JP2000026933A - Hot forging steel - Google Patents

Hot forging steel

Info

Publication number
JP2000026933A
JP2000026933A JP19287898A JP19287898A JP2000026933A JP 2000026933 A JP2000026933 A JP 2000026933A JP 19287898 A JP19287898 A JP 19287898A JP 19287898 A JP19287898 A JP 19287898A JP 2000026933 A JP2000026933 A JP 2000026933A
Authority
JP
Japan
Prior art keywords
steel
content
machinability
added
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19287898A
Other languages
Japanese (ja)
Other versions
JP3893756B2 (en
Inventor
Harunori Kakimi
治則 垣見
Koji Watari
宏二 渡里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19287898A priority Critical patent/JP3893756B2/en
Publication of JP2000026933A publication Critical patent/JP2000026933A/en
Application granted granted Critical
Publication of JP3893756B2 publication Critical patent/JP3893756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hot forging steel in which machinability is improved by S and the occurrence of grinding crack caused by sulfide inclusions is inhibited and further the occurrence of a suspended pattern of flaw at the time of magnetic particle inspection of a product is prevented. SOLUTION: This steel has a composition which consists of, by weight, 0.2-0.6% C, 0.05-1.5% Si, 0.1-3.0% Mn, <=0.08% P, 0.01-0.2% S, 0.04-1.0% Ti, <=0.008% N, 0-0.1% Cu, 0-2% Ni, 0-5% Cr, 0-1.0% Mo, 0-1% Al, 0-0.005% B, 0-1% V, 0-0.5% Nb, 0-0.5% Pb, 0-0.01% Ca, 0-0.5% Bi, and the balance Fe with inevitable impurities and in which respective contents of Ti and S are regulated so that the value of fn 1, represented by equation fn 1=Ti(%)-1.2×S(%), is plug quantity (fn 1>0).

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、型鍛造、自由鍛造
など熱間で鍛造する鋼に関する。 【0002】 【従来の技術】クランク軸、コネクティングロッド、ナ
ックル、などの型鍛造品、あるいは軸、機械部品などの
熱間鍛造品は、切削代をできるだけ少なくするよう、最
終必要形状近くにまで鋼が熱間鍛造加工されるが、他部
品との結合や組み合わせなどの際の精度確保のため、必
然的に切削、研削など機械加工が加えられる。 【0003】熱間鍛造品としての製造工程は、一例を図
1に示すように、素材インゴット(ビレット)を加熱
後、熱間鍛造して所望の形状とし、次いで焼入れ焼戻し
などの熱処理をおこなって鋼としての必要な機械的性質
に調質する。非調質鋼を用いる場合は、鍛造後の冷却の
管理により、所要の機械的性質を得る。これらの鍛造品
は、寸法精度を要求される他部品との接合部や取り付け
部などを、切削や穿孔など機械加工し、さらには耐摩耗
性向上や疲労強度改善のため、高周波焼き入れ、浸炭、
窒化など表面硬化や表面改質などの表面処理、および仕
上げ研削などが施される。 【0004】一般に鋼中のSは、熱間加工性を悪くし、
介在物となって鋼の靱性や延性を劣化させる。このため
鋼の圧延や鍛造のなどの塑性加工、および強度部材とし
ての用途には、Sの含有量は低いほど好ましいとされて
いる。ところがS量が少なくなると、切削抵抗や切削工
具寿命など被削性が低下し、切削面や研削面の仕上がり
が悪くなるという問題がある。熱間鍛造して用いられる
鋼においても、鍛造製品の性能の点からは、S含有量は
できるだけ低いのが望ましいが、調質後など強度の高い
状態で切削加工や穿孔加工をおこなわねばならないこと
から、素材となる鋼には、被削性を配慮してSの含有量
を高くしておくことが多い。Sは通常MnSを主成分と
する硫化物系介在物を形成し、これが鋼の変形とともに
展伸して鋼中に分散している。そして、切削などの工具
の刃先近傍にて亀裂の開始点になって切削抵抗を下げ、
仕上げ面を美麗にしたり、工具と鋼との間の潤滑効果性
をもたらすとされている。 【0005】ところが熱間鍛造品の場合、被削性を改善
するためSの含有量を増すと、このMnS系の介在物が
増加し、仕上げの研削時に研削割れの起点になったり、
通常用いられる磁粉探傷検査時に、この介在物があたか
も傷であるかのように認識されることがある。磁粉探傷
は鋼の磁化の際、傷があれば磁化の乱れが生じ、磁粉の
集積が異なって傷が検出される。MnSは非磁性である
ため、磁化が乱れて傷の疑似模様が生じ、時には鍛造品
としての欠陥は無いにもかかわらず不良品としてスクラ
ップダウンされることもあり、また場合によっては浸透
探傷試験までおこなって、開口性の問題ある欠陥かどう
かを追加検査せざるを得ず、検査工数を増加させてい
た。 【0006】 【発明が解決しようとする課題】本発明の目的は、Sに
より被削性を向上させ、しかも硫化物系の介在物による
研削割れを抑止し、製品の磁粉探傷検査時に傷の疑似模
様の発生することのない熱間鍛造用鋼を提供することに
ある。 【0007】 【課題を解決するための手段】鋼の被削性を向上させる
には、より多くのSの添加や、Pb、Caなどの被削性
を向上させる元素の添加、その他組織の調整や黒鉛化な
どの方法がある。しかしながら、熱間鍛造品を対象とす
るとき、熱間加工性を阻害せず、強度の高い調質後の被
削性をも改善し、鍛造製品の靱性や疲労強度を劣化させ
ことなく、しかもコスト的にも不利にならない方法とな
ると、Sの添加以外の手段はほとんど考えられない。 【0008】本発明者らは、通常熱間鍛造にて製造され
る部品に適用されるCの含有量が0.2〜0.6%の、炭素鋼
ないしは低合金鋼を対象に、Sの含有量を低下すること
なく、すなわち被削性をそのままか、さらに向上させ
て、研削割れが抑制され、傷の疑似模様の発生しない鋼
の可能性について検討をおこなうことにした。通常、S
は鋼中でMnSを主とする硫化物系の介在物となり、そ
れらは粘性変形して鋼のメタルフローの方向に引き延ば
された形となる。近年の製鋼技術の進歩により、鋼中の
介在物が低減され酸素などが減少すると、この傾向はま
すます強くなり、展伸した硫化物による研削割れや、傷
の疑似模様が多く生ずるようになってきている。 【0009】鋼中の硫化物系介在物の形態を変える方法
としては、特定元素の添加を種々試みることとした。硫
化物系介在物の形態を変え得る添加元素では、従来より
Ca、希土類元素、Ti、Zr、V、Nbなどが知られ
ている。そこでまず、これらの元素について、熱間鍛造
性、被削性、効果の安定性、経済性等を、研削割れや傷
の疑似模様の発生と合わせて調査したが、いずれの元素
もこれらのすべてについて十分であるとはいえなかっ
た。しかし、その中で比較的有意と思われたTiについ
てさらに調査を進めたところ、特に窒素含有量を低下さ
せた場合に、被削性の向上と、研削割れ抑制および傷の
疑似模様低減の効果が顕著に現れることを見出したので
ある。 【0010】Tiの添加は、鋼板に用いられる比較的C
の低い低炭素鋼には、よく利用されている。例えば冷延
鋼板においては、極低炭素とし鋼中のCをすべてTiC
として固定すれば、非時効性で深絞り性の極めて優れた
鋼板が得られる。またCが0.25%以下の鋼により熱間圧
延のままで高強度とする鋼板を製造する場合、少量添加
することなどである。しかながら、熱間鍛造などによく
用いられるCが0.4%前後の高C鋼においては、前述の
Mnに代わってSによる熱間脆性を抑止できること以
外、その添加の効果はほとんど知られていない。これ
は、一つにはCと結合してTiCとなってしまい、その
影響がほとんど出てこないためであり、さらにはNと結
合して硬いTiN介在物を作り、被削性を悪くするため
と思われた。 【0011】これに対し、Nをできるだけ低くすると上
記のような効果が現れるのは、凝固直後の高温で、Nが
高ければTiNとなるところ、Nが少なくかつS量に対
応する十分な量のTiがあれば、TiSがまず形成さ
れ、温度低下とともにこれが炭硫化物に変化していくた
めと推定される。炭硫化物は形成されたときは比較的大
きいが、MnSのように粘性変形することなく、加工に
より破壊され分散する。それによって、研削割れが抑止
され、磁粉探傷の際の、傷の疑似模様が低減する。そし
て、MnSと同様に切削抵抗を下げる効果があり、その
上介在物としては比較的軟質なためMnSよりは潤滑効
果があり、被削性をより向上させるのではないかと思わ
れる。Nの低下は、溶鋼真空処理など鋼の製錬技術の進
歩によって、容易にできるようになってきている。 【0012】このような、熱間鍛造用鋼におけるTi添
加の効果について、さらにその効果を十分に発揮できる
適用限界を明確にして、本発明を完成させた。本発明の
要旨とするところは、重量%にて、C:0.2〜0.6%、S
i:0.05〜1.5%、Mn:0.1〜3.0%、P:0.08%以
下、S:0.01〜0.2%、Ti:0.04〜1.0%、N:0.008
%以下で、Cu:0〜1.0%、Ni:0〜2%、Cr:0〜5
%、Mo:0〜1.0%、Al:0〜1%、B:0〜0.005%、
V:0〜1%、Nb:0〜0.5%、Pb:0〜0.5%、Ca:
0〜0.01%、およびBi:0〜0.5%を含有し、残部はF
eおよび不可避的不純物からなり、かつ下式で示される
fn1が正(fn1>0)であるTiおよびSの含有量で
あることを特徴とする熱間鍛造用鋼、 fn1=Ti(%)−1.2×S(%) である。 【0013】 【発明の実施の形態】本発明において、鋼組成を限定し
た理由は次のとおりである。 【0014】C:0.2〜0.6% Cは強度など鋼の特性を決定する基本的な元素である。
熱間鍛造後、調質非調質の如何にかかわらず必要な強度
を得るためには、0.2%以上の含有が必要であるが、多
くなりすぎると鍛造の加工性低下、熱処理時の焼き割
れ、被削性の低下等の問題が生じてくるので、多くても
0.6%までとする。 【0015】Si:0.05〜1.50% Siは鋼溶製時に脱酸のため添加する。含有量が0.05%
未満では脱酸不十分となり、鋳片の健全性が低下する。
しかし、多くなりすぎると鍛造時に表面脱炭が生じやす
くなり、また鍛造品表面のスケール残りなど外観を悪く
するので、1.50%までとする。 【0016】Mn:0.1〜3.0% Mnは、鋼の脱酸、Sによる熱間加工脆性の抑止、熱処
理時の焼入れ性向上等の効果がある。このような効果を
得るためには、通常は0.3%程度以上の含有が必要であ
るが、本発明の鋼ではS量に対し十分な量のTiを含有
させるので、0.1以上の含有で同様な効果が得られる。
0.1%未満では焼入れ性向上等の効果が不十分となる。
しかし過剰の添加は、熱処理時の焼割れの原因となり、
また被削性を低下させるので多くても3.0%までとす
る。 【0017】P:0.08%以下 Pは不可避的不純物の一つであり、鋼の靱性を劣化させ
るので、通常はその含有量は少なければ少ないほどよ
い。しかし、鍛造品によってはPの含有量を増すと疲労
強度増す場合があり、必要に応じ添加する。ただし、多
すぎると靱性が劣化するので、悪影響が顕著でない範囲
として多くても0.08%までとする。 【0018】S:0.01〜0.2 熱間鍛造品にて十分な被削性を得るには、少なくとも0.
01%以上の含有が必要である。しかし、過剰の添加は熱
間鍛造時の割れ発生を招き、また得られた鍛造品の靱性
を悪くするので、多くても0.2%までである。すなわち
Sの含有範囲は0.01〜0.2%とする。なお、望ましいの
は0.04%以上の含有である。 【0019】Ti:0.04〜1.0% Tiは、硫化物の形態を変えることにより、鍛造後の被
削性を向上させ、研削割れを抑制し、傷の疑似模様を低
減させる重要な元素である。この効果を得るためには少
なくとも0.04%以上の含有が必要である。しかし、1.0
%を超えて含有させてもその効果は飽和し、さらには鋼
の靱性を低下させ、コストも嵩んでくる。 fn1=Ti(%)−1.2×S(%):正(fn1>0) Tiの含有量からSの含有量の1.2倍を引いた数をfn1
とする。fn1はSを十分にTiと結合させるのに必要
なTiの量を示すもので、本発明の場合fn1>0とす
る。fn1≦0になると、Tiと結合する以外のSは、M
nと結合した硫化物となる。この場合、Sが十分含有さ
れておれば、被削性は確保できても研削割れや傷の疑似
模様の抑止は不十分になる。またこのようにSに対し十
分にTiを含有させれば、Mn量が少なくても、熱間加
工割れは防止できる。 【0020】N:0.008%以下 Nの含有量は0.008%以下とするが、本発明においては
少なければ少ないほど好ましい。Nが0.008%を超える
と、たとえ式を満足するTi量であっても、十分な被
削性向上、研削割れ防止、および傷の疑似模様の抑止の
効果が得られなくなる。これは、TiはSよりもNと結
合しやすいため、Nが多く存在すると、先にTiNを作
ってしまい、Sと硫化物を作るためのTiが不足してし
まうからである。望ましいのはNを0.006%以下とする
ことである。 【0021】Cu:0〜1.0% Cuは添加しなくてもよいが、焼入れ性向上や析出硬化
などのため、必要により添加する。多量に添加しても効
果が飽和するので、含有させても1.0%までとする。た
だし0.3%を超える添加は、鍛造時の熱間加工割れを引
き起こすので、Cuの量の1/2またはそれ以上の量のN
iを、同時に含有させることが好ましい。 【0022】Ni:0〜2% Niは添加しなくてもよいが、鋼製品の靭性向上、焼入
れ性改善、Cu添加時の熱間加工割れ防止の目的により
要すれば添加する。添加する場合、効果の飽和およびコ
スト上昇の点から、含有量は多くても2%以下とする。 【0023】Cr:0〜5% Crは添加しなくてもよい。しかし、焼入れ性向上の効
果があり、必要により添加する。添加する場合、多量に
なると被削性を悪くするので、多くても5%までとす
る。 【0024】Mo:0〜1.0% Moは添加しなくてもよい。添加すると焼入れ性の向
上、焼戻し軟化抵抗の向上、および靭性向上の効果があ
る。ただし、多く添加しても効果は飽和し、コストも上
昇するので、1.0%までとするのがよい。 【0025】Al:0〜1% Alは添加しなくてもよいが、強力な脱酸作用があり、
鋳片の健全性を確実にするため、必要により含有させ
る。また、表面窒化処理をおこなう場合は、窒化による
十分な硬化を得るために含有させる。しかし、多く含有
させてもその硬化は飽和し表面傷などを増すだけなの
で、多くても1%までとする。 【0026】B:0〜0.005% Bは添加しなくてもよい。微量の添加で焼入れ性を向上
させる効果があり、必要により添加する。添加した場
合、数ppm以上含有しておれば、その量の多少にかかわ
らず焼入れ性向上効果はほぼ一定である。ただし、0.00
5%を超える含有は鋼を脆化させるので、多くても0.005
%までの含有とする。 【0027】V:0〜1% Vは添加しなくてもよい。しかし、鋼を非調質鋼とする
場合、鍛造後の冷却過程で、炭化物または窒化物として
微細に析出させ、強度を向上させるために添加する。ま
た、焼入れ、焼戻しの調質をおこなう場合、焼入れ性の
向上や焼戻し時の二次硬化があり、必要により添加す
る。過剰に添加すると、熱間加工性の低下やコスト高を
来すので、1%までの含有とする。 【0028】Nb:0〜0.5% Nbは添加しなくてもよい。鋼を非調質鋼とする場合に
は、添加するとVと同様の効果がある。また、鋼の結晶
組織を微細化し、靭性を向上させることがある。しか
し、過剰の添加は鋼の熱間加工時の再結晶を遅らせ、熱
間加工を困難にするので、多くても0.5%までの含有と
する。 【0029】Pb:0〜0.5% Pbは添加しなくてもよい。しかし、添加すると鋼の被
削性を向上させることができるので、より被削性を必要
とする場合に含有させる。ただし、過剰の添加は、鋼の
熱間加工性を悪くするので、0.5%までの含有とする。 【0030】Ca:0〜0.01% Caは添加しなくてもよい。Caはとくに超硬工具での
被削性を向上させる効果があり、必要により含有させ
る。ただし、過剰に添加しても効果は飽和し、さらに粗
大介在物を作って靭性や疲労強度を低下させるので、上
限を0.01%までとする。 【0031】Bi:0〜0.5% BiはPbと同様、鋼の被削性を向上させる元素で、添
加しなくてもよいが、より被削性を必要とするときに含
有させる。しかし、0.5%を超える含有は磁粉探傷時の
疑似模様発生の原因になるので、含有させる場合多くて
も0.5%までとする。 【0032】 【実施例】表1に示す化学組成の鋼をそれぞれ1tonの高
周波真空溶解炉にて溶製した。鋼番号1〜6はTiを含有
させたもの、鋼番号7〜12はTiを添加しないものであ
る。これらは、それぞれSの含有量を変え、それ以外の
組成はできるだけ同一になるようにした。ただし、Ti
を添加した場合では式のfn1が正(fn1>0)とな
るよう、S含有量の増加とともにTiの含有量も増加さ
せ、Tiを添加しないものでは、熱間脆性を抑止するた
めに、Mnの含有量を増加させた。得られた鋼塊は圧延
して100m角のビレットとした。これらのビレットを1250
℃に加熱後打ち上げ温度1100℃として、ピンジャーナル
径が60mmφのクランク軸に型鍛造し、空冷した。鍛造
後、通常条件にて焼入れ焼戻しをおこない、硬さをHB
250とした。ピン部より直径55mm、長さ60mmの丸棒試験
片を切り出し、被削性については長さ方向に6mmφの貫
通穴を明け、穿孔可能な穴の数にて評価した。このよう
な丸棒試験片の円周面部を高周波焼入れし、研磨後電流
値2500Aの軸通電法にて磁粉探傷における円周面部の疑
似模様発生の有無を調査し、認められた場合にはその長
さの総長を測定した。また、丸棒試験片の円周面部につ
いて、高周波焼入れ後、重研削条件にて研削をおこな
い、電流値1000Aの磁粉探傷にて研削割れの有無を調査
し、認められた場合にはその長さの総長を測定した。 【0033】 【表1】 【0034】これらの調査結果について、横軸にS含有
量を取り、縦軸にそれぞれの測定値をプロットした結果
を図2〜図4に示す。図2では、S含有量が少ない場
合、ドリル穴明け数が少なく被削性がよくないが、S含
有量の増加とともに穴明け個数が増加し、被削性が向上
している。そして、同じS含有量で比較すると、本発明
のTiを添加したものは、添加のないものよりも被削性
がすぐれていることがわかる。また、図3、または図4
に示されるように、S量の増加とともに探傷時の疑似模
様も研削時の割れも増加するが、本発明のTiを添加し
た鋼では、疑似模様および研削割れのどちらも、添加し
ない鋼に比較して著しく減少している。 【0035】 【発明の効果】本発明の鋼は、熱間鍛造品に適用する
と、鍛造後の調質、あるいは非調質鋼とする場合は鍛造
ままにてすぐれた被削性を示し、しかも磁粉探傷時の疑
似模様の発生がなく、研削時の割れ発生も少ない。この
ような鋼を用いることにより、鍛造製品の製造コストを
大幅に低下させることが可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hot forging steel such as die forging and free forging. 2. Description of the Related Art Forged products such as crankshafts, connecting rods, knuckles and the like, or hot forged products such as shafts and mechanical parts, are used to reduce the cutting allowance as much as possible. Is hot forged, but mechanical processing such as cutting and grinding is inevitably added in order to secure the accuracy when joining or combining with other parts. As an example of a manufacturing process for a hot forged product, as shown in FIG. 1, a raw material ingot (a billet) is heated, hot forged into a desired shape, and then subjected to a heat treatment such as quenching and tempering. Temper to the required mechanical properties of steel. When using non-heat treated steel, required mechanical properties are obtained by controlling cooling after forging. These forged products are machined, such as cutting and drilling, at the joints and attachments with other parts that require dimensional accuracy.Furthermore, induction hardening and carburizing are performed to improve wear resistance and fatigue strength. ,
Surface treatment such as surface hardening or surface modification such as nitriding, and finish grinding are performed. In general, S in steel deteriorates hot workability,
It becomes an inclusion and deteriorates the toughness and ductility of steel. Therefore, for plastic working such as rolling and forging of steel, and for use as a strength member, it is considered that the lower the S content, the better. However, when the amount of S is small, there is a problem that the machinability such as the cutting resistance and the life of the cutting tool is reduced, and the finish of the cut surface or the ground surface is deteriorated. For steel used in hot forging, it is desirable that the S content be as low as possible from the viewpoint of the performance of the forged product, but that cutting and drilling must be performed in a high strength state such as after tempering. Therefore, the content of S is often increased in steel as a material in consideration of machinability. S usually forms sulfide-based inclusions containing MnS as a main component, and the sulfide-based inclusions expand with the deformation of the steel and are dispersed in the steel. Then, it becomes the starting point of cracks near the cutting edge of tools such as cutting, reducing the cutting resistance,
It is said to provide a beautiful finish and provide a lubricating effect between the tool and the steel. However, in the case of a hot forged product, when the content of S is increased in order to improve machinability, the MnS-based inclusions increase, which may be a starting point of grinding cracks during finish grinding,
In a commonly used magnetic particle inspection, this inclusion may be recognized as if it were a flaw. In the magnetic particle flaw detection, when the steel is magnetized, if there is a flaw, the magnetization is disturbed, and the flaw is detected due to a different accumulation of the magnetic powder. Since MnS is non-magnetic, the magnetization is disturbed and a fake pattern of flaws is generated. Sometimes, there is no defect as a forged product, but it may be scrapped down as a defective product. In such a case, additional inspection must be performed to determine whether the defect has a problem with the opening property, and the number of inspection steps has been increased. SUMMARY OF THE INVENTION It is an object of the present invention to improve the machinability by using S, suppress the occurrence of grinding cracks due to sulfide-based inclusions, and simulate flaws during magnetic particle inspection of products. An object of the present invention is to provide a hot forging steel that does not generate a pattern. [0007] To improve the machinability of steel, the addition of more S, the addition of elements that improve machinability such as Pb and Ca, and other adjustment of the structure And graphitization. However, when targeting hot forged products, it does not hinder hot workability, improves the machinability after high-strength tempering, and does not deteriorate the toughness or fatigue strength of the forged product, and If the method is not disadvantageous in terms of cost, means other than the addition of S can hardly be considered. The present inventors have reduced the S content of carbon steel or low-alloy steel having a C content of 0.2 to 0.6%, which is generally applied to parts manufactured by hot forging. Without doing so, that is, with the machinability unchanged or further improved, the possibility of using steel that suppresses grinding cracks and does not generate false scratch patterns was examined. Usually S
Are sulfide-based inclusions mainly composed of MnS in the steel, which are viscously deformed and elongated in the metal flow direction of the steel. Recent advances in steelmaking technology have reduced the amount of inclusions in steel and reduced oxygen, etc., and this tendency has become even stronger, resulting in the occurrence of grinding cracks and simulated flaws due to expanded sulfides. Is coming. As a method of changing the form of sulfide inclusions in steel, various attempts have been made to add specific elements. As the additional elements that can change the form of the sulfide-based inclusions, Ca, rare earth elements, Ti, Zr, V, Nb, and the like are conventionally known. Therefore, we first investigated the hot forgeability, machinability, stability of the effect, economic efficiency, etc. of these elements together with the occurrence of grinding cracks and pseudo patterns of scratches. Was not enough. However, further investigation was conducted on Ti, which was considered to be relatively significant among them, and especially when the nitrogen content was reduced, the effect of improving machinability, suppressing grinding cracks and reducing pseudo-patterns of scratches was observed. Was found to appear remarkably. [0010] The addition of Ti is relatively low in C used in steel sheets.
It is often used for low carbon steels with low carbon content. For example, in cold rolled steel sheets, the carbon in the steel is set to TiC
If fixed, a steel sheet which is non-ageing and extremely excellent in deep drawability can be obtained. In the case of producing a steel sheet having a high strength while being hot-rolled from a steel having C of 0.25% or less, a small amount is added. However, in a high C steel of which C is about 0.4%, which is often used for hot forging, etc., the effect of the addition is scarcely known except that the above-mentioned Mn can be used to suppress hot brittleness due to S instead of Mn. This is because TiC is combined with C to form TiC, and the effect is hardly produced. Further, it is combined with N to form hard TiN inclusions and deteriorate machinability. So I thought. On the other hand, when the N is made as low as possible, the above-mentioned effect appears at a high temperature immediately after solidification. When the N is high, it becomes TiN. If Ti is present, it is presumed that TiS is formed first and changes to carbon sulfide with decreasing temperature. The carbosulfide is relatively large when formed, but is broken and dispersed by processing without viscous deformation unlike MnS. As a result, grinding cracks are suppressed, and false patterns of flaws during magnetic particle flaw detection are reduced. And, similarly to MnS, it has an effect of lowering the cutting resistance, and since it is relatively soft as an inclusion, it has a lubricating effect more than MnS, and it is thought that the machinability is further improved. The reduction of N has been made easier by the progress of steel smelting techniques such as molten steel vacuum processing. With regard to the effect of the addition of Ti in such a steel for hot forging, the present invention has been completed by clarifying the application limit for sufficiently exerting the effect. The gist of the present invention is that, by weight%, C: 0.2 to 0.6%, S:
i: 0.05 to 1.5%, Mn: 0.1 to 3.0%, P: 0.08% or less, S: 0.01 to 0.2%, Ti: 0.04 to 1.0%, N: 0.008
%, Cu: 0 to 1.0%, Ni: 0 to 2%, Cr: 0 to 5
%, Mo: 0 to 1.0%, Al: 0 to 1%, B: 0 to 0.005%,
V: 0 to 1%, Nb: 0 to 0.5%, Pb: 0 to 0.5%, Ca:
0-0.01% and Bi: 0-0.5%, with the balance being F
e and unavoidable impurities, and wherein fn1 represented by the following formula is a content of Ti and S in which fn1 is positive (fn1> 0): fn1 = Ti (%)- 1.2 × S (%) The reasons for limiting the steel composition in the present invention are as follows. C: 0.2-0.6% C is a basic element that determines the properties of steel such as strength.
After hot forging, in order to obtain the required strength regardless of whether it is tempered or not, it is necessary to contain 0.2% or more, but if it is too large, the workability of forging decreases, and cracking during heat treatment occurs. Problems such as reduced machinability, etc.
Up to 0.6%. Si: 0.05-1.50% Si is added for deoxidation during steelmaking. Content is 0.05%
If the amount is less than the above, deoxidation becomes insufficient, and the soundness of the slab decreases.
However, if the amount is too large, surface decarburization tends to occur during forging, and the appearance such as scale residue on the surface of the forged product is deteriorated. Mn: 0.1 to 3.0% Mn has effects such as deoxidation of steel, suppression of hot working brittleness by S, and improvement of hardenability during heat treatment. In order to obtain such an effect, the content of 0.3% or more is usually required. However, in the steel of the present invention, a sufficient amount of Ti is contained with respect to the amount of S. The effect is obtained.
If it is less than 0.1%, effects such as improvement of hardenability become insufficient.
However, excessive addition causes crazing during heat treatment,
Further, since the machinability is reduced, the content is set to at most 3.0%. P: not more than 0.08% P is one of the inevitable impurities and degrades the toughness of the steel. Therefore, usually, the smaller the content, the better. However, depending on the forged product, increasing the content of P may increase the fatigue strength, and is added as necessary. However, if the content is too large, the toughness is deteriorated. S: 0.01-0.2 In order to obtain sufficient machinability with a hot forged product, at least 0.
It is necessary to contain more than 01%. However, excessive addition causes cracking at the time of hot forging and deteriorates the toughness of the obtained forged product, so it is at most 0.2%. That is, the content range of S is set to 0.01 to 0.2%. Desirably, the content is 0.04% or more. Ti: 0.04% to 1.0% Ti is an important element that improves the machinability after forging, suppresses grinding cracks, and reduces flaws in scratches by changing the form of sulfide. In order to obtain this effect, the content must be at least 0.04% or more. But 1.0
%, The effect is saturated, the toughness of the steel is reduced, and the cost increases. fn1 = Ti (%) − 1.2 × S (%): positive (fn1> 0) The number obtained by subtracting 1.2 times the S content from the Ti content is fn1.
And fn1 indicates the amount of Ti required to sufficiently combine S with Ti, and in the case of the present invention, fn1> 0. When fn1 ≦ 0, S other than bonding to Ti is M
It becomes a sulfide bonded to n. In this case, if S is sufficiently contained, the suppression of grinding cracks and pseudo patterns of scratches becomes insufficient even if the machinability can be ensured. Further, if Ti is sufficiently contained in S, hot working cracks can be prevented even if the amount of Mn is small. N: 0.008% or less The content of N is set to 0.008% or less. In the present invention, the smaller the content, the more preferable. If N exceeds 0.008%, even if the amount of Ti satisfies the expression, sufficient effects of improving machinability, preventing grinding cracks, and suppressing false scratch patterns cannot be obtained. This is because Ti is easier to bond with N than S, and when N is present in a large amount, TiN is first formed, and Ti for forming S and sulfide is insufficient. Desirably, N is set to 0.006% or less. Cu: 0 to 1.0% Cu need not be added, but is added as necessary for improving hardenability and precipitation hardening. Even if it is added in a large amount, the effect is saturated. However, the addition of more than 0.3% causes hot working cracks during forging, so that the amount of N of 1/2 or more of the amount of Cu
It is preferable that i is simultaneously contained. Ni: 0 to 2% Ni may not be added, but may be added if necessary for the purpose of improving the toughness of steel products, improving the hardenability, and preventing hot work cracking when Cu is added. When added, the content is at most 2% or less from the viewpoint of saturation of effects and cost increase. Cr: 0 to 5% Cr need not be added. However, it has the effect of improving the hardenability, and is added as necessary. When adding a large amount, the machinability deteriorates if the amount is large, so that the content should be at most 5%. Mo: 0 to 1.0% Mo may not be added. When added, it has the effects of improving hardenability, improving temper softening resistance, and improving toughness. However, even if a large amount is added, the effect saturates and the cost also increases. Al: 0-1% Al does not need to be added, but has a strong deoxidizing effect.
In order to ensure the soundness of the slab, it is included as necessary. In the case where surface nitriding is performed, it is contained in order to obtain sufficient hardening due to nitriding. However, even if it is contained in a large amount, the curing is saturated and only the surface flaws are increased, so the content is set to at most 1%. B: 0 to 0.005% B may not be added. The addition of a small amount has the effect of improving the hardenability, and is added as necessary. When added, if the content is several ppm or more, the hardenability improvement effect is almost constant regardless of the amount. However, 0.00
Content of more than 5% embrittles steel, so at most 0.005
%. V: 0-1% V may not be added. However, when the steel is made to be a non-heat treated steel, it is added in order to precipitate finely as carbide or nitride in the cooling process after forging and to improve the strength. In the case of quenching and tempering, there is an improvement in hardenability and a secondary hardening during tempering. Excessive addition causes a reduction in hot workability and an increase in cost, so the content should be up to 1%. Nb: 0 to 0.5% Nb may not be added. When steel is used as a non-heat treated steel, the effect is the same as that of V when added. Further, the crystal structure of steel may be refined to improve toughness. However, excessive addition delays recrystallization during hot working of steel and makes hot working difficult, so the content should be at most 0.5%. Pb: 0-0.5% Pb may not be added. However, if added, the machinability of the steel can be improved, so it is included when more machinability is required. However, excessive addition deteriorates the hot workability of steel, so the content should be up to 0.5%. Ca: 0 to 0.01% Ca may not be added. Ca has an effect of improving the machinability of a carbide tool, and Ca is contained as necessary. However, even if it is added excessively, the effect is saturated and coarse inclusions are formed to lower toughness and fatigue strength. Therefore, the upper limit is made 0.01%. Bi: 0 to 0.5% Bi, like Pb, is an element for improving the machinability of steel and need not be added, but is contained when more machinability is required. However, if the content exceeds 0.5%, it causes the generation of a false pattern at the time of magnetic particle flaw detection. EXAMPLE Steels having the chemical compositions shown in Table 1 were melted in a 1-ton high-frequency vacuum melting furnace. Steel Nos. 1 to 6 contain Ti, and Steel Nos. 7 to 12 do not contain Ti. In these, the S content was changed, and the other compositions were made as identical as possible. Where Ti
When Ti is added, the Ti content is also increased with the S content so that fn1 in the formula becomes positive (fn1> 0). In the case where Ti is not added, Mn is used to suppress hot brittleness. Was increased. The obtained steel ingot was rolled into a billet of 100 m square. 1250 of these billets
After heating to 0 ° C., the launch temperature was set to 1100 ° C., and the mixture was forged into a crankshaft having a pin journal diameter of 60 mmφ and air-cooled. After forging, quenching and tempering are performed under normal conditions, and the hardness is HB
250. A round bar test piece having a diameter of 55 mm and a length of 60 mm was cut out from the pin portion, and the machinability was evaluated by drilling a 6 mmφ through hole in the length direction and the number of holes that could be drilled. The circumferential surface portion of such a round bar test piece was induction hardened, and after polishing, the presence or absence of occurrence of a pseudo pattern on the circumferential surface portion in magnetic particle flaw detection by a shaft current method of a current value of 2500 A was investigated. The total length was measured. In addition, the circumferential surface of the round bar specimen was subjected to high-frequency quenching and then ground under heavy grinding conditions, and the presence or absence of grinding cracks was checked by magnetic particle flaw detection with a current value of 1000 A. Was measured. [Table 1] The results of these investigations are shown in FIGS. 2 to 4 in which the S content is plotted on the horizontal axis and the measured values are plotted on the vertical axis. In FIG. 2, when the S content is small, the number of drilled holes is small and the machinability is not good, but the number of drilled holes increases as the S content increases, and the machinability is improved. Comparing with the same S content, it can be seen that the steel with the addition of Ti of the present invention has better machinability than the steel without the addition. FIG. 3 or FIG.
As shown in Fig. 5, the pseudo pattern at the time of flaw detection and the crack at the time of grinding also increase with the increase of the S content. And has declined significantly. The steel of the present invention, when applied to a hot forged product, exhibits excellent machinability as it is after forging or when it is made into a non-heat treated steel, as it is forged. There are no false patterns at the time of magnetic particle flaw detection, and there are few cracks during grinding. By using such steel, it becomes possible to significantly reduce the manufacturing cost of forged products.

【図面の簡単な説明】 【図1】熱間鍛造品の製造工程を示す図である。 【図2】鋼のS含有量と鍛造鋼の被削性の関係を示す図
である。 【図3】鋼のS含有量と磁粉探傷時の疑似欠陥模様の発
生との関係を示す図である。 【図】鋼のS含有量と表面硬化後研削したときの研削割
れ発生との関係を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a manufacturing process of a hot forged product. FIG. 2 is a diagram showing the relationship between the S content of steel and the machinability of forged steel. FIG. 3 is a diagram showing a relationship between the S content of steel and the occurrence of a pseudo-defect pattern during magnetic particle flaw detection. FIG. 5 is a graph showing the relationship between the S content of steel and the occurrence of grinding cracks when grinding after surface hardening.

─────────────────────────────────────────────────────
【手続補正書】 【提出日】平成10年9月3日(1998.9.3) 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】図面の簡単な説明 【補正方法】変更 【補正内容】 【図面の簡単な説明】 【図1】熱間鍛造品の製造工程を示す図である。 【図2】鋼のS含有量と鍛造鋼の被削性の関係を示す図
である。 【図3】鋼のS含有量と磁粉探傷時の疑似欠陥模様の発
生との関係を示す図である。 【図4】鋼のS含有量と表面硬化後研削したときの研削
割れ発生との関係を示す図である。
────────────────────────────────────────────────── ───
[Procedural amendment] [Date of submission] September 3, 1998 (1998.9.3) [Procedure amendment 1] [Document name to be amended] Specification [Item name to be amended] Brief explanation of drawings [Method of amendment] FIG. 1 is a view showing a manufacturing process of a hot forged product. FIG. 2 is a diagram showing the relationship between the S content of steel and the machinability of forged steel. FIG. 3 is a diagram showing a relationship between the S content of steel and the occurrence of a pseudo-defect pattern during magnetic particle flaw detection. FIG. 4 is a diagram showing the relationship between the S content of steel and the occurrence of grinding cracks when grinding after surface hardening.

Claims (1)

【特許請求の範囲】 重量%にて、C:0.2〜0.6%、Si:0.05〜1.5%、M
n:0.1〜3.0%、P:0.08%以下、S:0.01〜0.2%、
Ti:0.04〜1.0%、N:0.008%以下で、Cu:0〜1.0
%、Ni:0〜2%、Cr:0〜5%、Mo:0〜1.0%、A
l:0〜1%、B:0〜0.005%、V:0〜1%、Nb:0〜
0.5%、Pb:0〜0.5%、Ca:0〜0.01%、およびB
i:0〜0.5%を含有し、残部はFeおよび不可避的不純
物からなり、かつTiおよびSの含有量は、下式で示
されるfn1が正(fn1>0)であることを特徴とする
熱間鍛造用鋼。 fn1=Ti(%)−1.2×S(%)
[Claims] C: 0.2-0.6%, Si: 0.05-1.5%, M
n: 0.1 to 3.0%, P: 0.08% or less, S: 0.01 to 0.2%,
Ti: 0.04 to 1.0%, N: 0.008% or less, Cu: 0 to 1.0
%, Ni: 0 to 2%, Cr: 0 to 5%, Mo: 0 to 1.0%, A
1: 0-1%, B: 0-0.005%, V: 0-1%, Nb: 0-0
0.5%, Pb: 0 to 0.5%, Ca: 0 to 0.01%, and B
i: 0 to 0.5%, the balance being Fe and unavoidable impurities, and the content of Ti and S is such that fn1 represented by the following formula is positive (fn1> 0). Steel for forging. fn1 = Ti (%)-1.2 x S (%)
JP19287898A 1998-07-08 1998-07-08 Hot forging steel Expired - Fee Related JP3893756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19287898A JP3893756B2 (en) 1998-07-08 1998-07-08 Hot forging steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19287898A JP3893756B2 (en) 1998-07-08 1998-07-08 Hot forging steel

Publications (2)

Publication Number Publication Date
JP2000026933A true JP2000026933A (en) 2000-01-25
JP3893756B2 JP3893756B2 (en) 2007-03-14

Family

ID=16298489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19287898A Expired - Fee Related JP3893756B2 (en) 1998-07-08 1998-07-08 Hot forging steel

Country Status (1)

Country Link
JP (1) JP3893756B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007038789A1 (en) * 2005-09-29 2007-04-05 Hydril Llc Methods for heat treating thick-walled forgings
WO2012029395A1 (en) * 2010-08-31 2012-03-08 住友金属工業株式会社 Steel for induction hardening and crankshaft manufactured using same
CN102383036A (en) * 2011-11-17 2012-03-21 江苏金源锻造股份有限公司 Medium carbon alloy steel applicable to forging afterheat quenching
KR101173054B1 (en) 2010-07-08 2012-08-13 현대자동차주식회사 Alloy compound composite for connecting rod and menufacturing method for connecting rod using it
KR101227616B1 (en) 2011-05-26 2013-01-30 (주)씬터온 Manufacturing method of high strength connecting rod for High pressure combustion engine
CN104372263A (en) * 2014-11-11 2015-02-25 南京钢铁股份有限公司 Electric furnace production process of high-purity non-quenched and tempered steel for crankshaft
CN104975229A (en) * 2015-06-15 2015-10-14 柳州金特新型耐磨材料股份有限公司 Gear sleeve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138288B (en) 2015-10-19 2020-07-31 日本制铁株式会社 Steel for hot forging and hot forged product
CN109790604B (en) 2016-09-30 2021-09-10 日本制铁株式会社 Cold forging steel and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007038789A1 (en) * 2005-09-29 2007-04-05 Hydril Llc Methods for heat treating thick-walled forgings
EA012791B1 (en) * 2005-09-29 2009-12-30 ХАЙДРИЛ ЮЭсЭй МЭНЬЮФЭКЧУРИНГ ЭлЭлСи Methods for heat treating thick-walled forgings
KR101173054B1 (en) 2010-07-08 2012-08-13 현대자동차주식회사 Alloy compound composite for connecting rod and menufacturing method for connecting rod using it
WO2012029395A1 (en) * 2010-08-31 2012-03-08 住友金属工業株式会社 Steel for induction hardening and crankshaft manufactured using same
JP2012052153A (en) * 2010-08-31 2012-03-15 Sumitomo Metal Ind Ltd Steel for induction hardening, and crankshaft manufactured using the same
US9234265B2 (en) 2010-08-31 2016-01-12 Nippon Steel & Sumitomo Metal Corporation Steel for induction hardening and crankshaft manufactured using the same
KR101227616B1 (en) 2011-05-26 2013-01-30 (주)씬터온 Manufacturing method of high strength connecting rod for High pressure combustion engine
CN102383036A (en) * 2011-11-17 2012-03-21 江苏金源锻造股份有限公司 Medium carbon alloy steel applicable to forging afterheat quenching
CN104372263A (en) * 2014-11-11 2015-02-25 南京钢铁股份有限公司 Electric furnace production process of high-purity non-quenched and tempered steel for crankshaft
CN104975229A (en) * 2015-06-15 2015-10-14 柳州金特新型耐磨材料股份有限公司 Gear sleeve

Also Published As

Publication number Publication date
JP3893756B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
EP0943697A1 (en) High-toughness spring steel
EP3034643A1 (en) Electric-resistance-welded steel pipe with excellent weld quality and method for producing same
JPH0790485A (en) High-toughness high-strength nonrefined steel and its production
JP2011001599A (en) Steel for machine structure suitable to friction pressure welding, method for producing the same, and friction pressure-welded component
JP5886119B2 (en) Case-hardened steel
US7387691B2 (en) Hot forged non-heat treated steel for induction hardening
JP2000026933A (en) Hot forging steel
JP2010236062A (en) Method for manufacturing component for machine structure
JP6477382B2 (en) Free-cutting steel
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP3978111B2 (en) Carburizing steel with excellent torsional fatigue properties
JP4450217B2 (en) Non-tempered steel for soft nitriding
JP3644275B2 (en) Martensitic bainite-type non-tempered steel material excellent in machinability and manufacturing method thereof
JP3534146B2 (en) Non-heat treated steel excellent in fatigue resistance and method for producing the same
JP2011256447A (en) High strength steel excellent in machinability, and manufacturing method therefor
JP3883788B2 (en) Cold tool steel for molds with excellent toughness and wear resistance
JP2004169055A (en) Age hardening type high-strength bainitic steel parts superior in machinability and manufacturing method therefor
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3336877B2 (en) Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JP3394439B2 (en) Bearing steel with excellent machinability
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
JP3320958B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees