JPH01129952A - Steel for rotating parts having longer service life and exellent chip treatability - Google Patents

Steel for rotating parts having longer service life and exellent chip treatability

Info

Publication number
JPH01129952A
JPH01129952A JP28779287A JP28779287A JPH01129952A JP H01129952 A JPH01129952 A JP H01129952A JP 28779287 A JP28779287 A JP 28779287A JP 28779287 A JP28779287 A JP 28779287A JP H01129952 A JPH01129952 A JP H01129952A
Authority
JP
Japan
Prior art keywords
steel
less
service life
bismuth
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28779287A
Other languages
Japanese (ja)
Inventor
Kaneaki Hamada
濱田 兼彰
Kazuichi Tsubota
坪田 一一
Toru Karasutani
烏谷 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP28779287A priority Critical patent/JPH01129952A/en
Publication of JPH01129952A publication Critical patent/JPH01129952A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the chip treatability of the title steel without lowering the characteristics of its rotating fatigue service life by regulating O and Ti in a steel to low level and specifying the contents of P, S, Al, N and Bi. CONSTITUTION:The compsn. ot the steel for rotating parts having longer service life is formed with, by weight, 0.07-1.20% C, 0.03-1.50% Si, 0.10-2.00% Mn, 0.015-0.050% Al, <=0.02% P, <=0.02% S, <=0.005% Ti, <=0.0015% O, 0.003-0.020% N, 0.001-0.040% Bi and the balance Fe with inevitable impurities. If required, one or more kinds among <=5.00% Ni, <=2.00% Cr, <=1.00% Mo, <=0.2% V and <=0.2% Nb are incorporated thereto. By this method, the chips treatability of the steel can be improved without deteriorating its mechanical characteristics, rotating and bending fatigue strength, impact fatigue service life, rotating fatigue service life, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主として自動車、建設機械用の各種ギヤー、シ
ャフト、ピン、軸受類などに使用する切屑処理性のよい
長寿命転動部品用鋼に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to steel for long-life rolling parts with good chip disposal properties, mainly used in various gears, shafts, pins, bearings, etc. for automobiles and construction machinery. .

(従来技術と問題点) 我国では自動車工業を中心に各分野で快削鋼が使用され
ている。しかしながら被削性と共に機械的性質および転
勤疲労寿命特性の両面を満足する材料はほとんどなく、
良好な被削性、少ない異方性と共にある程度良好な耐疲
労性の必要な部品には低酸素の低鉛快削鋼が使用されて
いる。・しかし鉛は人体に有害な物質であるために、低
酸低鉛快削鋼の使用を嫌う需要家もまれではない。
(Conventional technology and problems) In Japan, free-cutting steel is used in various fields, including the automobile industry. However, there are few materials that satisfy both mechanical properties and transfer fatigue life characteristics as well as machinability.
Low-oxygen, low-lead free-cutting steel is used for parts that require good machinability, low anisotropy, and somewhat good fatigue resistance. -However, since lead is a substance harmful to the human body, it is not uncommon for customers to dislike the use of low-acid, low-lead free-cutting steel.

(問題点の解決手段) 本発明は前述の従来技術の問題点を解決するためになさ
れた−のであって、機械的性質および転勤疲労寿命特性
は鉛や硫黄などの快削元素無添加の基本鋼と同等以上で
あり、特に切屑処理性が良く、人体に無害な高靭性、長
寿命転勤部品用鋼を提供することを目的とするものであ
る。
(Means for Solving the Problems) The present invention has been made to solve the problems of the prior art described above, and the mechanical properties and rolling fatigue life characteristics are the same as those without the addition of free-cutting elements such as lead and sulfur. The object of the present invention is to provide a steel for transfer parts that is equivalent to or better than steel, has particularly good chip disposal properties, is harmless to the human body, has high toughness, and has a long life.

かかる目的の達成のため、本発明者らは浸炭焼入焼戻し
した肌焼鋼、高周波焼入焼戻しした中炭素鋼および焼入
焼戻しした高炭素鋼について多くの改良研究を重ねた。
In order to achieve this objective, the present inventors have conducted numerous improvement studies on carburized, quenched and tempered case hardened steel, induction quenched and tempered medium carbon steel, and quenched and tempered high carbon steel.

その結果、鋼中に含まれる微量不純物の内、特に酸素量
を0.0015%以下、Tiを0゜005%以下の極低
水準とし、さらにPを0.02%以下、Sを0.02%
以下として同時にAlを0.015〜0.050%、N
を0.003〜0.020%にコントロールし、さらに
Biを0.001〜0.040%添加すると良好な機械
的性質を保持し、転勤疲労寿命特性の低下しない、切屑
処理性の優れた転動部品用鋼が得られることを見出し、
本発明をなしたものである。
As a result, among the trace impurities contained in the steel, especially the amount of oxygen was reduced to 0.0015% or less, Ti was reduced to an extremely low level of 0°005% or less, P was reduced to 0.02% or less, and S was reduced to 0.02%. %
At the same time, 0.015 to 0.050% Al, N
By controlling the amount of Bi to 0.003-0.020% and further adding 0.001-0.040% Bi, it is possible to maintain good mechanical properties, maintain good rolling fatigue life characteristics, and have excellent chip disposability. Discovered that steel for moving parts could be obtained,
This invention has been made.

本発明における第1の発明鋼は重量%でe O,07〜
1.20%、Si 0.03〜1.50%、Mn Q−
10〜2.00%、20102%以下、S O,02%
以下、Al O,015〜o、oso%、N O,00
3〜0.020%、00.0015%以下、Ti 0.
005%以下、Bi 0.001〜0.040%、残部
Feおよび必然的に含まれる不純物からなる切屑処理性
の良い転勤部品用鋼であり、本発明における第2の発明
鋼はCQ、07〜1.2Q%、Si 0.03〜1.5
0%、Mn O,10〜2゜00%、P 0.02%以
下、S O,02%以下、AI 0.015〜0.05
0%、N O,003〜0.020%、OO,0015
%以下、Ti O,005%以下、Bi O,001〜
0.040%、さらに必要に応じ、Ni 5.00%以
下、Cr 2.00%以下、Mo 1.00%以下、V
 O,2%以下、Nb O,2%以下の内、1種もしく
は2種以上を含有し、残部Feおよび必然的に含まれる
不純物からなる切屑処理性の良い転動部品用鋼である。
The first invention steel in the present invention has e O,07~ in weight%
1.20%, Si 0.03-1.50%, Mn Q-
10-2.00%, 20102% or less, SO, 02%
Hereinafter, Al O,015~o, oso%, NO,00
3 to 0.020%, 0.0015% or less, Ti 0.
005% or less, Bi 0.001~0.040%, balance Fe and inevitably contained impurities.The second invention steel in the present invention is CQ, 07~ 1.2Q%, Si 0.03-1.5
0%, MnO, 10-2゜00%, P 0.02% or less, SO, 02% or less, AI 0.015-0.05
0%, NO,003-0.020%, OO,0015
% or less, TiO,005% or less, BiO,001~
0.040%, and if necessary, Ni 5.00% or less, Cr 2.00% or less, Mo 1.00% or less, V
It is a steel for rolling parts that has good chip disposal properties and contains one or more of O, 2% or less, Nb, O, 2% or less, and the balance is Fe and impurities that are inevitably included.

次に本発明鋼の成分範囲を前述の如く限定した理由を以
下に述べる。なお、特にことわりがない限り、本明細書
において(%)は重量%である。
Next, the reason for limiting the composition range of the steel of the present invention as described above will be described below. In addition, unless otherwise specified, (%) in this specification is weight %.

C(炭素) 自動車、建設機械の各種ギヤー、シャフト、ピン、軸受
類には、浸炭焼入焼戻し、浸炭窒化焼入焼戻し、高周波
焼入焼戻しもしくは普通の焼入焼戻しを行った炭素鋼、
低合金鋼が用いられている。
C (Carbon) Various gears, shafts, pins, and bearings for automobiles and construction machinery are made of carbon steel that has been subjected to carburizing and quenching, carbonitriding and quenching, induction quenching and tempering, or ordinary quenching and tempering.
Low alloy steel is used.

浸炭用鋼ではコア硬さはHRC25以上必要で、そのた
めにCは約0.07%以上必要であるためC量の下限は
0.07%であり、一方、焼入焼戻用鋼の実用的なC量
の上限は1.20%であることから、本発明鋼のC量に
ついては、下限を0.07%とし、上限を1゜20%と
する。
Steel for carburizing requires a core hardness of HRC25 or more, and for this purpose, approximately 0.07% or more of C is required, so the lower limit of the amount of C is 0.07%. Since the upper limit of the C content is 1.20%, the lower limit of the C content of the steel of the present invention is set to 0.07% and the upper limit is set to 1°20%.

Si(ケイ素) 鋼中のSiは固溶硬化および焼戻軟−化抵′抗の向上に
有利であるが、1.50%を超えると打力の向上に比し
、被削性の劣化が著しくなるため、上限を1゜50%と
し、また、0.03%以下ではその効果がなく・なるの
で、下限を0.03%とした。
Si (Silicon) Si in steel is advantageous in improving solid solution hardening and temper softening resistance, but if it exceeds 1.50%, machinability deteriorates compared to improving driving force. Since the effect becomes significant, the upper limit was set at 1°50%, and the lower limit was set at 0.03%, since the effect is lost below 0.03%.

Mn (マンガン) 鋼中のMnは焼入性の調整に大きな役割を有し、特に炭
素鋼の焼入性向上には廉価なこともあって好んで用いら
れている。添加効果は0.10%以上で顕著となり2.
00%を超えると小さくなるため下限を0.10%とし
、上限を2.0θ%とした。
Mn (Manganese) Mn in steel plays a major role in adjusting the hardenability, and is particularly preferred for improving the hardenability of carbon steel because it is inexpensive. The effect of addition becomes significant at 0.10% or more.2.
If it exceeds 00%, it becomes small, so the lower limit was set to 0.10%, and the upper limit was set to 2.0θ%.

P(燐) 鋼中のPは靭性を減じ、有害な元素である。P量はでき
る限り低い方が望ましい。P量低減による靭性の改善効
果は0.020%以下で増大するので、上限を0.02
0%とした。
P (phosphorus) P in steel reduces toughness and is a harmful element. It is desirable that the amount of P be as low as possible. The effect of improving toughness by reducing the amount of P increases below 0.020%, so the upper limit is set to 0.02%.
It was set to 0%.

S(硫黄) 鋼中のSは主として硫化物の形で存在する。硫化物とビ
スマスはきわめて結合しやすく、しばしば大型の複合体
を形成して後述のビスマスの効果を低下させるため、で
きる限り低減しなければならない。前記したSの低減効
果は0.02%以下で顕著となるため上限を0.02%
とした。
S (Sulfur) S in steel mainly exists in the form of sulfides. Sulfides and bismuth bond very easily and often form large complexes that reduce the effectiveness of bismuth, which will be described later, so they must be reduced as much as possible. The above-mentioned S reduction effect becomes noticeable below 0.02%, so the upper limit is set at 0.02%.
And so.

Al(アルミニウム) AIは酸素レベルの調整、硫化物の析出形態、結晶粒度
の調整に効果的に作用する。かような効果は0.015
%付近から顕著になる。一方A1をO,OS%以上に大
量添加すると溶鋼の再酸化、鋼塊内の偏析、結晶粒度の
粗大化が起こる。それゆえ、下限を0.015%、上限
をo、oso%とした。
Al (Aluminum) AI effectively acts to adjust the oxygen level, the precipitation form of sulfides, and the crystal grain size. Such an effect is 0.015
It becomes noticeable from around %. On the other hand, if A1 is added in large amounts to O, OS% or higher, reoxidation of molten steel, segregation within the steel ingot, and coarsening of crystal grain size occur. Therefore, the lower limit was set to 0.015%, and the upper limit was set to o, oso%.

N(窒素) 鋼中に含まれるNは主としてAIMの形で存在し、結晶
粒の微細化に効果を発拝する。この効果は0゜003%
以上で顕著となり、0.020%以上では飽和するため
下限を0.003%、上限を0.020%とした。
N (Nitrogen) N contained in steel mainly exists in the form of AIM and has the effect of refining crystal grains. This effect is 0°003%
It becomes noticeable above 0.020% and becomes saturated, so the lower limit was set to 0.003% and the upper limit was set to 0.020%.

Ti(チタン) 、チタンは炭窒化物を形成し、鋼の転勤疲労寿命特性を
著しく低減させる。この効果は0.005%を超えると
顕著に現れてくるので上限を0.005%とした。
Ti (Titanium): Titanium forms carbonitrides and significantly reduces the transfer fatigue life characteristics of steel. This effect becomes noticeable when the content exceeds 0.005%, so the upper limit was set at 0.005%.

・  O(酸素) 酸素が0.0015%を超えると酸化物の量が著しく増
大し、転勤疲労寿命を著しく低下させる。さらに酸化物
はビスマスと極めて結合しやすいため、酸化物の量が多
いと後述するビスマスの効果が十分に引き出せなくなる
。それゆえ上限を0.0015%とした。
- O (Oxygen) When oxygen exceeds 0.0015%, the amount of oxides increases significantly, significantly reducing transfer fatigue life. Furthermore, since oxides are extremely easy to combine with bismuth, if the amount of oxides is large, the effects of bismuth, which will be described later, cannot be fully exploited. Therefore, the upper limit was set at 0.0015%.

Bi(ビスマス) 鋼にビスマスを添加すると鋼中に生成するビスマス粒の
切削時の切欠き効果と潤滑作用により、切削抵抗が減少
し、工具寿命、切屑の破砕性が改善される。P、S、O
,Ti量を低減した鋼ではこの効果が0.001%から
現れるので下限を0.001%とした。
Bi (Bismuth) When bismuth is added to steel, cutting resistance is reduced due to the notch effect and lubrication effect of bismuth grains generated in the steel during cutting, and tool life and chip crushability are improved. P, S, O
In steel with a reduced Ti content, this effect appears from 0.001%, so the lower limit was set at 0.001%.

一方、0.040%を超えると、特に転勤疲労寿命の劣
化が著しくなるので上限を0.040%とした。
On the other hand, if the content exceeds 0.040%, the deterioration of the transfer fatigue life in particular becomes significant, so the upper limit was set at 0.040%.

Niにッケル) 鋼にNiを添加する目的は必要な焼入性を与え、焼入焼
戻し後に機械的性質を向上させるためである・本発明鋼
では良好な焼入性と優れた機械的性質を必要とする場合
にNiを添加する。一方、Niが多くなり過ぎると、残
留オーステナイトが過剰となって表面硬さが低下し、部
品に必要な規格を満たすことができなくなる。このよう
な場合には後述のCrやHaによって焼入性を改善する
のが好ましい。それゆえ上限を5.00%とした。
The purpose of adding Ni to steel is to provide the necessary hardenability and improve mechanical properties after quenching and tempering.The steel of the present invention has good hardenability and excellent mechanical properties. Add Ni if necessary. On the other hand, if the amount of Ni is too large, residual austenite will be excessive and the surface hardness will decrease, making it impossible to meet the specifications required for the part. In such a case, it is preferable to improve the hardenability with Cr or Ha, which will be described later. Therefore, the upper limit was set at 5.00%.

Cr(クロム) 鋼にCrを添加する目的は焼入性を与え、浸炭などの熱
処理作業を容易にするためである。しがし、2.00%
を超えると浸炭時に複炭化物を形成し、反対に焼入性が
悪くなる。このような場合には前述のOrと後述の)I
oで焼入性を改善することが好ましい。それゆえ上限を
2.00%とした。
Cr (Chromium) The purpose of adding Cr to steel is to impart hardenability and facilitate heat treatment operations such as carburizing. Shigashi, 2.00%
If it exceeds this value, double carbides will be formed during carburizing, and on the contrary, hardenability will deteriorate. In such a case, the above Or and the below I)
It is preferable to improve hardenability with o. Therefore, the upper limit was set at 2.00%.

Ha(モリブデン) 鋼にMOを添加する目的は必要な焼入性をあたえ、機械
的性質を改善することにある。しかし、Crと同じく添
加量が多くなると反対に焼入性が悪くなる。このような
場合には前述のNiとCrで焼入性を改善することが好
ましい。それゆえ経済性も考慮し上限を1.00%とし
た。
Ha (Molybdenum) The purpose of adding MO to steel is to provide necessary hardenability and improve mechanical properties. However, like Cr, when the amount added increases, the hardenability deteriorates. In such a case, it is preferable to improve the hardenability with the aforementioned Ni and Cr. Therefore, considering economic efficiency, the upper limit was set at 1.00%.

V(バナジウム) ■は鋼中に溶込み、フェライトを強化するとともに結晶
粒を微細化し、その成長を抑制して合金元素の特性を高
める。添加効果と経済性の面から上限を0.20%とし
た。
V (vanadium) (2) dissolves into steel, strengthens ferrite, refines crystal grains, suppresses their growth, and improves the properties of alloying elements. The upper limit was set at 0.20% from the viewpoint of addition effect and economy.

Nbにオブ) Nbは鋼中の炭素、窒素などと結び付き細かい析出物と
なって結晶粒を微細化するとともに常温、高温における
強さを増加する。添加効果と経済性の面から上限を0.
20%とした。
(Nb) Nb combines with carbon, nitrogen, etc. in the steel to form fine precipitates, refine the crystal grains, and increase the strength at room and high temperatures. The upper limit is set to 0.0 from the viewpoint of addition effect and economy.
It was set at 20%.

(実施例および作用) 次に実施例と比較例によって本発明をさらに説明する。(Examples and effects) Next, the present invention will be further explained with reference to Examples and Comparative Examples.

試験した比較fp (No、A 1〜A28)および本
発明鋼(No、81〜828 ) 、合計48ヒートの
化学成分を表1に示す。
Table 1 shows the chemical components of a total of 48 heats of the comparative fp (Nos., A1 to A28) and the steels of the present invention (Nos., 81 to 828) tested.

全ヒートとも100 kg真空溶解炉で溶製したもので
、鉛およびビスマスの添加は基本成分に溶製後、Arガ
スで真空槽内を1気圧に戻してから行った。
All heats were melted in a 100 kg vacuum melting furnace, and lead and bismuth were added after melting the basic components and returning the inside of the vacuum chamber to 1 atmosphere with Ar gas.

得られた鋼塊をφ65に鍛伸し焼ならし処理後各種の調
査に供した。
The obtained steel ingot was forged to φ65, normalized and subjected to various investigations.

まずφ65鍛伸材の非金属介在物の清浄度をJISGO
555に定められている点鼻法により測定した結果を表
2に示す。酸素量が0.0015%以下の極低値に規制
されているヒートのB、C系介在物はほとんど皆無であ
る。
First, the cleanliness of non-metallic inclusions in φ65 forged and drawn material was determined by JISGO.
Table 2 shows the results measured by the nasal drop method specified in 555. There are almost no B or C-based inclusions in the heat, where the oxygen content is regulated to an extremely low value of 0.0015% or less.

次に表3.4および5に比較鋼と本発明鋼の機械的性質
、小野式回転曲げ疲労試験結果および松材式衝撃疲労試
験結果を示す。これらにより、機械的性質、回転曲げ疲
労強度および衝撃疲労寿命に及ぼすビスマスの影響はビ
スマスが0.04%以下である限りほとんど皆無である
ことが分かる。
Next, Tables 3.4 and 5 show the mechanical properties, Ono rotary bending fatigue test results, and pine impact fatigue test results of the comparative steel and the invention steel. These results show that bismuth has almost no effect on mechanical properties, rotating bending fatigue strength, and impact fatigue life as long as bismuth is 0.04% or less.

表6にはスラスト型ころがり寿命試験結果を示す。試験
片は外径φ65、厚さ7 mn+とし、肌焼鋼は浸炭焼
入焼戻処理、中炭素鋼は高周波焼入焼戻処理、高炭素鋼
は焼入焼戻処理によって表面硬さを)IRC62以上に
調整後試験に供した。
Table 6 shows the results of the thrust type rolling life test. The test piece has an outer diameter of φ65 and a thickness of 7 mm+.The surface hardness of the case hardened steel is carburized and quenched, the medium carbon steel is induction quenched and tempered, and the high carbon steel is quenched and tempered. It was subjected to a test after being adjusted to IRC62 or higher.

フレーキング発生までの応力繰返数を各ヒート20個の
試片について測定し、得られた10%寿命(表4.供試
材の回転曲げ疲労強度 試片:平行部φ8x30 表5.供試材の衝駒絽―鍍 衝撃エネルギー: 20kgfc+++    36回
/分   試片:ノツチ部 φ10,5R表6.供試材
の転勤疲労奔命 ヘルツの最大接触応力 Pmx=500kgf/mm2
  応力繰返し数 1800ro+n810 ) 、5
0%寿命(B50 )を比較した。酸素、鉛およびチタ
ンの含有量が多いヒートは寿命が極端に短いことが分か
り、スラスト型ころがり寿命には酸素、鉛およびチタン
は有害な元素であることが分かる。さらに低酸素、非錯
および低チタン含有量のヒートにおいて、寿命はビスマ
スの添加量の増加に伴い徐々に低下する。しかし、ビス
マス添加量が0.04%以下であれば寿命の低下は極く
僅かであり、急激な寿命の低下は0.04%以上の添加
によって起こる。本発明鋼では○量を0.0015%以
下、Tiをo、oos%以下の極低値とし、ビスマス量
を0.04%以下に規制することによって寿命の低下を
防止することができた。
The number of stress cycles until flaking occurred was measured for 20 specimens in each heat, and the obtained 10% life (Table 4. Rotating bending fatigue strength specimen of specimen: parallel part φ8x30 Table 5. Test specimen Impact energy of material: 20kgfc+++ 36 times/min Specimen: Notch part φ10,5R Table 6. Maximum contact stress in Hertz of transfer fatigue life of sample material Pmx = 500kgf/mm2
Stress repetition rate 1800ro+n810), 5
0% life (B50) was compared. It is found that heat with a high content of oxygen, lead, and titanium has an extremely short life, and that oxygen, lead, and titanium are harmful elements for the life of thrust type rolling. Furthermore, in heats with low oxygen, uncomplexed and low titanium content, the lifetime gradually decreases with increasing bismuth addition. However, if the amount of bismuth added is 0.04% or less, the decrease in life is very slight, and a rapid decrease in life occurs when the amount of bismuth is added in excess of 0.04%. In the steel of the present invention, reduction in life could be prevented by regulating the amount of O to 0.0015% or less, the Ti content to extremely low values of 0, oos% or less, and the bismuth content to 0.04% or less.

表7には超硬合金工具による切削試験で得られた切屑の
処理性(破砕性)をまとめた。本発明鋼では微細なビス
マス粒子の存在によって切屑は細かく切れ、しかも切刃
面の潤滑作用によって小さく丸まり、ビスマスを含有し
ない比較鋼に比し、優れた特性を発揮した。これは○量
が極低値であるため、少量のビスマス添加でもビスマス
の快削効果が失われず保持されるためと考えられる。
Table 7 summarizes the processing properties (fragility) of chips obtained in cutting tests using cemented carbide tools. In the steel of the present invention, chips were cut finely due to the presence of fine bismuth particles, and moreover, they were rounded into small pieces due to the lubricating action of the cutting edge, exhibiting superior properties compared to comparative steels that do not contain bismuth. This is thought to be because the free-cutting effect of bismuth is maintained without loss even when a small amount of bismuth is added, since the amount of ○ is extremely low.

(発明の効果) 以上、詳述したように、本発明鋼では機械的性質、回転
曲げ疲労強度およびWJ撃疲労寿命および転勤疲労寿命
などの特性を劣化させることなく、同時に切削性の面で
もとくに問題となる切屑処理性(破砕性)が基本鋼に比
し、向上することが分かる。本発明鋼を自動車用、建設
機械用などの重要保安部品(ギヤー、軸受なと)に使用
すると、現用材に比べて被削性の改善ができ、切削コス
トの低減が可能となる。
(Effects of the Invention) As detailed above, the steel of the present invention does not deteriorate properties such as mechanical properties, rotary bending fatigue strength, WJ impact fatigue life, and rolling fatigue life, and at the same time has particularly good machinability. It can be seen that the chip disposability (fractureability), which is a problem, is improved compared to the basic steel. When the steel of the present invention is used in important safety parts (gears, bearings, etc.) for automobiles, construction machinery, etc., machinability can be improved compared to existing materials, and cutting costs can be reduced.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で C:0.07〜1.20% Si:0.03〜1.50% Mn:0.10〜2.00% Al:0.015〜0.050% P:0.02%以下 S:0.02%以下 Ti:0.005%以下 O:0.0015%以下 N:0.003〜0.020% Bi:0.001〜0.040% 残部Feおよび必然的に含まれる不純物からなる長寿命
転動部品用鋼。
(1) C: 0.07-1.20% Si: 0.03-1.50% Mn: 0.10-2.00% Al: 0.015-0.050% P: 0. 02% or less S: 0.02% or less Ti: 0.005% or less O: 0.0015% or less N: 0.003 to 0.020% Bi: 0.001 to 0.040% The remainder Fe and necessarily Steel for long-life rolling parts that contains impurities.
(2)重量%で C:0.07〜1.20% Si:0.03〜1.50% Mn:0.10〜2.00% Al:0.015〜0.050% P:0.02%以下 S:0.02%以下 Ti:0.005%以下 O:0.0015%以下 N:0.003〜0.020% Bi:0.001〜0.040% さらに Ni:5.00%以下 Cr:2.00%以下 Mo:1.00%以下 V:0.2%以下 および Nb:0.2%以下 の内1種もしくは2種以上含有し、残部Feおよび必然
的に含まれる不純物からなる長寿命転動部品用鋼。
(2) In weight%, C: 0.07-1.20% Si: 0.03-1.50% Mn: 0.10-2.00% Al: 0.015-0.050% P: 0. 02% or less S: 0.02% or less Ti: 0.005% or less O: 0.0015% or less N: 0.003 to 0.020% Bi: 0.001 to 0.040% Furthermore, Ni: 5.00 % or less Cr: 2.00% or less Mo: 1.00% or less Contains one or more of the following: V: 0.2% or less and Nb: 0.2% or less, with the remainder containing Fe and inevitably Steel for long-life rolling parts made of impurities.
JP28779287A 1987-11-13 1987-11-13 Steel for rotating parts having longer service life and exellent chip treatability Pending JPH01129952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28779287A JPH01129952A (en) 1987-11-13 1987-11-13 Steel for rotating parts having longer service life and exellent chip treatability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28779287A JPH01129952A (en) 1987-11-13 1987-11-13 Steel for rotating parts having longer service life and exellent chip treatability

Publications (1)

Publication Number Publication Date
JPH01129952A true JPH01129952A (en) 1989-05-23

Family

ID=17721805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28779287A Pending JPH01129952A (en) 1987-11-13 1987-11-13 Steel for rotating parts having longer service life and exellent chip treatability

Country Status (1)

Country Link
JP (1) JPH01129952A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100142A (en) * 1989-09-13 1991-04-25 Kobe Steel Ltd Case hardening steel for bearing having excellent crushing property and its manufacture
WO1996022404A1 (en) * 1995-01-18 1996-07-25 Nippon Steel Corporation Long-lived carburized bearing steel
JPH09165643A (en) * 1995-12-12 1997-06-24 Kobe Steel Ltd Bearing steel excellent in rolling fatigue characteristic
CN103526128A (en) * 2012-07-06 2014-01-22 江苏耐尔冶电集团有限公司 Formula of blast furnace throat steel brick
JPWO2017069064A1 (en) * 2015-10-19 2018-09-13 新日鐵住金株式会社 Steel for machine structure and induction hardened steel parts
EP3480335A4 (en) * 2016-07-01 2019-06-05 Iljin Global Co., Ltd. Bearing steel and manufacturing method therefor
WO2023017829A1 (en) * 2021-08-10 2023-02-16 日本製鉄株式会社 Steel material
CN115927969A (en) * 2022-12-26 2023-04-07 谷城县双银机械有限责任公司 Special high-strength welding cast steel and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126718A (en) * 1983-01-07 1984-07-21 Daido Steel Co Ltd Manufacture of stel material with superior cold workability
JPS61213348A (en) * 1985-03-16 1986-09-22 Daido Steel Co Ltd Alloy tool steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126718A (en) * 1983-01-07 1984-07-21 Daido Steel Co Ltd Manufacture of stel material with superior cold workability
JPS61213348A (en) * 1985-03-16 1986-09-22 Daido Steel Co Ltd Alloy tool steel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100142A (en) * 1989-09-13 1991-04-25 Kobe Steel Ltd Case hardening steel for bearing having excellent crushing property and its manufacture
WO1996022404A1 (en) * 1995-01-18 1996-07-25 Nippon Steel Corporation Long-lived carburized bearing steel
US5698159A (en) * 1995-01-18 1997-12-16 Nippon Steel Corporation Long-life carburizing bearing steel
CN1072273C (en) * 1995-01-18 2001-10-03 新日本制铁株式会社 Long-lived carburized bearing steel
JPH09165643A (en) * 1995-12-12 1997-06-24 Kobe Steel Ltd Bearing steel excellent in rolling fatigue characteristic
CN103526128A (en) * 2012-07-06 2014-01-22 江苏耐尔冶电集团有限公司 Formula of blast furnace throat steel brick
JPWO2017069064A1 (en) * 2015-10-19 2018-09-13 新日鐵住金株式会社 Steel for machine structure and induction hardened steel parts
EP3480335A4 (en) * 2016-07-01 2019-06-05 Iljin Global Co., Ltd. Bearing steel and manufacturing method therefor
US11136639B2 (en) 2016-07-01 2021-10-05 Iljin Global Co., Ltd Bearing steel and manufacturing method therefor
WO2023017829A1 (en) * 2021-08-10 2023-02-16 日本製鉄株式会社 Steel material
CN115927969A (en) * 2022-12-26 2023-04-07 谷城县双银机械有限责任公司 Special high-strength welding cast steel and preparation method thereof

Similar Documents

Publication Publication Date Title
EP2381003B1 (en) Steel for high-frequency hardening
EP2138597A1 (en) Hot-worked steel material having excellent machinability and impact value
JP4047499B2 (en) Carbonitriding parts with excellent pitting resistance
JPH05117804A (en) Bearing steel having excellent workability and rolling fatigue property
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JPH06293939A (en) Bearing parts excellent in high temperature rolling fatigue characteristic
EP0930374B1 (en) Production of cold working tool steel
JPH01129952A (en) Steel for rotating parts having longer service life and exellent chip treatability
JPH0254739A (en) Bearing steel having excellent workability
JPH04143253A (en) Bearing steel excellent in rolling fatigue characteristic
JPH04349A (en) Bearing steel excellent in workability and rolling fatigue characteristic
JPH05179400A (en) Steel for direct machining-induction hardening
JPH0967644A (en) Carburizing steel for gear, excellent in gear cutting property
JPH0617225A (en) Carburized bearing parts excellent in rolling fatigue property
JP2625773B2 (en) Powder high speed steel
JP4148311B2 (en) Lead-free mechanical structural steel with excellent machinability and small strength anisotropy
JP2615126B2 (en) Gear steel
WO2003064715A9 (en) Bainite type non-refined steel for nitriding, method for production thereof and nitrided product
JP5077814B2 (en) Shaft and manufacturing method thereof
JPH06145897A (en) Steel for bearing
JP2989766B2 (en) Case hardened steel with excellent fatigue properties and machinability
JP4906245B2 (en) Machine structural steel with excellent machinability
JPH04160135A (en) Steel for carburization
JPH0266137A (en) High-purity steel having superior machineability
JPH07126803A (en) Steel for carburizing gear