JP2004068128A - Steel for machine structural use having excellent chip crushability - Google Patents

Steel for machine structural use having excellent chip crushability Download PDF

Info

Publication number
JP2004068128A
JP2004068128A JP2002232425A JP2002232425A JP2004068128A JP 2004068128 A JP2004068128 A JP 2004068128A JP 2002232425 A JP2002232425 A JP 2002232425A JP 2002232425 A JP2002232425 A JP 2002232425A JP 2004068128 A JP2004068128 A JP 2004068128A
Authority
JP
Japan
Prior art keywords
steel
less
inclusions
sulfide
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002232425A
Other languages
Japanese (ja)
Inventor
Masakazu Hayaishi
速石 正和
Takashi Kano
狩野 隆
Noriyuki Yamada
山田 範之
Katsuaki Shiiki
椎木 克昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002232425A priority Critical patent/JP2004068128A/en
Priority to EP03784554A priority patent/EP1553201A4/en
Priority to US10/523,990 priority patent/US20050265886A1/en
Priority to PCT/JP2003/010029 priority patent/WO2004015155A1/en
Publication of JP2004068128A publication Critical patent/JP2004068128A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Abstract

<P>PROBLEM TO BE SOLVED: To provide free cutting steel which has excellent chip crushability in steel for machine structural use. <P>SOLUTION: The steel has an alloy composition comprising, by weight, 0.05 to 0.8% C, 0.01 to 2.5% Si, 0.1 to 3.5% Mn and 0.01 to 0.2% S, and comprising 0.0005 to 0.02% Ca or Ca+Mg, 0.002 to 0.010% Ti and/or 0.002 to 0.025% Zr and 0.0005 to 0.010% O, and the balance Fe with inevitable impurities. Then, MnS inclusions with a mean particle diameter of ≥1.0 μm are present by ≥5 pieces/mm<SP>2</SP>per 0.01% of the S content. In a microscopic field, the occupancy area of Ca-containing sulfide inclusions satisfying the condition of (area[μm<SP>2</SP>]/aspect ratio)≥10 and also comprising ≥1.0 wt.% Ca lies within the range of 15 to 40% in the occupancy area of all sulfide inclusions. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、超硬工具による切削を行なったときの切屑破砕性にすぐれた機械構造用鋼に関する。本発明の機械構造用鋼は、その中の硫化物系介在物の形態に特徴を有する。
【0002】
本発明において、「Ca含有硫化物系介在物」の語は、CaOを主体とする介在物が芯となり、その周囲を、硫化物を主体とする介在物が取囲んでいる構造の介在物をいう。MnS介在物に関して、「微細に分散した」とは、在来の鋼中におけるMnS介在物よりは微細な粒子であり、かつ、凝集あるいは集中することなく、鋼中に平均的に分布している状態を意味する。「アスペクト比」とは、試料を圧延方向に平行に切断して観察したときに見える介在物粒子の、長径を短径で割った値である。
【0003】
【従来の技術】
被削性が高い機械構造用鋼に関する研究は長年にわたって行なわれており、さまざまな被削性改善元素を添加した鋼が開発されている。イオウ快削鋼、テルル快削鋼、カルシウム快削鋼、鉛快削鋼、イオウ−カルシウム快削鋼などである。
これらの中で、鉛快削鋼は、鋼の機械的特性をほとんどそこなうことなく被削性を改善できるという点ですぐれたものであるか、近年は、とくに環境問題が重視され、Pbフリーの快削鋼が要求されることが多い。
【0004】
ところが、Pbフリーの快削鋼に共通する問題は、切屑の破砕性にある。よく知られているとおり、自動化された機械加工においては、工具寿命もさることながら、切屑の破砕性がよくないと、工具やワークに切屑がからんだり、チップコンベアによる搬送不良が起こったりして、自動化に支障が生じやすい。鉛快削鋼のすぐれた切屑破砕性の享受をあきらめるとすると、Pbフリー快削鋼の主流をなすイオウ快削鋼やイオウ−カルシウム快削鋼において、切屑破砕性を改善しなければならない。
【0005】
切屑破砕性の改善を、被削性を担う硫化物系介在物の形態を制御することによって実現する努力がなされているが、現状では十分な切屑破砕性が得られたとはいえないし、バラツキが大きくて、常にある程度の切屑破砕性を確保するには至っていない。
【0006】
出願人らも、この分野において、これまでに研究開発を重ねてきた。はじめに述べたCa含有硫化物系介在物、すなわちCaOを主体とする介在物が芯となり、その周囲を硫化物主体の介在物が取囲んでいる構造の介在物の存在が有用であることの発見は、その一部である。
【0007】
硫化物系介在物の形態制御による、工具寿命の延長に加えた切屑破砕性の向上と、その一定レベルの確保という問題に関して最近得られた知見は、まず、良好な切屑破砕性の実現には、多数の微細な硫化物系介在物が存在する必要があるということである。具体的には、平均粒径が1.0μm以上であるMnS介在物が、S含有量0.01%あたり5個/mm以上存在しているという条件である。
【0008】
しかし、微細な硫化物系介在物が存在するだけでは十分でなく、切削に当たって、工具表面に、切屑との摩擦係数が小さい被膜を形成するような硫化物系介在物が存在する必要のあることもわかった。工具表面に切屑との摩擦係数が小さい硫化物系被膜が形成されると、その被膜が、切屑が発生したときにくるくると巻く「カール半径」を小さくする効果があり、その結果、切屑が破砕されやすくなる、というのがその機構である。このような硫化物系被膜は、特定の形状を有するCa含有硫化物系介在物が全硫化物系介在物のうちで、特定の量的な範囲を占めるときに限って実現することが明らかになったのである。
【0009】
【発明が解決しようとする課題】
本発明の目的は、上述した新しい知見に基づいて、機械構造用の快削鋼における介在物、とくに硫化物系介在物の形態を制御して、良好な工具寿命を享受するとともに、切屑の破砕性を高めて機械加工の自動化を容易にした機械構造用の快削鋼を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成する、本発明の切屑破砕性にすぐれた機械構造用鋼は、機械構造用鋼として必要な合金成分を含有する鋼であって、平均粒径が1.0μm以上であるMnS介在物が、S含有量0.01%あたり5個/mm以上存在しており、顕微鏡視野において、(面積[μm]/アスペクト比)≧10の条件を満たすとともに1.0重量%以上のCaを含有するCa含有硫化物系介在物の占める面積が、全硫化物系介在物が占める面積のうちで15〜40%の範囲にあり、かつ、旋削に当り工具表面に硫化物系被膜が形成されて切屑のカール半径を小さくすることを特徴とする、PbもBiも含有しない機械構造用鋼である。
【0011】
機械構造用鋼として必要な合金成分を含有する鋼の代表は、重量%で、C:0.05〜0.8%、Si:0.01〜2.5%、Mn:0.1〜3.5%、S:0.01〜0.2%とともに、Ca単独またはCaおよびMgの両方(併用の場合は合計量で):0.0005〜0.02%、Ti:0.002〜0.010%およびZr:0.002〜0.025%の一方または両方、ならびにO:0.0005〜0.010%を含有し、残部が不可避の不純物およびFeからなる合金組成を有するものである。
【0012】
【発明の実施形態】
本発明の機械構造用鋼において、代表的な合金組成をもつ鋼の成分とその組成範囲を上記のように限定した理由は、つぎのとおりである。
【0013】
C:0.05〜0.8%
Cは強度を確保するために必要な成分であり、0.05%未満の含有量では、機械構造用鋼としての強度が不足である。一方、CはSの活量を増大させるので、多量になると、Ca含有硫化物系介在物を得ることが難しくなる。それとともに、Cを多量にすると靱性や被削性も低くなるので、0.8%という上限を設けた。
【0014】
Si:0.01〜2.5%
Siは溶製時の脱酸剤として鋼の成分となり、焼入性を高める働きもある。この効果は、0.01%に達しない少量では期待できない。SiもまたSの活量を増大させるので、多量のSiの存在は、多量のCが存在する場合と同じ問題を生じ、Ca含有硫化物系介在物の生成を妨げるおそれがある。多量のSiはまた、延性を損ない、塑性加工時に割れが発生しやすくなることもあって、2.5%が添加量の上限である。
【0015】
Mn:0.1〜3.5%
Mnは、硫化物を生成する重要な元素である。0.1%未満の量では、介在物の量が足りないが、3.5%を超える過大な含有量になると、鋼を硬くして被削性を低下させる。
【0016】
S:0.01〜0.2%
Sは硫化物を形成するために不可欠な成分であって、0.01%以上を存在させる。本発明の目標である工具寿命比5以上を達成するには、0.01%以上のSを必要とする。S量が0.2%を超えると、靱性と延性を悪くするばかりか、CaとともにCaSを生成する。CaSは融点が高いため、鋳造工程の障害になる。
【0017】
Ca単独またはCaとMgの両方(併用の場合は合計で):0.0005〜0.02%
Caは、本発明の鋼にとってきわめて重要な成分である。硫化物中にCaを含有させるために、0.0005%以上の添加を必須とする。一方、0.02%を上回る過剰のCaの添加は、前記した高融点のCaSの生成を招き、鋳造の障害になる。Caの一部をMgで置き換えることができるが、その場合も、Caの量は上記の下限値0.0005%を下廻らないことが望ましい。
【0018】
Ti:0.002〜0.010%およびZr:0.002〜0.025%の一方または両方
微量のTiまたはZrは、CaおよびAlで脱酸された鋼中のOと結合して、微細な酸化物を形成する。これがMnSの析出に対し、核としてはたらくので、MnSを微細に分散させるのに役立つ。TiとZrとは、2種併用することが、MnSの微細化効果が高く、有利である。適量のTi酸化物またはZr酸化物を生成させるためには、TiおよびZrの量を、上記した0.002〜0.010%、0.002〜0.025%の範囲に調整する必要がある。
【0019】
O:0.0005〜0.010%
Oは酸化物の生成に必要な元素である。過度に脱酸した鋼においては高融点のCaSが多量に生成し、鋳造の支障になるから、少なくとも0.0005%、好ましくは0.0015%を超えるOが必要である。一方、0.01%を超えるOは、多量の硬質な酸化物をもたらし、その結果、被削性が損われるとともに、所望のカルシウム硫化物の生成が困難になる。
【0020】
不純部として不可避なPについていえば、これは靱性にとっては有害な成分であって、0.2%を超えて存在させることはできないが、一方でPは、被削性とくに仕上面性状を改善する成分でもある。この効果は、0.001%以上の存在で認められる。
【0021】
本発明の機械構造用の快削鋼は、上記した基本的な合金組成に加えて、鋼の用途により必要となるところに従い、つぎのグループに属する元素の1種または2種以上を、下に規定する組成範囲内で、追加的に含有することができる。それらの変更態様において、任意に添加することができる各合金成分の働きと組成範囲の限定理由を、つぎに述べる。
【0022】
Se:0.4%以下、Te:0.2%以下およびREM:0.05%以下の1種または2種以上
これらは、被削性改善元素である。それぞれの上限0.4%、0.2%および0.05%は、熱間加工性に悪影響があることと、過剰の添加が微細な硫化物系介在物の生成を妨げることを考慮して定めた。
【0023】
Cr:3.5%以下、Mo:2.0%以下、Cu:2.0%以下、Ni:4.0%以下およびB:0.0005〜0.01%の1種または2種以上
CrおよびMoは、焼入性を高めるので、適量を添加するとよい。しかし、多量に添加すると熱間加工性を損ねて、割れを招く。コスト面の配慮もあって、それぞれの上限を、Crは3.5%、Moは2.0%と定めた。Cuは、組織を緻密にし、強度を高める。多量の添加は、熱間加工性にとっても、被削性にとっても好ましくないから、2.0%以下の添加に止める。Niも、CrおよびMoと同様に焼入性を高めるが、被削性にはマイナスの存在である。それと、コストを考えて、4.0%を上限とした。Bは微量の添加で焼入性を高める。この効果を得るためには、0.0005%以上の添加を必要とする。0.01%を超える添加は、熱間加工性を損ねて有害である。
【0024】
Nb:0.2%以下およびV:0.5%以下の1種または2種
Nbは、高温における結晶粒の粗大化を防ぐ上で有用である。その効果は量の増大につれて飽和するので、0.2%以下の範囲で添加するのが得策である。Vは、CやNと結合して炭窒化物をつくり、結晶粒を微細化する。この効果は、0.5%を超えると飽和する。
【0025】
本発明にしたがう機械構造用の快削鋼の内部に存在する介在物は、図1に見るように、Ca含有硫化物系介在物とMnS介在物とである。Ca含有硫化物系介在物は、EPMA分析によれば、芯部がCa,Mg,SiおよびAlの酸化物であり、その周囲を、CaSを含有するMnSが取囲んだ二重構造を有している。本発明の鋼中で、MnS介在物は、微細に分散している。これに対し、単にMnSがもたらす被削性改善効果を求めた従来の快削鋼の中では、MnS介在物は、図2に見るように大型であって、鋼が圧延されたときは、圧延により伸展されている。
【0026】
本発明の機械構造用の快削鋼を特徴づける切屑破砕性のよさは、前述のように一面ではMnS介在物の微細化によってもたらされる。介在物量が一定であることを前提にすると、微細化は介在物の数の増大を意味する。本発明の鋼におけるMnS介在物の量は、主としてS含有量によって決定され、S量は0.01〜0.2%にわたって変化するから、MnS量もまたそれに伴って変化し、微細化した介在物の個数も増減する。
【0027】
本発明の鋼の中では、MnS介在物は、在来の鋼中のMnS介在物よりは微細であるが、それらの中で、存在が切屑破砕性に影響するものは、やはり平均粒径が1.0μm以上のものである。(ここで、「平均粒径」とは、顕微鏡視野に表われた粒子断面の長径と短径との平均値をいう。)
【0028】
S含有量は異なるが、いずれも切屑破砕性の高い本発明の鋼について、平均粒径1.0μm以上のMnS介在物の単位断面積(mm)あたりの存在個数を、倍率400倍の光学顕微鏡を用いて調査したところ、下記の表1に示す介在物数が得られ、S量との関係も、ほぼ一定であることがわかった。そしてこのデータから、さまざまなS含有量の範囲にわたって、MnS介在物の個数がS含有量0.01%あたり5個/mm以上であれば、良好な切屑破砕性が確保できることが結論された。
【0029】
表1 MnS介在物の存在個数

Figure 2004068128
【0030】
1.0重量%以上のCaを含有するCa含有硫化物系介在物であって(面積[μm]/アスペクト比)≧10の条件を満たすものが、占める面積が、全硫化物系介在物の占める面積の15〜40%に相当すること:
介在物が前述した二重構造をとるためには、Ca含有硫化物系介在物が1.0重量%以上のCaを含有することが必要である。逆の観点からいえば、Ca含有量が1.0重量%以上(つまり、酸化物系介在物の代表であるCaOがこれに対応する量以上)ある介在物が、本発明で制御の対象として有意義な介在物であるということになる。(面積[μm]/アスペクト比)≧10の条件を満たす介在物とは、一口でいえば、比較的大型であって、あまり伸展されていないもののことである。
【0031】
そのような、比較的大型であってあまり伸展されていないCa含有硫化物系介在物の存在意義は、図3のグラフに見ることができる。このグラフは、介在物のアスペクト比と面積との関係をプロットしたものであって、斜めに引いた実線の直線が(面積[μm]/アスペクト比)=10である。
【0032】
上記のCa含有硫化物系介在物が全硫化物系介在物のうち、面積率にして15〜40%の範囲にあることが、切屑破砕性にとって有意義であることは、図4のグラフに見ることができる。このグラフは、Ca含有硫化物系介在物の面積率と、実施例に関して後述する切屑破砕指数との関係をプロットしたものであって、S含有量0.045〜0.055%のS45Cを対象に得たデータである。同じS量の在来イオウ快削鋼と対比してあり、従来品を上回る切屑破砕性は、面積率15〜40%の範囲において得られることを示している。
【0033】
これを別の観点から解釈すると、まずCa含有硫化物系介在物の面積率が15%に達しないときは、工具表面に付着して工具を被覆する介在物の成分中で、MnSが多くなることが指摘される。MnSは融点が低いが、その潤滑被膜の安定性が低くて被膜が持続しにくいため、切屑破砕性はよくならない。一方、Ca含有硫化物系介在物の面積率が40%を超える多量になると、全硫化物系介在物中のMnSの量が相対的に低くなり、前記した、平均粒径が1.0μm以上であるMnS介在物がS含有量0.01%あたり5個/mm以上存在する、という前提条件の確保が困難になるということが考えられる。
【0034】
本発明の機械構造用鋼がすぐれた切屑破砕性を示す理由は、旋削に当り硫化物系介在物が工具表面に溶融被膜を形成して、発生する切屑のカール半径を小さくするという機構にある。この硫化物系介在物の溶融被膜は、高い潤滑性を示すため、カール半径を小さくするのに役立っていると考えられる。
【0035】
【実施例】
下記の実施例および比較例において行なった試験の方法について説明すれば、MnS介在物の在個数の測定法は前記したとおりであり、その他の試験は、それぞれつぎのとおりである。
【0036】
[Ca含有硫化物系介在物の面積率]
顕微鏡写真(倍率200倍)を撮影し、全硫化物系介在物を、EPMA分析により、単純な硫化物と二重構造をもったCa含有硫化物系介在物とに分け、全硫化物系介在物の占める面積の中で、二重構造介在物が占める面積の割合を算出した。
【0037】
[潤滑被膜]
超硬工具を使用して旋削を行ない、工具に溶融した介在物の皮膜が形成されるか、形成された被膜は安定に存在するかを観察し、また、EPMA分析により、被膜の成分が何であるかを分析した。
【0038】
[切屑の破砕性]
下記の条件で切削した場合の切屑を採取し、その長さによって0〜4点の点数をつけ、30切削条件の合計点数を「切屑破砕性指数」とした。
速度:150m/分
送り:0.025〜0.200mm/回転
深さ:0.3〜1.0mm
工具:DNMG150480−MA
同一イオウ含有量のイオウ快削鋼に比べて切屑破砕性指数が高い場合を良好(○印)、同点または低い場合を不良(×印)とした。
【0039】
[実施例1]
S45C系の鋼に対して本発明を適用した。溶製した合金はインゴットに鋳造し、このインゴットから径72mmの丸棒型の試験片を採取して、試験に供した。
鋼の合金組成と試験結果を、表2(実施例)および表3(比較例)に示した。
【0040】
[実施例2]
S15C系の快削鋼について、実施例1と同様に、合金の溶製および切削試験を行なった。合金組成および試験結果を表4(実施例)および表5(比較例)に示す。
【0041】
[実施例3]
S55C系快削鋼について、実施例1と同様に、合金の溶製および切削試験を行なった。合金組成および試験結果を表6(実施例)および表7(比較例)に示す。
【0042】
[実施例4]
SCR415系快削鋼について、実施例1と同様に合金の溶製および切削試験を行なった。合金組成および試験結果を表8(実施例)および表9(比較例)に示す。
【0043】
[実施例5]
SCM440系快削鋼について、実施例1と同様に合金の溶製および切削試験を行なった。合金組成および試験結果を表10(実施例)および表11(比較例)に示す。
【0044】
以下の各表において、下記の語はそれぞれつぎの意味を有する。
硫化物面積率:顕微鏡視野において、全硫化物系介在物の面積のうちで1重量%
以上のCaを含有する硫化物系介在物の面積が占める割合(%)
MnS個数:平均粒径が1.0μm以上であるMnS介在物の、S含有量0.0
1%あたりの個数(単位個/mm
工具被膜:旋削時に、溶融した硫化物系介在物の被膜が工具表面に形成されるか
否かの観察結果
○印は硫化物系被膜が形成
×印は酸化物系被膜が形成
−は被膜の形成なし
切屑破砕性:前記した切屑破砕性指数を、同じS含有量のイオウ快削鋼のそれと比較した結果
○印はより高いとき
×印は同等または劣るとき
【0045】
Figure 2004068128
【0046】
Figure 2004068128
【0047】
Figure 2004068128
【0048】
Figure 2004068128
【0049】
Figure 2004068128
【0050】
Figure 2004068128
【0051】
Figure 2004068128
【0052】
【発明の効果】
本発明の切屑破砕性にすぐれた機械構造用においては、さきに開示した快削鋼と同じ被削性が実現している。すなわち、高い被削性をもたらす介在物である、二重構造をもったCa含有硫化物系介在物が在するから、切削とくに超硬工具旋削において、在来のイオウ快削鋼に対して工具寿命比(本発明の快削鋼の工具寿命と、同一のイオウ含有量をもつ在来の快削鋼の工具寿命に対する比)を5以上にするという目標が、容易に達成されている。
【0053】
その上で本発明は、特定の形状をもったCa含有硫化物系介在物が全硫化物系介在物のうち15〜40%の範囲にあるという要件を選択することにより、切屑破砕性が顕著に改善され、旋削の切屑が工具やワークに巻き付くおそれを、実質上なくし、チップコンベア上の搬送に支障のないようにした。本発明により、機械加工を自動化する上でネックになっていた問題が解決したといえる。各種機械部品、なかんづく自動車部品の製造コスト低減に寄与するところ大である。
【図面の簡単な説明】
【図1】本発明にしたがう機械構造用の快削鋼中の、介在物の形状を示す顕微鏡写真。
【図2】在来のイオウ快削鋼中の、介在物の形状を示す顕微鏡写真。
【図3】機械構造用の快削鋼中に存在するCa含有硫化物系介在物とMnS介在物との、アスペクト比と面積との関係をプロットしたグラフ。
【図4】機械構造用の快削鋼中における、Ca含有硫化物系介在物が全硫化物系介在物に占める面積率と切屑破砕性指数との関係を示すグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel for machine structural use which is excellent in chip crushability when cutting with a carbide tool. The steel for machine structural use of the present invention is characterized by the form of sulfide inclusions therein.
[0002]
In the present invention, the term "Ca-containing sulfide-based inclusion" refers to an inclusion having a structure in which an inclusion mainly composed of CaO is a core, and the periphery thereof is surrounded by an inclusion mainly composed of sulfide. Say. With respect to MnS inclusions, "finely dispersed" refers to particles that are finer than MnS inclusions in conventional steel, and are averagely distributed in the steel without agglomeration or concentration. Means state. The “aspect ratio” is a value obtained by dividing the major axis by the minor axis of the inclusion particles observed when the sample is cut parallel to the rolling direction and observed.
[0003]
[Prior art]
Research on high machinability steel for machine structural use has been performed for many years, and steels added with various machinability improving elements have been developed. Sulfur free cutting steel, tellurium free cutting steel, calcium free cutting steel, lead free cutting steel, sulfur-calcium free cutting steel and the like.
Among these, lead free-cutting steel is excellent in that it can improve machinability without substantially deteriorating the mechanical properties of steel. In recent years, environmental issues have been particularly emphasized, and Pb-free Free-cutting steel is often required.
[0004]
However, a problem common to Pb-free free-cutting steel is the friability of chips. As is well known, in automated machining, not only the life of the tool but also the poor friability of the chips can cause the chips and workpieces to become entangled with chips and poor conveyance by the chip conveyor. Thus, automation is likely to be hindered. To give up the excellent chip breaking property of lead free cutting steel, it is necessary to improve the chip breaking property of sulfur free cutting steel or sulfur-calcium free cutting steel, which is the mainstream of Pb-free free cutting steel.
[0005]
Efforts have been made to improve chip friability by controlling the form of sulfide inclusions that are responsible for machinability.However, at present, sufficient chip friability has not been obtained, and variations have occurred. It is large and does not always have a certain degree of chip friability.
[0006]
Applicants have also been conducting research and development in this field. The discovery that the presence of Ca-containing sulfide-based inclusions, that is, inclusions mainly composed of CaO as the core, and the inclusion of sulfide-based inclusions around the core is useful. Is part of it.
[0007]
The recent knowledge on the issue of improving the chip friability in addition to extending the tool life and maintaining a certain level by controlling the morphology of sulfide-based inclusions is based on the first finding that good chip friability can be achieved. That is, a large number of fine sulfide-based inclusions must be present. Specifically, the condition is that MnS inclusions having an average particle size of 1.0 μm or more exist at 5 or more / mm 2 per 0.01% of S content.
[0008]
However, the presence of fine sulfide-based inclusions is not enough, and sulfide-based inclusions that form a film with a low coefficient of friction with chips on the tool surface during cutting must be present. I also understood. If a sulfide-based coating with a small coefficient of friction with chips is formed on the tool surface, the coating has the effect of reducing the "curl radius" that rolls when chips are generated, resulting in crushing of chips. The mechanism is that it is easy to be done. It is clear that such a sulfide-based coating is realized only when a Ca-containing sulfide-based inclusion having a specific shape occupies a specific quantitative range among all sulfide-based inclusions. It has become.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to control the form of inclusions, particularly sulfide-based inclusions, in free-cutting steel for machine structures based on the above-mentioned new findings, to enjoy a good tool life and to break chips. An object of the present invention is to provide a free-cutting steel for a machine structure, which has improved operability and facilitates automation of machining.
[0010]
[Means for Solving the Problems]
The steel for machine structural use of the present invention, which achieves the above object and has excellent chip crushing properties, is a steel containing an alloy component necessary for steel for machine structural use, and has an average particle size of 1.0 μm or more. Inclusions are present in an amount of 5 / mm 2 or more per S content of 0.01%, and satisfy the condition of (area [μm 2 ] / aspect ratio) ≧ 10 and 1.0% by weight or more in a microscope visual field. The area occupied by the Ca-containing sulfide-based inclusions containing Ca is in the range of 15 to 40% of the area occupied by all the sulfide-based inclusions, and the sulfide-based coating is formed on the tool surface during turning. Is formed to reduce the curl radius of the chips, and is a steel for machine structural use containing neither Pb nor Bi.
[0011]
Representative steels containing alloy components necessary for machine structural steel are, by weight%, C: 0.05 to 0.8%, Si: 0.01 to 2.5%, Mn: 0.1 to 3%. 0.5%, S: 0.01 to 0.2%, Ca alone or both Ca and Mg (in the case of combined use: 0.0005 to 0.02%, Ti: 0.002 to 0%) One or both of 0.0010% and Zr: 0.002 to 0.025%, and O: 0.0005 to 0.010%, with the balance having an alloy composition consisting of unavoidable impurities and Fe. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The reasons for limiting the components of the steel having a typical alloy composition and the composition range thereof as described above in the steel for machine structural use of the present invention are as follows.
[0013]
C: 0.05-0.8%
C is a component necessary for ensuring strength, and if the content is less than 0.05%, the strength as steel for machine structural use is insufficient. On the other hand, since C increases the activity of S, it becomes difficult to obtain Ca-containing sulfide-based inclusions in a large amount. At the same time, when the amount of C is increased, the toughness and machinability are also lowered. Therefore, the upper limit of 0.8% is set.
[0014]
Si: 0.01 to 2.5%
Si becomes a component of steel as a deoxidizing agent at the time of smelting, and also has a function of improving hardenability. This effect cannot be expected with a small amount of less than 0.01%. Since Si also increases the activity of S, the presence of a large amount of Si poses the same problem as the presence of a large amount of C, and may hinder the formation of Ca-containing sulfide inclusions. A large amount of Si also impairs ductility and may easily cause cracking during plastic working. Therefore, the upper limit of the addition amount is 2.5%.
[0015]
Mn: 0.1-3.5%
Mn is an important element that generates sulfide. If the content is less than 0.1%, the amount of inclusions is insufficient, but if the content is excessively more than 3.5%, the steel is hardened and the machinability is reduced.
[0016]
S: 0.01-0.2%
S is an essential component for forming sulfide, and is present in an amount of 0.01% or more. To achieve the tool life ratio of 5 or more which is the target of the present invention, 0.01% or more of S is required. When the amount of S exceeds 0.2%, not only the toughness and the ductility are deteriorated, but also CaS is generated together with Ca. Since CaS has a high melting point, it hinders the casting process.
[0017]
Ca alone or both Ca and Mg (in the case of combined use): 0.0005 to 0.02%
Ca is a very important component for the steel of the present invention. In order to contain Ca in the sulfide, 0.0005% or more must be added. On the other hand, if Ca is added in excess of 0.02%, the above-mentioned CaS having a high melting point is generated, which hinders casting. Although a part of Ca can be replaced by Mg, it is desirable that the amount of Ca does not fall below the lower limit of 0.0005%.
[0018]
One or both of Ti: 0.002 to 0.010% and Zr: 0.002 to 0.025% A trace amount of Ti or Zr combines with O in steel deoxidized with Ca and Al to form fine particles. Oxides are formed. This serves as a nucleus for the precipitation of MnS, and thus helps to finely disperse MnS. It is advantageous to use two kinds of Ti and Zr in combination, because the effect of refining MnS is high. In order to generate an appropriate amount of Ti oxide or Zr oxide, it is necessary to adjust the amounts of Ti and Zr to the above ranges of 0.002 to 0.010% and 0.002 to 0.025%. .
[0019]
O: 0.0005 to 0.010%
O is an element necessary for forming an oxide. In excessively deoxidized steel, CaS having a high melting point is generated in a large amount, which hinders casting. Therefore, O is required to be at least 0.0005%, preferably more than 0.0015%. On the other hand, O exceeding 0.01% results in a large amount of a hard oxide, which impairs machinability and makes it difficult to form a desired calcium sulfide.
[0020]
Speaking of P, which is inevitable as an impure part, it is a harmful component for toughness and cannot be present in excess of 0.2%, but P improves machinability, especially the surface finish. It is also a component that does. This effect is observed in the presence of 0.001% or more.
[0021]
The free-cutting steel for a machine structure of the present invention further comprises, in addition to the basic alloy composition described above, one or more elements belonging to the following groups according to the requirements of the steel application. It can be additionally contained within the defined composition range. In these modified embodiments, the function of each alloy component that can be arbitrarily added and the reason for limiting the composition range will be described below.
[0022]
One or more of Se: 0.4% or less, Te: 0.2% or less and REM: 0.05% or less These are machinability improving elements. The respective upper limits of 0.4%, 0.2% and 0.05% are set in consideration of adverse effects on hot workability and that excessive addition hinders formation of fine sulfide-based inclusions. I decided.
[0023]
One or more of Cr: 3.5% or less, Mo: 2.0% or less, Cu: 2.0% or less, Ni: 4.0% or less, and B: 0.0005 to 0.01% Since Mo and Mo enhance the hardenability, an appropriate amount may be added. However, when added in a large amount, hot workability is impaired and cracks are caused. Due to cost considerations, the upper limits were set at 3.5% for Cr and 2.0% for Mo. Cu densifies the structure and increases the strength. Addition of a large amount is not preferable for both hot workability and machinability. Therefore, the addition is limited to 2.0% or less. Ni also enhances hardenability similarly to Cr and Mo, but has a negative effect on machinability. In addition, considering the cost, the upper limit is set to 4.0%. B enhances hardenability with a small amount of addition. To obtain this effect, 0.0005% or more must be added. Addition of more than 0.01% is harmful by impairing hot workability.
[0024]
One or two types of Nb having Nb: 0.2% or less and V: 0.5% or less are useful for preventing crystal grains from being coarsened at high temperatures. Since the effect saturates as the amount increases, it is advisable to add it in the range of 0.2% or less. V combines with C and N to form carbonitrides and to refine crystal grains. This effect saturates above 0.5%.
[0025]
The inclusions present inside the free-cutting steel for machine structures according to the present invention are Ca-containing sulfide-based inclusions and MnS inclusions as shown in FIG. According to the EPMA analysis, the Ca-containing sulfide-based inclusion has a double structure in which the core is an oxide of Ca, Mg, Si and Al, and the periphery thereof is surrounded by MnS containing CaS. ing. In the steel of the present invention, MnS inclusions are finely dispersed. On the other hand, among the conventional free-cutting steels simply seeking the machinability improving effect brought about by MnS, MnS inclusions are large as shown in FIG. It has been extended by.
[0026]
The good chip breaking characteristics that characterize the free-cutting steel for a mechanical structure of the present invention is brought about in part by the finer MnS inclusions as described above. Assuming that the amount of inclusions is constant, miniaturization means an increase in the number of inclusions. The amount of MnS inclusions in the steel of the present invention is mainly determined by the S content, and since the S amount varies from 0.01 to 0.2%, the MnS amount also changes accordingly, and the refined inclusions The number of objects also increases or decreases.
[0027]
In the steels of the present invention, MnS inclusions are finer than MnS inclusions in conventional steel, but among them, the presence of which affects chip friability, also has an average particle size. It is 1.0 μm or more. (Here, “average particle size” refers to the average value of the major axis and minor axis of the particle cross section shown in the field of view of the microscope.)
[0028]
Although the S content is different, the number of MnS inclusions having an average particle diameter of 1.0 μm or more per unit cross-sectional area (mm 2 ) of the steel of the present invention, which has high chip crushing property, is determined by the optical magnification of 400 × Investigation using a microscope revealed that the number of inclusions shown in Table 1 below was obtained, and that the relationship with the amount of S was almost constant. From this data, it was concluded that good chip crushability could be secured if the number of MnS inclusions was 5 / mm 2 or more per 0.01% of S content over various ranges of S content. .
[0029]
Table 1 Number of MnS inclusions
Figure 2004068128
[0030]
Ca-containing sulfide inclusions containing 1.0% by weight or more of Ca and satisfying the condition of (area [μm 2 ] / aspect ratio) ≧ 10 occupy an area of all sulfide inclusions Equivalent to 15-40% of the area occupied by:
In order for the inclusions to have the above-described double structure, the Ca-containing sulfide-based inclusions must contain 1.0% by weight or more of Ca. From the opposite viewpoint, inclusions having a Ca content of 1.0% by weight or more (that is, an amount of CaO, which is a representative of oxide-based inclusions, corresponding to this amount or more) are subject to control in the present invention. It is a meaningful inclusion. The inclusion that satisfies the condition of (area [μm 2 ] / aspect ratio) ≧ 10 is relatively large and has not been extended much.
[0031]
The significance of the existence of such Ca-containing sulfide-based inclusions which are relatively large and have not expanded much can be seen in the graph of FIG. This graph plots the relationship between the aspect ratio and the area of the inclusions, and the solid line drawn obliquely is (area [μm 2 ] / aspect ratio) = 10.
[0032]
It is seen in the graph of FIG. 4 that the fact that the Ca-containing sulfide-based inclusions are in the range of 15 to 40% in terms of the area ratio of all sulfide-based inclusions is significant for chip crushability. be able to. This graph plots the relationship between the area ratio of Ca-containing sulfide-based inclusions and the chip crushing index described later with reference to the examples, and is for S45C having an S content of 0.045 to 0.055%. These are the data obtained. Compared to conventional sulfur free-cutting steel of the same S content, it shows that chip crushability exceeding conventional products can be obtained in the area ratio of 15 to 40%.
[0033]
If this is interpreted from another viewpoint, first, when the area ratio of Ca-containing sulfide-based inclusions does not reach 15%, MnS increases in components of the inclusions that adhere to the tool surface and coat the tool. It is pointed out. Although MnS has a low melting point, the stability of the lubricating coating is low and the coating is difficult to maintain, so that the chip crushing property is not improved. On the other hand, when the area ratio of the Ca-containing sulfide-based inclusions exceeds 40%, the amount of MnS in the total sulfide-based inclusions becomes relatively low, and the average particle diameter is 1.0 μm or more. It is conceivable that it is difficult to secure the prerequisite that the MnS inclusions are present in an amount of 5 / mm 2 or more per 0.01% of the S content.
[0034]
The reason why the steel for machine structural use of the present invention exhibits excellent chip crushability is due to the mechanism that sulfide-based inclusions form a molten coating on the tool surface during turning and reduce the curl radius of the generated chips. . It is considered that the molten coating of the sulfide-based inclusions has high lubricity, and thus is useful for reducing the curl radius.
[0035]
【Example】
The method of the test performed in the following Examples and Comparative Examples will be described. The method of measuring the number of MnS inclusions is as described above, and the other tests are as follows.
[0036]
[Area ratio of Ca-containing sulfide-based inclusions]
A micrograph (magnification: 200 times) was taken, and the total sulfide inclusions were separated into simple sulfides and Ca-containing sulfide inclusions having a double structure by EPMA analysis. The ratio of the area occupied by the dual structure inclusions in the area occupied by the objects was calculated.
[0037]
[Lubricating film]
Turning is performed using a carbide tool to observe whether a film of inclusions melted on the tool is formed or whether the formed film is stable. Also, by EPMA analysis, It was analyzed whether there was.
[0038]
[Crushability of chips]
Chips obtained by cutting under the following conditions were sampled, scored from 0 to 4 points according to their length, and the total score under 30 cutting conditions was defined as "chip crushability index".
Speed: 150 m / min Feed: 0.025 to 0.200 mm / Rotation depth: 0.3 to 1.0 mm
Tool: DNMG150480-MA
The case where the chip friability index was higher than that of the free-cutting steel having the same sulfur content was evaluated as good (○), and the case with the same score or lower was evaluated as poor (x).
[0039]
[Example 1]
The present invention was applied to S45C steel. The melted alloy was cast into an ingot, and a round bar-shaped test piece having a diameter of 72 mm was sampled from the ingot and subjected to a test.
The alloy composition of the steel and the test results are shown in Table 2 (Example) and Table 3 (Comparative Example).
[0040]
[Example 2]
For S15C-based free-cutting steel, alloy melting and cutting tests were performed in the same manner as in Example 1. The alloy compositions and test results are shown in Table 4 (Examples) and Table 5 (Comparative Examples).
[0041]
[Example 3]
For the S55C-based free-cutting steel, alloy melting and cutting tests were performed in the same manner as in Example 1. The alloy compositions and test results are shown in Table 6 (Example) and Table 7 (Comparative Example).
[0042]
[Example 4]
For the SCR415-based free-cutting steel, an alloy smelting and cutting test were performed in the same manner as in Example 1. The alloy compositions and test results are shown in Table 8 (Examples) and Table 9 (Comparative Examples).
[0043]
[Example 5]
For the SCM440-based free-cutting steel, alloy melting and cutting tests were performed in the same manner as in Example 1. The alloy compositions and test results are shown in Table 10 (Examples) and Table 11 (Comparative Examples).
[0044]
In the following tables, the following terms have the following meanings, respectively.
Sulfide area ratio: 1% by weight of the total sulfide-based inclusion area in the microscope visual field
Ratio (%) occupied by the area of the above sulfide-based inclusions containing Ca
MnS number: S content 0.0 of MnS inclusion having an average particle size of 1.0 μm or more.
Number per 1% (units / mm 2 )
Tool coating: Observation of whether or not a coating of molten sulfide inclusions is formed on the tool surface during turning. ○ indicates that a sulfide coating is formed. X indicates that an oxide coating is formed. Chip friability without formation: a result of comparing the above-mentioned chip friability index with that of a sulfur free-cutting steel having the same S content. The mark ○ is higher when the mark × is equal or worse.
Figure 2004068128
[0046]
Figure 2004068128
[0047]
Figure 2004068128
[0048]
Figure 2004068128
[0049]
Figure 2004068128
[0050]
Figure 2004068128
[0051]
Figure 2004068128
[0052]
【The invention's effect】
In the machine structure according to the present invention, which has excellent chip breaking properties, the same machinability as the free-cutting steel disclosed above is realized. In other words, since there is a Ca-containing sulfide-based inclusion having a double structure, which is an inclusion that provides high machinability, cutting, especially in the turning of a carbide tool, requires a tool for a conventional sulfur free-cutting steel. The goal of a service life ratio of 5 or more (the tool life of the free-cutting steel according to the invention and the tool life of a conventional free-cutting steel having the same sulfur content) is easily achieved.
[0053]
In addition, the present invention selects the requirement that the Ca-containing sulfide-based inclusion having a specific shape is in the range of 15 to 40% of the total sulfide-based inclusion, so that the chip crushability is remarkable. The possibility of turning chips being wrapped around a tool or a work has been substantially eliminated, so that there is no hindrance to transport on a chip conveyor. According to the present invention, it can be said that the problem that has been a bottleneck in automation of machining is solved. It greatly contributes to reducing the manufacturing cost of various mechanical parts, especially automobile parts.
[Brief description of the drawings]
FIG. 1 is a photomicrograph showing the shape of inclusions in free-cutting steel for machine structures according to the present invention.
FIG. 2 is a micrograph showing the shape of inclusions in a conventional sulfur free-cutting steel.
FIG. 3 is a graph plotting the relationship between the aspect ratio and the area of Ca-containing sulfide-based inclusions and MnS inclusions present in free-cutting steel for mechanical structures.
FIG. 4 is a graph showing the relationship between the area ratio of Ca-containing sulfide-based inclusions to the total sulfide-based inclusions in a free-cutting steel for mechanical structures and a chip friability index.

Claims (5)

機械構造用鋼として必要な合金成分を含有する鋼であって、平均粒径が1.0μm以上であるMnS介在物が、S含有量0.01%あたり5個/mm以上存在しており、顕微鏡視野において、(面積[μm]/アスペクト比)≧10の条件を満たすとともに1.0重量%以上のCaを含有するCa含有硫化物系介在物の占める面積が、全硫化物系介在物が占める面積のうちで15〜40%の範囲にあり、かつ、旋削に当り工具表面に硫化物系被膜が形成されて切屑のカール半径を小さくすることを特徴とする、PbもBiも含有しない切屑破砕性にすぐれた機械構造用鋼。A steel containing an alloy component necessary for a machine structural steel, wherein MnS inclusions having an average particle size of 1.0 μm or more exist in an amount of 5 / mm 2 or more per 0.01% of S content. In the microscope visual field, the area occupied by the Ca-containing sulfide-based inclusions satisfying the condition of (area [μm 2 ] / aspect ratio) ≧ 10 and containing 1.0% by weight or more of Ca is determined by the total sulfide-based inclusions. It is in the range of 15 to 40% of the area occupied by the object, and is characterized in that a sulfide-based coating is formed on the tool surface during turning to reduce the curl radius of chips, and contains both Pb and Bi. Structural steel with excellent chip breaking ability. 重量%で、C:0.05〜0.8%、Si:0.01〜2.5%、Mn:0.1〜3.5%、S:0.01〜0.2%とともに、Ca単独またはCaおよびMgの両方(併用の場合は合計量で):0.0005〜0.02%、Ti:0.002〜0.010%およびZr:0.002〜0.025%の一方または両方、ならびにO:0.0005〜0.010%を含有し、残部が不可避の不純物およびFeからなる合金組成を有することを特徴とする請求項1の切屑破砕性にすぐれた機械構造用鋼。By weight%, C: 0.05 to 0.8%, Si: 0.01 to 2.5%, Mn: 0.1 to 3.5%, S: 0.01 to 0.2%, and Ca One or both of Ca and Mg (in the case of combined use): 0.0005 to 0.02%, one of Ti: 0.002 to 0.010% and Zr: 0.002 to 0.025% The steel for machine structural use having excellent chip breaking properties according to claim 1, characterized in that it contains both 0.0005% and 0.010% of O, and the balance has an alloy composition consisting of unavoidable impurities and Fe. 請求項2に規定した合金成分に加えて、さらに、Se:0.4%以下、Te:0.2%以下およびREM:0.05%以下の1種または2種以上を含有する切屑破砕性にすぐれた機械構造用鋼。Chip crush resistance further containing one or more of Se: 0.4% or less, Te: 0.2% or less, and REM: 0.05% or less in addition to the alloy components defined in claim 2. Excellent mechanical structural steel. 請求項2または3に規定した合金成分に加えて、さらに、Cr:3.5%以下、Mo:2.0%以下、Cu:2.0%以下、Ni:4.0%以下およびB:0.0005〜0.01%の1種または2種以上を含有する切屑破砕性にすぐれた機械構造用鋼。In addition to the alloy components as defined in claim 2 or 3, Cr: 3.5% or less, Mo: 2.0% or less, Cu: 2.0% or less, Ni: 4.0% or less, and B: A steel for machine structural use excellent in chip crushability containing one or more kinds of 0.0005 to 0.01%. 請求項2ないし4のいずれかに規定した合金成分に加えて、さらに、Nb:0.2%以下およびV:0.5%以下の1種または2種を含有する切屑破砕性にすぐれた機械構造用鋼。5. A machine excellent in chip crushability, further comprising one or two of Nb: 0.2% or less and V: 0.5% or less in addition to the alloy components specified in any one of claims 2 to 4. Structural steel.
JP2002232425A 2002-08-09 2002-08-09 Steel for machine structural use having excellent chip crushability Pending JP2004068128A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002232425A JP2004068128A (en) 2002-08-09 2002-08-09 Steel for machine structural use having excellent chip crushability
EP03784554A EP1553201A4 (en) 2002-08-09 2003-08-06 Steel for machine structural use excellent in friability of chips
US10/523,990 US20050265886A1 (en) 2002-08-09 2003-08-06 Steel for machine structural use excellent in friability of chips
PCT/JP2003/010029 WO2004015155A1 (en) 2002-08-09 2003-08-06 Steel for machine structural use excellent in friability of chips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232425A JP2004068128A (en) 2002-08-09 2002-08-09 Steel for machine structural use having excellent chip crushability

Publications (1)

Publication Number Publication Date
JP2004068128A true JP2004068128A (en) 2004-03-04

Family

ID=31711831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232425A Pending JP2004068128A (en) 2002-08-09 2002-08-09 Steel for machine structural use having excellent chip crushability

Country Status (4)

Country Link
US (1) US20050265886A1 (en)
EP (1) EP1553201A4 (en)
JP (1) JP2004068128A (en)
WO (1) WO2004015155A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925806A (en) * 2012-12-01 2013-02-13 新余钢铁集团有限公司 Y55 mark free-cutting steel plate and manufacture method thereof
WO2017141424A1 (en) * 2016-02-19 2017-08-24 新日鐵住金株式会社 Steel
WO2019230946A1 (en) * 2018-05-31 2019-12-05 日本製鉄株式会社 Steel material for steel pistons

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405419B (en) * 2006-03-16 2012-06-27 杰富意钢铁株式会社 High-strength pearlite rail with excellent delayed-fracture resistance
US20120063944A1 (en) * 2009-05-20 2012-03-15 Thore Lund Bearing component
CN104160050B (en) * 2012-03-07 2016-05-18 新日铁住金株式会社 Steel plate and manufacture method and drop stamping steel for drop stamping
RU2607505C1 (en) * 2015-09-17 2017-01-10 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Method of thermodiffusion zinc coating fasteners from bainite class steels with simultaneous increase of cold resistance thereof
CN113957338A (en) * 2021-10-09 2022-01-21 南京钢铁股份有限公司 Magnesium-containing 45 steel and preparation process thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293385A (en) * 1998-04-14 1999-10-26 Hitachi Metals Ltd Steel for metal mold for plastic molding, excellent in machinability
JP3587348B2 (en) * 1998-07-14 2004-11-10 大同特殊鋼株式会社 Machine structural steel with excellent turning workability
JP4031607B2 (en) * 2000-04-05 2008-01-09 新日本製鐵株式会社 Machine structural steel with reduced grain coarsening
JP4148311B2 (en) * 2000-12-12 2008-09-10 トヨタ自動車株式会社 Lead-free mechanical structural steel with excellent machinability and small strength anisotropy
JP2003049241A (en) * 2001-06-01 2003-02-21 Daido Steel Co Ltd Free-cutting steel
JP3753054B2 (en) * 2001-06-08 2006-03-08 大同特殊鋼株式会社 Free-cutting steel for machine structures with excellent carbide tool machinability
CN1169992C (en) * 2001-11-15 2004-10-06 住友金属工业株式会社 Steel for mechanical structure
US6764645B2 (en) * 2001-11-28 2004-07-20 Diado Steel Co., Ltd. Steel for machine structural use having good machinability and chip-breakability
JP4216507B2 (en) * 2002-01-29 2009-01-28 田中精密工業株式会社 Rocker arm steel
EP1471159B1 (en) * 2002-01-29 2009-01-14 Tanaka Seimitsu Kogyo Co., Ltd. Bainite type non-refined steel for nitriding and nitrided product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925806A (en) * 2012-12-01 2013-02-13 新余钢铁集团有限公司 Y55 mark free-cutting steel plate and manufacture method thereof
WO2017141424A1 (en) * 2016-02-19 2017-08-24 新日鐵住金株式会社 Steel
WO2019230946A1 (en) * 2018-05-31 2019-12-05 日本製鉄株式会社 Steel material for steel pistons
JPWO2019230946A1 (en) * 2018-05-31 2021-06-03 日本製鉄株式会社 Steel materials for steel pistons

Also Published As

Publication number Publication date
WO2004015155A1 (en) 2004-02-19
EP1553201A4 (en) 2005-10-05
US20050265886A1 (en) 2005-12-01
EP1553201A1 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
US6764645B2 (en) Steel for machine structural use having good machinability and chip-breakability
JP3524479B2 (en) Free-cutting steel for machine structures with excellent mechanical properties
US6783728B2 (en) Free-cutting steel for machine structural use having good machinability in cutting by cemented carbide tool
EP1270757A1 (en) Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy
JP2002146473A (en) Steel for machine structural use having excellent treatability of chip and mechanical property
JP3929029B2 (en) Sulfur-containing free-cutting steel
JP2004068128A (en) Steel for machine structural use having excellent chip crushability
JP2000219936A (en) Free-cutting steel
JP4023196B2 (en) Machine structural steel with excellent machinability
JP2004176175A (en) Steel superior in machinability and manufacturing method therefor
JP2003049240A (en) Free-cutting steel
JP3025406B2 (en) Ferritic and martensitic stainless steels with excellent machinability
JP4013706B2 (en) Machine structural steel with excellent machinability and high chip crushability
JP2005307241A (en) High-sulfur free-cutting steel
JP3442706B2 (en) Free-cutting steel
JPH07173573A (en) Free-cutting steel excellent in machinability by carbide tool and internal quality
JP3740042B2 (en) Method for controlling the morphology of sulfide inclusions
JP2001152279A (en) Free cutting steel
JP4264174B2 (en) Steel bar for machine structure with excellent chip separation and its manufacturing method
JP4540313B2 (en) Pb-free free-cutting steel bar with improved tool life
JPS62103340A (en) Ca free cutting steel for mechanical structure
TWI747777B (en) Free-cutting steel and its manufacturing method
TWI717990B (en) Free-cutting steel and its manufacturing method
JP2001214240A (en) Free cutting steel excellent in machinability and producing method thererfor
JP4222112B2 (en) High sulfur free cutting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909