JP2002180184A - Nonlead steel for machine structural use, having excellent machinability and small strength anisotropy - Google Patents

Nonlead steel for machine structural use, having excellent machinability and small strength anisotropy

Info

Publication number
JP2002180184A
JP2002180184A JP2000377856A JP2000377856A JP2002180184A JP 2002180184 A JP2002180184 A JP 2002180184A JP 2000377856 A JP2000377856 A JP 2000377856A JP 2000377856 A JP2000377856 A JP 2000377856A JP 2002180184 A JP2002180184 A JP 2002180184A
Authority
JP
Japan
Prior art keywords
steel
sulfide
free
cutting
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000377856A
Other languages
Japanese (ja)
Other versions
JP4148311B2 (en
Inventor
Motohide Mori
元秀 森
Naoki Iwama
直樹 岩間
Masao Uchiyama
雅夫 内山
Masayasu Hosoki
真保 細木
Norimasa Tokokage
典正 常陰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Sanyo Special Steel Co Ltd
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd, Toyota Motor Corp, Aichi Steel Corp filed Critical Sanyo Special Steel Co Ltd
Priority to JP2000377856A priority Critical patent/JP4148311B2/en
Publication of JP2002180184A publication Critical patent/JP2002180184A/en
Application granted granted Critical
Publication of JP4148311B2 publication Critical patent/JP4148311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide steel for machine structural use in which toughness and machinability can be improved by using nonlead steel and using sulfide inclusions as free-cutting substances in consideration for environmental problems and forming an optimum form of sulfide dispersion and, further, excellent machinability can be provided over a wide range of cutting methods and cutting conditions without causing much deterioration in the strength characteristics of the steel material and, particularly, excellent chip disposability and excellent resistance to cemented carbide tool wear can be provided. SOLUTION: Low alloy steel for machine structural use containing sulfide inclusions as free-cutting substances, e.g. chromium steel prepared by adding Mg, Ca and S are free-cutting components to chromium steel specified as JIS SCR is melted. A stock of this chromium steel is hot-rolled or hot-forged to regulate the ratio between the major axis and interparticle spacing of sulfide particles of >=1.5 μm major axis existing in the steel stock to <0.5 and also regulate the average area of the sulfide particles of >=1.5 μm major axis to >=9 μm2 as shown in Fig. 1. By applying quench- and-temper treatment capable of providing excellent drilling machinability, the nonlead free-cutting steel product can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼材の強度特性を
大きく劣化させることなく、広範囲の切削方法や切削条
件において優れた被削性を有し、特に耐超硬工具摩耗性
および切粉処理性に優れた機械構造用鋼に関する。
[0001] The present invention relates to a steel material having excellent machinability in a wide range of cutting methods and cutting conditions without significantly deteriorating the strength characteristics of the steel material. The present invention relates to a steel for machine structural use having excellent heat resistance.

【0002】[0002]

【従来の技術】近年の切削加工の高速化、自動化に伴っ
て、機械構造用部品に使用される鋼材の被削性が重要視
され快削鋼の需要が高まっている。しかし、鋼材の必要
強度は厳しくなりつつあり、通常は鋼材を高強度化した
場合には被削性は劣化する。すなわち鋼材の高強度化と
被削性という相反する特性の改善が要求されている。現
在、一般的に使用されている快削鋼として、Pb、S、
Caを含有させた鋼材がある。しかし、これらの快削鋼
は切削加工方法によっては全く快削性を示さなかった
り、あるいは材質劣化の問題があるため、その用途およ
び快削物質の量は制限されている。
2. Description of the Related Art With the recent increase in speed and automation of cutting, the machinability of steel materials used for machine structural parts is regarded as important, and the demand for free-cutting steel is increasing. However, the required strength of steel materials is becoming stricter, and machinability usually deteriorates when steel materials are increased in strength. In other words, there is a demand for improvement of contradictory characteristics such as high strength of steel and machinability. At present, Pb, S,
There is a steel material containing Ca. However, these free-cutting steels do not show any free-cutting property or have a problem of deterioration of the material depending on the cutting method, and therefore, their use and the amount of the free-cutting substance are limited.

【0003】すなわち、Pb快削鋼は、基本鋼と比較し
て機械的性質の劣化が小さく一般の旋削加工において切
粉処理性の改善を示し、ドリル加工、リーマ加工、中ぐ
り加工等の工具寿命の延長、および(穴深さ/ドリル直
径)≧3を深穴とした場合の深穴あけ加工時に切粉の排
出を容易にし、突発的な切粉つまりによる工具の折損を
防止するのに非常に有効な元素である。しかし、旋削時
の工具寿命については高速度鋼、超硬工具共にPb添加
の有効性は小さく、むしろ軽負荷の切削条件領域では通
常鋼よりも劣化する傾向が認められる場合もある。さら
に、近年の環境問題の高まりから、Pbの有毒性が問題
視されており、今後Pbの使用量は削減される方向にあ
る。
[0003] That is, Pb free-cutting steel shows less deterioration in mechanical properties than basic steel and exhibits improved chip disposability in general turning, and is used for tools such as drilling, reaming, boring and the like. It is very useful for prolonging the service life and facilitating the discharge of chips during deep hole drilling when (hole depth / drill diameter) ≧ 3 is set as a deep hole, and preventing breakage of the tool due to sudden chipping. It is an effective element. However, regarding the tool life during turning, the effectiveness of adding Pb is small for both high-speed steel and cemented carbide tools. Furthermore, toxicity of Pb has been regarded as a problem due to an increase in environmental problems in recent years, and the amount of Pb used will be reduced in the future.

【0004】S快削鋼は、比較的広範な切削加工に対し
て工具寿命を延長させる効果を示すが、Pb快削鋼に比
べて切粉処理性は悪く、特に高速切削領域では改善効果
は小さく、また鋼材の強度面では介在物として存在する
MnSが熱間圧延あるいは熱間鍛造中に延伸するため、
圧延方向から直角方向に近づくにつれて衝撃強度等の機
械的性質が低下する(異方性)という問題がある。
[0004] S free-cutting steel has the effect of extending the tool life for relatively wide range of cutting work, but has a poorer chipping property than Pb free-cutting steel, and has an improvement effect especially in the high-speed cutting region. Since MnS existing as inclusions is small during the hot rolling or hot forging, and in the strength aspect of the steel material,
There is a problem in that mechanical properties such as impact strength are reduced (anisotropic) as approaching the direction perpendicular to the rolling direction.

【0005】Ca脱酸により鋼中の酸化物系介在物を低
融点化させた従来のCa快削鋼は鋼材の強度特性にほと
んど影響を及ぼさず、高速切削領域の超硬工具寿命に著
しい延長効果を示す。しかし、Ca脱酸快削鋼は、超硬
工具寿命以外の被削性改善効果がほとんど認められない
ため、オールラウンドの被削性を得るためにSあるいは
Pbとの複合で使用される場合が一般的である。
[0005] The conventional Ca free-cutting steel in which oxide-based inclusions in the steel have been reduced in melting point by Ca deoxidation has almost no effect on the strength characteristics of the steel material, and significantly extends the life of the cemented carbide tool in the high-speed cutting region. Show the effect. However, since Ca deoxidized free-cutting steel hardly shows any machinability improving effect other than the carbide tool life, it may be used in combination with S or Pb in order to obtain all-round machinability. General.

【0006】従来のCa脱酸鋼とは異なり、S快削鋼の
欠点である異方性をCa添加によって鋼中の介在物を均
一に分散、分布させることから改善し、同時に被削性も
向上させた例として、特公平5−15777号公報に記
載の発明がある。この場合、Ca脱酸快削鋼のような欠
点はないが、十分な被削性を得るには多量のSを添加す
る必要があり、その場合に硫化物を形態制御させるため
に必要十分な量のCaを鋼材中に含有させることはCa
歩留りが低いため量産鋼として製造は極めて困難であ
る。
Unlike conventional Ca-deoxidized steel, the anisotropy, which is a disadvantage of free-cutting steel, is improved by uniformly dispersing and distributing inclusions in the steel by adding Ca, and at the same time, machinability is improved. As an example of the improvement, there is an invention described in Japanese Patent Publication No. 5-15777. In this case, there is no disadvantage such as Ca deoxidized free-cutting steel, but it is necessary to add a large amount of S to obtain sufficient machinability, and in that case, it is necessary and sufficient to control the sulfide form. Including an amount of Ca in steel
Production is extremely difficult as mass-produced steel due to low yield.

【0007】この場合のCaと同様な効果を狙った例と
して特公昭52−7405号公報に記載されたMg、B
aの第1群元素の1種または2種を0.1%以下とS、
Se、Teよりなる第2群元素の1種以上を0.03%
〜0.5%含有し、(第1群元素/第2群元素)の原子
比が0.01以上となる快削鋼が提案されている。しか
しSeとTeは毒性が強く、環境負荷が大きい。また特
開昭51−63312号公報に記載の発明があり、工具
鋼にZrを添加し、O+Nの量、Zr化合物の硫化物と
共存する量を所定の割合にすることにより、快削工具鋼
を得ている。これらはMg、Ba、Sr等を使用してい
るがいずれもCaと同様な問題がある。
[0007] As an example aiming at the same effect as Ca in this case, Mg, B described in JP-B-52-7405.
a or less of 0.1% or less of the first group element of a and S,
0.03% of one or more of the second group elements consisting of Se and Te
A free-cutting steel containing up to 0.5% and having an atomic ratio of (first group element / second group element) of 0.01 or more has been proposed. However, Se and Te are highly toxic and have a large environmental load. Also, there is an invention described in JP-A-51-63312, in which Zr is added to tool steel, and the amount of O + N and the amount of coexistence with the sulfide of the Zr compound are adjusted to a predetermined ratio, whereby free cutting tool steel is obtained. Have gained. These use Mg, Ba, Sr, etc., but all have the same problems as Ca.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の従来
の問題を解消することであり、環境問題に配慮して非P
b化鋼として硫化物系介在物を快削性物質とし、最適な
硫化物分散形態とすることにより靱性および被削性を向
上させ、鋼材の強度特性を大きく劣化させることなく、
広範囲の切削方法や切削条件において優れた被削性を有
する機械構造用鋼を提供する。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems.
b The sulfide-based inclusions are made into free-cutting materials as the steel, and the toughness and machinability are improved by making the sulfide dispersion form the most suitable, without significantly deteriorating the strength characteristics of the steel material.
Provided is a steel for machine structural use having excellent machinability in a wide range of cutting methods and cutting conditions.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めの本発明の手段は、請求項1の発明では、快削性物質
として硫化物系介在物を含有する機械構造用低合金鋼か
らなり、該機械構造用低合金鋼の硫化物粒子は長径が
1.5μm以上である長径と粒子間距離の比が0.5未
満で、かつ、長径が1.5μm以上である硫化物粒子の
平均面積が9μm 2以上であることを特徴とする、被削
性に優れ、強度異方性の小さい鉛無添加の機械構造用鋼
である。
Means for Solving the Problems To solve the above problems,
According to the first aspect of the present invention, there is provided a free-cutting substance.
Low alloy steel for machine structural use containing sulfide inclusions
The sulfide particles of the low alloy steel for machine structural use have a long diameter.
The ratio of the long diameter of 1.5 μm or more to the distance between particles is not more than 0.5.
Of sulfide particles that are full and have a major axis of 1.5 μm or more
Average area is 9μm TwoMachining characterized by the above
Lead-free mechanical structural steel with excellent heat resistance and low strength anisotropy
It is.

【0010】請求項2の発明では、快削性物質として硫
化物系介在物を含有する機械構造用低合金鋼は、質量%
で、C:0.10〜0.65%、Si:0.03〜1.
00%、Mn:0.30〜2.50%、S:0.03〜
0.35%、Al:0.020%未満、O:20ppm
未満を含有し、さらにCa:0.0005〜0.002
0%、Mg:0.0003〜0.020%から選ばれた
1種または2種を含有し、残部Feおよび不可避不純物
からなることを特徴とする請求項1の手段における、被
削性に優れ、強度異方性の小さい鉛無添加の機械構造用
鋼である。
According to the second aspect of the present invention, the low alloy steel for a machine structure containing a sulfide-based inclusion as a free-cutting substance has a mass% of
, C: 0.10-0.65%, Si: 0.03-1.
00%, Mn: 0.30 to 2.50%, S: 0.03 to
0.35%, Al: less than 0.020%, O: 20 ppm
And Ca: 0.0005 to 0.002
2. Means according to claim 1, characterized in that it contains one or two selected from 0% and Mg: 0.0003 to 0.020%, and the balance is Fe and inevitable impurities. And lead-free mechanical structural steel with low strength anisotropy.

【0011】請求項3の発明では、快削性物質として硫
化物系介在物を含有する機械構造用低合金鋼は、請求項
2の手段の鋼成分に、さらに質量%で、Cr:0.1〜
2.0%、Mo:0.05〜1.00%、Ni:0.1
〜3.5%、V:0.01〜0.50%、Nb:0.0
1〜0.10%、Ti:0.01〜0.10%、B:
0.0005〜0.0100%から選択した1種または
2種を含有することを特徴とする請求項1の手段におけ
る、被削性に優れ、強度異方性の小さい鉛無添加の機械
構造用鋼である。
According to the third aspect of the present invention, the low-alloy steel for machine structural use containing a sulfide-based inclusion as a free-cutting substance is added to the steel component of the second aspect, further comprising: 1 to
2.0%, Mo: 0.05 to 1.00%, Ni: 0.1
To 3.5%, V: 0.01 to 0.50%, Nb: 0.0
1 to 0.10%, Ti: 0.01 to 0.10%, B:
2. A lead-free mechanical structure having excellent machinability and small strength anisotropy according to claim 1, wherein the material contains one or two selected from 0.0005 to 0.0100%. It is steel.

【0012】次に本発明における鋼成分の限定理由を説
明する。なお、%は質量%で示す。 C:0.10〜0.65% Cは、機械構造用鋼として強度を確保するための必須元
素であり、0.10%以上添加する。しかし、多すぎる
と硬さが増加するから靱性および被削性の劣化を招くた
め上限を0.65%とする。特に、非調質強靱鋼の場合
には、好ましくは0.10〜0.55%であり、より好
ましくは0.35〜0.50%がよい。肌焼鋼の場合に
は、好ましくは0.10〜0.30%であり、より好ま
しくは0.12〜0.28%がよい。
Next, the reasons for limiting the steel components in the present invention will be described. In addition,% is shown by mass%. C: 0.10 to 0.65% C is an essential element for securing strength as steel for machine structural use, and is added in an amount of 0.10% or more. However, if the content is too large, the hardness increases, so that the toughness and the machinability deteriorate. Therefore, the upper limit is set to 0.65%. In particular, in the case of a non-tempered tough steel, the content is preferably 0.10 to 0.55%, and more preferably 0.35 to 0.50%. In case of case hardening steel, it is preferably 0.10 to 0.30%, more preferably 0.12 to 0.28%.

【0013】Si:0.03〜1.00% Siは、製鋼時の脱酸剤として不可欠であるため下限を
0.03%とする。しかし、過剰に添加すると延性を低
下させるほか、鋼中に高硬度の介在物であるSiO2
生成させて被削性も劣化させるため上限を1.00%と
する。Siは上記3種のいずれの鋼種においても、好ま
しくは0.10〜0.50%であり、より好ましくは
0.15〜0.35%がよい。
Si: 0.03 to 1.00% Since Si is indispensable as a deoxidizing agent in steel making, the lower limit is made 0.03%. However, an excessive addition lowers the ductility and also generates SiO 2 , which is a high-hardness inclusion in the steel, thereby deteriorating the machinability. Therefore, the upper limit is set to 1.00%. Si is preferably 0.10 to 0.50%, and more preferably 0.15 to 0.35%, in any of the above three steel types.

【0014】Mn:0.30〜2.50% Mnは、一般に鋼の強度、靱性、熱間加工性、焼入性を
確保する上で重要な元素であり、かつ本発明において、
硫化物系介在物生成に不可欠な元素であるため、0.3
0%以上添加する。しかし、多すぎると硬さ増大から被
削性が劣化するため上限を2.50%とする。Mnは上
記3種のいずれの鋼種においても、好ましくは0.42
〜2.00%であり、より好ましくは0.60〜1.5
0%がよい。
Mn: 0.30 to 2.50% Mn is an important element in general in securing the strength, toughness, hot workability and hardenability of steel.
Since it is an indispensable element for the formation of sulfide-based inclusions, 0.3
Add 0% or more. However, if the content is too large, the machinability deteriorates due to the increase in hardness. Therefore, the upper limit is set to 2.50%. Mn is preferably 0.42 in any of the above three steel types.
2.00%, more preferably 0.60-1.5%
0% is good.

【0015】S:0.03〜0.35% Sは、被削性を改善させる硫化物系介在物の生成元素で
あり、被削性改善効果を得るためには少なくとも0.0
3%以上添加する必要があり、Sの増大に伴い被削性は
向上する。しかしながら多すぎると硫化物形態制御が困
難となり、衝撃異方性が劣化するため、上限を0.35
%とする。Sは上記3種のいずれの鋼種においても、好
ましくは0.04〜0.30%であり、より好ましくは
0.08〜0.20%がよい。
S: 0.03-0.35% S is an element forming sulfide-based inclusions for improving machinability. To obtain machinability improving effect, S is at least 0.03%.
It is necessary to add 3% or more, and the machinability improves with an increase in S. However, if the amount is too large, sulfide form control becomes difficult and impact anisotropy deteriorates.
%. S is preferably 0.04 to 0.30%, and more preferably 0.08 to 0.20%, in any of the above three steel types.

【0016】Al:0.020%未満 Al量が0.020%以上の場合には、高硬度のAl2
3よりなる介在物が生成され、被削性の劣化および疲
労強度の低下を招いてしまうので、0.020%未満と
する。なお、Alについては、上記3種の鋼種における
好適範囲の差異はほとんどない。
Al: less than 0.020% When the Al content is 0.020% or more, high hardness Al 2
Since inclusions made of O 3 are generated, which deteriorates machinability and lowers fatigue strength, the content is set to less than 0.020%. As for Al, there is almost no difference in the preferable range among the above three steel types.

【0017】O:20ppm未満 Oは、被削性に有害な酸化物系の硬質介在物の生成を抑
制する点から極力低減させることが望ましい。Oが20
ppm以上となると、酸化物系の硬質介在物生成量が増
えて被削性を損なうとと共に、疲労強度が低下するた
め、Oを20ppm未満とする必要がある。
O: less than 20 ppm O is desirably reduced as much as possible from the viewpoint of suppressing the formation of oxide-based hard inclusions harmful to machinability. O is 20
If the content is not less than ppm, the amount of oxide-based hard inclusions increases and the machinability is impaired, and the fatigue strength is reduced. Therefore, it is necessary to make O less than 20 ppm.

【0018】Ca:0.0005〜0.020% CaはMn、Mgとともに硫化物生成元素であると共
に、Al、Siとの複合酸化物をも生成し、被削性向上
効果および硫化物形態制御による機械的性質の異方性改
善効果がある。Caは単独で添加しても良いが、望まし
くはMgと複合添加する方が良い。その効果を得るため
には少なくとも、0.0005%以上必要である。ま
た、製造段階でのCaの歩留りは非常に悪く、必要以上
に含有させてもその効果が飽和するため、Caの上限を
0.020%とする。Caは上記3種のいずれの鋼種に
おいても、好ましくは0.0005〜0.0060%で
あり、より好ましくは0.0005〜0.0040%が
よい。
Ca: 0.0005 to 0.020% Ca is a sulfide-forming element together with Mn and Mg, and also forms a composite oxide with Al and Si, thereby improving machinability and controlling sulfide morphology. Has the effect of improving the anisotropy of the mechanical properties. Ca may be added alone, but desirably is added in combination with Mg. To obtain the effect, at least 0.0005% is required. In addition, the yield of Ca in the production stage is very poor, and the effect is saturated even if it is contained more than necessary. Therefore, the upper limit of Ca is set to 0.020%. Ca is preferably 0.0005 to 0.0060%, and more preferably 0.0005 to 0.0040% in any of the above three steel types.

【0019】Mg:0.0003〜0.020% Mgは、Caと同様の効果を示し、単独で添加しても効
果は得られるが、Caと複合で存在させた場合に大きな
被削性改善効果および機械的性質の異方性改善効果が得
られる。その効果を得るためには少なくとも0.000
3%以上必要である。一方、必要以上に含有させても、
その効果が飽和状態になり、無駄であるためMgの上限
を0.020%とする。Mgは上記3種のいずれの鋼種
においても、好ましくは0.0003〜0.0060%
であり、より好ましくは0.0005〜0.0040%
がよい。
Mg: 0.0003% to 0.020% Mg exhibits the same effect as Ca, and the effect can be obtained by adding it alone. However, when present in combination with Ca, the machinability is greatly improved. An effect and an effect of improving anisotropy of mechanical properties can be obtained. At least 0.000 to achieve that effect
3% or more is required. On the other hand, even if contained more than necessary,
Since the effect becomes saturated and is useless, the upper limit of Mg is set to 0.020%. Mg is preferably 0.0003 to 0.0060% in any of the above three steel types.
And more preferably 0.0005 to 0.0040%
Is good.

【0020】また、請求項3の発明ように、上記鉛無添
加の機械構造用鋼において、さらにCr:0.1〜2.
0%、Mo:0.05〜1.00%、Ni:0.1〜
3.5%、V:0.01〜0.50%、Nb:0.01
〜0.10%、Ti:0.01〜0.10%、B:0.
0005〜0.0100%から選択した1種または2種
を含有することが望ましい。
According to a third aspect of the present invention, in the lead-free steel for machine structural use, Cr: 0.1-2.
0%, Mo: 0.05 to 1.00%, Ni: 0.1 to
3.5%, V: 0.01 to 0.50%, Nb: 0.01
0.10%, Ti: 0.01-0.10%, B: 0.
It is desirable to contain one or two selected from 0005 to 0.0100%.

【0021】これらの望ましい成分の範囲限定理由を以
下に示す。 Cr:0.1〜2.0%、Mo:0.05〜1.00
%、Ni:0.1〜3.5% Cr、Mo、Niは、鋼の焼入性および靱性を向上させ
る元素で必要な場合に添加する。その効果を得るために
は、Crは0.1%以上、Moは0.05%以上、Ni
は0.1%以上添加することが必要である。多量に添加
した場合には被削材の硬さが増加することから、被削性
確保のためにはCrは2.0%以下、Moは1.00%
以下、Niは3.5%以下とすることが必要である。C
rは上記3種のいずれの鋼種においても、好ましくは
0.10〜1.50%であり、より好ましくは0.15
〜1.20%がよい。Moは上記3種のいずれの鋼種に
おいても、好ましくは0.10〜0.40%であり、よ
り好ましくは0.15〜0.30%がよい。また、Ni
は、上記3種のいずれの鋼種においても、好ましくは
0.40〜3.00%であり、より好ましくは0.42
〜2.00%がよい。
The reasons for limiting the range of these desirable components are shown below. Cr: 0.1 to 2.0%, Mo: 0.05 to 1.00
%, Ni: 0.1 to 3.5% Cr, Mo, and Ni are elements that improve the hardenability and toughness of steel and are added when necessary. In order to obtain the effect, Cr is 0.1% or more, Mo is 0.05% or more, Ni
Must be added in an amount of 0.1% or more. When added in large amounts, the hardness of the work material increases, so that Cr is 2.0% or less and Mo is 1.00% in order to ensure machinability.
Hereinafter, Ni needs to be 3.5% or less. C
r is preferably 0.10 to 1.50%, more preferably 0.15% in any of the above three steel types.
~ 1.20% is good. Mo is preferably 0.10 to 0.40%, and more preferably 0.15 to 0.30%, in any of the above three steel types. Also, Ni
Is preferably 0.40 to 3.00%, more preferably 0.42% in any of the above three steel types.
~ 2.00% is good.

【0022】V:0.01〜0.50% Vは、析出強化作用の強い元素であるので、焼入焼戻し
処理を省略する場合に添加する。この効果を得るために
は0.01%以上添加することが望ましい。一方で、
0.50%を超えて含有させても効果は飽和するので上
限を0.50%とすることが好ましい。非調質鋼の場合
には、より好ましくは0.05〜0.35%であり、さ
らに好ましくは0.05〜0.30%がよい。
V: 0.01 to 0.50% V is an element having a strong precipitation strengthening effect, and is added when the quenching and tempering treatment is omitted. To obtain this effect, it is desirable to add 0.01% or more. On the other hand,
Even if the content exceeds 0.50%, the effect is saturated, so the upper limit is preferably set to 0.50%. In the case of non-heat treated steel, the content is more preferably 0.05 to 0.35%, and even more preferably 0.05 to 0.30%.

【0023】Nb:0.01〜0.10%、Ti:0.
01〜0.10% Nb、Tiはそれぞれ炭窒化物を生成し、ピン止め効果
により結晶粒を微細化させる効果があり、必要に応じて
添加する。この効果を得るためには0.01%以上必要
であるが、0.10%を超えて含有させても効果は飽和
するので上限を0.10%とすることが好ましい。より
好ましくは、0.01〜0.08%であり、さらに好ま
しくは0.01〜0.06%がよい。
Nb: 0.01 to 0.10%, Ti: 0.
01 to 0.10% Nb and Ti each generate carbonitride and have an effect of refining crystal grains by a pinning effect, and are added as necessary. To obtain this effect, 0.01% or more is necessary. However, if the content exceeds 0.10%, the effect is saturated, so the upper limit is preferably set to 0.10%. More preferably, it is 0.01 to 0.08%, and still more preferably, 0.01 to 0.06%.

【0024】B:0.0005〜0.0100% Bは少量の含有で焼入性を向上させ、鋼の機械的性質を
向上させる効果があり、必要に応じて添加する。この効
果を得るためには0.0005%以上必要であるが、
0.0100%を超えて含有させても効果は飽和するの
で上限を0.0100%とすることが望ましい。より好
ましくは0.0005〜0.0060%であり、さらに
好ましくは0.0005〜0.0040%がよい。
B: 0.0005 to 0.0100% B contains a small amount of B and has the effect of improving the hardenability and improving the mechanical properties of steel, and is added as necessary. To obtain this effect, 0.0005% or more is required.
Even if the content exceeds 0.0100%, the effect is saturated, so the upper limit is preferably set to 0.0100%. More preferably, it is 0.0005 to 0.0060%, and still more preferably 0.0005 to 0.0040%.

【0025】上記の鉛無添加の機械構造用鋼は、硫化物
系の介在物として、MnS、(Ca、Mn)S、(M
g、Mn)S、(Ca、Mg)S、(Ca、Mg、M
n)Sの1種または2種以上を含有することが好まし
い。上記SとCa、Mg、Mnとの硫化物としては種々
あるが、特にCa、Mg、Sによる複合的な硫化物(C
a、Mg)S、あるいは、Ca、Mg、Mnによる複合
的な硫化物(Ca、Mg、Mn)Sの少なくとも一方を
含有させることにより、被削性と機械的性質を大幅に改
善することができる。ただし、これらの硫化物は、大き
さや数によって被削性や衝撃特性に及ぼす影響が異な
る。長径が1.5μm未満の硫化物は、被削性や衝撃特
性にほとんど影響を及ぼさないため、1.5μm以上の
硫化物のみを測定することにした。T方向衝撃値は、硫
化物長径と粒子間距離の比が、0.5より小さい場合に
改善され、被削性は硫化物の平均断面積が9μm2以上
で改善される。硫化物をこれらの状態に制御するために
は、Ca、Mgを複合添加し、上述の硫化物組成にする
必要がある。
The above lead-free steel for machine structural use contains MnS, (Ca, Mn) S, (M
g, Mn) S, (Ca, Mg) S, (Ca, Mg, M
n) It is preferable to contain one or more of S. There are various sulfides of S with Ca, Mg, and Mn. In particular, complex sulfides of Ca, Mg, and S (C
By containing at least one of a, Mg) S or a complex sulfide (Ca, Mg, Mn) S of Ca, Mg, Mn, machinability and mechanical properties can be significantly improved. it can. However, these sulfides have different effects on machinability and impact characteristics depending on their size and number. Since a sulfide having a major axis of less than 1.5 μm has almost no effect on machinability and impact properties, only sulfides having a diameter of 1.5 μm or more were measured. The T direction impact value is improved when the ratio of the major axis of the sulfide to the distance between the particles is smaller than 0.5, and the machinability is improved when the average sectional area of the sulfide is 9 μm 2 or more. In order to control the sulfide to these states, it is necessary to add Ca and Mg in a complex manner to obtain the sulfide composition described above.

【0026】[0026]

【発明の実施の形態】請求項1に係る発明の実施の形態
は、快削性物質として硫化物系介在物を含有する機械構
造用低合金鋼、例えばJIS SCRとして規定するク
ロム鋼に快削成分としてMg、Ca、Sを含有したクロ
ム鋼を溶製し、該クロム鋼の鋼材を熱間圧延あるいは熱
間鍛造により該鋼材中に介在する長径が1.5μm以上
である硫化物粒子の長径と粒子間距離の比を0.5より
小とし、かつ、長径が1.5μm以上である硫化物粒子
の平均面積を9μm2以上とし、焼入焼戻して鉛無添加
の快削鋼の鋼材を得るものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention according to the first aspect of the present invention relates to a free-cutting low-alloy steel for machine structures containing a sulfide-based inclusion as a free-cutting substance, for example, a chromium steel specified as JIS SCR. Chromium steel containing Mg, Ca, and S as components is melted, and the long diameter of the sulfide particles having a long diameter of 1.5 μm or more interposed in the steel material by hot rolling or hot forging of the chromium steel material is 1.5 μm or more. The ratio of the distance between the particles and the distance between particles is smaller than 0.5, and the average area of the sulfide particles having a major axis of 1.5 μm or more is 9 μm 2 or more, and quenched and tempered to produce a lead-free free-cutting steel material What you get.

【0027】請求項2に係る発明の実施の形態は、快削
性物質として硫化物系介在物を含有する機械構造用低合
金鋼が、質量%で、C:0.10〜0.65%、Si:
0.03〜1.00%、Mn:0.30〜2.50%、
S:0.03〜0.35%、Al:0.020%未満、
O:20ppm未満を含有し、さらにCa:0.000
5〜0.020%、Mg:0.0003〜0.020%
から選択した1種または2種を含有し、残部Feおよび
不可避不純物からなるクロム鋼を溶製し、該クロム鋼の
鋼材を圧延比あるいは圧鍛比4〜625の熱間圧延ある
いは熱間鍛造により、該鋼材中に介在する長径が1.5
μm以上である硫化物粒子の長径と粒子間距離の比を
0.5より小とし、かつ、長径が1.5μm以上である
硫化物粒子の平均面積を9μm2以上とし、焼入焼戻し
て非鉛快削鋼材を得るものである。
According to an embodiment of the present invention, the low-alloy steel for machine structure containing a sulfide-based inclusion as a free-cutting substance has a C content of 0.10 to 0.65% by mass%. , Si:
0.03 to 1.00%, Mn: 0.30 to 2.50%,
S: 0.03 to 0.35%, Al: less than 0.020%,
O: contains less than 20 ppm, and Ca: 0.000
5 to 0.020%, Mg: 0.0003 to 0.020%
A chromium steel containing one or two selected from the group consisting of Fe and unavoidable impurities is melted, and the steel material of the chromium steel is subjected to hot rolling or hot forging at a rolling ratio or a forging ratio of 4 to 625. The major axis interposed in the steel material is 1.5
The ratio of the major axis of sulfide particles having a major axis of not less than 0.5 μm to the distance between the particles is smaller than 0.5, and the average area of the sulfide particles having a major axis of not less than 1.5 μm is 9 μm 2 or greater. A lead free-cutting steel material is obtained.

【0028】請求項3に係る発明の実施の形態は、快削
性物質として硫化物系介在物を含有する機械構造用低合
金鋼が、上記請求項2に係る発明の実施の形態の鋼成分
に、さらに質量%で、Cr:0.1〜2.0%、Mo:
0.05〜1.00%、Ni:0.1〜3.5%、V:
0.01〜0.50%、Nb:0.01〜0.10%、
Ti:0.01〜0.10%、B:0.0005〜0.
0100%から選択した1種または2種を含有し、残部
Feおよび不可避不純物からなるクロム鋼を溶製し、該
クロム鋼の鋼材を圧延比あるいは圧鍛比4〜625の熱
間圧延あるいは熱間鍛造により、該鋼材中に介在する長
径が1.5μm以上である硫化物粒子の長径と粒子間距
離の比を0.5より小とし、かつ、長径が1.5μm以
上である硫化物粒子の平均面積を9μm2以上とし、焼
入焼戻して非鉛快削鋼材を得るものである。
According to a third aspect of the present invention, there is provided a low alloy steel for a machine structure containing a sulfide-based inclusion as a free-cutting substance, wherein the steel component according to the second aspect of the present invention is used. Further, in mass%, Cr: 0.1 to 2.0%, Mo:
0.05-1.00%, Ni: 0.1-3.5%, V:
0.01 to 0.50%, Nb: 0.01 to 0.10%,
Ti: 0.01-0.10%, B: 0.0005-0.
Chromium steel containing one or two types selected from 0100%, the balance being Fe and unavoidable impurities is melted, and the steel material of the chrome steel is hot-rolled or hot-rolled at a rolling ratio or a forging ratio of 4 to 625. By forging, the ratio of the long diameter of the sulfide particles having a long diameter interposed in the steel material of 1.5 μm or more to the distance between the particles is smaller than 0.5, and the long diameter of the sulfide particles of 1.5 μm or more is obtained. The average area is 9 μm 2 or more, and quenching and tempering are performed to obtain a lead-free free-cutting steel material.

【0029】[0029]

【実施例】以下、本発明の実施例を説明する。表1に示
す化学成分の鋼種の本発明例の複合添加鋼および比較例
のS快削成分にさらにCaあるいはMgの単独添加鋼を
溶製し、それらの鋼材を圧鍛比32.7で熱間で鍛伸
し、焼入焼戻して硬さ32HRCの鋼材を得た。
Embodiments of the present invention will be described below. In addition to the steel with the chemical composition shown in Table 1, the steel with the addition of Ca or Mg was further melted in addition to the composite steel with the steel of the present invention and the free-cutting steel with the comparative example, and these steels were heat-treated at a forging ratio of 32.7. Forging and quenching and tempering were performed to obtain a steel material having a hardness of 32 HRC.

【0030】[0030]

【表1】 [Table 1]

【0031】得られた鋼材をハイスドリルSKH51を
用い、表2に示すドリル加工条件でドリル摩耗試験を行
った。図1に、ドリル逃げ面コーナー部より0.5mm
位置での摩耗量と硫化物サイズ(平均面積)の関係を示
す。この結果CaあるいはMg含有鋼では、硫化物サイ
ズが大きいほど摩耗量は減少し、大きな硫化物ほど被削
性に対する寄与が大きい。一方、S2鋼では硫化物サイ
ズは小さいがその数は多く、また硫化物の偏在もある。
したがって、多数の硫化物が存在することおよび硫化物
の偏在も被削性には有効である。以上から、硫化物サイ
ズが大きいほど被削性改善にに効果があることから考え
ると、切削時の硫化物の役割は、硫化物周辺で応力・歪
みを集中させ、変形と破壊を集中させることによって切
削に必要なエネルギー(切削抵抗・熱)を低減させるこ
とがわかる。そして、長径が1.5μm以上である硫化
物平均面積が9μm2以上であれば、摩耗量をPb:
0.17%の鉛快削鋼と同等レベル以上にできる。
The obtained steel material was subjected to a drill wear test using a high speed drill SKH51 under the drilling conditions shown in Table 2. In FIG. 1, 0.5mm from the corner of the drill flank
The relationship between the wear amount at the position and the sulfide size (average area) is shown. As a result, in the Ca or Mg-containing steel, the wear amount decreases as the sulfide size increases, and the larger the sulfide, the larger the contribution to machinability. On the other hand, in S2 steel, the sulfide size is small but the number is large, and sulfide is unevenly distributed.
Therefore, the presence of many sulfides and the uneven distribution of sulfides are also effective for machinability. From the above, considering that the larger sulfide size is more effective in improving machinability, the role of sulfide during cutting is to concentrate stress and strain around sulfide and to concentrate deformation and fracture. It can be seen that the energy required for cutting (cutting resistance and heat) is reduced by this. If the average area of the sulfide having a major axis of 1.5 μm or more is 9 μm 2 or more, the wear amount is represented by Pb:
It can be equal to or higher than 0.17% lead free-cutting steel.

【0032】[0032]

【表2】 [Table 2]

【0033】上記と同様に表1に示す鋼種を溶製し、そ
れらの鋼材を圧鍛比6.3で熱間で鍛伸し、焼入焼戻し
て硬さ32HRCの鋼材を得た。得られた鋼材のシャル
ピー衝撃試験を行った。図2にこれら鋼種と鍛伸方向の
T方向シャルピー衝撃値(常温)の関係を示す。この結
果全てのCa、Mg含有鋼のT方向衝撃値はS1レベル
(15J/cm2)以上であった。図3にS2鋼および
Ca、Mg含有鋼の硫化物並びに試験後の破面の顕微鏡
写真を示す。これらから判るように、S2鋼では硫化物
は固−液共存状態でデンドライト樹間に数多く晶出し偏
在するのに対し、Ca、Mgを添加すると溶鋼中におい
て酸化物を核として硫化物が生成すると考えられ均一に
分散する。Ca、Mgの単独添加および複合添加によっ
て、圧延方向あるいは鍛伸方向の硫化物長さ(長径)が
短くなり(アスペクト比減少)、硫化物の球状化が生じ
る。図3に示される一例の複合添加鋼の破面に見られる
ように、硫化物のアスペクト比の減少と分散によって延
性的な破面となっている。なお、VNb、MoC、Ti
V、TiBの4鋼種について他の実施例と同様の評価を
行いT方向靱性および被削性改善効果を認めている。
In the same manner as described above, the steel types shown in Table 1 were melted, and the steel materials were hot forged at a forging ratio of 6.3 and quenched and tempered to obtain a steel material having a hardness of 32 HRC. The obtained steel material was subjected to a Charpy impact test. FIG. 2 shows the relationship between these steel types and the Charpy impact value (normal temperature) in the T direction in the forging direction. As a result, the impact values in the T direction of all the Ca and Mg-containing steels were higher than the S1 level (15 J / cm 2 ). FIG. 3 shows micrographs of the sulfides of the S2 steel and the Ca and Mg-containing steel and the fracture surface after the test. As can be seen from these, in S2 steel, many sulfides are crystallized and unevenly distributed between dendrite trees in a solid-liquid coexistence state. Possible and evenly dispersed. By adding Ca and Mg individually or in combination, the sulfide length (major axis) in the rolling direction or the forging direction is shortened (aspect ratio is reduced), and spheroidization of the sulfide occurs. As can be seen from the fracture surface of the example of the composite added steel shown in FIG. 3, the sulfide has a ductile fracture surface due to a decrease in aspect ratio and dispersion of the sulfide. Note that VNb, MoC, Ti
The same evaluations as in the other examples were performed on the four steel types V and TiB, and the effects of improving the T-direction toughness and machinability were recognized.

【0034】以上から、硫化物による靱性の劣化は、主
に硫化物の長径と硫化物の粒子間隔に支配されていると
考えられる。S2鋼での粒子間距離を硫化物が局部的に
偏在している部分で評価し、その他の鋼種では全体の個
数から換算すると、図7のT方向シャルピー値と硫化物
長径/粒子間距離の関係に見られるように、T方向衝撃
値は硫化物の長径/粒子間距離が小さい方が優れてお
り、硫化物が球状化しているほど、さらに粒子間距離が
大きいほどT方向衝撃値は上昇することがわかる。
From the above, it is considered that the deterioration of toughness due to sulfide is mainly governed by the major axis of sulfide and the spacing between sulfide particles. The distance between particles in the S2 steel was evaluated in a portion where sulfides are locally unevenly distributed, and in other steel types, when converted from the total number, the Charpy value in the T direction and the sulfide long diameter / interparticle distance in FIG. 7 were obtained. As can be seen from the relationship, the T direction impact value is better when the sulfide major diameter / interparticle distance is smaller, and the T direction impact value increases as the sulfide becomes more spherical and the interparticle distance increases. You can see that

【0035】[0035]

【発明の効果】以上に説明したとおり、本発明は、環境
問題に配慮して鉛無添加鋼とし、さらに硫化物系介在物
を快削性物質とし、最適な硫化物の分散形態とし、長径
が1.5μm以上である硫化物粒子は長径と粒子間距離
の比を0.5より小とし、かつ、長径が1.5μm以上
である硫化物粒子の平均面積が9μm2以上としている
ので、靱性および被削性が向上し、鋼材の強度特性を大
きく劣化させることなく、広範囲の切削方法や切削条件
において優れた被削性を有し、特に耐超硬工具摩耗性お
よび切粉処理性に優れた機械構造用鋼である。
As described above, according to the present invention, lead-free steel is used in consideration of environmental issues, sulfide-based inclusions are used as free-cutting substances, and an optimum sulfide dispersion form is obtained. Since the sulfide particles having a diameter of 1.5 μm or more have a ratio of the major axis to the distance between the particles of less than 0.5, and the average area of the sulfide particles having a major axis of 1.5 μm or more is 9 μm 2 or more, Improved toughness and machinability, with excellent machinability in a wide range of cutting methods and cutting conditions without significantly deteriorating the strength characteristics of steel materials, especially for carbide tool wear resistance and chip processing Excellent mechanical structural steel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】摩耗量と硫化物サイズ(平均面積)の関係を示
すグラフである。
FIG. 1 is a graph showing a relationship between a wear amount and a sulfide size (average area).

【図2】鍛伸方向のT方向シャルピー衝撃値(常温)の
関係を示すグラフである。
FIG. 2 is a graph showing the relationship of the Charpy impact value in T direction (normal temperature) in the forging direction.

【図3】S2鋼およびCa、Mg含有鋼の硫化物並びに
試験後の破面の顕微鏡写真である。
FIG. 3 is a photomicrograph of sulfides of S2 steel and Ca, Mg-containing steel and a fracture surface after the test.

【図4】T方向シャルピー値と硫化物長径/粒子間距離
の関係に示すグラフである。
FIG. 4 is a graph showing the relationship between the Charpy value in the T direction and the major diameter of sulfide / distance between particles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 元秀 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 岩間 直樹 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 内山 雅夫 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 細木 真保 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 常陰 典正 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Motohide Mori 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Co., Ltd. (72) Inventor Naoki Iwama 1 Wanowari Arao Town, Tokai City, Aichi Prefecture Steel Co., Ltd. Inside the company (72) Inventor Masao Uchiyama 1 Wanowari, Arao-cho, Tokai-shi, Aichi Prefecture Inside Aichi Steel Co., Ltd. 72) Inventor Norimasa Join 3007 Nakajima character, Shima, Himeji City, Hyogo Prefecture Sanyo Special Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 快削性物質として硫化物系介在物を含有
する機械構造用低合金鋼からなり、該機械構造用低合金
鋼の長径が1.5μm以上である硫化物粒子は長径と粒
子間距離の比が0.5未満で、かつ、長径が1.5μm
以上である硫化物粒子の平均面積は9μm2以上である
ことを特徴とする、被削性に優れ、強度異方性の小さい
鉛無添加の機械構造用鋼。
1. Sulfide particles comprising a low-alloy steel for machine structure containing a sulfide-based inclusion as a free-cutting substance, wherein the long diameter of the low-alloy steel for machine structure is 1.5 μm or more. The ratio of the distance is less than 0.5 and the major axis is 1.5 μm
The lead-free mechanical structural steel having excellent machinability and low strength anisotropy, wherein the average area of the sulfide particles is 9 μm 2 or more.
【請求項2】 快削性物質として硫化物系介在物を含有
する機械構造用低合金鋼は、質量%で、C:0.10〜
0.65%、Si:0.03〜1.00%、Mn:0.
30〜2.50%、S:0.03〜0.35%、Al:
0.020%未満、O:20ppm未満を含有し、さら
にCa:0.0005〜0.0020%、Mg:0.0
003〜0.020%から選択した1種または2種を含
有し、残部Feおよび不可避不純物からなることを特徴
とする請求項1記載の、被削性に優れ、強度異方性の小
さい鉛無添加の機械構造用鋼。
2. The low-alloy steel for machine structure containing a sulfide-based inclusion as a free-cutting substance has a C content of 0.10 to 0.10% by mass.
0.65%, Si: 0.03 to 1.00%, Mn: 0.
30 to 2.50%, S: 0.03 to 0.35%, Al:
Less than 0.020%, O: less than 20 ppm, Ca: 0.0005-0.0020%, Mg: 0.0
The lead-free material having excellent machinability and small strength anisotropy according to claim 1, characterized in that it contains one or two kinds selected from 003 to 0.020%, and the balance is Fe and unavoidable impurities. Addition of mechanical structural steel.
【請求項3】 快削性物質として硫化物系介在物を含有
する機械構造用低合金鋼は、請求項2の鋼成分に、さら
に質量%で、Cr:0.1〜2.0%、Mo:0.05
〜1.00%、Ni:0.1〜3.5%、V:0.01
〜0.50%、Nb:0.01〜0.10%、Ti:
0.01〜0.10%、B:0.0005〜0.010
0%から選択した1種または2種を含有することを特徴
とする請求項1記載の、被削性に優れ、強度異方性の小
さい鉛無添加の機械構造用鋼。
3. The low-alloy steel for machine structural use containing a sulfide-based inclusion as a free-cutting substance, further comprises: Mo: 0.05
1.00%, Ni: 0.1-3.5%, V: 0.01
~ 0.50%, Nb: 0.01 ~ 0.10%, Ti:
0.01 to 0.10%, B: 0.0005 to 0.010
The lead-free mechanical structural steel according to claim 1, which contains one or two selected from 0%, and has excellent machinability and low strength anisotropy.
JP2000377856A 2000-12-12 2000-12-12 Lead-free mechanical structural steel with excellent machinability and small strength anisotropy Expired - Fee Related JP4148311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000377856A JP4148311B2 (en) 2000-12-12 2000-12-12 Lead-free mechanical structural steel with excellent machinability and small strength anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000377856A JP4148311B2 (en) 2000-12-12 2000-12-12 Lead-free mechanical structural steel with excellent machinability and small strength anisotropy

Publications (2)

Publication Number Publication Date
JP2002180184A true JP2002180184A (en) 2002-06-26
JP4148311B2 JP4148311B2 (en) 2008-09-10

Family

ID=18846522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000377856A Expired - Fee Related JP4148311B2 (en) 2000-12-12 2000-12-12 Lead-free mechanical structural steel with excellent machinability and small strength anisotropy

Country Status (1)

Country Link
JP (1) JP4148311B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015155A1 (en) * 2002-08-09 2004-02-19 Honda Giken Kogyo Kabushiki Kaisha Steel for machine structural use excellent in friability of chips
US6797231B2 (en) 2001-11-15 2004-09-28 Sumitomo Metal Industries, Ltd. Steel for machine structural use
JP2005273000A (en) * 2004-02-26 2005-10-06 Sanyo Special Steel Co Ltd Steel for machine structural use having improved machinability
JP2005350702A (en) * 2004-06-08 2005-12-22 Sanyo Special Steel Co Ltd Steel having superior machinability for machine structural use
US8980022B2 (en) 2009-01-16 2015-03-17 Nippon Steel & Sumitomo Metal Corporation Case hardening steel, carburized component, and manufacturing method of case hardening steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797231B2 (en) 2001-11-15 2004-09-28 Sumitomo Metal Industries, Ltd. Steel for machine structural use
WO2004015155A1 (en) * 2002-08-09 2004-02-19 Honda Giken Kogyo Kabushiki Kaisha Steel for machine structural use excellent in friability of chips
JP2005273000A (en) * 2004-02-26 2005-10-06 Sanyo Special Steel Co Ltd Steel for machine structural use having improved machinability
JP2005350702A (en) * 2004-06-08 2005-12-22 Sanyo Special Steel Co Ltd Steel having superior machinability for machine structural use
US8980022B2 (en) 2009-01-16 2015-03-17 Nippon Steel & Sumitomo Metal Corporation Case hardening steel, carburized component, and manufacturing method of case hardening steel

Also Published As

Publication number Publication date
JP4148311B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US9127336B2 (en) Hot-working steel excellent in machinability and impact value
AU2007342838B2 (en) Steel for machine structure excelling in machinability and strength property
KR101280203B1 (en) Carburized steel part
JP2007031734A (en) High strength bolt having excellent delayed fracture resistance, and method for producing the same
JP2008013788A (en) Steel for mechanical structural use having excellent machinability and strength property
JP3687370B2 (en) Free-cutting steel
JP3558889B2 (en) Hot-forged machine structural steel with excellent machinability
JP4148311B2 (en) Lead-free mechanical structural steel with excellent machinability and small strength anisotropy
JP3270035B2 (en) Lead-free mechanical structural steel with excellent machinability and low strength anisotropy
JP3644275B2 (en) Martensitic bainite-type non-tempered steel material excellent in machinability and manufacturing method thereof
JP3442706B2 (en) Free-cutting steel
JPH0734189A (en) High strength bar steel excellent in machinability
JP2001200332A (en) High toughness non-heattreated steel
JP4282459B2 (en) Machine structural steel with excellent machinability used for quenching and tempering
JPH04354852A (en) High hardness shank material or barrel material for high speed steel tool
JP3879251B2 (en) Manufacturing method of surface hardened parts with excellent strength and toughness
JPS62260042A (en) High strength unrefined tough steel
JP2003293081A (en) Steel for machine structural use having excellent machinability and rolling fatigue property
JP2000328182A (en) Free-cutting steel for machine structure excellent in hot workability
JPH05214485A (en) Wear resistant steel excellent in toughness
JPH0356641A (en) Bearing steel having superior machinability
JP2005113163A (en) High strength non-heat treated steel for nitriding
JP2003221649A (en) Steel for rocker arm
JPS63223144A (en) High-speed tool steel
JPH09194992A (en) Tool steel used after surface modification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4148311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees