JP3543581B2 - Ferrite / pearlite non-heat treated steel - Google Patents
Ferrite / pearlite non-heat treated steel Download PDFInfo
- Publication number
- JP3543581B2 JP3543581B2 JP30413397A JP30413397A JP3543581B2 JP 3543581 B2 JP3543581 B2 JP 3543581B2 JP 30413397 A JP30413397 A JP 30413397A JP 30413397 A JP30413397 A JP 30413397A JP 3543581 B2 JP3543581 B2 JP 3543581B2
- Authority
- JP
- Japan
- Prior art keywords
- content
- effect
- steel
- strength
- ferrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 61
- 239000010959 steel Substances 0.000 title claims description 61
- 229910001562 pearlite Inorganic materials 0.000 title claims description 21
- 229910000529 magnetic ferrite Inorganic materials 0.000 title claims description 16
- 229910000859 α-Fe Inorganic materials 0.000 title claims description 16
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 49
- 230000001965 increased Effects 0.000 description 15
- 239000000203 mixture Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 229910001563 bainite Inorganic materials 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000005242 forging Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 230000001131 transforming Effects 0.000 description 3
- 238000009661 fatigue test Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000001771 impaired Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 102200082816 HBB S45C Human genes 0.000 description 1
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000002542 deteriorative Effects 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical Effects 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching Effects 0.000 description 1
- 102220005308 rs33960931 Human genes 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003068 static Effects 0.000 description 1
Description
【0001】
【発明の属する技術分野】
本発明は、熱間での加工後に焼入れ焼戻しの所謂「調質処理」を施さなくとも、機械構造部材などの用途に好適な非調質鋼に関する。より詳しくは、自動車、産業機械、土木建設機械などのエンジン部品や足廻り部品の素材、なかでもコンロッドやクランクシャフトなどの素材として好適な降伏強度(0.2%耐力)が480MPa以上、引張強度が800MPa以上、降伏比(降伏強度/引張強度)が0.6以上、疲労強度が360MPa以上で、且つ2mmUノッチシャルピー衝撃値が10J/cm2 以上であるフェライト・パーライト型のVを含有しない低廉型の非調質鋼に関する。
【0002】
【従来の技術】
機械構造部品、なかでも自動車、産業機械、土木建設機械などのエンジン部品としてのクランクシャフトやコンロッドなどは、従来、機械構造用の炭素鋼(S45C、S50Cなど)や合金鋼(SCM440など)を用いて、熱間加工により成形した後、機械加工と調質処理を施して所望の形状と性能を確保していた。
【0003】
しかし、前記の調質処理を行うには多大の熱エネルギーを要するので製造コストが嵩む。そのため、省エネルギー及びコスト低減の観点から熱間加工のままで調質鋼と同等程度の特性を持つ非調質鋼の開発が行われてきた。
【0004】
非調質鋼としては、ベイナイト型、マルテンサイト型及びフェライト・パーライト型の非調質鋼が知られている。このうち、ベイナイト型とマルテンサイト型の非調質鋼では高い強度が得られるものの被削性が低い。このため機械加工による仕上げ成形に難があり、加えて大きな変態歪が生ずるため「曲がり」が大きくなるという問題があって、曲がり取りの矯正工程が必要なためにコストアップにつながる。例えば、特開平4−176842号公報で提案されているベイナイト型の「熱間鍛造用非調質鋼」においてもなお上記の被削性や曲がり発生の面で問題が残るものであった。
【0005】
特開平4−210449号公報には、その組織が主としてフェライト及びベイナイトで一部パーライトが混在した「高靭性熱間鍛造用非調質鋼」が提案されている。この公報で提案された技術は、組織にフェライトとパーライトを含むため、ベイナイト単相の場合に比べて変態歪による「曲がり」は幾分解消されるものである。しかし、組織中にベイナイトが占める割合が高い場合には変態歪の発生による「曲がり」を矯正する工程が必要でコストアップが避けられないものであった。
【0006】
更に、上記の特開平4−176842号公報及び特開平4−210449号公報に記載の鋼は、高価な元素であるVを必須成分として添加したものであるため、鋼の組成の面からのコストアップも避けられないものであった。
【0007】
一方、従来のフェライト・パーライト型の非調質鋼は、例えば特開昭62−167855号公報に開示されている様に、中炭素鋼にVを添加した化学組成を有し、Vの炭窒化物を析出させてフェライト基地を強化し、これによって高強度化及び高疲労強度化を達成しようとするものである。しかし、既に述べたようにVは高強度化には有効であっても高価な元素であるためコストの増加が避けられないという問題を含んでいた。
【0008】
【発明が解決しようとする課題】
前記したクランクシャフトやコンロッドなどには、充分な耐疲労特性が要求される。しかし、靭性に関してはそれほど高い性能が要求されない場合もある。つまり、クランクシャフトやコンロッドなどの素材として、耐疲労特性はVを添加した非調質鋼と同等であるが、靭性としては、例えば、2mmUノッチシャルピー衝撃値で10J/cm2 もあれば充分とされる場合もある。
【0009】
本発明の目的は、自動車、産業機械、土木建設機械などのエンジン部品や足廻り部品の素材、なかでもコンロッドやクランクシャフトなどの素材として好適な、Vを添加した非調質鋼と同等の360MPa以上の疲労強度を有するとともに、降伏強度(0.2%耐力)が480MPa以上、引張強度が800MPa以上、降伏比(降伏強度/引張強度)が0.6以上、且つ2mmUノッチシャルピー衝撃値が10J/cm2 以上であるフェライト・パーライト型のVを含有しない低コストの非調質鋼を提供することにある。
【0010】
【課題を解決するための手段】
本発明の要旨は、下記(1)、(2)に示すフェライト・パーライト型非調質鋼にある。
【0011】
(1)重量%で、C:0.3〜0.6%、Si:0.5〜2.0%、Mn:1.0〜2.0%、P:0.05%以下、S:0.10%以下、Cu:0.01〜0.5%、Ni:0〜0.2%、Cr:0〜0.5%、Mo:0〜0.2%、Ti:0〜0.06%、Nb:0〜0.03%、Al:0.01〜0.10%、N:0.006〜0.03%、Pb:0〜0.30%を含有し、残部はFe及び不可避不純物からなり、且つ、式中の元素記号をその元素の重量%での含有量として下記▲1▼式で表されるfn1が0.75〜1.0%であることを特徴とするフェライト・パーライト型非調質鋼。
【0012】
fn1=C+0.1Si+0.2Mn+0.5Cu+0.2Cr−0.7S・・・・・▲1▼
(2)重量%で、C:0.3〜0.6%、Si:0.5〜2.0%、Mn:1.0〜2.0%、P:0.05%以下、S:0.10%以下、Cu:0.01〜0.5%、Ni:0〜0.2%、Cr:0〜0.5%、W:0〜0.35%で且つ、Mo(%)+0.5W(%):0〜0.2%、Zr:0〜0.1%で且つ、Ti(%)+0.5Zr(%):0〜0.06%、Nb:0〜0.03%、Al:0.01〜0.10%、N:0.006〜0.03%、Pb:0〜0.30%を含有し、残部はFe及び不可避不純物からなり、且つ、前記▲1▼式で表されるfn1が0.75〜1.0%であることを特徴とするフェライト・パーライト型非調質鋼。
【0013】
以下、上記の(1)、(2)をそれぞれ(1)、(2)の発明という。
【0014】
【発明の実施の形態】
本発明者らは、Vを添加しないフェライト・パーライト型の非調質鋼の化学組成に関して種々検討を重ねた結果、下記の知見を得た。
【0015】
(a)鋼にCuを1重量%程度含有させれば、Cuが微細析出して析出強化するが、Cuの含有量が1重量%未満では殆どその効果は認められない。しかし、鋼にCuとともに含有量で0.5重量%以上のSiを複合添加した場合には、Cuの含有量が1重量%未満であっても、Cuの析出強化の効果が発揮され、しかも降伏比と衝撃値が著しく向上する。
【0016】
(b)重量%で、0.3%以上のC、0.5%以上のSi、1.0%以上のMn及び0.01%以上のCuを含有する鋼の組織がフェライト・パーライト組織である時、鋼の引張強度は前記▲1▼式で表されるfn1で整理できる。そして、fn1の値が0.75%以上であれば、800MPa以上の引張強度が得られて360MPa以上の疲労強度が安定して確保できるとともに、480MPa以上の降伏強度、0.6以上の降伏比が得られる。但し、fn1の値が1.0%を超えると靭性が大きく低下するため、2mmUノッチシャルピー衝撃値が10J/cm2 を下回ってしまう。
【0017】
本発明は、上記の知見に基づいて完成されたものである。
【0018】
以下、本発明の各要件について詳しく説明する。なお、成分含有量の「%」は「重量%」を意味する。
【0019】
(A)鋼の化学組成
C:
Cは、強度を確保するのに有効な元素である。しかし、その含有量が0.3%未満ではフェライト・パーライト型の非調質鋼の場合には所望の強度が得られない。一方、0.6%を超えて含有するとフェライト・パーライト組織におけるフェライト相の体積率が低下し、それに伴ってフェライト強化の効果が薄れて疲労強度が低下するとともに硬いパーライト相により被削性も劣化するようになるし、靭性も低下してしまう。したがって、Cの含有量を0.3〜0.6%とした。
Si:
Siは、脱酸を促進するとともに、フェライト中に固溶してフェライトを強化し、静的強度と疲労強度を高める作用がある。更に、Siは後述のCuと複合添加すると、Cuの析出強化作用を促進させる作用や、降伏比や衝撃値を高める作用も有する。前記の効果を充分発揮させるためには、Siの含有量を0.5%以上とすることが必要である。一方、Siを2.0%を超えて含有させても前記の効果は飽和し、コストが嵩むばかりである。したがって、Siの含有量を0.5〜2.0%とした。
【0020】
Mn:
Mnは、脱酸作用や強度を高める作用がある。その効果を確保するためには、1.0%以上の含有量を必要とする。しかし、Mnを2.0%を超えて含有させるとその効果は飽和してコストが嵩むだけでなく、むしろ焼入れ性が高くなりすぎてベイナイト組織あるいは島状マルテンサイト組織の生成を促進し、降伏比及び切削性が低下するようになる。したがって、Mnの含有量を1.0〜2.0%とした。
【0021】
P:
Pは鋼中に不純物として含有されるものであり、必須成分として添加しなくても良い。添加すれば降伏強度を高める作用がある。この効果を確実に得るには、Pは0.005%以上の含有量とすることが好ましい。しかし、その含有量が0.05%を超えると靭性の著しい低下を招く。したがって、Pの含有量を0.05%以下とした。
【0022】
S:
Sは鋼中に不純物として含有されるものであり、必須成分として添加しなくても良い。添加すれば切削性を高める作用がある。この効果を確実に得るには、Sは0.015%以上の含有量とすることが好ましい。しかし、その含有量が0.10%を超えると衝撃値の低下をきたす。したがって、Sの含有量を0.10%以下とした。
【0023】
Cu:
Cuは、既に述べたように、Siと複合添加すると微量でも析出強化作用を有する。しかしながら、その含有量が0.01%未満では添加効果に乏しい。一方、Siと複合添加した場合にはCuを0.50%を超えて含有させても前記の効果は飽和して経済性が損なわれるだけでなく、靭性の著しい低下をもたらす。したがって、Cu含有量を0.01〜0.5%とした。なお、Cu含有量は0.05%以上とすることが好ましく、より好ましいCu含有量の下限値は0.10%である。
【0024】
Ni:
Niは添加しなくても良い。添加すれば靭性を高める作用がある。この効果を確実に得るには、Niは0.05%以上の含有量とすることが好ましい。しかし、Niを0.2%を超えて含有させても前記の効果は飽和して経済性を損なうし、切削性が低下する。したがって、Niの含有量を0〜0.2%とした。
【0025】
Cr:
Crは添加しなくても良い。添加すればCr炭窒化物を生成して強度を高める作用を有する。この効果を確実に得るには、Crは0.1%以上の含有量とすることが好ましい。しかし、0.5%を超えて含有させても前記の効果は飽和しコストが嵩むばかりである。したがって、Cr含有量を0〜0.5%とした。
【0026】
Mo、W:
本発明の(1)の発明においてMoは添加しなくても良い。添加すればNiと同様に靭性を向上させる作用がある。この効果を確実に得るには、Moは0.05%以上の含有量とすることが好ましい。しかし、Moを0.2%を超えて含有させても前記の効果は飽和し、コストが嵩むばかりである。したがって、(1)の発明にあっては、Mo含有量を0〜0.2%とした。
【0027】
Mo、Wには鋼の焼入れ性を高める作用や結晶粒界を強化する作用もある。こうした効果はMoとWの含有量に関し、Mo(%)+0.5W(%)の値が0.05%以上の場合に確実に得られる。しかし、Mo(%)+0.5W(%)の値で0.2%を超える量のMoとWを含有させてもその効果は飽和し、コストが嵩むばかりである。Mo(%)+0.5W(%)の値が0.2%以下であっても、W含有量が0.35%を超えると前記の効果が飽和してコストが嵩んでしまう。したがって、(2)の発明にあっては、W:0〜0.35%で且つ、Mo(%)+0.5W(%):0〜0.2%とした。
【0028】
Ti、Zr:
Ti、Zrは添加しなくても良い。添加すれば炭窒化物を生成して結晶粒を微細化し、強度及び靭性を高める作用を有する。
【0029】
Ti単独添加の場合、その含有量が0.01%以上の場合に前記効果が確実に得られる。しかしTiを0.06%を超えて含有させると炭窒化物が凝集粗大化して結晶粒微細化効果が失われ経済性を損なうばかりか、却って結晶粒が粗大化して靭性の低下を招く。したがって、(1)の発明にあってはTi含有量を0〜0.06%とした。
【0030】
一方、上記の効果は、TiとZrの含有量に関し、Ti(%)+0.5Zr(%)の値が0.01%以上の場合にも確実に得られる。しかし、Ti(%)+0.5Zr(%)の値で0.06%を超える量のTiとZrを含有させるとコストが嵩むばかりではなく、結晶粒が却って粗大化して靭性の低下が生ずる。Ti(%)+0.5Zr(%)の値が0.06%以下であっても、Zr含有量が0.1%を超えるとやはり結晶粒が粗大化して靭性の低下が生ずる。したがって、(2)の発明にあっては、Zr:0〜0.1%で且つ、Ti(%)+0.5Zr(%):0〜0.06%とした。
【0031】
Nb:
Nbは添加しなくてもよい。添加すれば窒化物や炭窒化物を生成して、強度を高める作用がある。この効果を確実に得るには、Nbは0.01%以上の含有量とすることが好ましい。しかし、0.03%を超えて含有させても前記の効果は飽和し,
コストが嵩むばかりである。したがって、Nbの含有量を0〜0.03%とした。
【0032】
Al:
Alは、強力な脱酸作用を持つ元素である。更に、Alは、酸化物あるいは窒化物を生成して結晶粒を微細化し、強度及び靭性を高める作用を有する。しかし、その含有量が0.01%未満では添加効果に乏しい。一方、0.10%を超えると切削性の低下を招く。したがって、Al含有量を0.01〜0.10%とした。なお、Al含有量とは所謂「sol.Al(酸可溶性Al)量」のことをいう。
【0033】
N:
Nは、窒化物を生成して結晶粒を微細化し、強度及び靭性を高める作用を有する。しかし、その含有量が0.006%未満では前記の効果が得難い。一方、0.03%を超えて含有させてもその効果は飽和するばかりか、熱間加工性の劣化を招くようになる。したがって、Nの含有量を0.006〜0.03%とした。
【0034】
Pb:
Pbは添加しなくても良い。添加すれば被削性を高める作用を有する。この効果を確実に得るには、Pbは0.05%以上の含有量とすることが好ましい。しかし、その含有量が0.30%を超えると疲労強度が著しく低下して耐疲労特性の劣化を招く。従って、Pbの含有量を0〜0.30%とした。
【0035】
fn1:
重量%で、0.3%以上のC、0.5%以上のSi、1.0%以上のMn及び0.01%以上のCuを含有する鋼の組織がフェライト・パーライト組織である場合において、熱間加工ままの状態での引張強度は前記した▲1▼式で表されるfn1で整理できる。そして、このfn1の値が0.75%以上の場合に、800MPa以上の引張強度が得られて360MPa以上の疲労強度が安定して確保できるとともに、480MPa以上の降伏強度、0.6以上の降伏比が得られる。一方、fn1の値が1.0%を超えると靭性が大きく低下するため、2mmUノッチシャルピー衝撃値が所望の10J/cm2 を下回ってしまう。したがって、fn1を0.75〜1.0%とした。
【0036】
上記の化学組成を有する鋼は通常の方法で溶製された後、例えば通常の方法による熱間での圧延や鍛造を受け、更に必要に応じて機械加工されてコンロッドやクランクシャフトなど所定形状の部品に仕上げられる。なお、通常の方法による熱間での圧延や鍛造を行った後の冷却は、フェライト・パーライト組織となるような冷却速度での冷却、例えば空冷や放冷とすれば良い。
【0037】
【実施例】
表1〜4に示す化学組成の鋼を通常の方法によって試験炉を用いて150kg真空溶製した。表1、表2における鋼1〜19は本発明鋼で、表3、表4における鋼20〜35は成分のいずれかが本発明で規定する範囲から外れた比較鋼である。比較鋼のうち鋼35は、従来タイプのVを含有させたフェライト・パーライト型の非調質鋼である。
【0038】
【表1】
【0039】
【表2】
【0040】
【表3】
【0041】
【表4】
【0042】
次いで、これらの鋼を通常の方法によって鋼片とした後、1150〜1200℃に加熱してから、1000℃の仕上げ温度で直径40mmの丸棒に熱間鍛造し、その後常温まで空冷した。
【0043】
こうして得られた丸棒の中心部から平行部径が6mmの小野式回転曲げ疲労試験片を切り出して常温(室温)、大気中、3000rpmの条件で疲労試験を行なった。又、丸棒の中心部からJIS4号引張試験片及びJIS3号シャルビー試験片(2mmUノッチシャルピー試験片)を切り出し、常温で引張試験を行った。又、直径40mmで厚さが20mmの試験片を切り出して、光学顕微鏡による中心部の組織観察を行った。
【0044】
試験結果を表5に示す。
【0045】
【表5】
【0046】
本発明鋼である鋼1〜19についてはいずれも、従来のVを含有させたフェライト・パーライト型の非調質鋼である鋼35と同等の耐疲労特性、すなわち360MPa以上の疲労強度(疲労限度)を有しており、しかも所望の480MPa以上の降伏強度(0.2%耐力)、800MPa以上の引張強度、0.6以上の降伏比と、10J/cm2 以上の2mmUノッチシャルピー衝撃値が得られている。
【0047】
これに対して、成分のいずれかが本発明で規定する含有量の範囲から外れた比較鋼は、以下に述べるように、疲労強度、降伏強度、引張強度、降伏比、2mmUノッチシャルピー衝撃値の少なくとも1つが所望の値に達していない。
【0048】
C量が低めに外れた鋼20は、引張強度及び疲労強度が所望の値に達していない。
【0049】
Si量が低めに外れた鋼21は、降伏強度、引張強度、降伏比、及び疲労強度がいずれも所望の値に達していない。
【0050】
Mn量が低めに外れた鋼22は、引張強度及び疲労強度が所望の値に達していない。
【0051】
Cu量が低めに外れた鋼26は、降伏強度、引張強度、降伏比、及び疲労強度がいずれも所望の値に達していない。
【0052】
N量が低めに外れた鋼27は、2mmUノッチシャルピー衝撃値が所望の値に達していない。
【0053】
fn1の値が低めに外れた鋼29及び鋼34は、引張強度及び疲労強度が所望の値に達していない。
【0054】
C量及びMn量が低めに外れた鋼31は、降伏強度、引張強度及び疲労強度がいずれも所望の値に達していない。
【0055】
Si量、Mn量、Cu量、N量及びfn1が低めに外れた鋼32は、降伏強度、引張強度、降伏比、及び疲労強度がいずれも所望の値に達していない。
【0056】
P量が高めに外れた鋼23、S量が高めに外れた鋼24、Cu量が高めに外れた鋼25、Ti量が高めに外れた鋼28及びC量が高めに外れた鋼30は、いずれも2mmUノッチシャルピー衝撃値が所望の値に達していない。
【0057】
Mn量が高めに外れた鋼33は、降伏比が所望の値に達していない。更に、組織がフェライト・パーライト・ベイナイトの混合組織であるため、被削性や曲がり発生の面でも問題があると想定される。
【0058】
なお、従来タイプのVを含有させたフェライト・パーライト型の非調質鋼である鋼35は、fn1の値が本発明の規定値を下回るが、Vの析出強化により所望の耐疲労特性と引張特性、つまり、360MPa以上の疲労強度、480MPa以上の降伏強度、800MPa以上の引張強度、0.6以上の降伏比を有している。更に、2mmUノッチシャルピー衝撃値についても、所望の10J/cm2 以上の値を有している。
【0059】
【発明の効果】
本発明のフェライト・パーライト型非調質鋼を用いれば、360MPa以上の疲労強度、480MPa以上の降伏強度、800MPa以上の引張強度、0.6以上の降伏比及び10J/cm2 以上の2mmUノッチシャルピー衝撃値が容易に得られるので、自動車、産業機械、土木建設機械などのエンジン部品や足廻り部品の素材、なかでもコンロッドやクランクシャフトなどの素材として利用することが可能である。しかも、本発明鋼は高価な元素であるVを含有しないので低コストであり、効果が大きい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-heat treated steel suitable for applications such as mechanical structural members without performing so-called “tempering treatment” of quenching and tempering after hot working. More specifically, the material has a yield strength (0.2% proof stress) of at least 480 MPa, which is suitable as a material for engine parts and undercarriage parts of automobiles, industrial machines, civil engineering construction machines, etc., and particularly as a material for connecting rods, crankshafts, etc. Is not more than 800 MPa, yield ratio (yield strength / tensile strength) is 0.6 or more, fatigue strength is 360 MPa or more, and 2 mm U notch Charpy impact value is 10 J / cm 2 or more. For non-heat treated steel for molds.
[0002]
[Prior art]
Conventionally, carbon steel (S45C, S50C, etc.) and alloy steel (SCM440, etc.) for mechanical structures are used for crankshafts and connecting rods as engine parts of machine structural parts, especially automobiles, industrial machines, civil engineering machines and the like. Then, after forming by hot working, machining and tempering treatment are performed to secure a desired shape and performance.
[0003]
However, a large amount of heat energy is required to perform the above-mentioned refining treatment, so that the production cost increases. Therefore, from the viewpoint of energy saving and cost reduction, non-heat treated steels having properties equivalent to those of tempered steels while being hot worked have been developed.
[0004]
Known non-heat treated steels include bainite, martensite, and ferrite / pearlite non-heat treated steels. Of these, bainite and martensitic non-heat treated steels provide high strength but low machinability. For this reason, there is a problem that finish forming by machining is difficult, and in addition, there is a problem that "bending" is increased due to generation of a large transformation strain, which leads to an increase in cost due to a need for a step of straightening the bend. For example, bainite-type "non-heat treated steel for hot forging" proposed in Japanese Patent Application Laid-Open No. 4-176842 still has a problem in terms of machinability and bending.
[0005]
Japanese Patent Application Laid-Open No. Hei 4-210449 proposes a "non-heat-treated steel for high toughness hot forging" whose structure is mainly ferrite and bainite and partially contains pearlite. In the technique proposed in this publication, since the structure contains ferrite and pearlite, "bending" due to transformation strain is somewhat eliminated as compared with the case of bainite single phase. However, when bainite occupies a high proportion in the structure, a step of correcting "bending" due to the occurrence of transformation strain is required, and a cost increase is unavoidable.
[0006]
Further, the steels described in the above-mentioned JP-A-4-176842 and JP-A-4-210449 are those to which V, which is an expensive element, is added as an essential component. Up was inevitable.
[0007]
On the other hand, a conventional ferrite / pearlite type non-heat treated steel has a chemical composition obtained by adding V to medium carbon steel as disclosed in Japanese Patent Application Laid-Open No. 62-167855, for example. It is intended to precipitate a substance to strengthen the ferrite matrix, thereby achieving high strength and high fatigue strength. However, as described above, V is an expensive element even though it is effective in increasing the strength, and thus has a problem that an increase in cost cannot be avoided.
[0008]
[Problems to be solved by the invention]
The above-described crankshaft, connecting rod, and the like are required to have sufficient fatigue resistance. However, in some cases, high performance is not required for toughness. In other words, as a material such as a crankshaft or a connecting rod, the fatigue resistance is equivalent to that of a non-heat treated steel to which V is added, but as toughness, for example, a 2 mm U notch Charpy impact value of 10 J / cm 2 is sufficient. It may be done.
[0009]
An object of the present invention is to provide a material for engine parts and undercarriage parts of automobiles, industrial machines, civil engineering construction machines, and the like, in particular, 360 MPa equivalent to non-heat treated steel to which V is added, which is suitable as a material for connecting rods and crankshafts. It has the above fatigue strength, a yield strength (0.2% proof stress) of 480 MPa or more, a tensile strength of 800 MPa or more, a yield ratio (yield strength / tensile strength) of 0.6 or more, and a 2 mm U notch Charpy impact value of 10 J. An object of the present invention is to provide a low-cost non-heat treated steel containing no ferrite / pearlite type V / cm 2 or more.
[0010]
[Means for Solving the Problems]
The gist of the present invention is a ferrite-pearlite type non-heat treated steel shown in the following (1) and (2).
[0011]
(1) By weight%, C: 0.3 to 0.6%, Si: 0.5 to 2.0%, Mn: 1.0 to 2.0%, P: 0.05% or less, S: 0.10% or less, Cu: 0.01 to 0.5%, Ni: 0 to 0.2%, Cr: 0 to 0.5%, Mo: 0 to 0.2%, Ti: 0 to 0. 06%, Nb: 0 to 0.03%, Al: 0.01 to 0.10%, N: 0.006 to 0.03%, Pb: 0 to 0.30%, the balance being Fe and A ferrite comprising unavoidable impurities, wherein fn1 represented by the following formula (1) is 0.75 to 1.0%, where the symbol of the element in the formula is the content in terms of% by weight of the element.・ Perlite type non-heat treated steel.
[0012]
fn1 = C + 0.1Si + 0.2Mn + 0.5Cu + 0.2Cr-0.7S (1)
(2) By weight%, C: 0.3 to 0.6%, Si: 0.5 to 2.0%, Mn: 1.0 to 2.0%, P: 0.05% or less, S: 0.10% or less, Cu: 0.01 to 0.5%, Ni: 0 to 0.2%, Cr: 0 to 0.5%, W: 0 to 0.35%, and Mo (%) +0.5 W (%): 0 to 0.2%, Zr: 0 to 0.1%, and Ti (%) + 0.5 Zr (%): 0 to 0.06%, Nb: 0 to 0.03 %, Al: 0.01 to 0.10%, N: 0.006 to 0.03%, Pb: 0 to 0.30%, the balance being Fe and unavoidable impurities. A ferrite / pearlite type non-heat treated steel, wherein fn1 represented by the formula is 0.75 to 1.0%.
[0013]
Hereinafter, the above (1) and (2) are referred to as the inventions of (1) and (2), respectively.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted various studies on the chemical composition of a ferrite / pearlite type non-heat treated steel to which V is not added, and have obtained the following findings.
[0015]
(A) When about 1% by weight of Cu is contained in steel, Cu precipitates finely and strengthens the precipitation. However, if the Cu content is less than 1% by weight, the effect is hardly recognized. However, in the case where 0.5% by weight or more of Si is added to steel in combination with Cu in a content of 0.5% by weight or more, even if the content of Cu is less than 1% by weight, the effect of strengthening the precipitation of Cu is exhibited, and The yield ratio and impact value are significantly improved.
[0016]
(B) The structure of steel containing 0.3% or more of C, 0.5% or more of Si, 1.0% or more of Mn, and 0.01% or more of Cu by weight% is a ferrite-pearlite structure. At one time, the tensile strength of steel can be arranged by fn1 represented by the above formula (1). If the value of fn1 is 0.75% or more, a tensile strength of 800 MPa or more can be obtained, a fatigue strength of 360 MPa or more can be stably secured, and a yield strength of 480 MPa or more and a yield ratio of 0.6 or more. Is obtained. However, if the value of fn1 exceeds 1.0%, the toughness is greatly reduced, so that the 2 mm U notch Charpy impact value falls below 10 J / cm 2 .
[0017]
The present invention has been completed based on the above findings.
[0018]
Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the component content means “% by weight”.
[0019]
(A) Chemical composition C of steel:
C is an element effective for ensuring strength. However, if the content is less than 0.3%, the desired strength cannot be obtained in the case of a ferrite-pearlite type non-heat treated steel. On the other hand, when the content exceeds 0.6%, the volume fraction of the ferrite phase in the ferrite-pearlite structure is reduced, and the effect of ferrite strengthening is weakened, thereby reducing the fatigue strength and deteriorating the machinability due to the hard pearlite phase. And the toughness also decreases. Therefore, the content of C is set to 0.3 to 0.6%.
Si:
Si not only promotes deoxidation, but also acts as a solid solution in ferrite to strengthen the ferrite, thereby increasing static strength and fatigue strength. Further, when Si is added in combination with Cu, which will be described later, it also has an effect of promoting the precipitation strengthening effect of Cu and an effect of increasing the yield ratio and impact value. In order to sufficiently exhibit the above effects, the content of Si needs to be 0.5% or more. On the other hand, even if the content of Si exceeds 2.0%, the above effect is saturated and the cost is increased. Therefore, the content of Si is set to 0.5 to 2.0%.
[0020]
Mn:
Mn has a deoxidizing effect and an effect of increasing strength. In order to ensure the effect, a content of 1.0% or more is required. However, when Mn is contained in excess of 2.0%, the effect is not only saturated and the cost is increased, but also the hardenability becomes too high to promote the formation of a bainite structure or an island-like martensite structure and yield. The ratio and the machinability are reduced. Therefore, the content of Mn is set to 1.0 to 2.0%.
[0021]
P:
P is contained as an impurity in steel, and need not be added as an essential component. If added, it has the effect of increasing the yield strength. In order to surely obtain this effect, the content of P is preferably set to 0.005% or more. However, if the content exceeds 0.05%, the toughness is significantly reduced. Therefore, the content of P is set to 0.05% or less.
[0022]
S:
S is contained as an impurity in steel, and need not be added as an essential component. If added, it has the effect of improving machinability. To ensure this effect, the content of S is preferably set to 0.015% or more. However, when the content exceeds 0.10%, the impact value is reduced. Therefore, the content of S is set to 0.10% or less.
[0023]
Cu:
As already described, Cu has a precipitation strengthening effect even in a trace amount when added in combination with Si. However, if the content is less than 0.01%, the effect of addition is poor. On the other hand, when added in combination with Si, even if Cu is contained in an amount exceeding 0.50%, the above-described effects are saturated and not only the economic efficiency is impaired, but also the toughness is significantly reduced. Therefore, the Cu content is set to 0.01 to 0.5%. The Cu content is preferably 0.05% or more, and the lower limit of the Cu content is more preferably 0.10%.
[0024]
Ni:
Ni may not be added. Addition has the effect of increasing toughness. To ensure this effect, the content of Ni is preferably set to 0.05% or more. However, even if Ni is contained in an amount exceeding 0.2%, the above-described effect is saturated, impairing economic efficiency, and reducing machinability. Therefore, the content of Ni is set to 0 to 0.2%.
[0025]
Cr:
Cr need not be added. When added, it has the effect of generating Cr carbonitride and increasing the strength. To ensure this effect, the content of Cr is preferably set to 0.1% or more. However, if the content exceeds 0.5%, the above effect is saturated and the cost is increased. Therefore, the Cr content was set to 0 to 0.5%.
[0026]
Mo, W:
In the invention (1) of the present invention, Mo may not be added. If added, it has the effect of improving the toughness, similarly to Ni. To ensure this effect, it is preferable that the content of Mo be 0.05% or more. However, even if Mo is contained in excess of 0.2%, the above effects are saturated and the cost is increased. Therefore, in the invention of (1), the Mo content is set to 0 to 0.2%.
[0027]
Mo and W also have the effect of increasing the hardenability of steel and the effect of strengthening the crystal grain boundaries. Such an effect is surely obtained when the value of Mo (%) + 0.5 W (%) is 0.05% or more with respect to the contents of Mo and W. However, even if Mo and W are contained in an amount of more than 0.2% in the value of Mo (%) + 0.5W (%), the effect is saturated and the cost is increased. Even if the value of Mo (%) + 0.5 W (%) is 0.2% or less, if the W content exceeds 0.35%, the above-described effect is saturated and the cost increases. Therefore, in the invention of (2), W: 0 to 0.35% and Mo (%) + 0.5 W (%): 0 to 0.2%.
[0028]
Ti, Zr:
Ti and Zr may not be added. If added, it has the effect of forming carbonitrides to refine the crystal grains and increase strength and toughness.
[0029]
In the case of adding Ti alone, when the content is 0.01% or more, the above-mentioned effect is surely obtained. However, when Ti is contained in excess of 0.06%, carbonitrides are agglomerated and coarsened, the effect of refining crystal grains is lost and economic efficiency is impaired, and on the contrary, the crystal grains are coarsened and the toughness is reduced. Therefore, in the invention of (1), the Ti content is set to 0 to 0.06%.
[0030]
On the other hand, the above effects can be reliably obtained even when the value of Ti (%) + 0.5Zr (%) is 0.01% or more with respect to the contents of Ti and Zr. However, if the content of Ti and Zr exceeds 0.06% in the value of Ti (%) + 0.5Zr (%), not only does the cost increase, but also the crystal grains are rather coarsened and the toughness is reduced. Even if the value of Ti (%) + 0.5Zr (%) is 0.06% or less, if the Zr content exceeds 0.1%, the crystal grains are coarsened and the toughness is reduced. Therefore, in the invention of (2), Zr: 0 to 0.1% and Ti (%) + 0.5 Zr (%): 0 to 0.06%.
[0031]
Nb:
Nb may not be added. If added, it produces nitrides and carbonitrides and has the effect of increasing the strength. In order to ensure this effect, it is preferable that the content of Nb is 0.01% or more. However, even if the content exceeds 0.03%, the above effect is saturated,
Only the cost increases. Therefore, the content of Nb is set to 0 to 0.03%.
[0032]
Al:
Al is an element having a strong deoxidizing action. Further, Al has an effect of forming oxides or nitrides to make crystal grains fine and to increase strength and toughness. However, if the content is less than 0.01%, the effect of addition is poor. On the other hand, if it exceeds 0.10%, the machinability is reduced. Therefore, the Al content is set to 0.01 to 0.10%. Note that the Al content refers to a so-called “sol. Al (acid-soluble Al) amount”.
[0033]
N:
N has the effect of generating nitrides to refine crystal grains and increase strength and toughness. However, if the content is less than 0.006%, it is difficult to obtain the above effects. On the other hand, if the content exceeds 0.03%, the effect is not only saturated, but also causes deterioration of hot workability. Therefore, the content of N is set to 0.006 to 0.03%.
[0034]
Pb:
Pb may not be added. When added, it has the effect of enhancing machinability. To ensure this effect, it is preferable that the content of Pb is 0.05% or more. However, when the content exceeds 0.30%, the fatigue strength is remarkably reduced, and the fatigue resistance is deteriorated. Therefore, the content of Pb is set to 0 to 0.30%.
[0035]
fn1:
In the case where the structure of a steel containing 0.3% or more of C, 0.5% or more of Si, 1.0% or more of Mn, and 0.01% or more of Cu by weight% is a ferrite-pearlite structure. The tensile strength in the state of hot working can be arranged by fn1 expressed by the above-mentioned formula (1). When the value of fn1 is 0.75% or more, a tensile strength of 800 MPa or more can be obtained, a fatigue strength of 360 MPa or more can be stably secured, and a yield strength of 480 MPa or more and a yield strength of 0.6 or more. The ratio is obtained. On the other hand, if the value of fn1 exceeds 1.0%, the toughness is greatly reduced, and the 2 mm U notch Charpy impact value falls below the desired 10 J / cm 2 . Therefore, fn1 was set to 0.75 to 1.0%.
[0036]
After the steel having the above chemical composition is melted by a normal method, it is subjected to hot rolling or forging, for example, by a normal method, and is further machined as necessary to have a predetermined shape such as a connecting rod or a crankshaft. Finished into parts. The cooling after hot rolling or forging by a usual method may be performed at a cooling rate such that a ferrite-pearlite structure is formed, for example, air cooling or cooling.
[0037]
【Example】
A steel having a chemical composition shown in Tables 1 to 4 was vacuum-melted by a usual method using a test furnace in an amount of 150 kg. Steels 1 to 19 in Tables 1 and 2 are steels of the present invention, and Steels 20 to 35 in Tables 3 and 4 are comparative steels in which one of the components is out of the range specified in the present invention. Steel 35 among the comparative steels is a conventional ferrite-pearlite non-heat treated steel containing V.
[0038]
[Table 1]
[0039]
[Table 2]
[0040]
[Table 3]
[0041]
[Table 4]
[0042]
Next, these steels were made into billets by a usual method, heated to 1150 to 1200 ° C., hot forged into round bars having a diameter of 40 mm at a finishing temperature of 1000 ° C., and then air-cooled to room temperature.
[0043]
An Ono-type rotating bending fatigue test piece having a parallel part diameter of 6 mm was cut out from the center of the thus obtained round bar and subjected to a fatigue test at room temperature (room temperature) and in the atmosphere at 3000 rpm. Also, a JIS No. 4 tensile test piece and a JIS No. 3 Charby test piece (2 mm U notch Charpy test piece) were cut out from the center of the round bar, and a tensile test was performed at room temperature. Further, a test piece having a diameter of 40 mm and a thickness of 20 mm was cut out, and the structure of the central portion was observed with an optical microscope.
[0044]
Table 5 shows the test results.
[0045]
[Table 5]
[0046]
All of the steels 1 to 19 of the present invention have the same fatigue resistance as the conventional ferritic / pearlite type non-heat treated steel 35 containing V, ie, a fatigue strength of 360 MPa or more (fatigue limit). ) And the desired yield strength (0.2% proof stress) of 480 MPa or more, tensile strength of 800 MPa or more, yield ratio of 0.6 or more, and 2 mm U notch Charpy impact value of 10 J / cm 2 or more. Have been obtained.
[0047]
On the other hand, a comparative steel in which one of the components is out of the range of the content specified in the present invention has a fatigue strength, a yield strength, a tensile strength, a yield ratio of 2 mm U notch Charpy impact value, as described below. At least one has not reached the desired value.
[0048]
Steel 20 having a low C content does not have the desired tensile strength and fatigue strength.
[0049]
Steel 21 having a low Si content does not have any of the desired yield strength, tensile strength, yield ratio, and fatigue strength.
[0050]
In the steel 22 in which the amount of Mn is deviated lower, the tensile strength and the fatigue strength do not reach desired values.
[0051]
In the steel 26 in which the amount of Cu is relatively low, the yield strength, tensile strength, yield ratio, and fatigue strength have not reached desired values.
[0052]
In the steel 27 in which the amount of N comes off at a lower level, the 2 mm U notch Charpy impact value has not reached the desired value.
[0053]
In the steels 29 and 34 in which the value of fn1 is slightly lower, the tensile strength and the fatigue strength have not reached the desired values.
[0054]
The steel 31 in which the C content and the Mn content are deviated to a low level does not reach the desired values in all of the yield strength, tensile strength and fatigue strength.
[0055]
The steel 32 in which the Si content, the Mn content, the Cu content, the N content, and the fn1 are slightly lower does not have any of the desired yield strength, tensile strength, yield ratio, and fatigue strength.
[0056]
Steel 23 with a high P content, steel 24 with a high S content, steel 25 with a high Cu content, steel 28 with a high Ti content, and steel 30 with a high C content In each case, the 2 mm U notch Charpy impact value did not reach the desired value.
[0057]
The yield ratio of the steel 33 whose Mn amount is deviated to a higher value has not reached a desired value. Furthermore, since the structure is a mixed structure of ferrite, pearlite, and bainite, it is assumed that there is a problem in terms of machinability and bending.
[0058]
In addition, although the value of fn1 is lower than the specified value of the present invention, the steel 35, which is a conventional ferrite-pearlite type non-heat treated steel containing V, has desired fatigue resistance and tensile strength due to precipitation strengthening of V. It has properties of fatigue strength of 360 MPa or more, yield strength of 480 MPa or more, tensile strength of 800 MPa or more, and yield ratio of 0.6 or more. Further, the 2 mm U notch Charpy impact value has a desired value of 10 J / cm 2 or more.
[0059]
【The invention's effect】
Using the ferrite-pearlite non-heat treated steel of the present invention, fatigue strength of 360 MPa or more, yield strength of 480 MPa or more, tensile strength of 800 MPa or more, yield ratio of 0.6 or more, and 2 mm U notch charpy of 10 J / cm 2 or more. Since the impact value can be easily obtained, it can be used as a material for engine parts and undercarriage parts of automobiles, industrial machines, civil engineering construction machines, etc., and particularly as a material for connecting rods and crankshafts. Moreover, the steel of the present invention does not contain V, which is an expensive element, so that the cost is low and the effect is large.
Claims (2)
但し、▲1▼式中の元素記号はその元素の重量%での含有量を表す。By weight%, C: 0.3 to 0.6%, Si: 0.5 to 2.0%, Mn: 1.0 to 2.0%, P: 0.05% or less, S: 0.10 % Or less, Cu: 0.01 to 0.5%, Ni: 0 to 0.2%, Cr: 0 to 0.5%, Mo: 0 to 0.2%, Ti: 0 to 0.06%, Nb: 0 to 0.03%, Al: 0.01 to 0.10%, N: 0.006 to 0.03%, Pb: 0 to 0.30%, with the balance being Fe and unavoidable impurities And fn1 represented by the following formula (1) is 0.75 to 1.0%. Here, fn1 = C + 0.1Si + 0.2Mn + 0.5Cu + 0.2Cr-0.7S (1)
However, the symbol of the element in the formula (1) indicates the content of the element in weight%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30413397A JP3543581B2 (en) | 1996-12-20 | 1997-11-06 | Ferrite / pearlite non-heat treated steel |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-340724 | 1996-12-20 | ||
JP34072496 | 1996-12-20 | ||
JP30413397A JP3543581B2 (en) | 1996-12-20 | 1997-11-06 | Ferrite / pearlite non-heat treated steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10237587A JPH10237587A (en) | 1998-09-08 |
JP3543581B2 true JP3543581B2 (en) | 2004-07-14 |
Family
ID=26563794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30413397A Expired - Lifetime JP3543581B2 (en) | 1996-12-20 | 1997-11-06 | Ferrite / pearlite non-heat treated steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3543581B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602005016522D1 (en) * | 2005-03-09 | 2009-10-22 | Ovako Bar Oy Ab | High-strength air-cooled steel and resulting thermoformed product. |
JP5482342B2 (en) * | 2010-03-18 | 2014-05-07 | 新日鐵住金株式会社 | Hot rolled steel for direct cutting and method for producing the same |
CN109972042B (en) * | 2019-04-17 | 2020-11-20 | 北京科技大学 | Low-temperature-resistant corrosion-resistant H-shaped steel with yield strength of 800MPa and preparation method thereof |
-
1997
- 1997-11-06 JP JP30413397A patent/JP3543581B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10237587A (en) | 1998-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3139876B2 (en) | Method of manufacturing non-heat treated steel for hot forging and non-heat treated hot forged product, and non-heat treated hot forged product | |
JP5655366B2 (en) | Bainite steel | |
JP2003147478A (en) | Non-heattreated steel | |
JP3468031B2 (en) | Martensite-bainite hot forged part and method of manufacturing the same | |
JP3100492B2 (en) | Manufacturing method of high fatigue strength hot forgings | |
JPH0772323B2 (en) | Non-heat treated steel bar for hot forging | |
JP2003055714A (en) | Non-heat treated steel forged workpiece, production method therefor and connecting rod parts for internal combustion engine obtained by using the same | |
JPH0925539A (en) | Free cutting non-heat treated steel excellent in strength and toughness | |
JP3677972B2 (en) | Method for producing steel material for cold forging containing boron | |
JPH1129842A (en) | Ferrite-pearlite type non-heat treated steel | |
JP3543581B2 (en) | Ferrite / pearlite non-heat treated steel | |
JP3069256B2 (en) | Nitriding steel with excellent toughness | |
JPH09310146A (en) | Production of non-heat treated steel for high strength connecting rod and high strength connecting rod | |
JP3900690B2 (en) | Age-hardening high-strength bainitic steel and method for producing the same | |
JPH09194999A (en) | Ferrite-pearlite-type non-heat treated steel | |
JP3890724B2 (en) | Ferritic / pearlite non-heat treated steel with excellent machinability | |
JP2950702B2 (en) | Non-heat treated steel for high strength hot forging | |
JP2735161B2 (en) | High-strength, high-toughness non-heat treated steel for hot forging | |
JPH0797657A (en) | Air cooled type martensitic non-heattreated steel with high toughness for hot forging | |
JPH10265891A (en) | Ferrite/pearlite type non-heat treated steel | |
JP3419333B2 (en) | Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same | |
JP3999915B2 (en) | ERW steel pipe for cold forging with excellent workability and its manufacturing method | |
JPH09202921A (en) | Production of wire for cold forging | |
JP3584726B2 (en) | High strength non-heat treated steel | |
JP3059318B2 (en) | Manufacturing method of high fatigue strength hot forgings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040329 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080416 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100416 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110416 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120416 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120416 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140416 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |