JP3883788B2 - Cold tool steel for molds with excellent toughness and wear resistance - Google Patents

Cold tool steel for molds with excellent toughness and wear resistance Download PDF

Info

Publication number
JP3883788B2
JP3883788B2 JP2000195566A JP2000195566A JP3883788B2 JP 3883788 B2 JP3883788 B2 JP 3883788B2 JP 2000195566 A JP2000195566 A JP 2000195566A JP 2000195566 A JP2000195566 A JP 2000195566A JP 3883788 B2 JP3883788 B2 JP 3883788B2
Authority
JP
Japan
Prior art keywords
carbides
carbide
steel
toughness
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000195566A
Other languages
Japanese (ja)
Other versions
JP2002012952A (en
Inventor
敬介 清水
大円 横井
信博 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2000195566A priority Critical patent/JP3883788B2/en
Publication of JP2002012952A publication Critical patent/JP2002012952A/en
Application granted granted Critical
Publication of JP3883788B2 publication Critical patent/JP3883788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金型寿命に優れた金型用冷間工具鋼に関するものである。
【0002】
【従来の技術】
従来、冷間加工用工具には、JIS−SKD11が広く使用されている。しかし、近年、塑性加工技術の進歩や被加工材の高強度化にともない、使用される冷間加工用工具への負荷応力が大きくなっている。そのため、JIS−SKD11では硬度や靱性の不足により、対応できない場合が多くなっている。一方で、SKD11を改良した種々の冷間工具鋼が提案されており、最近では、炭化物の量、サイズを規定した冷間工具鋼も提案され、型寿命の向上が図られて、例えば特開平1−201442号公報、特開平2−247357号公報、特開平5−156407号公報、特開昭59−179762号公報、および特開平11−310820号公報の発明が提案されている。
【0003】
この特開平1−201442号公報は、重量%で、C:0.90〜1.35%、Si:0.70〜1.40%、Mn:1.0%以下、S:0.004%以下、Cr:8.0〜10.0、MoとWの1種または2種をMo+W/2で1.5〜2.5%、VとNbの1種または2種をV+Nb/2で0.15〜2.5%を含み、残部Feおよび不可避的不純物からなり、さらに焼入れ焼もどし組織において、M7 3 型炭化物の面積率を2%以上9%以下、MC炭化物の面積率を2.5%以下とした転造ダイス用鋼にある。確かに、この発明には、炭化物についての面積率、および粒径を規制しているが、しかし、主に靱性の向上、炭化物の連鎖状分布を経路とした亀裂伝播の抑制を目的としたものである。これに対し、本発明は金型寿命のばらつき、極度な低寿命をもたらす因子である炭化物の凝集に着目し、炭化物凝集サイズを規定することにより、金型寿命のばらつき、および極度な低寿命金型を低減し、金型の平均寿命の向上をはかると言うものである。
【0004】
また、特開平2−247357号公報は、上述の特開平1−201442号公報に、さらに、不純物であるAs,Sn,Sb,Cu,B,Pb,Biの合計量が0.13%以下からなる転造ダイス用鋼にある。さらに、特開平5−156407号公報は、焼入焼もどし組織において、粒径2μm以上のMC型残留炭化物とM6 C型残留炭化物の1種または2種の合計の面積率が3%以下、粒径2μm以上のM7 3 型残留炭化物の面積率が1%以下と規制したものである。いずれも、特開平1−201442号公報と同様に、主に靱性の向上、炭化物の連鎖状分布を経路とした亀裂伝播の抑制を目的としたものである。これに対し、本発明は、前述のように、炭化物の凝集に着目し、炭化物凝集サイズを規定することにより、金型寿命のばらつき、および極度な低寿命金型を低減し、金型の平均寿命の向上をはかると言うものである。
【0005】
さらに、特開昭59−179762号公報は、C:0.75〜1.75%、Si:0.5〜3.0%、Mn:0.1〜2.0%、Cr:5.0〜11.0%、Mo:1.3〜5.0%、V:0.1〜5.0%を含有し、残部Feおよび不純物からなり、450℃以上の温度で焼もどしされてなる冷間工具鋼であり、また、特開平5−156407号公報は、主に靱性の向上、炭化物の連鎖状分布を経路とした亀裂伝播の抑制を目的としたものである。これに対し、本発明は前述同様に、炭化物の凝集に着目し、炭化物凝集サイズを規定することにより、金型寿命のばらつき、および極度な低寿命金型を低減し、金型の平均寿命の向上をはかることにある。また、特開平11−310820号公報は残留オーステナイト組織の経年変化を示したもので、本発明の目的とは全く異なるものである。
【0006】
【発明が解決しようとする課題】
上述した従来技術は、靱性また強度の点から炭化物サイズを規制したものである。この理由は、一次炭化物の欠落による微少欠損を生じたり、クラックの進展経路となることを防ぐためである。これに対し、近年の塑性加工技術の進歩や被加工材の高強度化に伴い、工具の耐摩耗性向上を目的に、さらに耐疲労性を兼ね供えた金型に適した工具鋼が必要とされることから、本発明は、最適な化学成分に限定し、炭化物、炭化物凝集サイズを規制した鋼材のマルテンサイト組織に体積%で5〜20%の残留オーステナイト組織を残存させることにより、十分な疲労性を確保し、耐摩耗性が劣化しない程度の炭化物を含有した強度の優れた高寿命が得られる冷間工具鋼を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
その発明の要旨とするところは、
(1)質量%で、C:0.65〜1.3%、Si:2.0%以下、Mn:0.1〜2.0%、Cr:5.0〜13.0%、MoまたはWのいずれか1種または2種をMo当量(Mo+1/2W):0.5〜5.0%、VまたはNbのいずれか1種または2種をV当量(V+1/2Nb):0.1〜2.5%、残部Feおよび不可避的不純物よりなり、該鋼の炭化物のサイズが5〜15μmとし、かつ炭化物凝集部(炭化物間距離のb/a≦0.5の部分)の凝集サイズが100μm以下であり、該鋼のマルテンサイト組織に体積%で5〜20%の残留オーステナイト組織を残留させたことを特徴とする靱性および耐摩耗性に優れた金型用冷間工具鋼。
ただし、a:個々の炭化物の重心間距離
b:最短炭化物間距離
(2)前記(1)記載の鋼に、S:0.01〜0.10%添加することを特徴とする靱性および耐摩耗性に優れた金型用冷間工具鋼にある。
【0008】
【発明の実施の形態】
以下に、本発明鋼の各化学成分の作用およびその限定理由を説明する。
C:0.65〜1.3%
Cは、焼入焼戻により、十分なマトリックス硬さを与えると共に、Cr,Mo,V,Nbなどと結合して炭化物を形成し、硬さおよび耐摩耗性を与える元素である。しかし、添加量が多過ぎると、凝固時に粗大炭化物が過剰に析出し、靱性、耐疲労特性を劣化させることから、Cの上限を1.3%とした。一方、0.65%未満では、十分な二次硬化硬さが得られないので、その下限を0.65%としたが、強度と靱性の最適バランスを得るためには、0.75〜0.95%の範囲が望ましい。
【0009】
Si:2.0%以下
Siは、主に脱酸剤として添加されると共に、耐酸化性および焼入性に有効な元素であると共に、焼戻過程において炭化物の凝集を抑え二次硬化を促進する元素である。しかし、2.0%を越えて添加すると、靱性を低下させるので、その上限を2.0%とした。
Mn:0.1〜2.0%
Mnは、Siと同様に脱酸剤として添加し鋼の清浄度を高めると共に焼入れ性を高める元素である。しかしながら、2.0%を越えて添加すると、熱間加工性を阻害するうえに靱性を劣化させるので、その上限を2.0%とした。
【0010】
Cr:5.0〜13.0%
Crは、焼入れ性を高めると共に、焼戻軟化抵抗を高める有効な元素である。この効果を満足するためには、少なくとも5.0%以上必要である。従って、その下限を5.0%とした。一方、Crは、凝固時にCと結合して巨大一次炭化物を形成し易く、過剰な添加は、靱性および耐疲労特性を劣化させるため、その上限を13.0%、とした。好ましくは、7.5〜8.5%とした。
【0011】
MoまたはWのいずれか1種または2種をMo当量(Mo+1/2W):0.5〜5.0%、
MoおよびWは、共に微細な炭化物を形成し、二次硬化に寄与する重要な元素であると共に、耐軟化抵抗性を改善する元素である。ただし、その効果はMoの方がWよりも2倍強く、同じ効果を得るのに、WはMoの2倍必要である。この両元素の効果は、Mo当量(Mo+1/2W)で表すことができる。本発明成分系においては、Mo当量で少なくとも0.5%以上が必要である。逆に、Mo当量の過剰添加は、靱性の低下を招くので、その上限を5.0%とした。好ましくは1.5〜3.5%とした。
【0012】
VまたはNbのいずれか1種または2種をV当量(V+1/2Nb):0.1〜2.5%
V、Nbは、共に微細な炭化物を形成し二次硬化に寄与し、耐軟化抵抗性を改善する重要な元素であると共に、結晶粒微細化し、耐摩耗性を向上させる元素である。ただし、その効果はVの方がNbよりも2倍強く、同じ効果を得るのに、NbはVの2倍必要である。この両元素の効果はV当量(V+1/2Nb)で表すことができる。本発明成分系においては、高温焼戻し硬度を得るためには、V当量で少なくとも0.1%以上が必要である。過剰な添加は靱性を低下させ、硬質表面層との密着性を阻害するため、その上限を2.5%とした。
S:0.01〜0.10%
Sは快削性を確保するために必要な元素である。しかし、過剰な添加は靱性を低下させ、熱間加工性を劣化させるため、0.01〜0.10%とした。
【0013】
また、マルテンサイト組織に、体積%で5〜20%の残留オーステナイト組織を残留させたことにより、残留オーステナイトが炭化物の応力集中を抑制し、さらに亀裂発生を低減される。これらの相乗効果により金型寿命のばらつきや早期破損を改善し高寿命を可能とするものである。しかし、5%未満ではその効果が得られず、20%を超える場合は硬さが低下するため、5〜20%とした。
【0014】
次に、金型用冷間工具鋼において、凝固時に晶出する共晶炭化物であるが、従来は靱性、または強度の点から炭化物のサイズを規定していたものである。その理由は、一次炭化物の欠落による微小欠損を生じたり、クラックの進展経路となることを防ぐために規制したものである。しかし、この点を詳しく究明した結果、本発明の最大の特徴は、特に冷間工具鋼としての金型ダイス等の工具寿命を左右する要因としての炭化物の亀裂発生および亀裂伝播を抑制する必要から、炭化物の凝集サイズを100μm以下とすることにより、炭化物における亀裂発生および亀裂伝播が抑制される。
【0015】
図1は炭化物凝集サイズ距離関係を示す図である。図1に示すように、炭化物の規定方法としては、測定面を引張−圧縮または引張−引張疲労破面とし、個々の炭化物の重心間距離をa、最短炭化物間距離をbとしたとき、b/a≦0.5となる箇所を炭化物凝集部とした。また、炭化物凝集サイズは、画像処理装置により、個々の炭化物の面積の和から算出した円相当径とした。図1(a)および図1(b)はb/a≦0.5の場合であり、、図1(c)はb/a>0.5の状態を示している。疲労特性に悪影響を及ぼすのは近接または隣接した炭化物の凝集部であり、面積的に同じであっても炭化物間距離が離れていれば、疲労に悪影響を及ぼさないものであることが判った。従って、炭化物間距離を表すb/aによって定め、b/a≦0.5であることを条件とした。
【0016】
また、炭化物サイズが15μmを超えると引張圧縮疲労試験による破断繰返し数が著しく減少し、一方、大越式摩耗試験の結果によると、5μm未満で著しく耐摩耗性の減少が現れることが判った。その結果、金型寿命の大きな要因とする引張圧縮疲労と耐摩耗性から炭化物サイズを5〜15μmとした。このように、炭化物サイズ、および炭化物凝集サイズの規制により、耐摩耗性を保持しつつ、炭化物の欠落による微小欠陥や亀裂進展を抑制し靱性を改善する。
【0017】
【実施例】
以下に、本発明を実施例に基づいて具体的に説明する。
表1に示す組成の鋼600kgを電気溶解炉にて溶製し、角50mmへ鍛伸後焼なましを行い供試材とした。各試験片は1030〜1080℃に30分保持後、空冷し、150〜580℃で60分保持後空冷処理を2回施した。また、被削性については、鍛伸後焼なまし後NCフライス、φ13エンドミル、軸方向10mm×1.2mm切り込み、回転数1100rpm、切削速度35m/分、5m加工後のエンドミル摩耗量を測定、比較鋼Hの摩耗量を1として表2に示す。
【0018】
【表1】

Figure 0003883788
【0019】
硬さ測定は、焼入焼戻後、常温、ロックウエルCスケールで測定した。また、抗折試験は、焼入焼戻しを施した縦5×横9×長さ60mmの試験片を用い、抗折力、たわみ量測定した。さらに、大越式摩耗試験は、SCM420(86HRB)を相手材とし、摩耗距離200m、最終荷重62Nの条件下で試験を行った。試験結果は比較鋼Hの摩耗量を100として表した。さらに、引張圧縮疲労試験は、焼入焼戻しを施した平行部:径5×15の試験片を用い、油圧サーボ試験機にて試験を行った。試験条件は、応力振幅1500MPa、応力比R=−1、室温にて行った。また、実機での金型試験は、径50×100mmの鍛造用金型を作製し、SCM420を被加工材として試験を行った。金型の寿命要因は、鋼種A〜Gは本発明であり、鋼種H〜Mは比較例でる。
【0020】
その結果を表2に示す。表2に示すように、本発明鋼A〜Gはいずれも残留オーステナイト量が5〜20%の範囲内であり、炭化物凝集サイズが100μm以下であり、その場合の硬さ(HRC)は、いずれも59HRC以上の硬さを維持した上で、引張圧縮疲労強度、金型寿命延長を図ることが出来た。これに対し、比較例であるH〜Mは成分組成ないし残留オーステナイト量の範囲、炭化物凝集サイズ、炭化物サイズの条件が外れているために、引張圧縮疲労強度、金型寿命は本発明より劣ることが判る。
【0021】
【表2】
Figure 0003883788
【0022】
【発明の効果】
以上述べたように、本発明鋼は、金型用冷間工具鋼としての残留オーステナイト量を規制すると共に炭化物凝集サイズおよび炭化物サイズを規定することにより、極めて優れた型寿命を確保することが可能となり、金型用工具鋼として従来のものに比べて経済的で極めて有利なものとなった。
【図面の簡単な説明】
【図1】炭化物凝集サイズ距離関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold tool steel for a mold having an excellent mold life.
[0002]
[Prior art]
Conventionally, JIS-SKD11 has been widely used for cold working tools. However, in recent years, with the progress of plastic working technology and the increase in the strength of workpieces, the load stress on the cold working tools used is increasing. For this reason, in JIS-SKD11, there are many cases that cannot be handled due to lack of hardness and toughness. On the other hand, various cold tool steels with improved SKD11 have been proposed. Recently, cold tool steels with a specified amount and size of carbide have been proposed to improve the mold life. Japanese Patent Laid-Open Nos. 1-201442, 2-247357, 5-156407, 59-179762, and 11-310820 have been proposed.
[0003]
In JP-A-1-2014442, C: 0.90 to 1.35%, Si: 0.70 to 1.40%, Mn: 1.0% or less, S: 0.004% by weight. Hereinafter, Cr: 8.0 to 10.0, one or two of Mo and W are 1.5 to 2.5% in Mo + W / 2, and one or two of V and Nb is 0 in V + Nb / 2. In the quenching and tempering structure, the area ratio of M 7 C 3 type carbide is 2% or more and 9% or less, and the area ratio of MC carbide is 2 It is in steel for rolling dies with 5% or less. Certainly, the present invention regulates the area ratio and particle size of carbides, but mainly aimed at improving toughness and suppressing crack propagation through the chain distribution of carbides. It is. On the other hand, the present invention focuses on the agglomeration of carbides, which is a factor that brings about a variation in mold life and an extremely low life. This is to reduce the mold and improve the average life of the mold.
[0004]
Further, Japanese Patent Laid-Open No. 2-247357 discloses that the total amount of impurities As, Sn, Sb, Cu, B, Pb, Bi is 0.13% or less in addition to the above-mentioned Japanese Patent Laid-Open No. 1-201442. It is in steel for rolling dies. Further, JP-A-5-156407 discloses that in the quenching and tempering structure, the total area ratio of one or two of MC type residual carbide having a particle size of 2 μm or more and M 6 C type residual carbide is 3% or less, The area ratio of M 7 C 3 type residual carbide having a particle size of 2 μm or more is regulated to 1% or less. In any case, as in JP-A-1-2014442, the purpose is mainly to improve toughness and to suppress crack propagation through a chain distribution of carbides. On the other hand, as described above, the present invention pays attention to the agglomeration of carbides and regulates the agglomeration size of the carbide, thereby reducing the variation in mold life and the extremely low life mold, and the average of the molds. That is to improve the service life.
[0005]
Furthermore, JP-A-59-179762 discloses C: 0.75 to 1.75%, Si: 0.5 to 3.0%, Mn: 0.1 to 2.0%, Cr: 5.0 -11.0%, Mo: 1.3-5.0%, V: 0.1-5.0%, consisting of the balance Fe and impurities, tempered at a temperature of 450 ° C or higher Japanese Patent Application Laid-Open No. 5-156407 mainly aims at improving toughness and suppressing crack propagation through a chain distribution of carbides. On the other hand, as described above, the present invention pays attention to the agglomeration of carbides and regulates the agglomeration size of the carbide, thereby reducing variations in mold life and extremely low-life molds, and reducing the average life of the mold. The goal is to improve. Japanese Patent Application Laid-Open No. 11-310820 shows the secular change of the retained austenite structure, which is completely different from the object of the present invention.
[0006]
[Problems to be solved by the invention]
The prior art described above regulates the carbide size in terms of toughness and strength. The reason for this is to prevent the occurrence of minute defects due to the loss of primary carbides and the path of crack propagation. On the other hand, with the recent progress in plastic working technology and the increased strength of workpieces, tool steel suitable for molds that also have fatigue resistance is required for the purpose of improving wear resistance of tools. Therefore, the present invention is limited to an optimal chemical component, and by leaving a residual austenite structure of 5% to 20% by volume in the martensite structure of a steel material in which carbide and carbide agglomerate size are regulated, sufficient An object of the present invention is to provide a cold work tool steel that ensures fatigue and provides a long life with excellent strength and containing carbides that do not deteriorate wear resistance.
[0007]
[Means for Solving the Problems]
The gist of the invention is that
(1) By mass%, C: 0.65 to 1.3%, Si: 2.0% or less, Mn: 0.1 to 2.0%, Cr: 5.0 to 13.0%, Mo or Any one or two of W is Mo equivalent (Mo + 1 / 2W): 0.5 to 5.0%, and any one or two of V or Nb is V equivalent (V + 1 / 2Nb): 0.1 -2.5%, balance Fe and inevitable impurities , the steel carbide size is 5-15 μm, and the agglomeration size of the carbide agglomerated part (b / a ≦ 0.5 part of the distance between carbides) and at 100μm or less, the steel of martensitic structure in% by volume 5-20% of toughness, characterized in that the residual austenite tissue allowed to remain and wear resistance superior mold for cold work tool steel.
Where a: distance between the centers of gravity of individual carbides
b: Shortest distance between carbides
(2) It is in the cold tool steel for metal mold | die excellent in toughness and abrasion resistance characterized by adding S: 0.01-0.10% to the steel of said (1) description.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Below, the effect | action of each chemical component of this invention steel and its reason for limitation are demonstrated.
C: 0.65 to 1.3%
C is an element that imparts sufficient matrix hardness by quenching and tempering, and forms carbides by combining with Cr, Mo, V, Nb, etc., and imparts hardness and wear resistance. However, if the addition amount is too large, coarse carbides are excessively precipitated during solidification, and the toughness and fatigue resistance are deteriorated. Therefore, the upper limit of C is set to 1.3%. On the other hand, if it is less than 0.65%, sufficient secondary curing hardness cannot be obtained, so its lower limit was made 0.65%, but in order to obtain the optimum balance between strength and toughness, 0.75 to 0 A range of .95% is desirable.
[0009]
Si: 2.0% or less Si is mainly added as a deoxidizer, and is an element effective for oxidation resistance and hardenability, and suppresses agglomeration of carbides during the tempering process and promotes secondary hardening. Element. However, if added over 2.0%, the toughness is lowered, so the upper limit was made 2.0%.
Mn: 0.1 to 2.0%
Mn is an element that is added as a deoxidizer in the same way as Si to increase the cleanliness of steel and enhance the hardenability. However, if added over 2.0%, hot workability is impaired and toughness is deteriorated, so the upper limit was made 2.0%.
[0010]
Cr: 5.0 to 13.0%
Cr is an effective element that enhances hardenability and enhances temper softening resistance. In order to satisfy this effect, at least 5.0% or more is necessary. Therefore, the lower limit was made 5.0%. On the other hand, Cr is liable to bond with C during solidification to form a giant primary carbide, and excessive addition deteriorates toughness and fatigue resistance, so the upper limit was made 13.0%. Preferably, it was 7.5 to 8.5%.
[0011]
Any one or two of Mo or W is Mo equivalent (Mo + 1 / 2W): 0.5-5.0%,
Mo and W are both elements that form fine carbides and contribute to secondary hardening, and are elements that improve resistance to softening. However, the effect of Mo is twice as strong as that of W. To obtain the same effect, W needs to be twice that of Mo. The effect of both elements can be expressed by Mo equivalent (Mo + 1 / 2W). In the component system of the present invention, Mo equivalent of at least 0.5% is necessary. On the contrary, excessive addition of Mo equivalent causes a decrease in toughness, so the upper limit was made 5.0%. Preferably it was 1.5 to 3.5%.
[0012]
One or two of V or Nb is equivalent to V equivalent (V + 1 / 2Nb): 0.1 to 2.5%
V and Nb are both important elements that form fine carbides and contribute to secondary hardening, improve softening resistance, and refine crystal grains to improve wear resistance. However, the effect of V is twice as strong as that of Nb, and Nb needs to be twice that of V to obtain the same effect. The effect of both elements can be expressed in terms of V equivalent (V + 1 / 2Nb). In the component system of the present invention, in order to obtain high temperature tempering hardness, V equivalent is required to be at least 0.1% or more. Excessive addition reduces toughness and inhibits adhesion to the hard surface layer, so the upper limit was made 2.5%.
S: 0.01-0.10%
S is an element necessary for ensuring free machinability. However, excessive addition reduces toughness and deteriorates hot workability, so it was made 0.01 to 0.10%.
[0013]
Further, by leaving a residual austenite structure of 5 to 20% by volume in the martensite structure, the residual austenite suppresses stress concentration of carbides and further reduces the occurrence of cracks. These synergistic effects improve mold life variation and early breakage, and enable a long life. However, if it is less than 5%, the effect cannot be obtained, and if it exceeds 20%, the hardness decreases, so it was made 5 to 20%.
[0014]
Next, in the cold tool steel for molds, it is a eutectic carbide that crystallizes during solidification. Conventionally, the carbide size is defined in terms of toughness or strength. The reason for this is to prevent the occurrence of minute defects due to the loss of primary carbides and to prevent cracks from developing. However, as a result of investigating this point in detail, the greatest feature of the present invention is that it is necessary to suppress crack initiation and crack propagation of carbides as a factor that affects tool life such as a die die as a cold tool steel. By making the aggregate size of the carbides 100 μm or less, crack generation and crack propagation in the carbides are suppressed.
[0015]
FIG. 1 is a diagram showing a relationship between carbide aggregate size distances. As shown in FIG. 1, as a method for defining carbides, when the measurement surface is a tension-compression or tensile-tensile fatigue fracture surface, the distance between the centers of gravity of each carbide is a, and the shortest carbide distance is b. A portion where /a≦0.5 was defined as a carbide aggregate portion. The carbide aggregate size was an equivalent circle diameter calculated from the sum of the areas of individual carbides by an image processing apparatus. FIGS. 1A and 1B show the case of b / a ≦ 0.5, and FIG. 1C shows the state of b / a> 0.5. It has been found that adjacent or adjacent agglomerates of carbides adversely affect the fatigue characteristics, and even if the area is the same, if the distance between carbides is long, fatigue is not adversely affected. Therefore, it is determined by b / a representing the distance between carbides, and the condition is that b / a ≦ 0.5.
[0016]
In addition, when the carbide size exceeds 15 μm, the number of repetitions of fracture by the tensile compression fatigue test is remarkably reduced. On the other hand, according to the results of the Ogoshi type wear test, it is found that the wear resistance is remarkably reduced at less than 5 μm. As a result, the carbide size was set to 5 to 15 μm in view of tensile compression fatigue and wear resistance, which are major factors of the mold life. As described above, by controlling the carbide size and the carbide agglomerate size, the toughness is improved by suppressing minute defects and crack propagation due to the lack of carbide while maintaining the wear resistance.
[0017]
【Example】
The present invention will be specifically described below based on examples.
600 kg of steel having the composition shown in Table 1 was melted in an electric melting furnace, subjected to forging and annealing to a corner of 50 mm, and used as test materials. Each test piece was air-cooled after being held at 1030 to 1080 ° C. for 30 minutes, and then air-cooled twice after being held at 150 to 580 ° C. for 60 minutes. As for machinability, NC milling after forge annealing, φ13 end mill, axial direction 10 mm × 1.2 mm cutting, rotation speed 1100 rpm, cutting speed 35 m / min, measuring end mill wear after 5 m machining, Table 2 shows the amount of wear of the comparative steel H as 1.
[0018]
[Table 1]
Figure 0003883788
[0019]
The hardness was measured at room temperature and Rockwell C scale after quenching and tempering. In the bending test, a bending strength and a deflection amount were measured using a test piece of 5 × 9 × 60 mm in length subjected to quenching and tempering. Furthermore, the Ogoshi type wear test was conducted under the conditions of a wear distance of 200 m and a final load of 62 N using SCM420 (86HRB) as a counterpart material. The test results were expressed with the wear amount of the comparative steel H as 100. Further, the tensile and compression fatigue test was performed by a hydraulic servo tester using a test piece having a parallel part: diameter 5 × 15 subjected to quenching and tempering. The test conditions were a stress amplitude of 1500 MPa, a stress ratio R = -1, and room temperature. Moreover, the metal mold | die test by an actual machine produced the metal mold | die for forging with a diameter of 50x100mm, and tested it by using SCM420 as a workpiece. As for the life factor of the mold, steel types A to G are the present invention, and steel types H to M are comparative examples.
[0020]
The results are shown in Table 2. As shown in Table 2, the steels A to G of the present invention all have a retained austenite amount in the range of 5 to 20%, the carbide agglomerate size is 100 μm or less, and the hardness (HRC) in that case is any In addition, while maintaining a hardness of 59 HRC or higher, the tensile compression fatigue strength and the mold life extension could be achieved. On the other hand, H to M, which are comparative examples, are inferior to the present invention in terms of tensile compression fatigue strength and die life because the conditions of the component composition or the retained austenite amount, the carbide aggregate size, and the carbide size are not satisfied. I understand.
[0021]
[Table 2]
Figure 0003883788
[0022]
【The invention's effect】
As described above, the steel of the present invention can ensure a very good mold life by regulating the amount of retained austenite as a cold tool steel for molds and by defining the carbide agglomerate size and carbide size. As a result, the tool steel for the mold is economical and extremely advantageous as compared with the conventional tool steel.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a relationship between carbide aggregate size distances.

Claims (2)

質量%で、
C:0.65〜1.3%、
Si:2.0%以下、
Mn:0.1〜2.0%、
Cr:5.0〜13.0%、
MoまたはWのいずれか1種または2種をMo当量(Mo+1/2W):0.5〜5.0%、
VまたはNbのいずれか1種または2種をV当量(V+1/2Nb):0.1〜2.5%、
残部Feおよび不可避的不純物よりなり、該鋼の炭化物のサイズが5〜15μmとし、かつ炭化物凝集部(炭化物間距離のb/a≦0.5の部分)の凝集サイズが100μm以下であり、該鋼のマルテンサイト組織に体積%で5〜20%の残留オーステナイト組織を残留させたことを特徴とする靱性および耐摩耗性に優れた金型用冷間工具鋼。
ただし、a:個々の炭化物の重心間距離
b:最短炭化物間距離
% By mass
C: 0.65 to 1.3%,
Si: 2.0% or less,
Mn: 0.1 to 2.0%,
Cr: 5.0 to 13.0%,
Any one or two of Mo or W is Mo equivalent (Mo + 1 / 2W): 0.5-5.0%,
V equivalent (V + 1 / 2Nb): 0.1-2.5% of any one or two of V or Nb,
The balance is made of Fe and unavoidable impurities , the steel has a carbide size of 5 to 15 μm, and the aggregate size of the carbide aggregate part (b / a ≦ 0.5 of the distance between carbides) is 100 μm or less, A cold work tool steel for molds excellent in toughness and wear resistance , characterized in that a retained austenite structure of 5 to 20% by volume is left in the martensitic structure of steel.
Where a: distance between the centers of gravity of individual carbides
b: Shortest distance between carbides
請求項1記載の鋼に、S:0.01〜0.10%添加することを特徴とする靱性および耐摩耗性に優れた金型用冷間工具鋼。A cold tool steel for molds having excellent toughness and wear resistance , wherein S: 0.01 to 0.10% is added to the steel according to claim 1.
JP2000195566A 2000-06-29 2000-06-29 Cold tool steel for molds with excellent toughness and wear resistance Expired - Lifetime JP3883788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195566A JP3883788B2 (en) 2000-06-29 2000-06-29 Cold tool steel for molds with excellent toughness and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195566A JP3883788B2 (en) 2000-06-29 2000-06-29 Cold tool steel for molds with excellent toughness and wear resistance

Publications (2)

Publication Number Publication Date
JP2002012952A JP2002012952A (en) 2002-01-15
JP3883788B2 true JP3883788B2 (en) 2007-02-21

Family

ID=18694217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195566A Expired - Lifetime JP3883788B2 (en) 2000-06-29 2000-06-29 Cold tool steel for molds with excellent toughness and wear resistance

Country Status (1)

Country Link
JP (1) JP3883788B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001787B2 (en) * 2002-07-01 2007-10-31 山陽特殊製鋼株式会社 Cold tool steel with excellent fatigue life and heat treatment method thereof
EP2662462A1 (en) * 2012-05-07 2013-11-13 Valls Besitz GmbH Low temperature hardenable steels with excellent machinability
CN102978517B (en) * 2012-12-14 2015-04-22 江苏天工工具有限公司 Preparation method of cold working die steel
JP6032582B2 (en) 2013-03-29 2016-11-30 日立金属株式会社 Manufacturing method of steel material for mold
CN113604744B (en) * 2021-08-10 2022-12-27 攀钢集团攀枝花钢铁研究院有限公司 High-strength and high-toughness cold-work die steel and preparation method thereof

Also Published As

Publication number Publication date
JP2002012952A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
KR101520208B1 (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
WO2012046779A1 (en) Case hardened steel and method for producing the same
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
EP0930374B1 (en) Production of cold working tool steel
JP2636816B2 (en) Alloy tool steel
JP3883788B2 (en) Cold tool steel for molds with excellent toughness and wear resistance
JPH0555585B2 (en)
JP5474615B2 (en) Martensitic stainless free-cutting steel bar wire with excellent forgeability
US20050205168A1 (en) Crankshaft
JPS61213350A (en) High-speed tool steel having superior grindability
JP2005336553A (en) Hot tool steel
JP2000026933A (en) Hot forging steel
JP6465206B2 (en) Hot-rolled bar wire, parts and method for producing hot-rolled bar wire
JP5443277B2 (en) High-strength steel with excellent machinability and method for producing the same
JP2018165403A (en) Steel for carburizing having excellent low cycle fatigue strength and machinability, and carburized component
JP3566162B2 (en) Hot tool steel with excellent weldability
JP4450217B2 (en) Non-tempered steel for soft nitriding
JP3821974B2 (en) Cold work tool steel
JP6825605B2 (en) Carburizing member
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
KR20180056748A (en) Steel and High Frequency Shaking Steel Parts for Mechanical Structures
JP3455407B2 (en) Cold tool steel
EP1553197B1 (en) Steel material for mechanical structure excellent in suitability for rolling, quenching crack resistance, and torsional property and drive shaft
JP3499425B2 (en) Manufacturing method of cold tool steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Ref document number: 3883788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term