JP3320958B2 - Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same - Google Patents

Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Info

Publication number
JP3320958B2
JP3320958B2 JP25225795A JP25225795A JP3320958B2 JP 3320958 B2 JP3320958 B2 JP 3320958B2 JP 25225795 A JP25225795 A JP 25225795A JP 25225795 A JP25225795 A JP 25225795A JP 3320958 B2 JP3320958 B2 JP 3320958B2
Authority
JP
Japan
Prior art keywords
less
machinability
steel
resistance
bainite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25225795A
Other languages
Japanese (ja)
Other versions
JPH0987801A (en
Inventor
明博 松崎
充実 河崎
俊幸 星野
靖浩 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP25225795A priority Critical patent/JP3320958B2/en
Publication of JPH0987801A publication Critical patent/JPH0987801A/en
Application granted granted Critical
Publication of JP3320958B2 publication Critical patent/JP3320958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被削性および耐焼
割れ性に優れた機械構造用鋼に関し、特に高周波焼入れ
焼もどし後のねじり強度が1100MPa 以上を有し、自動車
用ドライブシャフト、等速ジョイント等に適用して好適
な機械構造用鋼材およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel for machine structural use having excellent machinability and resistance to quenching cracking, and more particularly to a drive shaft for automobiles having a torsional strength of 1100 MPa or more after induction hardening and tempering. The present invention relates to a steel material for machine structure suitable for application to a joint or the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、自動車用ドライブシャフトや等速
ジョイント等の機械構造用部材は、熱間圧延棒鋼に熱間
鍛造、あるいはさらに焼きならし処理を施し、冷間切
削、冷間鍛造等により所定の形状に加工したのち、高周
波焼入れ焼もどしを行い、機械構造用部材としての重要
な特性であるねじり強度を確保しているのが一般的であ
る。
2. Description of the Related Art Conventionally, members for mechanical structures such as drive shafts and constant velocity joints for automobiles are subjected to hot forging or further normalizing hot-rolled steel bars, and are subjected to cold cutting, cold forging, etc. In general, after processing into a predetermined shape, induction hardening and tempering are performed to secure torsional strength, which is an important property as a member for a machine structure.

【0003】他方、近年環境問題から自動車部材に対し
て部品の軽量化の要求が強く、この点から自動車用部材
のねじり強度の上昇が要求されている。ねじり強度を上
昇させるためには、高周波焼入れによる焼入れ硬化深さ
の増加が考えられている。しかし、焼入れ硬化深さを増
加させるためには、高周波焼入れ条件の変更あるいは鋼
材の合金元素量を増加させることが考えられるが、いず
れも経済的に問題がある。
On the other hand, in recent years, there has been a strong demand for weight reduction of parts for automobile parts due to environmental problems, and from this point, an increase in torsional strength of automobile parts has been required. In order to increase the torsional strength, it has been considered to increase the quench hardening depth by induction hardening. However, in order to increase the quench hardening depth, it is conceivable to change the induction hardening conditions or to increase the amount of alloying elements in the steel material, but both have economic problems.

【0004】特開平4−218641号公報には、自動車用部
材のねじり強度と被削性、耐焼割れ性を同時に満足でき
るように合金元素量を限定する技術が提案されている。
しかしながら、化学組成のみの限定では被削性、耐焼割
れ性とねじり強度を同時に満足する化学組成の範囲は狭
く、また品質レベルも問題を残していた。
Japanese Patent Application Laid-Open No. Hei 4-218641 proposes a technique for limiting the amount of alloying elements so as to simultaneously satisfy the torsional strength, machinability and resistance to burn-out cracking of automotive members.
However, if only the chemical composition is limited, the range of the chemical composition that simultaneously satisfies the machinability, the resistance to quenching cracking and the torsional strength is narrow, and the quality level still has a problem.

【0005】[0005]

【発明が解決しようとする課題】本発明は、自動車用部
材に用いられ、高周波焼入れ焼もどし後のねじり強度が
1100MPa 以上を有し、かつ被削性および耐焼割れ性を同
時に満足する機械構造用鋼材を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention is used for automobile parts, and has a high torsional strength after induction hardening and tempering.
An object of the present invention is to provide a steel material for a machine structure which has a hardness of 1100 MPa or more and simultaneously satisfies machinability and resistance to fire cracking.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討した結果、高周波焼入れ焼もど
し後の芯部(非硬化部)の強度を上げることがねじり強
度を上昇させることに極めて有利である点に着目した。
従来、鋼においては熱間圧延あるいは鍛造又は焼ならし
後の組織は、フェライト+パーライトであった。そこで
芯部の強度を上げるために芯部の組織をフェライト+ベ
イナイトあるいはフェライト+パーライト+ベイナイト
とすることに思い至った。一方、被削性は一般に硬さの
他にミクロ組織が影響することは知られていたが、本発
明者らはベイナイト相をわずかに含ませることにより、
被削性が顕著に向上することを見い出し、本発明を構成
したのである。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, increasing the strength of the core (uncured portion) after induction hardening and tempering increases the torsional strength. We noticed that it was extremely advantageous.
Conventionally, in steel, the structure after hot rolling, forging or normalizing was ferrite + pearlite. Then, in order to increase the strength of the core, he came to think that the structure of the core was ferrite + bainite or ferrite + pearlite + bainite. On the other hand, it was known that the machinability generally depends on the microstructure in addition to the hardness, but the present inventors have found that by slightly including the bainite phase,
The present inventors have found that the machinability is significantly improved, and constituted the present invention.

【0007】すなわち、本発明の第1の発明は、mass%
で、C:0.25%以上0.35%未満、Si:0.05%以下、Mn:
0.65%以上1.70%以下、P:0.020 %以下、S:0.005
%以上0.030 %以下、Cr:0.15%以下、Mo:0.05%以上
0.50%以下、Ti:0.01%以上0.05%以下、Al:0.01%以
上0.05%以下、N:0.01%以下、B:0.0005%以上0.00
50%以下を含有し、残部Feおよび不可避的不純物からな
り、かつベイナイトを面積率で5〜30%含む組織からな
ることを特徴とする被削性および耐焼割れ性に優れた機
械構造用鋼材である。
That is, the first invention of the present invention provides a
And C: 0.25% or more and less than 0.35%, Si: 0.05% or less, Mn:
0.65% or more and 1.70% or less, P: 0.020% or less, S: 0.005
% To 0.030%, Cr: 0.15% or less, Mo: 0.05% or more
0.50% or less, Ti: 0.01% or more and 0.05% or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less, B: 0.0005% or more and 0.00
A steel material for machine structural use with excellent machinability and resistance to fire cracking characterized by containing 50% or less, the balance being Fe and unavoidable impurities, and having a structure containing bainite in an area ratio of 5 to 30%. is there.

【0008】また、本発明の第2の発明は、mass%で、
C:0.25%以上0.35%未満、Si:0.05%以下、Mn:0.65
%以上1.70%以下、P:0.020 %以下、S:0.005 %以
上0.030 %以下、Cr:0.15%以下、Mo:0.05%以上0.50
%以下、Ti:0.01%以上0.05%以下、Al:0.01%以上0.
05%以下、N:0.01%以下、B:0.0005%以上0.0050%
以下を含有し、さらにCu:1.0 %以下、Ni:3.5 %以
下、V:0.01%以上0.30%以下、Nb:0.005 %以上0.05
0 %以下のうちから選んだ1種又は2種以上を含有し、
残部Feおよび不可避的不純物からなり、かつベイナイト
を面積率で5〜30%含む組織からなることを特徴とする
被削性および耐焼割れ性に優れた機械構造用鋼材であ
る。
[0008] The second invention of the present invention provides a method of
C: 0.25% or more and less than 0.35%, Si: 0.05% or less, Mn: 0.65
% To 1.70%, P: 0.020% or less, S: 0.005% to 0.030%, Cr: 0.15% or less, Mo: 0.05% to 0.50
%, Ti: 0.01% to 0.05%, Al: 0.01% to 0.
05% or less, N: 0.01% or less, B: 0.0005% or more and 0.0050%
Cu: 1.0% or less, Ni: 3.5% or less, V: 0.01% to 0.30%, Nb: 0.005% to 0.05
Contains one or more selected from 0% or less,
A steel for machine structural use having excellent machinability and resistance to fire cracking, characterized by having a balance of Fe and inevitable impurities and a structure containing bainite in an area ratio of 5 to 30%.

【0009】また、本発明の第3の発明は、mass%で、
C:0.25%以上0.35%未満、Si:0.05%以下、Mn:0.65
%以上1.70%以下、P:0.020 %以下、S:0.005 %以
上0.030 %以下、Cr:0.15%以下、Mo:0.05%以上0.50
%以下、Ti:0.01%以上0.05%以下、Al:0.01%以上0.
05%以下、N:0.01%以下、B:0.0005%以上0.0050%
以下を含有し、残部Feおよび不可避的不純物からなる鋼
素材を熱間圧延および/または熱間鍛造により所定の形
状に熱間加工し、熱間加工終了後あるいは中間処理加熱
後 0.2〜2.0 ℃/sec の冷却速度で冷却することによ
り、ベイナイトを面積率で5〜30%含む組織とすること
を特徴とする被削性および耐焼割れ性に優れた機械構造
用鋼材の製造方法である。
[0009] The third invention of the present invention provides a method of
C: 0.25% or more and less than 0.35%, Si: 0.05% or less, Mn: 0.65
% To 1.70%, P: 0.020% or less, S: 0.005% to 0.030%, Cr: 0.15% or less, Mo: 0.05% to 0.50
%, Ti: 0.01% to 0.05%, Al: 0.01% to 0.
05% or less, N: 0.01% or less, B: 0.0005% or more and 0.0050%
A steel material containing the following, the balance being Fe and unavoidable impurities, is hot-worked into a predetermined shape by hot rolling and / or hot forging, and after the completion of the hot working or after an intermediate treatment heating, 0.2 to 2.0 ° C / A method for producing a steel material for machine structural use having excellent machinability and resistance to quenching cracking, characterized by having a structure containing bainite in an area ratio of 5 to 30% by cooling at a cooling rate of sec.

【0010】また、本発明の第4の発明は、前記鋼素材
が、mass%で、C:0.25%以上0.35%未満、Si:0.05%
以下、Mn:0.65%以上1.70%以下、P:0.020 %以下、
S:0.005 %以上0.030 %以下、Cr:0.15%以下、Mo:
0.05%以上0.50%以下、Ti:0.01%以上0.05%以下、A
l:0.01%以上0.05%以下、N:0.01%以下、B:0.000
5%以上0.0050%以下を含有し、さらにCu:1.0 %以
下、Ni:3.5 %以下、V:0.01%以上0.30%以下、Nb:
0.005 %以上0.050 %以下のうちから選んだ1種又は2
種以上を含有し、残部Feおよび不可避的不純物からなる
鋼素材であることを特徴とする請求項3記載の被削性お
よび耐焼割れ性に優れた機械構造用鋼材の製造方法であ
る。
[0010] In a fourth aspect of the present invention, the steel material has a mass% of C: 0.25% or more and less than 0.35%, Si: 0.05%
Mn: 0.65% or more and 1.70% or less, P: 0.020% or less,
S: 0.005% or more and 0.030% or less, Cr: 0.15% or less, Mo:
0.05% or more and 0.50% or less, Ti: 0.01% or more and 0.05% or less, A
l: 0.01% or more and 0.05% or less, N: 0.01% or less, B: 0.000
5% to 0.0050%, Cu: 1.0% or less, Ni: 3.5% or less, V: 0.01% to 0.30%, Nb:
One or two selected from 0.005% or more and 0.050% or less
4. The method for producing a steel material for machine structural use according to claim 3, which is a steel material containing at least one seed and the balance being Fe and unavoidable impurities.

【0011】[0011]

【発明の実施の形態】本発明鋼材は、高周波焼入れ焼も
どし後のねじり強度が1100MPa 以上で、被削性として工
具寿命が5000mm以上、焼割れ発生率が10%未満を満足す
るものである。以下、本発明について詳しく述べる。ま
ず、組成の限定理由について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The steel material of the present invention satisfies a torsional strength of 1100 MPa or more after induction hardening and tempering, a tool life of 5000 mm or more as a machinability, and a rate of occurrence of quenching cracking of less than 10%. Hereinafter, the present invention will be described in detail. First, the reasons for limiting the composition will be described.

【0012】C:0.25%以上0.35%未満 Cは高周波焼入れ性への影響が最も大きい元素であり、
焼入れ硬化層の硬さおよび深さを高めて、ねじり強度を
高周波焼入れ焼もどし後に1100MPa 以上を確保するのに
有用である。その効果を得るためには少なくとも0.25%
以上必要である。一方、0.35%以上添加すると被削性が
低下し、耐焼割れ性も低下する。したがってC量は0.25
%以上0.35%未満とする。
C: 0.25% or more and less than 0.35% C is an element that has the greatest effect on induction hardening.
It is useful for increasing the hardness and depth of the quenched hardened layer to secure the torsional strength of 1100 MPa or more after induction hardening and tempering. At least 0.25% to achieve that effect
It is necessary. On the other hand, when 0.35% or more is added, the machinability is reduced and the resistance to fire cracking is also reduced. Therefore, the amount of C is 0.25
% To less than 0.35%.

【0013】Si:0.05%以下 Siはフェライトに固溶し、強化する元素であり、本発明
では可能な限り低減する。フェライトの軟化のために許
容できる上限は0.05%であり、Siは0.05%以下とする。
Siを低減することによりフェライト相は軟化し被削性が
向上する。さらに第2相のベイナイト相による被削性向
上効果は、第1相のフェライト相が十分に軟質な時にそ
の効果が発揮される。
Si: 0.05% or less Si is an element which forms a solid solution in ferrite and strengthens it, and is reduced as much as possible in the present invention. The allowable upper limit for the softening of ferrite is 0.05%, and the content of Si is 0.05% or less.
By reducing Si, the ferrite phase softens and machinability improves. Further, the effect of improving the machinability by the bainite phase of the second phase is exhibited when the ferrite phase of the first phase is sufficiently soft.

【0014】Mn:0.65%以上1.70%以下 Mnは焼入れ性の向上に有用な元素であり、同時に鋼中の
Sを固定して熱間脆性を防止する元素である。その効果
を得るためには少なくとも0.65%以上必要だが、1.70%
を超えて添加すると、パーライト分率が増加し被削性が
低下する。したがってMn量は0.65%以上1.70%以下とす
る。好ましくは0.65〜1.3 %である。
Mn: 0.65% or more and 1.70% or less Mn is an element useful for improving the hardenability, and at the same time, an element which fixes S in steel and prevents hot brittleness. At least 0.65% is required to achieve the effect, but 1.70%
If added in excess of, the pearlite fraction increases and the machinability decreases. Therefore, the Mn content is set to 0.65% or more and 1.70% or less. Preferably it is 0.65 to 1.3%.

【0015】P: 0.020%以下 Pは焼入れ時のオーステナイト粒界に偏析して焼割れ性
を助長する。したがってその含有量は極力低下させるべ
きであり、上限は0.020 %とする。 S: 0.005%以上 0.030%以下 Sは鋼中でMnS を形成し被削性を向上させる。そのため
には0.005 %以上が必要である。一方、MnS は亀裂の起
点となりやすく、強度、靱性の低下を招くため、Sの上
限は 0.030%とする。
P: not more than 0.020% P segregates at austenite grain boundaries during quenching and promotes quenching cracking. Therefore, its content should be reduced as much as possible, and the upper limit is made 0.020%. S: 0.005% or more and 0.030% or less S forms MnS in steel and improves machinability. For that purpose, 0.005% or more is required. On the other hand, since MnS tends to be a starting point of cracks and causes a decrease in strength and toughness, the upper limit of S is set to 0.030%.

【0016】Cr:0.15%以下 Crは、パーライトラメラーの層状化を促進し被削性を低
下させる有害な元素である。さらにCrは高周波焼入れ前
の加熱時にセメンタイト中に濃縮しこれを安定化させ、
高周波焼入れ前の加熱でもオーステナイトに固溶しない
残留炭化物を形成し、これが疲労亀裂、とくにねじり疲
労亀裂の起点となり疲労強度を低下させるので、その含
有量は極力低下させるべきであるが、0.15%まで許容で
きる。Cr含有量は0.15%以下を上限としたが、望ましく
は0.05%以下の範囲とする。
Cr: 0.15% or less Cr is a harmful element that promotes layering of pearlite lamellar and reduces machinability. Furthermore, Cr concentrates in cementite during heating before induction hardening and stabilizes it,
Even after heating before induction hardening, residual carbides that do not form a solid solution in austenite are formed, which become the starting point of fatigue cracks, especially torsional fatigue cracks, and reduce the fatigue strength. acceptable. Although the upper limit of the Cr content is 0.15% or less, it is desirably in the range of 0.05% or less.

【0017】Mo:0.05%以上0.50%以下 Moは焼入れ性向上に有用であるばかりでなく、ベイナイ
トの生成を促進し被削性を向上させる。そのためには0.
05%以上必要である。一方、過剰な添加は硬質なベイナ
イトが多量に生成し被削性を低下させるので、上限は0.
50%とする。ベイナイト生成のためには0.05〜0.25%が
好適である。
Mo: 0.05% or more and 0.50% or less Mo is not only useful for improving hardenability, but also promotes formation of bainite and improves machinability. 0 for that.
05% or more is required. On the other hand, excessive addition causes a large amount of hard bainite to be generated and reduces machinability, so the upper limit is 0.
50%. For the formation of bainite, 0.05 to 0.25% is suitable.

【0018】Ti:0.01%以上0.05%以下 TiはNと結合し窒化物を形成し、焼入れ性向上に有用な
フリーBを確保するのに必要である。そのためには0.01
%以上必要である。一方、過剰に添加すると靱性を阻害
するため上限は0.05%とする。N含有量との関係で通常
の溶製法であれば、Tiは0.01〜0.03%が好適である。
Ti: 0.01% or more and 0.05% or less Ti combines with N to form a nitride and is necessary to secure free B useful for improving hardenability. For that, 0.01
% Is required. On the other hand, if added in excess, the toughness is impaired, so the upper limit is made 0.05%. In the case of a normal melting method in relation to the N content, 0.01 to 0.03% of Ti is suitable.

【0019】Al:0.01%以上0.05%以下 Alは強力な脱酸元素であり、鋼中のO低減のために必須
である。添加量としては、0.01%以上の添加が必要であ
るが、0.05%を超えて添加すると巨大なアルミナを形成
するため、これが疲労破壊の起点となり疲労強度を低下
させるので、Alは0.05%を上限とする。
Al: 0.01% or more and 0.05% or less Al is a strong deoxidizing element and is essential for reducing O in steel. The addition amount must be 0.01% or more, but if added over 0.05%, huge alumina is formed. This becomes the starting point of fatigue fracture and lowers the fatigue strength. Therefore, the upper limit of Al is 0.05%. And

【0020】N:0.01%以下 NはTiと結合しTiN を形成し、高周波加熱時のオーステ
ナイト粒径を細粒化することにより疲労強度を向上させ
るのに有用である。しかし0.01%を超えると粗大なTiN
を形成し疲労強度を低下させるとともに、BNを形成し焼
入れ性に有効なフリーB量を低下させる。したがって上
限は0.01%とした。オーステナイト粒細粒化のために
は、Ti量との関係で0.0040〜0.0080%が好適である。
N: 0.01% or less N combines with Ti to form TiN, and is useful for improving fatigue strength by reducing the austenite grain size during high-frequency heating. However, over 0.01%, coarse TiN
Not only reduces the fatigue strength but also forms BN to reduce the free B amount effective for hardenability. Therefore, the upper limit was set to 0.01%. For austenite grain refinement, 0.0040 to 0.0080% is preferable in relation to the amount of Ti.

【0021】B:0.0005%以上0.0050%以下 Bは、焼入れ性を高め高周波焼入れ時の焼入れ深さを高
めることによりねじり強度を高める。そのためには0.00
05%以上の添加が必要であるが、0.0050%を超えると靱
性を低下させるため上限は0.0050%とした。 Cu: 1.0%以下 Cuは焼入れ性向上および被削性向上に有用な元素であ
る。しかし 1.0%を超えて添加すると熱間脆性を引き起
こすので、Cu含有量は 1.0%を上限とする。なお、好ま
しい含有量は 0.4〜1.0 %である。
B: 0.0005% or more and 0.0050% or less B enhances the hardenability and increases the quenching depth during induction hardening to increase the torsional strength. For that, 0.00
Addition of at least 05% is necessary, but if it exceeds 0.0050%, the toughness is reduced, so the upper limit was made 0.0050%. Cu: 1.0% or less Cu is an element useful for improving hardenability and machinability. However, if added in excess of 1.0%, hot embrittlement occurs, so the upper limit of the Cu content is 1.0%. The preferred content is 0.4 to 1.0%.

【0022】Ni: 3.5%以下 Niは焼入れ性向上に有用な元素である。しかし 3.5%を
超えて添加すると被削性を低下させるので、Niの含有量
は 3.5%以下とする。なお、好ましい含有量は0.5〜2.0
%である。 V:0.01%以上0.30%以下 Vは炭窒化物を形成し、オーステナイト粒を微細化させ
て強度向上に寄与する。そのためには0.01%以上が必要
である。一方、過剰に添加すると粗大な析出物を形成し
靱性を阻害するため上限は0.30%とする。
Ni: 3.5% or less Ni is an element useful for improving hardenability. However, if added in excess of 3.5%, the machinability decreases, so the Ni content should be 3.5% or less. The preferred content is 0.5 to 2.0
%. V: 0.01% or more and 0.30% or less V forms carbonitrides, refines austenite grains, and contributes to improvement in strength. For that purpose, 0.01% or more is required. On the other hand, if added in excess, coarse precipitates are formed and the toughness is impaired, so the upper limit is made 0.30%.

【0023】Nb: 0.005%以上0.050 %以下 Nbは炭窒化物を形成し、オーステナイト粒を微細化させ
て疲労強度向上に寄与する。そのためには 0.005%以上
が必要である。一方、過剰に添加すると粗大な析出物を
形成し靱性を阻害するため上限は 0.050%とする。次
に、組織の限定について説明する。
Nb: 0.005% or more and 0.050% or less Nb forms carbonitrides, refines austenite grains, and contributes to improvement in fatigue strength. For that purpose, 0.005% or more is required. On the other hand, if added in excess, coarse precipitates are formed and the toughness is impaired, so the upper limit is made 0.050%. Next, the limitation of the organization will be described.

【0024】ベイナイトは面積率で5〜30%含有するこ
とが必要である。本発明では熱間圧延あるいは鍛造後ま
たは焼ならし後の組織をベイナイト+フェライト、フェ
ライト+パーライ+ベイナイトとする。ベイナイト相の
存在により被削性が飛躍的に増大する。この理由につい
て、本発明者らは次のように考えている。切削時の切屑
は剪断において発生したボイドの拡大、連結により母材
から分離して形成される。そしてボイドの発生はフェラ
イト・パーライト鋼においては、フェライトとパーライ
トの界面や、パーライト中のフェライトとセメンタイト
との界面で起こる。しかしながら、パーライト地中のセ
メンタイトはラメラー状に規則的に配列しているためそ
の効果が小さいのに対して、ベイナイト相はパーライト
相に比べて炭化物が不揃いになって、炭化物とフェライ
ト相の界面が切削時のボイド発生サイトとして最も有効
に作用するため、鋼中にベイナイト相が存在する場合に
は被削性が飛躍的に向上するのである。被削性に効果を
及ぼすためには、ベイナイトは面積率で5%以上の存在
が必要である。しかし30%を超えると硬さの上昇が大き
く、被削性はかえって低下するため、ベイナイトの比率
は面積率で5〜30%の範囲とする。
It is necessary that bainite be contained in an area ratio of 5 to 30%. In the present invention, the structure after hot rolling, forging or normalizing is defined as bainite + ferrite or ferrite + pearlite + bainite. The machinability dramatically increases due to the presence of the bainite phase. For this reason, the present inventors consider as follows. Chips during cutting are formed separately from the base material by expansion and connection of voids generated in shearing. In a ferrite-pearlite steel, voids occur at the interface between ferrite and pearlite or at the interface between ferrite and cementite in pearlite. However, cementite in the ground of pearlite has a small effect because it is regularly arranged in a lamellar shape, whereas the bainite phase has more irregular carbides than the pearlite phase, and the interface between the carbide and the ferrite phase is poor. Since it acts most effectively as a void generation site during cutting, machinability is dramatically improved when a bainite phase is present in steel. In order to exert an effect on machinability, bainite must be present in an area ratio of 5% or more. However, if it exceeds 30%, the hardness increases greatly, and the machinability is rather reduced. Therefore, the bainite ratio is set in the range of 5 to 30% in area ratio.

【0025】本発明鋼材の溶製方法は、常法にしたがっ
て製造すればよく特に限定しない。溶製方法は、転炉あ
るいは電気炉で溶製し、RH脱ガス等の真空脱ガス、取
鍋での精錬などを付加してもよい。溶鋼は連続鋳造法あ
るいは造塊法で凝固させ、凝固させた後、熱間圧延ある
いは熱間・温間鍛造を経て所定形状の素材とする。これ
ら素材は、必要により焼ならし、球状化焼鈍、軟化焼鈍
などの中間熱処理を施され、切削、鍛造、転造などの冷
間加工により所望の形状に仕上げられる。
The method for producing the steel material of the present invention is not particularly limited as long as it is produced according to a conventional method. As the smelting method, smelting may be performed in a converter or an electric furnace, and vacuum degassing such as RH degassing, refining in a ladle, or the like may be added. The molten steel is solidified by a continuous casting method or an ingot casting method, solidified, and then subjected to hot rolling or hot / warm forging to obtain a material having a predetermined shape. These materials are subjected to an intermediate heat treatment such as normalizing, spheroidizing annealing, softening annealing and the like as required, and finished to a desired shape by cold working such as cutting, forging, and rolling.

【0026】本発明では、熱間圧延あるいは熱間鍛造後
または焼ならし等のオーステナイト化後の冷却は、鋼材
の組織を所定のベイナイト量とするため、 0.2℃/sec
〜2.0 ℃/sec 範囲の冷却速度とする。特に太径の棒鋼
では冷却を調整した加速冷却を行うのが好適である。こ
の冷却条件の範囲を下回ると、ベイナイト相の形成が少
なく、またこれら冷却速度より速いと硬化相が出現し被
削性が低下する。
In the present invention, the cooling after austenitization such as after hot rolling or hot forging or normalizing is performed at a rate of 0.2 ° C./sec in order to make the structure of the steel material a predetermined amount of bainite.
Cooling rate within the range of ~ 2.0 ° C / sec. In particular, in the case of a large-diameter steel bar, it is preferable to perform accelerated cooling with cooling adjusted. Below the range of the cooling conditions, formation of the bainite phase is small, and if the cooling rate is higher than this, a hardened phase appears and the machinability is reduced.

【0027】[0027]

【実施例】【Example】

(実施例1)表1に示す化学組成の鋼を、転炉で溶製
し、連続鋳造により 400×540mm のブルームにした後、
熱間圧延により 150mm角ビレットとした。このビレット
を1030℃に加熱後、熱間圧延により25mmφの直棒とし
た。圧延後、空冷( 0.7℃/min)とした。冷却後の直
棒の組織中ベイナイト相の比率を表2に示す。この直棒
を用いて、下記に示す試験を実施し、その結果を表2に
示す。
(Example 1) A steel having a chemical composition shown in Table 1 was melted in a converter and turned into a 400 × 540 mm bloom by continuous casting.
It was made into a 150 mm square billet by hot rolling. The billet was heated to 1030 ° C., and then hot-rolled into a straight bar having a diameter of 25 mm. After rolling, it was cooled by air (0.7 ° C./min). Table 2 shows the ratio of the bainite phase in the structure of the straight rod after cooling. The following tests were performed using this straight rod, and the results are shown in Table 2.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】(1)被削性試験 この直棒から被削性試験片を採取した。被削性試験は、
SKH4、4mmφのドリルを用いて、1500rpm の条件で
12mm長さの穿孔を行い、切削不能になるまでの総穴明け
長さ(mm)を工具寿命として求め評価した。 (2)ねじり強さ試験 直棒から平行部20mmφの平滑丸棒ねじり試験片を作製
し、これに周波数15kHzの高周波焼入れ装置を用いて焼
入れし、 170℃×30分の焼もどし処理を施しねじり試験
を行った。高周波焼入れ焼もどし後の焼入れ深さは3mm
とした。ねじり試験は、500kgf・mのねじり試験機を用
いて、最大ねじり剪断強度を求めねじり強度とした。
(1) Machinability test A machinability test piece was taken from this straight bar. The machinability test is
SKH4, using a 4mmφ drill at 1500rpm
A 12 mm long hole was drilled, and the total drilling length (mm) until cutting became impossible was determined as the tool life and evaluated. (2) Torsion strength test A smooth round bar torsion test piece with a parallel portion of 20 mmφ was prepared from a straight bar, quenched using a 15 kHz frequency induction hardening device, and tempered at 170 ° C for 30 minutes. The test was performed. The quenching depth after induction hardening and tempering is 3mm
And In the torsion test, the maximum torsional shear strength was determined using a torsional tester of 500 kgf · m and defined as the torsional strength.

【0031】(3)焼割れ性試験 耐焼割れ性は、上記の25mmφの直棒から、表面に軸方向
のV字溝を付けた丸棒(20mmφ)を加工し、(2)と同
様の高周波焼入れを行った後に、丸棒のC断面10箇所を
研磨観察し、その割れの発生個数で評価した。鋼1、
2、3、4、11、12は本発明例である。比較例の鋼5、
6、7、8、10に比べ、ベイナイト相の比率が本発明範
囲内となることにより被削性が高いことがわかる。比較
例の鋼8は本発明範囲に比べC量が高く、ねじり強度の
改善が著しくなく、しかも耐焼割れ性が劣化し、被削性
も低下している。C量が低い比較例、鋼9は、ねじり強
度が著しく低下している。Si量が高い鋼10は、ベイナイ
ト相の比率には変化ないものの、被削性が低下してい
る。
(3) Burning cracking test Burning cracking resistance was determined by processing a round bar (20 mmφ) with a V-shaped groove in the surface from the above-mentioned 25 mmφ straight bar. After quenching, 10 rounds of the C section of the round bar were polished and observed, and the number of cracks generated was evaluated. Steel 1,
2, 3, 4, 11, and 12 are examples of the present invention. Comparative Example Steel 5,
It can be seen that the machinability is higher when the ratio of the bainite phase is within the range of the present invention as compared with 6, 7, 8, and 10. The steel 8 of the comparative example has a higher carbon content than the range of the present invention, has no remarkable improvement in torsional strength, and has a reduced resistance to sintering cracking and reduced machinability. In the comparative example, steel 9 having a low C content, the torsional strength is significantly reduced. Steel 10 with a high Si content does not change the ratio of the bainite phase, but has reduced machinability.

【0032】(実施例2)表3に示す化学組成の鋼を、
転炉で溶製し、 400×540mm のブルームにした後、熱間
圧延により25mmφの丸棒とした。熱間圧延終了後 1.4〜
3.0 ℃/sec の加速冷却を行い素材とした。これらの素
材を用い、実施例1と同様の試験を実施し、その結果を
表4に示す。
(Example 2) Steel having the chemical composition shown in Table 3 was
After being melted in a converter to form a bloom of 400 × 540 mm, a 25 mmφ round bar was formed by hot rolling. After hot rolling 1.4 ~
The material was cooled at an accelerated rate of 3.0 ° C / sec. Using these materials, the same tests as in Example 1 were performed, and the results are shown in Table 4.

【0033】この結果から、組成を本発明範囲とするこ
とで、被削性、ねじり強度、耐焼割れ性も優れている。
圧延後の冷却条件によってベイナイト相比率が変化する
が、本発明範囲外のベイナイト量では被削性が劣る。
From these results, by setting the composition within the range of the present invention, the machinability, the torsional strength, and the resistance to fire cracking are also excellent.
Although the bainite phase ratio changes depending on the cooling conditions after rolling, the machinability is inferior with a bainite amount outside the range of the present invention.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【発明の効果】本発明によれば、高周波焼入れ焼もどし
後のねじり強度も高く、しかも被削性と耐焼割れ性を同
時に兼ね備えた鋼材が得られ、産業上の利用価値は大で
ある。
According to the present invention, a steel material having high torsional strength after induction hardening and tempering and having both machinability and resistance to quenching cracking at the same time is obtained, and its industrial value is great.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大森 靖浩 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (56)参考文献 特開 平8−232043(JP,A) 特開 平8−127844(JP,A) 特開 平6−340924(JP,A) 特開 平5−209223(JP,A) 特開 平4−318146(JP,A) 特開 平4−218641(JP,A) 特開 平7−118794(JP,A) 特開 平9−111401(JP,A) 特許2979987(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Omori 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Engineering Co., Ltd. Technical Research Institute (56) References 8-127844 (JP, A) JP-A-6-340924 (JP, A) JP-A-5-209223 (JP, A) JP-A-4-318146 (JP, A) JP-A-4-218641 (JP, A A) JP-A-7-118794 (JP, A) JP-A-9-111401 (JP, A) Patent 2979987 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38 / 00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 mass%で、C:0.25%以上0.35%未満、
Si:0.05%以下、Mn:0.65%以上1.70%以下、P:0.02
0 %以下、S:0.005 %以上0.030 %以下、Cr:0.15%
以下、Mo:0.05%以上0.50%以下、Ti:0.01%以上0.05
%以下、Al:0.01%以上0.05%以下、N:0.01%以下、
B:0.0005%以上0.0050%以下を含有し、残部Feおよび
不可避的不純物からなり、かつベイナイトを面積率で5
〜30%含む組織からなることを特徴とする被削性および
耐焼割れ性に優れた機械構造用鋼材。
(1) mass%, C: 0.25% or more and less than 0.35%;
Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less, P: 0.02
0% or less, S: 0.005% or more and 0.030% or less, Cr: 0.15%
Mo: 0.05% to 0.50%, Ti: 0.01% to 0.05
% Or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less,
B: 0.0005% or more and 0.0050% or less, the balance being Fe and unavoidable impurities, and bainite having an area ratio of 5%
A steel material for machine structural use having excellent machinability and resistance to fire cracking, characterized by having a structure containing up to 30%.
【請求項2】 mass%で、C:0.25%以上0.35%未満、
Si:0.05%以下、Mn:0.65%以上1.70%以下、P:0.02
0 %以下、S:0.005 %以上0.030 %以下、Cr:0.15%
以下、Mo:0.05%以上0.50%以下、Ti:0.01%以上0.05
%以下、Al:0.01%以上0.05%以下、N:0.01%以下、
B:0.0005%以上0.0050%以下を含有し、さらにCu:1.
0 %以下、Ni:3.5 %以下、V:0.01%以上0.30%以
下、Nb:0.005 %以上0.050 %以下のうちから選んだ1
種又は2種以上を含有し、残部Feおよび不可避的不純物
からなり、かつベイナイトを面積率で5〜30%含む組織
からなることを特徴とする被削性および耐焼割れ性に優
れた機械構造用鋼材。
2. mass%, C: 0.25% or more and less than 0.35%,
Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less, P: 0.02
0% or less, S: 0.005% or more and 0.030% or less, Cr: 0.15%
Mo: 0.05% to 0.50%, Ti: 0.01% to 0.05
% Or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less,
B: 0.0005% to 0.0050%, Cu: 1.
0% or less, Ni: 3.5% or less, V: 0.01% or more and 0.30% or less, Nb: 0.005% or more and 0.050% or less
For mechanical structures with excellent machinability and fire-cracking resistance, characterized in that they contain at least one species, the balance consists of Fe and inevitable impurities, and the structure contains bainite in an area ratio of 5 to 30%. Steel.
【請求項3】 mass%で、C:0.25%以上0.35%未満、
Si:0.05%以下、Mn:0.65%以上1.70%以下、P:0.02
0 %以下、S:0.005 %以上0.030 %以下、Cr:0.15%
以下、Mo:0.05%以上0.50%以下、Ti:0.01%以上0.05
%以下、Al:0.01%以上0.05%以下、N:0.01%以下、
B:0.0005%以上0.0050%以下を含有し、残部Feおよび
不可避的不純物からなる鋼素材を熱間圧延および/また
は熱間鍛造により所定の形状に熱間加工し、熱間加工終
了後あるいは中間処理加熱後 0.2〜2.0 ℃/sec の冷却
速度で冷却することにより、ベイナイトを面積率で5〜
30%含む組織とすることを特徴とする被削性および耐焼
割れ性に優れた機械構造用鋼材の製造方法。
3. mass%, C: 0.25% or more and less than 0.35%,
Si: 0.05% or less, Mn: 0.65% or more and 1.70% or less, P: 0.02
0% or less, S: 0.005% or more and 0.030% or less, Cr: 0.15%
Mo: 0.05% to 0.50%, Ti: 0.01% to 0.05
% Or less, Al: 0.01% or more and 0.05% or less, N: 0.01% or less,
B: A steel material containing 0.0005% or more and 0.0050% or less, with the balance being Fe and unavoidable impurities, is hot-rolled and / or hot-forged into a predetermined shape, and after hot working or after intermediate processing. After heating, the bainite is cooled at a cooling rate of 0.2 to 2.0 ° C./sec, so that
A method for producing a steel material for machine structural use having excellent machinability and resistance to fire cracking, characterized by having a structure containing 30%.
【請求項4】 前記鋼素材が、mass%で、C:0.25%以
上0.35%未満、Si:0.05%以下、Mn:0.65%以上1.70%
以下、P:0.020 %以下、S:0.005 %以上0.030 %以
下、Cr:0.15%以下、Mo:0.05%以上0.50%以下、Ti:
0.01%以上0.05%以下、Al:0.01%以上0.05%以下、
N:0.01%以下、B:0.0005%以上0.0050%以下を含有
し、さらにCu:1.0 %以下、Ni:3.5 %以下、V:0.01
%以上0.30%以下、Nb:0.005 %以上0.050 %以下のう
ちから選んだ1種又は2種以上を含有し、残部Feおよび
不可避的不純物からなる鋼素材であることを特徴とする
請求項3記載の被削性および耐焼割れ性に優れた機械構
造用鋼材の製造方法。
4. The steel material is, in mass%, C: 0.25% or more and less than 0.35%, Si: 0.05% or less, Mn: 0.65% or more and 1.70%.
Below, P: 0.020% or less, S: 0.005% or more and 0.030% or less, Cr: 0.15% or less, Mo: 0.05% or more and 0.50% or less, Ti:
0.01% or more and 0.05% or less, Al: 0.01% or more and 0.05% or less,
N: 0.01% or less, B: 0.0005% to 0.0050%, Cu: 1.0% or less, Ni: 3.5% or less, V: 0.01
4. A steel material containing one or more selected from among Nb: 0.005% to 0.050% and Nb: 0.005% to 0.050%, the balance being Fe and unavoidable impurities. Method for producing a steel material for machine structural use having excellent machinability and resistance to fire cracking.
JP25225795A 1995-09-29 1995-09-29 Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same Expired - Fee Related JP3320958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25225795A JP3320958B2 (en) 1995-09-29 1995-09-29 Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25225795A JP3320958B2 (en) 1995-09-29 1995-09-29 Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0987801A JPH0987801A (en) 1997-03-31
JP3320958B2 true JP3320958B2 (en) 2002-09-03

Family

ID=17234718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25225795A Expired - Fee Related JP3320958B2 (en) 1995-09-29 1995-09-29 Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Country Status (1)

Country Link
JP (1) JP3320958B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821794B2 (en) * 2012-07-18 2015-11-24 新日鐵住金株式会社 Hardened steel, its manufacturing method, and hardened steel
CN112458362A (en) * 2020-11-02 2021-03-09 中国神华能源股份有限公司神朔铁路分公司 13B type forged coupler tail frame for locomotive and production method thereof

Also Published As

Publication number Publication date
JPH0987801A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP4266340B2 (en) High strength wire for induction hardening with excellent cold workability and impact resistance, and steel parts using this wire
EP0637636B1 (en) Graphite structural steel having good free-cutting and good cold-forging properties and process of making this steel
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JP4219023B2 (en) High-strength drive shaft and manufacturing method thereof
JP4983099B2 (en) Steel shaft parts with excellent impact and fatigue properties and manufacturing method thereof
JP2916069B2 (en) High-strength induction hardened shaft parts
JP3432950B2 (en) Steel material for induction hardened shaft parts that has both cold workability and torsional fatigue strength characteristics
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP3715744B2 (en) Non-tempered steel for hot forging used by fracture cutting
JP3733967B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP2000026933A (en) Hot forging steel
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
JP3320958B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP4170294B2 (en) Steel for machine structures and drive shafts with excellent rolling, fire cracking and torsional properties
JP2692523B2 (en) Method for producing 780 MPa class high strength steel with excellent weldability and low temperature toughness
JPH1129836A (en) Steel for machine structural use for induction hardening
JP3398233B2 (en) Manufacturing method of machine structural steel and machine structural member excellent in machinability and fatigue strength after induction hardening / tempering
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140621

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees