corp
Toyota Central R&D Labs Inc
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18551368&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3270035(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Special Steel Co Ltd, Toyota Motor Corp, Toyota Central R&D Labs Inc, Aichi Steel Corp filed Critical Sanyo Special Steel Co Ltd
Priority to JP2000025516A priority Critical patent/JP3270035B2/en
Publication of JP2001220645A publication Critical patent/JP2001220645A/en
Application granted granted Critical
Publication of JP3270035B2 publication Critical patent/JP3270035B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,機械的性質の異方性が小さく,
広範な切削方法や切削条件における被削性に優れ,か
つ,鉛を含有しない鉛無添加の機械構造用鋼に関する。
TECHNICAL FIELD The present invention relates to a method for producing a material having a small mechanical property anisotropy,
The present invention relates to lead-free steel for machine structural use that is excellent in machinability in a wide range of cutting methods and cutting conditions and contains no lead.

【0002】[0002]

【従来技術】近年の切削加工の高速化,自動化の発展に
伴って,機械構造用部品に使用される鋼材の被削性が重
要視されるようになり,被削性を改善した鋼いわゆる快
削鋼の需要が高まっている。しかも,鋼材の必要強度は
厳しくなりつつある。鋼材を高強度化した場合には被削
性は劣化する。すなわち近年の機械構造用鋼には,高強
度化と被削性という相反する特性の改善が要求されてい
る。
2. Description of the Related Art With the recent increase in speed and automation of cutting, the machinability of steel materials used for machine structural parts has become more important, and so-called steel with improved machinability has become more important. Demand for cutting steel is growing. Moreover, the required strength of steel materials is becoming stricter. When the strength of the steel material is increased, the machinability deteriorates. That is, in recent years, steel for machine structural use has been required to improve the contradictory properties of high strength and machinability.

【0003】現在,一般的に使用されている快削鋼とし
ては,Pb,S,Caを含有させた鋼材がある。この中
でも,Pbを含有するPb快削鋼は,基本鋼と比較して
機械的性質の劣化が小さく,一般の旋削加工において切
粉処理性の改善を示し,ドリル加工,タップ加工,リー
マ加工,中ぐり加工等の工具寿命の延長を図ることがで
きるという優れた特徴を有している。また,Pb快削鋼
は,(穴深さ/ドリル直径)≧3となる深穴のあけ加工
時に切屑の排出を容易にし,突発的な切屑つまりによる
工具の折損防止にも優れている。また,Pbに加えて他
のS,Ca等を加えてこれらの優れた特性を付加したP
b複合快削鋼も種々開発されている。
At present, as a free cutting steel generally used, there is a steel material containing Pb, S, and Ca. Among these, Pb-containing Pb free-cutting steel has less deterioration in mechanical properties than the basic steel, shows improved chip control in general turning, and includes drilling, tapping, reaming, It has an excellent feature that the tool life such as boring can be extended. Further, Pb free-cutting steel facilitates chip discharge during drilling of a deep hole where (hole depth / drill diameter) ≧ 3, and is excellent in preventing breakage of a tool due to unexpected chip. Further, P, which has these excellent properties by adding other S, Ca, etc. in addition to Pb.
b Various composite free-cutting steels have also been developed.

【0004】[0004]

【解決しようとする課題】しかしながら,上記従来のP
b含有快削鋼においては,次の問題がある。即ち,Pb
は,上記のごとく被削性向上には非常に有効であるが,
環境面では有害性を有する物質である。そのため,近年
の環境問題への関心の高まりから,Pbを含有すること
なく,Pb含有快削鋼に匹敵する鋼材の開発が望まれて
いる。
[Problems to be solved] However, the conventional P
There are the following problems with b-containing free-cutting steel. That is, Pb
Is very effective in improving machinability as described above,
Environmentally hazardous substance. For this reason, development of a steel material comparable to a Pb-containing free-cutting steel without containing Pb has been desired in view of increasing interest in environmental issues in recent years.

【0005】一方,従来よりPbを含有しない他の快削
鋼もあるが,これらは,次のような欠点を有し,Pb含
有快削鋼の代替として使用できない場合が多い。例え
ば,Sを添加したS快削鋼は,比較的広範な切削加工に
対して工具寿命を延長させる改善効果を示すが,Pb快
削鋼にくらべて切粉処理性が悪い。また,Sを含有する
場合には,介在物として存在するMnSが熱間圧延ある
いは熱間鍛造中に延伸するため,圧延方向から直角方向
に近づくにつれて衝撃強度等の機械的性質が低下する,
強度異方性という問題がある。したがって,衝撃強度が
重要とされる部品を対象とした鋼材はS含有量をできる
だけ抑える必要があり,その結果十分な被削性が得られ
ない場合がある。
[0005] On the other hand, there are other free-cutting steels which do not contain Pb conventionally, but these have the following disadvantages, and in many cases they cannot be used as substitutes for Pb-containing free-cutting steels. For example, S free-cutting steel to which S is added exhibits an improvement effect of extending the tool life in a relatively wide range of cutting work, but has poorer chipping property than Pb free-cutting steel. In addition, when S is contained, MnS existing as inclusions is stretched during hot rolling or hot forging, so that mechanical properties such as impact strength decrease as approaching a direction perpendicular to the rolling direction.
There is a problem of strength anisotropy. Therefore, it is necessary to suppress the S content as much as possible in steels for components for which impact strength is important, and as a result, sufficient machinability may not be obtained.

【0006】また,Ca脱酸により鋼中の酸化物系介在
物を低融点化させたCa脱酸快削鋼は,鋼材の強度特性
にほとんど影響を及ぼさず,高速切削領域の超硬工具寿
命に著しい延長効果を示す。しかし,Ca脱酸快削鋼は
超硬工具寿命以外の被削性改善効果がほとんど認められ
ないため,オールラウンドの被削性を得るためにSある
いはPbとの複合で使用される場合が一般的である。
[0006] In addition, Ca deoxidized free-cutting steel in which oxide inclusions in the steel are reduced in melting point by Ca deoxidation has almost no effect on the strength characteristics of the steel material, and the service life of the cemented carbide tool in the high-speed cutting region is reduced. Shows a remarkable prolongation effect. However, Ca-deoxidized free-cutting steel has little effect on improving machinability other than the life of carbide tools, and is generally used in combination with S or Pb to obtain all-round machinability. It is a target.

【0007】従来のCa脱酸快削鋼とは異なり,S快削
鋼の欠点である強度異方性をCa添加によって鋼中の介
在物を均一に分散・分布させることから改善し,同時に
被削性も向上させた例として特公平5−15777号に
記載された鋼材がある。この場合,Ca脱酸快削鋼のよ
うな欠点はないが,十分な被削性を得るには多量のSを
添加する必要がある。その場合に硫化物を形態制御させ
るために必要十分な量のCaを鋼材中に含有させること
はCa歩留りが低いため量産鋼としての製造は極めて困
難である。
[0007] Unlike conventional Ca deoxidized free-cutting steel, the strength anisotropy, which is a disadvantage of S free-cutting steel, is improved by uniformly dispersing and distributing inclusions in the steel by adding Ca. As an example of improved machinability, there is a steel material described in Japanese Patent Publication No. 5-15777. In this case, there is no disadvantage such as Ca deoxidized free-cutting steel, but a large amount of S must be added to obtain sufficient machinability. In such a case, it is extremely difficult to produce Ca as a mass-produced steel because the Ca yield is low if Ca is contained in a steel material in a necessary and sufficient amount to control the sulfide form.

【0008】また上記のCaと同様な効果を狙った例と
して特公昭52−7405号公報に記載された鋼材があ
る。これらは,Mg,Baの第1群元素の1種または2
種とS,Se,Teよりなる第2群元素の1種以上を含
有した快削鋼である。この鋼材は,Oを0.004〜
0.012%の範囲で積極的に添加していので,疲労強
度に劣るおそれがある。さらにOの積極添加により鋼中
の酸化物が増加し,ドリル加工性等の切削性の低下も予
想される。
Further, as an example aiming at the same effect as that of the above Ca, there is a steel material described in Japanese Patent Publication No. 52-7405. These are one or two of the first group elements of Mg and Ba.
It is a free-cutting steel containing one or more of the second group elements consisting of S, Se, and Te. In this steel, O
Since it is positively added in the range of 0.012%, the fatigue strength may be poor. Further, it is expected that oxides in the steel increase due to the active addition of O, and that the machinability such as drill workability decreases.

【0009】また特公昭51−4934号公報の快削鋼
においては,Mg,Baの第1群元素の1種または2種
とS,Se,Teよりなる第2群元素の1種以上を含有
した快削鋼と,さらにCaを選択的に含有した快削鋼が
開示されている。しかし,この鋼は,Oを0.002〜
0.01%の範囲で積極的に添加している。そのため,
疲労強度に劣るおそれがある。さらにOの積極添加によ
り鋼中の酸化物が増加し,ドリル加工性等の切削性の低
下も予想される。
The free-cutting steel disclosed in Japanese Patent Publication No. 51-4934 contains one or two of the first group elements of Mg and Ba and one or more of the second group elements of S, Se and Te. And a free-cutting steel containing Ca selectively. However, in this steel, O
It is positively added in the range of 0.01%. for that reason,
The fatigue strength may be poor. Further, it is expected that oxides in the steel increase due to the active addition of O, and that the machinability such as drill workability decreases.

【0010】また特開昭51−63312号公報には,
SとMgとCa,Ba,Sr,SeおよびTeの元素の
1種以上を含有する快削鋼が開示されている。しかし,
当該公報には,鋼の具体的な成分系が示されておらず,
技術の開示が不十分である。また,この鋼は,Al脱酸
を前提としており,Al含有量が0.02%を超え,O
量の限定もなく,疲労強度に劣るおそれがある。さらに
Oの積極添加により鋼中の酸化物が増加し,ドリル加工
性等の切削性の低下も予想される。
Japanese Patent Laid-Open Publication No. Sho 51-63312 discloses that
A free-cutting steel containing S, Mg and one or more of the elements Ca, Ba, Sr, Se and Te is disclosed. However,
The publication does not specify the specific composition of steel,
Insufficient disclosure of technology. This steel is premised on Al deoxidation, the Al content exceeds 0.02%, and O
There is no limitation on the amount, and the fatigue strength may be poor. Further, it is expected that oxides in the steel increase due to the active addition of O, and that the machinability such as drill workability decreases.

【0011】本発明は,かかる従来の問題点に鑑みてな
されたもので,Pbを含有せず,かつ,従来のPb含有
快削鋼と同等以上の特性を有する,被削性に優れ,強度
異方性の小さい鉛無添加の機械構造用鋼を提供しようと
するものである。
The present invention has been made in view of the above-mentioned conventional problems, and has excellent machinability, strength, and strength not containing Pb and having properties equal to or higher than those of conventional Pb-containing free-cutting steel. An object of the present invention is to provide a lead-free mechanical structural steel having a small anisotropy.

【0012】[0012]

【課題の解決手段】請求項1の発明は,重量%におい
て,C:0.10〜0.65%,Si:0.03〜1.
00%,Mn:0.30〜2.50%,S:0.03〜
0.35%,Cr:0.1〜2.0%,Al:0.00
5%未満,Ca:0.0005〜0.020%,Mg:
0.0003〜0.020%を含有し,O:20ppm
未満であり,残部Feおよび不可避不純物からなり,か
つ,連続鋳造により作製したことを特徴とする,被削性
に優れ,強度異方性の小さい鉛無添加の機械構造用鋼に
ある。
According to the first aspect of the present invention, C: 0.10 to 0.65% and Si: 0.03 to 1.
00%, Mn: 0.30 to 2.50%, S: 0.03 to
0.35%, Cr: 0.1 to 2.0%, Al: 0.00
Less than 5%, Ca: 0.0005-0.020%, Mg:
0.0003-0.020%, O: 20ppm
Less than, Ri Do the balance Fe and inevitable impurities, or
A lead-free mechanical structural steel with excellent machinability and low strength anisotropy, characterized by being manufactured by continuous casting .

【0013】本発明において最も注目すべきことは,A
l及びOの含有量を上記特定の範囲に低減し,かつ,S
含有量を一般レベルよりも高め,さらにMg及びCaを
複合添加し,Pbの添加を完全に無くした点にある。
The most remarkable point in the present invention is that A
l and O contents are reduced to the above specified range, and S
The point is that the content is made higher than a general level, and Mg and Ca are added in combination, and the addition of Pb is completely eliminated.

【0014】なお,機械構造用鋼は,調質強靱鋼,非調
質鋼,肌焼鋼という3種類の鋼種に大きく分類され,用
途等によって使い分けられる。そのため,本発明の鉛無
添加の機械構造用鋼においても,これらの3種類の鋼種
ごとに若干成分範囲の好ましい範囲が異なる場合があ
る。以下に,上記構成成分の限定理由について,上記3
種類の鋼種における好ましい範囲をまじえて説明する。
[0014] The steel for machine structural use is roughly classified into three types of steel, namely, a tempered tough steel, a non-heat treated steel, and a case hardened steel. Therefore, even in the lead-free mechanical structural steel of the present invention, the preferable range of the component range may be slightly different for each of these three types of steel. The reasons for limiting the above components will be described below in the above 3
The preferred range of the steel types will be described first.

【0015】C:0.10〜0.65%,Cは,機械構
造用鋼としての強度を確保するための必須元素であり,
0.10%以上添加する。しかし,多すぎると硬さ増加
から靱性および被削性の劣化を招くため上限を0.65
%とする。特に,調質強靱鋼の場合には,好ましくは
0.28〜0.55%であり,より好ましくは0.32
〜0.48%がよい。非調質鋼の場合には,好ましくは
0.10〜0.55%であり,より好ましくは0.35
〜0.50%がよい。肌焼鋼の場合には,好ましくは
0.10〜0.30%であり,より好ましくは0.12
〜0.28%がよい。
C: 0.10 to 0.65%, C is an essential element for securing the strength as steel for machine structural use.
Add 0.10% or more. However, if the content is too large, the toughness and machinability deteriorate due to the increase in hardness.
%. In particular, in the case of tempered tough steel, the content is preferably 0.28 to 0.55%, more preferably 0.32%.
~ 0.48% is good. In the case of non-heat treated steel, it is preferably 0.10 to 0.55%, more preferably 0.35%.
~ 0.50% is good. In case of case hardening steel, it is preferably 0.10 to 0.30%, more preferably 0.12%.
~ 0.28% is good.

【0016】Si:0.03〜1.00%,Siは,製
鋼時の脱酸剤として不可欠であるため下限を0.03%
とする。しかし,過剰に添加すると延性を低下させるほ
か,鋼中に高硬度の介在物であるSiO2を生成させて
被削性も劣化させるため上限を1.00%とする。Si
は上記3種類のいずれの鋼種においても,好ましくは
0.10〜0.50%であり,より好ましくは0.15
〜0.35%がよい。
Si: 0.03 to 1.00%. Since Si is indispensable as a deoxidizing agent in steel making, the lower limit is 0.03%.
And However, if added excessively, the ductility is reduced, and SiO 2 , which is a high hardness inclusion, is generated in the steel to deteriorate the machinability. Therefore, the upper limit is set to 1.00%. Si
Is preferably 0.10 to 0.50%, more preferably 0.15% in any of the above three steel types.
~ 0.35% is good.

【0017】Mn:0.30〜2.50%,Mnは,一
般に鋼の強度,靱性,熱間延性,焼入性を確保する上で
重要な元素であり,かつ,本発明において,硫化物系介
在物生成に不可欠な元素であるため0.30%以上添加
する。しかし,多すぎると硬さ増加から被削性が劣化す
るため上限を2.50%とする。Mnは上記3種類のい
ずれの鋼種においても,好ましくは0.40〜2.00
%であり,より好ましくは0.60〜1.50%がよ
い。
Mn: 0.30 to 2.50%, Mn is generally an important element for securing the strength, toughness, hot ductility and hardenability of steel. Since it is an element indispensable for the generation of system inclusions, 0.30% or more is added. However, if the amount is too large, the machinability deteriorates due to the increase in hardness, so the upper limit is set to 2.50%. Mn is preferably 0.40 to 2.00 in any of the above three steel types.
%, More preferably 0.60 to 1.50%.

【0018】S:0.03〜0.35%,Sは,被削性
を改善させる硫化物系介在物の生成元素であり,被削性
改善効果を得るためには少なくとも0.03%以上添加
する必要があり,Sの増量に伴い被削性は向上する。し
かし,多すぎるとCaおよびMgによる硫化物形態制御
が困難となり,衝撃異方性が劣化するため,上限を0.
35%とする。Sは上記3種類のいずれの鋼種において
も,好ましくは0.04〜0.30%であり,より好ま
しくは0.08〜0.20%がよい。
S: 0.03 to 0.35%, S is an element forming sulfide-based inclusions for improving machinability, and at least 0.03% or more for obtaining machinability improving effect. It needs to be added, and the machinability improves as the amount of S increases. However, if the amount is too large, it becomes difficult to control the sulfide form by Ca and Mg, and the impact anisotropy deteriorates.
35%. S is preferably 0.04 to 0.30%, and more preferably 0.08 to 0.20% in any of the above three steel types.

【0019】Cr:0.1〜2.0%,Crは,鋼の焼
入性および靭性を向上させるために添加する。その効果
を得るためCrは0.1%以上必要である。一方,多量
に添加した場合には被削材の硬さが増加することから,
被削性確保のためにはCrは2.0%以下とする必要が
ある。Crは上記3種類のいずれの鋼種においても,好
ましくは0.10〜1.50%であり,より好ましくは
0.15〜1.20%がよい。
Cr: 0.1 to 2.0%, Cr is added to improve the hardenability and toughness of steel. To obtain the effect, Cr needs to be 0.1% or more. On the other hand, when added in large amounts, the hardness of the work material increases,
To ensure machinability, Cr needs to be 2.0% or less. Cr is preferably 0.10 to 1.50%, and more preferably 0.15 to 1.20%, in any of the above three types of steel.

【0020】Al:0.005%未満この鉛無添加の機械構造用鋼においては,Alを0.0
05%未満とすることにより,実際の製造上問題となる
連続鋳造性を大幅に改善することができる。即ち,上記
Alの含有量が0.005%以上となった場合には,溶
鋼中に多量のCaS生成を促し,CaSが連続鋳造用の
ノズルに堆積し,これを閉塞しやすくなるという問題が
ある。この問題を上記Al含有量の0.005%未満と
いう制限により,確実に解消することができる。
Al: less than 0.005% . In this lead-free mechanical structural steel, Al
If it is less than 05%, there is a problem in actual manufacturing.
Continuous castability can be greatly improved. That is,
If the Al content is 0.005% or more,
A large amount of CaS is generated in steel, and CaS is used for continuous casting.
The problem is that it accumulates on the nozzle and makes it easier to block it.
is there. This problem is reduced to less than 0.005% of the Al content.
With such restrictions, it can be surely resolved.

【0021】Ca:0.0005〜0.020%,Ca
は,Mn,Mgと共に硫化物生成元素であるとともに,
Al,Siとの複合酸化物をも生成し,被削性向上効果
および硫化物形態制御による機械的性質の異方性改善効
果がある。その効果を得るためには少なくとも0.00
05%以上必要である。また製鋼段階でのCa歩留りは
非常に悪く,必要以上に含有させてもその効果が飽和す
るため,Caの上限を0.020%とする。Caは上記
3種類のいずれの鋼種においても,好ましくは0.00
05〜0.0060%であり,より好ましくは0.00
05〜0.0040%がよい。
Ca: 0.0005-0.020%, Ca
Is a sulfide-forming element together with Mn and Mg,
A composite oxide with Al and Si is also generated, which has an effect of improving machinability and an effect of improving anisotropy of mechanical properties by controlling sulfide morphology. At least 0.00 for that effect
More than 05% is required. Further, the Ca yield at the steel making stage is very poor, and the effect is saturated even if it is contained more than necessary, so the upper limit of Ca is made 0.020%. Ca is preferably 0.00 in any of the above three steel types.
0.05 to 0.0060%, more preferably 0.005%.
05-0.0040% is good.

【0022】Mg:0.0003〜0.020%,Mg
は,Caと同様の効果を示し,Caと複合で存在させた
場合に大きな被削性改善効果および機械的性質の異方性
改善効果が得られる。その効果を得るためには少なくと
も0.0003%以上必要である。一方,必要以上に含
有させてもその効果が飽和状態となり,無駄であるため
Mgの上限を0.020%とする。Mgは上記3種類の
いずれの鋼種においても,好ましくは0.0003〜
0.0060%であり,より好ましくは0.0005〜
0.0040%がよい。
Mg: 0.0003-0.020%, Mg
Has the same effect as Ca, and when it is present in a composite with Ca, a large effect of improving machinability and an effect of improving anisotropy of mechanical properties can be obtained. To obtain the effect, at least 0.0003% or more is required. On the other hand, the effect is saturated even if it is contained more than necessary, and it is useless, so the upper limit of Mg is set to 0.020%. Mg is preferably in the range of 0.0003 to 0.3 in any of the above three steel types.
0.0060%, more preferably 0.0005%
0.0040% is good.

【0023】O:20ppm未満 Oは,被削性に有害な酸化物系の硬質介在物の生成を抑
制する点から極力低減させることが望ましい。Oが20
ppm以上となると,酸化物系の硬質介在物の生成量が
増えて被削性を損なうと共に,疲労強度が低下するた
め,Oを20ppm未満とする必要がある。なお,Oに
ついては,上記3種類の鋼種における好適な範囲の差異
はほとんどない。
O: less than 20 ppm O is desirably reduced as much as possible in order to suppress the generation of oxide-based hard inclusions harmful to machinability. O is 20
If it is not less than ppm, the amount of oxide-based hard inclusions increases and the machinability is impaired, and the fatigue strength is reduced. Therefore, it is necessary to make O less than 20 ppm. As for O, there is almost no difference in the preferable range among the above three steel types.

【0024】このように,本発明では,AlおよびOの
含有量を上記のごとく制限することにより酸化物形態を
制限し,かつ,S含有量を一般レベルよりも高め,Ca
およびMgを同時に鋼中に含有させることにより,衝撃
特性の劣化,特に衝撃異方性(強度異方性)を最小限に
抑えることができ,かつPb含有の快削鋼並に被削性を
向上させることができる。この強度異方性及び被削性向
上効果は,CaとMg一方のみを鋼材中に存在させる場
合よりも大きな改善効果となる。さらに,本発明ではA
lおよびOの含有量を上記のごとく制限することによ
り,被削性向上効果に加えて疲労強度の改善等の効果を
も得ることができる。
As described above, according to the present invention, the oxide form is restricted by limiting the contents of Al and O as described above, and the S content is made higher than the general level, so that the Ca content is increased.
And Mg in the steel at the same time, it is possible to minimize the impact characteristics, especially the impact anisotropy (strength anisotropy), and to improve the machinability to the same degree as the Pb-containing free-cutting steel. Can be improved. This strength anisotropy and machinability improvement effect is a greater improvement effect than when only one of Ca and Mg is present in the steel material. Furthermore, in the present invention, A
By limiting the contents of l and O as described above, it is possible to obtain not only the effect of improving machinability but also the effect of improving fatigue strength.

【0025】[0025]

【0026】本発明において最も注目すべきことは,
記のごとく,Al含有量を低減し,0.005%未満と
することである。そして,この鉛無添加の機械構造用鋼
においては,Alを0.005%未満とすることによ
り,実際の製造上問題となる連続鋳造性を大幅に改善す
ることができる。
[0026] It should be most noticeable in the present invention, above
As described above, the Al content is to be reduced to less than 0.005%. And, in this lead-free steel for machine structural use, by making Al less than 0.005%, continuous castability, which is a problem in actual production, can be greatly improved.

【0027】即ち,上記Alの含有量が0.005%以
上となった場合には,溶鋼中に多量のCaS生成を促
し,CaSが連続鋳造用のノズルに堆積し,これを閉塞
しやすくなるという問題がある。この問題を上記Al含
有量の0.005%未満という制限により,確実に解消
することができる。
That is, when the content of Al becomes 0.005% or more, a large amount of CaS is promoted in the molten steel, and CaS is deposited on the nozzle for continuous casting, which is likely to be clogged. There is a problem. This problem can be surely solved by the limitation of less than 0.005% of the Al content.

【0028】また,請求項2の発明のように,上記鉛無
添加の機械構造用鋼は,さらにMo:0.05〜1.0
0%,Ni:0.1〜3.5%,V:0.01〜0.5
0%,Nb:0.01〜0.10%,Ti:0.01〜
0.10%,B:0.0005〜0.0100%から選
択した1種または2種以上を含有することが好ましい。
これらの好ましい成分の成分範囲の限定理由を以下に示
す。
Further, as described in the second aspect of the present invention, the lead-free steel for machine structural use further comprises Mo: 0.05 to 1.0.
0%, Ni: 0.1 to 3.5%, V: 0.01 to 0.5
0%, Nb: 0.01 to 0.10%, Ti: 0.01 to
0.10%, B: It is preferable to contain one or more kinds selected from 0.0005 to 0.0100%.
The reasons for limiting the component ranges of these preferred components are shown below.

【0029】Mo:0.05〜1.00%,Ni:0.
1〜3.5%,Mo,Niは,鋼の焼入性および靭性を
向上させる元素で必要な場合に添加する。その効果を得
るため,Moは0.05%以上,Niは0.1%以上添
加することが好ましい。多量に添加した場合には被削材
の硬さが増加することから,被削性確保のためには,M
oは1.00%以下,Niは3.5%以下とすることが
好ましい。Moは上記3種類のいずれの鋼種において
も,好ましくは0.10〜0.40%であり,より好ま
しくは0.15〜0.30%がよい。またNiは上記3
種類のいずれの鋼種においても,好ましくは0.40〜
3.00%であり,より好ましくは0.40〜2.00
%がよい。
Mo: 0.05-1.00%, Ni: 0.
Mo, Ni is an element that improves the hardenability and toughness of steel, and is added when necessary. To obtain the effect, it is preferable to add Mo at 0.05% or more and Ni at 0.1% or more. If a large amount is added, the hardness of the work material increases.
It is preferable that o is 1.00% or less and Ni is 3.5% or less. Mo is preferably 0.10 to 0.40%, and more preferably 0.15 to 0.30%, in any of the above three steel types. Ni is the above 3
For any steel type, preferably 0.40
3.00%, more preferably 0.40 to 2.00
% Is good.

【0030】V:0.01〜0.50%,Vは析出強化
作用の強い元素であるので,焼入焼戻し処理を省略する
場合に添加する。この効果を得るには0.01%以上添
加することが好ましい。一方,0.50%を超えて含有
させても効果は飽和するので上限を0.50%とするこ
とが好ましい。非調質鋼の場合には,より好ましくは
0.05〜0.35%であり,さらに好ましくは0.0
5〜0.30%がよい。
V: 0.01 to 0.50%, V is an element having a strong precipitation strengthening effect, and is added when the quenching and tempering treatment is omitted. To obtain this effect, it is preferable to add 0.01% or more. On the other hand, if the content exceeds 0.50%, the effect is saturated, so the upper limit is preferably set to 0.50%. In the case of a non-heat treated steel, the content is more preferably 0.05 to 0.35%, and still more preferably 0.05 to 0.35%.
5 to 0.30% is good.

【0031】Nb:0.01〜0.10%,Ti:0.
01〜0.10%,Nb,Tiはそれぞれ炭窒化物を生
成し,ピン止め効果により結晶粒を微細化させる効果が
あり,必要に応じて添加する。この効果を得るには0.
01%以上必要であるが,0.10%を超えて含有させ
ても効果は飽和するので上限を0.10%とすることが
好ましい。より好ましくは0.01〜0.08%であ
り,さらも好ましくは0.01〜0.06%がよい。
Nb: 0.01-0.10%, Ti: 0.
01 to 0.10%, Nb, and Ti each generate carbonitride and have an effect of refining crystal grains by a pinning effect, and are added as necessary. To achieve this effect, use 0.
The content is required to be not less than 01%, but the effect is saturated even if the content exceeds 0.10%, so the upper limit is preferably set to 0.10%. It is more preferably 0.01 to 0.08%, and still more preferably 0.01 to 0.06%.

【0032】B:0.0005〜0.0100%,Bに
は少量の含有で焼入性を向上させ,鋼の機械的性質を向
上させる効果があり,必要に応じて添加する。この効果
を得るには0.0005%以上必要であるが,0.01
00%を超えて含有させても効果は飽和するので上限を
0.0100%とすることが好ましい。より好ましくは
0.0005〜0.0060%であり,さらに好ましく
は0.0005〜0.0040%がよい。
B: 0.0005% to 0.0100%, B has an effect of improving hardenability and improving mechanical properties of steel with a small amount of B, and is added as necessary. To obtain this effect, 0.0005% or more is required.
The effect is saturated even if the content exceeds 0.00%, so the upper limit is preferably set to 0.0100%. It is more preferably 0.0005 to 0.0060%, and still more preferably 0.0005 to 0.0040%.

【0033】また,請求項3の発明のように,上記鉛無
添加の機械構造用鋼は,さらに,Bi:0.01〜0.
30%,REM:0.001〜0.10%から選択した
1種または2種を含有することが好ましい。これらの好
ましい成分の成分範囲の限定理由を以下に示す。
Further, as in the invention of claim 3 , the lead-free steel for machine structural use further has a Bi: 0.01-0.
30%, REM: preferably contains one or two selected from 0.001 to 0.10%. The reasons for limiting the component ranges of these preferred components are shown below.

【0034】Bi:0.01〜0.30%,Biは機械
的性質の異方性をほとんど劣化させることなく,切屑処
理性および穿孔性を改善するのに有効であるため,その
ような特性が特に必要な場合に添加する。この効果を得
るには0.01%以上必要であるが,0.30%を超え
て含有させても効果は飽和し,またコスト高となるた
め,上限を0.30%とすることが好ましい。より好ま
しくは0.01〜0.10%であり,さらに好ましくは
0.01〜0.08%がよい。
Bi: 0.01 to 0.30%, Bi is effective for improving the chip controllability and the perforability without substantially deteriorating the mechanical anisotropy. Is added when particularly necessary. To obtain this effect, 0.01% or more is necessary. However, if the content exceeds 0.30%, the effect is saturated and the cost is increased. Therefore, it is preferable to set the upper limit to 0.30%. . It is more preferably 0.01 to 0.10%, and still more preferably 0.01 to 0.08%.

【0035】REM:0.001〜0.10%,REM
(希土類元素)は硫化物の形態制御効果が大きいため,
Mg,Caの効果を助長させる場合に用いる。なお,R
EMは主にCe,La,Nd,Pr,Smの混成合金か
ら成るものである。この効果を得るには0.001%以
上のREMが必要であるが,0.10%を超えて含有さ
せても効果は飽和し,またコスト高となるため,上限を
0.10%とすることが好ましい。より好ましくは0.
001〜0.006%であり,さらに好ましくは0.0
01〜0.004%がよい。
REM: 0.001 to 0.10%, REM
(Rare earth element) has a large morphological control effect of sulfide,
Used for promoting the effect of Mg and Ca. Note that R
EM is mainly composed of a mixed alloy of Ce, La, Nd, Pr, and Sm. To obtain this effect, REM of 0.001% or more is necessary. However, if the content exceeds 0.10%, the effect is saturated and the cost is increased. Therefore, the upper limit is set to 0.10%. Is preferred. More preferably, 0.
001 to 0.006%, more preferably 0.0
01-0.004% is good.

【0036】また,請求項4の発明のように,上記鉛無
添加の機械構造用鋼は,硫化物系の介在物として(C
a,Mg)S,(Ca,Mg,Mn)Sの1種または2
種を含有することが好ましい。上記SとCa,Mg,M
nとの硫化物としては種々あるが,この中でも,特にC
a,Mg,Sによる複合的な硫化物(Ca,Mg)S,
或いは,Ca,Mg,Mn,Sによる複合的な硫化物
(Ca,Mg,Mn)Sの少なくとも一方を含有させる
ことにより,超硬工具摩耗性を大幅に改善することがで
きる。
Further, as in the fourth aspect of the present invention, the lead-free steel for machine structural use contains (C) as a sulfide-based inclusion.
one or two of a, Mg) S and (Ca, Mg, Mn) S
Preferably, it contains a species. S and Ca, Mg, M
There are various sulfides with n.
a, Mg, S complex sulfide (Ca, Mg) S,
Alternatively, by including at least one of the complex sulfides (Ca, Mg, Mn) S of Ca, Mg, Mn, and S, the wear resistance of the carbide tool can be significantly improved.

【0037】[0037]

【発明の実施の形態】本発明の鉛無添加の機械構造用鋼
の優れた特性を評価すべく,調質強靱鋼,非調質鋼,肌
焼鋼の3種類の鋼種ごとに種々の試験を行った。これら
の試験結果を実施形態例として以下に示す。
BEST MODE FOR CARRYING OUT THE INVENTION In order to evaluate the excellent properties of the lead-free steel for machine structural use of the present invention, various tests were carried out for each of three types of steels: tempered tough steel, non-heat treated steel and case hardened steel. Was done. The test results are shown below as exemplary embodiments.

【0038】実施形態例1 本例では,表1,表3に示すごとく,調質強靱鋼におけ
る発明鋼Aと従来鋼B,Cとを準備し,これらの比較を
行った。従来鋼Bは,Pbを0.1%含有するPb快削
鋼である。また,この従来鋼Bは,S含有量及びO含有
量が本発明範囲から外れている。また,従来鋼Cは,C
a,Mgを添加していないものである。
Embodiment 1 In this embodiment, as shown in Tables 1 and 3, invention steel A and conventional steels B and C in a tempered and tough steel were prepared and compared. Conventional steel B is a Pb free-cutting steel containing 0.1% of Pb. Further, in the conventional steel B, the S content and the O content are out of the range of the present invention. Conventional steel C is
a and Mg were not added.

【0039】各鋼材は,100kg真空溶解炉にて溶製
し,1200℃にてφ60mmへ鍛伸し,一部はさらに
40×70mm角材に鍛伸した。その後,いずれも88
0℃にて焼入れ後,580℃にて焼戻しの熱処理を実施
した。そして,φ60mm材を用いて被削性試験,引張
試験,鍛伸方向(以下,L方向と示す)の衝撃試験を実
施した。また,40×70mm角材を用いて鍛伸方向と
直角の方向(以下,T方向と示す)の衝撃試験を実施し
た。
Each steel material was melted in a 100 kg vacuum melting furnace and forged at 1200 ° C. to φ60 mm, and a part was further forged to a 40 × 70 mm square bar. After that, all 88
After quenching at 0 ° C., a heat treatment of tempering was performed at 580 ° C. Then, a machinability test, a tensile test, and an impact test in the forging and stretching direction (hereinafter, referred to as L direction) were performed using a φ60 mm material. Further, an impact test was performed using a 40 × 70 mm square bar in a direction perpendicular to the forging direction (hereinafter, referred to as a T direction).

【0040】被削性試験方法と切削条件を表2に示す。
なお,引張試験片はJIS4号試験片を,衝撃試験片は
JIS3号試験片を用いた。被削性試験評価項目は本発
明の目的がPb快削鋼に代替する鋼の開発にあることに
鑑み,Pb快削鋼の長所である切屑処理性,ドリル切削
性を中心に評価した。
Table 2 shows the machinability test method and the cutting conditions.
The JIS No. 4 test piece was used as the tensile test piece, and the JIS No. 3 test piece was used as the impact test piece. In view of the object of the present invention is to develop a steel to replace Pb free-cutting steel, the evaluation items of the machinability test were evaluated focusing on the chip processing property and drill cutting property which are the advantages of Pb free-cutting steel.

【0041】また,被削性試験の一つであるドリル深穴
性試験は,図1に示すように,穿孔開始から切削抵抗
(トルク)を測定し,そのトルクT2が安定穿孔トルク
1の2倍になるまでの穿孔時間tを「安定穿孔時間」
とし,「安定穿孔時間(sec)」×「送り量(mm/
sec)」で定義した「安定穿孔深さ(mm)」を算出
して評価した。
As shown in FIG. 1, in the drill deep hole test, which is one of the machinability tests, the cutting resistance (torque) is measured from the start of drilling, and the torque T 2 is the stable drilling torque T 1. The perforation time t until it becomes twice as large as “stable perforation time”
"Stable drilling time (sec)" x "feed amount (mm /
“sec)” and “stable drilling depth (mm)” was calculated and evaluated.

【0042】試験結果等を表3に示す。表3より知られ
るごとく,調質強靱鋼における本発明鋼Aは,全ての評
価項目において,従来鋼B,Cよりも優れた特性を示し
た。特に,ドリル寿命については,従来のPb快削鋼よ
りも格段に優れた性能を示した。
Table 3 shows the test results and the like. As can be seen from Table 3, the steel A of the present invention in the tempered toughness steel exhibited better characteristics than the conventional steels B and C in all evaluation items. In particular, with respect to the drill life, the performance was much better than the conventional Pb free-cutting steel.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】実施形態例2 本例では,上述した表1,表3に示すごとく,非調質鋼
における発明鋼Dと従来鋼E〜Gとを準備し,これらの
比較を行った。従来鋼Eは,Pbを0.17%含有する
Pb快削鋼である。また,従来鋼Fは,Pbを0.18
%含有するとともCaを22ppm含有するPbとCa
を複合添加した快削鋼である。また,従来鋼Gは,C
a,Mgを含有していないものである。また従来鋼E〜
Gは,いずれもAlが0.010%を超えている。
Embodiment 2 In this embodiment, as shown in Tables 1 and 3 above, inventive steel D and conventional steels E to G, which are non-heat treated steels, were prepared and compared. Conventional steel E is a Pb free-cutting steel containing 0.17% of Pb. Conventional steel F has a Pb of 0.18
% Pb and Ca containing 22 ppm of Ca
Is a free-cutting steel with a complex addition of Conventional steel G is C
a, Mg is not contained. Conventional steel E ~
In each case of G, Al exceeds 0.010%.

【0047】各鋼材は,30kg真空溶解炉にて溶製
し,1200℃にてφ40mmへ鍛伸し,一部はさらに
40×70mm角材に鍛伸した。その後,いずれも12
00℃の温度に30分間保持した後,空冷の熱処理を実
施した。そして,φ40mm材を用いて被削性試験,引
張試験,L方向の衝撃試験を実施した。また,40×7
0mm角材を用いてT方向の衝撃試験を実施した。試験
方法,切削条件,引張試験片および衝撃試験片は実施形
態例1と同様である。
Each steel material was melted in a 30 kg vacuum melting furnace and forged at 1200 ° C. to φ40 mm, and a part was further forged to a 40 × 70 mm square bar. After that, in each case 12
After maintaining at a temperature of 00 ° C. for 30 minutes, an air-cooled heat treatment was performed. Then, a machinability test, a tensile test, and an impact test in the L direction were performed using a φ40 mm material. Also, 40 × 7
An impact test in the T direction was performed using a 0 mm square bar. The test method, cutting conditions, tensile test pieces and impact test pieces are the same as those in the first embodiment.

【0048】試験結果等を上記表3に示す。表3より知
られるごとく,非調質鋼における本発明鋼Dは,全ての
評価項目において,従来鋼E〜Gよりも優れた特性を示
した。特に,超硬工具摩耗量,ドリル寿命については,
従来のPb快削鋼よりも格段に優れた性能を示した。快
削性に優れる鉛複合快削鋼である従来鋼Fに比べ,Pb
快削鋼の長所であるドリル寿命が格段に向上したのは,
まさに,従来鋼に比べAlとOを同時に低減して酸化物
量およびその形態を制御した上で,S含有レベルを高め
ると共にMg,Caを複合添加したことによるものであ
って,これにより初めてなしえたものである。
Table 3 shows the test results and the like. As is known from Table 3, the steel D of the present invention among the non-heat treated steels exhibited better characteristics than the conventional steels E to G in all evaluation items. In particular, regarding the wear amount of carbide tools and the life of drills,
It showed much better performance than conventional Pb free-cutting steel. Compared to conventional steel F, a lead composite free-cutting steel with excellent free-cutting properties, Pb
One of the advantages of free-cutting steel, the drill life has been significantly improved
This is exactly the result of the simultaneous addition of Mg and Ca, combined with the addition of Mg and Ca, after simultaneously reducing the amount of Al and O and controlling the amount of oxide and its morphology as compared to conventional steel. Things.

【0049】実施形態例3 本例では,上述した表1,表3に示すごとく,肌焼鋼に
おける発明鋼H,Iと従来鋼J,Kとを準備し,これら
の比較を行った。発明鋼HとIは,発明鋼HにBiを添
加したことが最も大きく異なる点である。従来鋼Jは,
多量のSとPbとを添加した快削鋼である。また,従来
鋼J,Kは,いずれもAl含有量が0.010%を超え
ている。
Embodiment 3 In this embodiment, as shown in Tables 1 and 3 above, invention steels H and I and conventional steels J and K in case hardening steels were prepared and compared. The invention steels H and I are the most different in that Bi was added to the invention steel H. Conventional steel J
It is a free-cutting steel to which a large amount of S and Pb are added. Further, the conventional steels J and K both have an Al content exceeding 0.010%.

【0050】各鋼材は,100kg真空溶解炉にて溶製
し,1200℃にてφ60mmへ鍛伸し,一部はさらに
40×70mm角材に鍛伸した。その後,いずれも90
0℃の温度にて60分間の焼ならし熱処理を実施した。
そして,φ60mm材を用いて被削性試験を実施した。
また,φ60mm材より,引張試験,L方向の衝撃試験
片を,40×70mm角材よりT方向の衝撃試験を粗加
工した後,880℃にて焼入れ,180℃にて焼戻しを
施してから仕上げ加工し,その後機械試験を実施した。
試験方法等は実施形態例1と同様である。
Each steel material was melted in a 100 kg vacuum melting furnace and forged at 1200 ° C. to φ60 mm, and a portion was further forged to a 40 × 70 mm square bar. After that, 90
A normalizing heat treatment was performed at a temperature of 0 ° C. for 60 minutes.
Then, a machinability test was performed using a φ60 mm material.
In addition, after performing a tensile test and a L-direction impact test piece from a φ60 mm material, and a T direction impact test from a 40 × 70 mm square material, rough processing, quenching at 880 ° C, tempering at 180 ° C, and finishing After that, a mechanical test was performed.
The test method and the like are the same as those in the first embodiment.

【0051】試験結果等を上記表3に示す。表3より知
られるごとく,肌焼鋼における本発明鋼H,Iは,少な
くとも被削性では,従来鋼J,Kよりも優れた特性を示
した。また,機械的性質に関しては,従来鋼とほとんど
差がない優れた特性が維持されていた。特にBiを添加
した本発明鋼Hは,ドリル寿命が飛躍的に向上してい
る。これは,Biによる低融点挙動により介在物の変形
を増長させること,および複合硫化物による工具摩耗の
進行阻止効果によるものである。
Table 3 shows the test results and the like. As is known from Table 3, the steels H and I of the present invention in the case hardening steel exhibited characteristics superior to the conventional steels J and K at least in machinability. In terms of mechanical properties, excellent properties that were almost the same as those of conventional steel were maintained. In particular, the steel H of the present invention to which Bi is added has a drastically improved drill life. This is due to the fact that the deformation of the inclusions is increased by the low melting point behavior of Bi, and the effect of preventing the progress of tool wear by the composite sulfides.

【0052】実施形態例4 本例では,表4に示すごとく,非調質鋼ベースでの,本
発明鋼L,従来鋼M,N,比較鋼Oを準備し,疲労特性
の比較を行った。従来鋼MはPbを含有する快削鋼であ
り,従来鋼NはPbの他にCaを加えた鉛複合快削鋼で
ある。比較鋼Oは,本発明鋼に対して,Oを増加させて
20ppmを超えるようにしたものである。
Embodiment 4 In this embodiment, as shown in Table 4, a steel L of the present invention, conventional steels M and N, and a comparative steel O were prepared based on a non-heat treated steel, and the fatigue characteristics were compared. . Conventional steel M is a free-cutting steel containing Pb, and conventional steel N is a lead composite free-cutting steel added with Ca in addition to Pb. Comparative steel O is obtained by increasing O to exceed 20 ppm with respect to the steel of the present invention.

【0053】各鋼材は,30kg真空溶解炉にて溶製
し,1200℃にてφ60mmへ鍛伸した。そして12
00℃の温度に30分間保持した後,空冷の熱処理を実
施した。そして,φ60mm材より試験片を削り出し,
引張試験,小野式回転曲げ疲労試験を実施した。
Each steel material was melted in a 30 kg vacuum melting furnace and forged at 1200 ° C. to φ60 mm. And 12
After maintaining at a temperature of 00 ° C. for 30 minutes, an air-cooled heat treatment was performed. Then, a test piece was cut out from φ60mm material,
Tensile tests and Ono-type rotary bending fatigue tests were performed.

【0054】試験結果を表5に示す。表5より知られる
ごとく,本発明鋼Lは,従来鋼M(鉛快削鋼),従来鋼
N(鉛複合快削鋼)と比べて,引張強さではほとんど差
がなく,疲労限および耐久比では同等以上の優れた特性
を発揮した。また,本発明鋼Lに対して酸素量が高い比
較鋼Oは,疲労特性が劣る。これは,酸化物介在物の量
および大きさが増したためであると考えられる。
Table 5 shows the test results. As can be seen from Table 5, the steel L of the present invention has almost no difference in tensile strength as compared with the conventional steel M (lead free-cutting steel) and the conventional steel N (lead composite free-cutting steel), and has a fatigue limit and durability. In comparison, it exhibited excellent characteristics that were equal to or better than those. Further, the comparative steel O having a higher oxygen content than the steel L of the present invention has poor fatigue characteristics. This is probably because the amount and size of oxide inclusions increased.

【0055】[0055]

【表4】 [Table 4]

【0056】[0056]

【表5】 [Table 5]

【0057】実施形態例5 本例では,調質強靱鋼と非調質鋼において,連続鋳造性
の評価を行った。この評価には,表6に示すごとく,本
発明鋼P〜Sと比較鋼T〜Wとを準備した。比較鋼T〜
Wは,発明鋼P〜Sに対してAl含有量を0.05%以
上に増加させたものである。
Embodiment 5 In this embodiment, the continuous castability of a tempered toughened steel and a non-tempered steel was evaluated. For this evaluation, as shown in Table 6, inventive steels P to S and comparative steels T to W were prepared. Comparative steel T ~
W is obtained by increasing the Al content to 0.05% or more of the invention steels P to S.

【0058】連続鋳造テストは,130ton電気炉−
LF(取鍋精錬炉)−RH(真空脱ガス装置)により溶
製した後,型格370mm×530のブルーム連続鋳造
機を用いて行った。そして,130tonの溶湯が上記
連続鋳造機により鋳造できるか否かをテストした。
The continuous casting test was conducted using a 130 ton electric furnace.
After smelting by LF (Ladle Refining Furnace) -RH (Vacuum Degassing Device), it was performed using a bloom continuous caster of 370 mm × 530. Then, it was tested whether or not 130 ton of molten metal can be cast by the continuous casting machine.

【0059】テスト結果を表7に示す。表7より知られ
るごとく,Alを0.005%未満に低く抑えた本発明
鋼P〜Sは,すべて,鋳造機のノズルを閉塞することな
く130tonすべての連続鋳造を行うことができた。
これに対し,Al量が0.005%以上の比較鋼T〜W
は,いずれもノズル閉塞が発生して,130tonすべ
てを連続鋳造することができなかった。
Table 7 shows the test results. As can be seen from Table 7, all of the steels P to S of the present invention in which Al was suppressed to less than 0.005% could continuously cast all 130 tons without blocking the nozzle of the casting machine.
On the other hand, comparative steels T to W in which the Al content
In each case, nozzle clogging occurred, and continuous casting of all 130 tons could not be performed.

【0060】[0060]

【表6】 [Table 6]

【0061】[0061]

【表7】 [Table 7]

【0062】実施形態例6 本例では,表8に示す非調質鋼ベースの本発明鋼Xを準
備し,該発明鋼中における介在物を観察した。本発明鋼
Xは,30kg真空溶解炉にて溶製し,1200℃にて
φ40mmへ鍛伸した。その後,1200℃の温度に3
0分間保持した後,空冷の熱処理を実施した。
Embodiment 6 In this embodiment, a steel X of the present invention based on a non-heat treated steel shown in Table 8 was prepared, and inclusions in the steel X were observed. Invention Steel X was smelted in a 30 kg vacuum melting furnace and forged at 1200 ° C. to φ40 mm. Then, at a temperature of 1200 ° C.
After holding for 0 minutes, air-cooled heat treatment was performed.

【0063】介在物観察結果を図2に示す。同図は,S
EM像と,同位置におけるMn,Si,Mg,S,A
l,Fe,O,P,Ca元素のそれぞれの像を示す図面
代用写真である。同図より知られるごとく,Mn,M
g,SおよびCaが同一介在物内で検出されており,M
nS,(Mg,Ca)Sおよび(Mn,Mg,Ca)S
の存在が確認された。また介在物の形状は,一般的にM
nSで代表される硫化物は鍛伸後に棒状になるが,今回
の発明鋼では球状である。このことにより,機械的性質
の試験時に介在物による切欠き効果を減少させて機械的
性質の衝撃異方性が改善されると考えられる。
FIG. 2 shows the results of observation of inclusions. FIG.
EM image and Mn, Si, Mg, S, A at the same position
It is a drawing substitute photograph which shows each image of 1, Fe, O, P, Ca element. As can be seen from FIG.
g, S and Ca are detected in the same inclusion, and M
nS, (Mg, Ca) S and (Mn, Mg, Ca) S
Was confirmed. The shape of inclusions is generally M
The sulfide represented by nS becomes rod-like after forging, but is spherical in the present invention steel. It is considered that this reduces the notch effect due to inclusions during the test of the mechanical properties and improves the impact anisotropy of the mechanical properties.

【0064】[0064]

【表8】 [Table 8]

【0065】実施形態例7 本例では,表8に示すごとく,本発明鋼Xの他に従来鋼
Y,Zを準備し,これらに超硬工具摩耗量,切屑処理性
指数,ドリル深穴性,ドリル寿命を求める試験を行っ
た。試験条件等は実施形態例1と同様である。そして,
工具のすくい面摩耗部(クレータ摩耗部)での合金元素
の分布を観察した。
Embodiment 7 In this embodiment, as shown in Table 8, in addition to steel X of the present invention, conventional steels Y and Z were prepared, and the wear amount of carbide tools, the chip disposal index, and the drill deep hole property were determined. A test was conducted to determine the life of the drill. The test conditions and the like are the same as in the first embodiment. And
The distribution of alloying elements in the rake face wear part (crater wear part) of the tool was observed.

【0066】従来鋼Yは,PbおよびCaを含有する鉛
複合快削鋼である。また,従来鋼Zは,Pbは含有して
いないが,Al量を増大させ,かつ,Ca,Mgの両方
の添加をやめたものである。これらの製造方法は本発明
鋼Xと同様とした。試験結果を表9に示す。
Conventional steel Y is a lead composite free-cutting steel containing Pb and Ca. The conventional steel Z does not contain Pb, but increases the amount of Al and stops adding both Ca and Mg. These manufacturing methods were the same as those of the steel X of the present invention. Table 9 shows the test results.

【0067】[0067]

【表9】 [Table 9]

【0068】表9より知られるごとく,本発明鋼Xは,
従来鋼Y,Zに比べてすべての評価項目において優れて
いた。次に,合金元素分布の観察結果を図3〜図5に示
す。これらの図は,摩耗試験後の工具すくい面摩耗部表
面のSEM像と,同位置におけるCa,S,Mn,M
g,W,Fe,Si,Al,O元素の像をそれぞれ示す
図面代用写真である。
As can be seen from Table 9, the steel X of the present invention
All the evaluation items were superior to the conventional steels Y and Z. Next, the observation results of the alloy element distribution are shown in FIGS. These figures show SEM images of the tool rake face wear part surface after the wear test and Ca, S, Mn, M at the same position.
It is a drawing substitute photograph each showing the image of element g, W, Fe, Si, Al, and O.

【0069】図3より知られるごとく,本発明鋼Xにお
いては,工具のすくい面摩耗部には,Mn,S,Ca,
Mgが付着していた。このことから,MnSと(Ca,
Mg)Sの複合効果による潤滑作用が発揮され,工具摩
耗の進行が抑制されたものと思われる。
As is known from FIG. 3, in the steel X of the present invention, Mn, S, Ca,
Mg had adhered. From this, MnS and (Ca,
It is considered that the lubricating effect due to the combined effect of Mg) S was exerted and the progress of tool wear was suppressed.

【0070】一方,図4より知られるごとく,従来鋼Y
においては,上記摩耗部には,Ca,Sが,摩耗端部に
はPbが付着している。この結果からCaSの潤滑作用
から摩耗の進行が抑制されたものと推定できるが,本発
明鋼Xには及ばない。また,図5より知られるごとく,
従来鋼Zにおいては,Sがわずかに工具摩耗部に分布し
ているが,FeとOが多量に付着している。Feの酸化
物は工具内のCoと置換現象を起こして工具の摩耗を促
進させる作用があり,これにより摩耗が激しかったと考
えられる,
On the other hand, as can be seen from FIG.
In the above, Ca and S are adhered to the wear portion, and Pb is adhered to the wear end. From these results, it can be estimated that the progress of wear was suppressed by the lubricating action of CaS, but this was not as high as that of steel X of the present invention. Also, as known from FIG.
In the conventional steel Z, S is slightly distributed in the tool wear portion, but a large amount of Fe and O adhere. It is considered that the oxide of Fe has a function of promoting the wear of the tool by causing a substitution phenomenon with Co in the tool, whereby the wear was intense.

【0071】実施形態例8 本例では,さらに多数の本発明鋼および比較鋼を準備
し,実施形態例1と同様に被削性その他の評価を行っ
た。まず,本発明鋼としては,表10〜表12に示すご
とく,本発明の成分範囲内において成分を種々変化させ
たa1〜a78の78種類の鋼を準備した。
Embodiment 8 In this embodiment, a larger number of steels of the present invention and comparative steels were prepared, and their machinability and other properties were evaluated in the same manner as in Embodiment 1. First, as the present invention steel, as shown in Tables 10 to 12, 78 kinds of steels a1 to a78 having variously changed components within the component range of the present invention were prepared.

【0072】また,比較鋼としては,表13に示すごと
く,本発明の成分範囲から外れるb1〜b8の8種類の
鋼を準備した。比較鋼b1はS量が下限をきるもの,比
較鋼b2はS量が上限を超えるものである。比較鋼b3
はAl量が上限を超えるものである。比較鋼b4はCa
量が下限をきるもの,比較鋼b5はCa量が上限を超え
るものである。比較鋼b6はMg量が下限をきるもの,
比較鋼b7はMg量が上限を超えるものである。比較鋼
b8はO量が上限を超えるものである。
As shown in Table 13, eight kinds of steels b1 to b8 which were out of the range of the composition of the present invention were prepared as comparative steels. Comparative steel b1 has an S content below the lower limit, and comparative steel b2 has an S content exceeding the upper limit. Comparative steel b3
Is an Al content exceeding the upper limit. Comparative steel b4 is Ca
In the case where the amount falls below the lower limit, the comparative steel b5 has the amount of Ca exceeding the upper limit. Comparative steel b6 has a lower limit of Mg content,
The comparative steel b7 has a Mg content exceeding the upper limit. Comparative steel b8 has an O content exceeding the upper limit.

【0073】各鋼の作製は,調質鋼についは実施形態例
1と同様に,非調質鋼については実施形態例2と同様に
して行った。なお,後述する表14〜表17において,
焼入れ焼戻し処理の項目にデータがあるものが調質鋼で
あり,空冷処理(1200℃加熱後)の項目にデータが
あるものが非調質鋼である。そして,機械試験について
は,調質鋼については焼入れ焼戻し処理後に,非調質鋼
については1200℃加熱後空冷後に行った。その他は
実施形態例1〜3と同様である。
The production of each steel was performed in the same manner as in the first embodiment for the heat-treated steel, and in the same manner as in the second embodiment for the non-heat-treated steel. In Tables 14 to 17 described below,
Those with data in the item of quenching and tempering are tempered steels, and those with data in the item of air cooling (after heating at 1200 ° C) are non-heat treated steels. The mechanical test was performed on the tempered steel after quenching and tempering, and on the non-heat treated steel after heating at 1200 ° C. and air cooling. Others are the same as those of the first to third embodiments.

【0074】評価結果を表14〜表17に示す。結果を
わかりやすくするために,非常に良好なものは◎,良好
なものは○,悪いものは×により示した。各評価項目の
◎,○,×の判断基準は表18に示す。
Tables 14 to 17 show the evaluation results. In order to make the results easy to understand, very good samples are indicated by ◎, good samples are indicated by ,, and bad samples are indicated by ×. Table 18 shows the criteria for ◎, ,, and × for each evaluation item.

【0075】表14〜表16より知られるごとく,すべ
ての本発明鋼は,すべての評価項目において優れた結果
が得られた。これに対し,表17より知られるごとく,
比較鋼においては,評価項目すべてを満足するものはな
かった。
As can be seen from Tables 14 to 16, all the steels of the present invention showed excellent results in all evaluation items. On the other hand, as known from Table 17,
None of the comparative steels satisfied all of the evaluation items.

【0076】具体的には,S量が下限値を切った比較鋼
b1は,超硬工具摩耗,切屑処理指数,ドリル深穴性,
ドリル寿命において十分な特性が得られなかった。S量
が上限を上回る比較鋼b2は,衝撃異方性と耐久比とが
優れなかった。Al量が上限を上回る比較鋼b3は,超
硬工具摩耗と耐久比とが優れなかった。また,比較鋼b
3は,非調質鋼よりなるので本発明鋼a1〜a78中の
非調質鋼(空冷処理鋼)と比較すると,上記本発明鋼は
ほぼすべてPb快削鋼の特徴であるドリル深穴性および
ドリル寿命が非常に優れているのに対し,上記比較鋼b
3は非常に優れたレベルには達せず,良好なレベルにと
どまっている。
Specifically, the comparative steel b1 in which the S content was less than the lower limit value was obtained from the carbide tool wear, the chip treatment index, the drill deep hole property,
Sufficient properties were not obtained in the drill life. Comparative steel b2 having an S content exceeding the upper limit was not excellent in impact anisotropy and durability ratio. The comparative steel b3 in which the amount of Al exceeded the upper limit did not have excellent carbide tool wear and durability ratio. In addition, comparative steel b
No. 3 is made of non-heat treated steel, so that compared with the non-heat treated steels (air-cooled steels) among the steels a1 to a78 of the present invention, almost all of the above steels of the present invention have a deep hole hole characteristic of Pb free-cutting steel. And the drill life is very good, while the comparative steel b
3 did not reach a very good level but remained at a good level.

【0077】Ca量が下限値を切った比較鋼b4は,超
硬工具摩耗,ドリル寿命,衝撃異方性が優れなかった。
Ca量が上限を上回る比較鋼b5は,耐久比が優れなか
った。Mg量が下限値を切った比較鋼b6は,超硬工具
摩耗,ドリル寿命,衝撃異方性が優れなかった。Mg量
が上限を上回る比較鋼b7は,耐久比が優れなかった。
O量が上限を上回る比較鋼b8は,超硬工具摩耗,ドリ
ル寿命,耐久比が優れなかった。
The comparative steel b4 in which the amount of Ca was less than the lower limit was not excellent in carbide tool wear, drill life and impact anisotropy.
The comparative steel b5 in which the amount of Ca exceeded the upper limit did not have an excellent durability ratio. Comparative steel b6 in which the amount of Mg was below the lower limit was not excellent in carbide tool wear, drill life, and impact anisotropy. The comparative steel b7 in which the Mg content exceeded the upper limit did not have an excellent durability ratio.
The comparative steel b8 in which the O content exceeds the upper limit was not excellent in carbide tool wear, drill life, and durability ratio.

【0078】[0078]

【表10】 [Table 10]

【0079】[0079]

【表11】 [Table 11]

【0080】[0080]

【表12】 [Table 12]

【0081】[0081]

【表13】 [Table 13]

【0082】[0082]

【表14】 [Table 14]

【0083】[0083]

【表15】 [Table 15]

【0084】[0084]

【表16】 [Table 16]

【0085】[0085]

【表17】 [Table 17]

【0086】[0086]

【表18】 [Table 18]

【0087】[0087]

【発明の効果】上述のごとく,本発明によれば,Pbを
含有せず,かつ,従来のPb含有快削鋼と同等以上の特
性を有する,被削性に優れ,強度異方性の小さい鉛無添
加の機械構造用鋼を提供することができる。
As described above, according to the present invention, the present invention does not contain Pb and has properties equal to or higher than those of conventional Pb-containing free-cutting steel, has excellent machinability, and has low strength anisotropy. A lead-free mechanical structural steel can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,ドリル深穴性の評価方
法を示す説明図。
FIG. 1 is an explanatory diagram showing a method for evaluating a drill deep hole property in a first embodiment.

【図2】実施形態例6における,本発明鋼X中の各元素
の像を示す図面代用写真。
FIG. 2 is a drawing substitute photograph showing an image of each element in steel X of the present invention in Embodiment 6;

【図3】実施形態例7における,本発明鋼Xを切削した
工具に付着した各元素の像を示す図面代用写真。
FIG. 3 is a drawing substitute photograph showing an image of each element attached to a tool obtained by cutting steel X of the present invention in Embodiment 7;

【図4】実施形態例7における,従来鋼Yを切削した工
具に付着した各元素の像を示す図面代用写真。
FIG. 4 is a drawing substitute photograph showing an image of each element attached to a tool for cutting conventional steel Y in Embodiment 7;

【図5】実施形態例7における,従来鋼Zを切削した工
具に付着した各元素の像を示す図面代用写真。
FIG. 5 is a drawing substitute photograph showing an image of each element attached to a tool obtained by cutting conventional steel Z in Embodiment 7.

【符号の説明】[Explanation of symbols]

1,T2...切削抵抗, t...穿孔時間,T 1 , T 2 . . . Cutting force, t. . . Drilling time,

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000003207 トヨタ自動車株式会社 愛知県豊田市トヨタ町1番地 (72)発明者 岩間 直樹 愛知県東海市荒尾町ワノ割1番地 愛知 製鋼株式会社内 (72)発明者 大脇 進 愛知県東海市荒尾町ワノ割1番地 愛知 製鋼株式会社内 (72)発明者 内山 雅夫 愛知県東海市荒尾町ワノ割1番地 愛知 製鋼株式会社内 (72)発明者 藤井 伊佐夫 愛知県東海市荒尾町ワノ割1番地 愛知 製鋼株式会社内 (72)発明者 西門 勝司 愛知県東海市荒尾町ワノ割1番地 愛知 製鋼株式会社内 (72)発明者 常陰 典正 兵庫県姫路市飾磨区中島字一文字3007番 地 山陽特殊製鋼株式会社内 (72)発明者 小林 一博 兵庫県姫路市飾磨区中島字一文字3007番 地 山陽特殊製鋼株式会社内 (72)発明者 大庫 和孝 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (72)発明者 内藤 国雄 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (72)発明者 森 元秀 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開2000−282169(JP,A) 特開2000−87179(JP,A) 特開2001−152280(JP,A) 特開 昭60−59052(JP,A) 特公 昭51−4934(JP,B1) 杉山信明,特殊製錬技術の最近の進 歩,第72,73回西山記念技術講座,日 本,社団法人日本鉄鋼協会,1981年2月 10日,3.電気炉製鋼と真空脱ガス法, P.67−78 小川兼広,最近の高純度鋼溶製技術の 進歩,第143,144回西山記念技術講座, 日本,社団法人日本鉄鋼協会,1992年4 月30日,6.高純度鋼溶製のためのスラ グ製錬技術,P.137−171 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continued on the front page (73) Patent owner 000003207 Toyota Motor Co., Ltd. 1 Toyota Town, Toyota City, Aichi Prefecture (72) Inventor Naoki Iwama 1 Wanowari Arao Town, Tokai City, Aichi Prefecture Aichi Steel Corporation (72 Inventor Susumu Owaki 1 Wanowari, Arao-cho, Tokai City, Aichi Prefecture Inside (72) Inventor Masao Uchiyama 1-Wanowari, Arao-cho, Tokai City, Aichi Prefecture 1st Inside Aichi Steel Corporation (72) Inventor Isao Fujii Aichi No. 1, Wanowari, Arao-cho, Tokai, Aichi Steel Co., Ltd. (72) Inventor Katsushi Nishimon No. 1, Wanowari, Arao-cho, Tokai, Aichi, Japan No. 72 (72) Inventor, Norimasa Join, Himago No. 3007, Nakajima character, Sanyo Special Steel Co., Ltd. (72) Inventor, Kazuhiro Kobayashi Banchi Sanyo Special Steel Co., Ltd. (72) Inventor Kazutaka Ogo 41, Chuchu-Yokomichi, Nagakute-cho, Aichi-gun, Aichi, Japan 1 Toyota Toyota Central R & D Laboratories Co., Ltd. 41 Chuo-ku Yokomichi 1 Toyota Central Research Laboratory Co., Ltd. (72) Inventor Motohide Mori 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (56) References JP-A-2000-282169 (JP, A) JP-A-2000-87179 (JP, A) JP-A-2001-152280 (JP, A) JP-A-60-59052 (JP, A) JP-B-51-4934 (JP, B1) Nobuaki Sugiyama, Recent progress, The 72nd and 73rd Nishiyama Memorial Technical Lecture, Japan, The Iron and Steel Institute of Japan, February 10, 1981, 3. Electric furnace steelmaking and vacuum degassing, P. 67-78 Kanehiro Ogawa, Recent Advances in High-Purity Steel Smelting Technology, The 143rd and 144th Nishiyama Memorial Technical Lectures, Japan, The Iron and Steel Institute of Japan, April 30, 1992, 6. Slag smelting technology for high-purity steel smelting. 137-171 (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%において,C:0.10〜0.6
5%,Si:0.03〜1.00%,Mn:0.30〜
2.50%,S:0.03〜0.35%,Cr:0.1
〜2.0%,Al:0.005%未満,Ca:0.00
05〜0.020%,Mg:0.0003〜0.020
%を含有し,O:20ppm未満であり,残部Feおよ
び不可避不純物からなり,かつ,連続鋳造により作製し
ことを特徴とする,被削性に優れ,強度異方性の小さ
い鉛無添加の機械構造用鋼。
C. 0.10 to 0.6 in weight%
5%, Si: 0.03 to 1.00%, Mn: 0.30
2.50%, S: 0.03 to 0.35%, Cr: 0.1
~ 2.0%, Al: less than 0.005%, Ca: 0.00
05-0.020%, Mg: 0.0003-0.020
% Containing, O: less than 20 ppm, Ri Do the balance Fe and unavoidable impurities, and produced by continuous casting
A lead-free mechanical structural steel with excellent machinability and low strength anisotropy.
【請求項2】 請求項1において,さらにMo:0.0
5〜1.00%,Ni:0.1〜3.5%,V:0.0
1〜0.50%,Nb:0.01〜0.10%,Ti:
0.01〜0.10%,B:0.0005〜0.010
0%から選択した1種または2種以上を含有することを
特徴とする,被削性に優れ,強度異方性の小さい鉛無添
加の機械構造用鋼。
2. The method according to claim 1, further comprising: Mo: 0.0.
5 to 1.00%, Ni: 0.1 to 3.5%, V: 0.0
1 to 0.50%, Nb: 0.01 to 0.10%, Ti:
0.01 to 0.10%, B: 0.0005 to 0.010
A lead-free mechanical structural steel having excellent machinability and low strength anisotropy, characterized by containing one or more selected from 0%.
【請求項3】 請求項1又は2において,さらに,B
i:0.01〜0.30%,REM:0.001〜0.
10%から選択した1種または2種を含有することを特
徴とする,被削性に優れ,強度異方性の小さい鉛無添加
の機械構造用鋼。
3. The method according to claim 1, further comprising:
i: 0.01 to 0.30%, REM: 0.001 to 0.
Lead-free mechanical structural steel having excellent machinability and low strength anisotropy, characterized by containing one or two selected from 10%.
【請求項4】 請求項1〜3のいずれか1項において,
硫化物系の介在物として(Ca,Mg)S,(Ca,M
g,Mn)Sの1種または2種を含有することを特徴と
する,被削性に優れ,強度異方性の小さい鉛無添加の機
械構造用鋼。
4. The method according to claim 1, wherein:
(Ca, Mg) S, (Ca, M) as sulfide-based inclusions
g, Mn) A lead-free mechanical structural steel having excellent machinability and low strength anisotropy, characterized by containing one or two of S, Mn) S.
JP2000025516A 2000-02-02 2000-02-02 Lead-free mechanical structural steel with excellent machinability and low strength anisotropy Ceased JP3270035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000025516A JP3270035B2 (en) 2000-02-02 2000-02-02 Lead-free mechanical structural steel with excellent machinability and low strength anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000025516A JP3270035B2 (en) 2000-02-02 2000-02-02 Lead-free mechanical structural steel with excellent machinability and low strength anisotropy

Publications (2)

Publication Number Publication Date
JP2001220645A JP2001220645A (en) 2001-08-14
JP3270035B2 true JP3270035B2 (en) 2002-04-02

Family

ID=18551368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000025516A Ceased JP3270035B2 (en) 2000-02-02 2000-02-02 Lead-free mechanical structural steel with excellent machinability and low strength anisotropy

Country Status (1)

Country Link
JP (1) JP3270035B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060897A (en) * 2000-08-22 2002-02-28 Sanyo Special Steel Co Ltd Steel for machine structural use excellent in small diameter drilling workability, and small diameter drilling method thereof
JP3740042B2 (en) * 2000-09-06 2006-01-25 株式会社神戸製鋼所 Method for controlling the morphology of sulfide inclusions
JP3929035B2 (en) * 2002-07-03 2007-06-13 三菱製鋼株式会社 Sulfur-containing free-cutting machine structural steel
JP5068087B2 (en) * 2007-02-23 2012-11-07 株式会社神戸製鋼所 Steel for fracture split type connecting rods with excellent fracture splitability and machinability
EP2357260B1 (en) 2009-01-16 2018-09-19 Nippon Steel & Sumitomo Metal Corporation Case hardening steel, carburized component, and manufacturing method of case hardening steel
JP5768757B2 (en) * 2012-04-19 2015-08-26 新日鐵住金株式会社 Steel for machine structure
JP7135485B2 (en) * 2018-06-18 2022-09-13 日本製鉄株式会社 Carburizing steel and parts

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
小川兼広,最近の高純度鋼溶製技術の進歩,第143,144回西山記念技術講座,日本,社団法人日本鉄鋼協会,1992年4月30日,6.高純度鋼溶製のためのスラグ製錬技術,P.137−171
杉山信明,特殊製錬技術の最近の進歩,第72,73回西山記念技術講座,日本,社団法人日本鉄鋼協会,1981年2月10日,3.電気炉製鋼と真空脱ガス法,P.67−78

Also Published As

Publication number Publication date
JP2001220645A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
JP4473928B2 (en) Hot-worked steel with excellent machinability and impact value
US6797231B2 (en) Steel for machine structural use
JPWO2009057731A1 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
EP1270757A1 (en) Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy
JP2001131684A (en) Steel for machine structure excellent in treatment of chip
JP3558889B2 (en) Hot-forged machine structural steel with excellent machinability
JP4502519B2 (en) Martensitic free-cutting stainless steel
JP3270035B2 (en) Lead-free mechanical structural steel with excellent machinability and low strength anisotropy
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JP3736721B2 (en) High corrosion resistance free-cutting stainless steel
JP4148311B2 (en) Lead-free mechanical structural steel with excellent machinability and small strength anisotropy
JP3460721B2 (en) Machine structural steel
JP3874557B2 (en) Free-cutting non-tempered steel with excellent toughness
JP3442706B2 (en) Free-cutting steel
EP1688512A1 (en) Lead-free steel for machine structural use with excellent machinability and low strenght anisotropy
JP4282459B2 (en) Machine structural steel with excellent machinability used for quenching and tempering
JPH10195599A (en) Free cutting non-heat treated steel excellent in strength and toughness
JP2000328182A (en) Free-cutting steel for machine structure excellent in hot workability
JP4049969B2 (en) Free-cutting steel for machine structure
JP3299034B2 (en) Machine structural steel with excellent cold forgeability, machinability, mechanical properties after quenching and tempering, and fatigue strength properties
JP2002194483A (en) Steel for machine structure
JP2008057021A (en) Steel for machine structure
JP4544442B2 (en) Free cutting high toughness case hardening steel
JPH06145890A (en) High strength and high toughness free cutting steel
JP2004176177A (en) Steel superior in machinability

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition