JP3893756B2 - Hot forging steel - Google Patents

Hot forging steel Download PDF

Info

Publication number
JP3893756B2
JP3893756B2 JP19287898A JP19287898A JP3893756B2 JP 3893756 B2 JP3893756 B2 JP 3893756B2 JP 19287898 A JP19287898 A JP 19287898A JP 19287898 A JP19287898 A JP 19287898A JP 3893756 B2 JP3893756 B2 JP 3893756B2
Authority
JP
Japan
Prior art keywords
steel
content
machinability
less
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19287898A
Other languages
Japanese (ja)
Other versions
JP2000026933A (en
Inventor
治則 垣見
宏二 渡里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19287898A priority Critical patent/JP3893756B2/en
Publication of JP2000026933A publication Critical patent/JP2000026933A/en
Application granted granted Critical
Publication of JP3893756B2 publication Critical patent/JP3893756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、熱間で鍛造してクランク軸に用いられる鋼に関する。
【0002】
【従来の技術】
クランク軸の熱間鍛造品は、切削代をできるだけ少なくするよう、最終必要形状近くにまで鋼が熱間鍛造加工されるが、他部品との結合や組み合わせなどの際の精度確保のため、必然的に切削、研削など機械加工が加えられる。
【0003】
熱間鍛造品としての製造工程は、一例を図1に示すように、素材インゴット(ビレット)を加熱後、熱間鍛造して所望の形状とし、次いで焼入れ焼戻しなどの熱処理をおこなって鋼としての必要な機械的性質に調質する。非調質鋼を用いる場合は、鍛造後の冷却の管理により、所要の機械的性質を得る。これらの鍛造品は、寸法精度を要求される他部品との接合部や取り付け部などを、切削や穿孔など機械加工し、さらには耐摩耗性向上や疲労強度改善のため、高周波焼き入れおよび仕上げ研削などが施される。
【0004】
一般に鋼中のSは、熱間加工性を悪くし、介在物となって鋼の靱性や延性を劣化させる。このため鋼の圧延や鍛造のなどの塑性加工、および強度部材としての用途には、Sの含有量は低いほど好ましいとされている。ところがS量が少なくなると、切削抵抗や切削工具寿命など被削性が低下し、切削面や研削面の仕上がりが悪くなるという問題がある。熱間鍛造して用いられる鋼においても、鍛造製品の性能の点からは、S含有量はできるだけ低いのが望ましいが、調質後など強度の高い状態で切削加工や穿孔加工をおこなわねばならないことから、素材となる鋼には、被削性を配慮してSの含有量を高くしておくことが多い。Sは通常MnSを主成分とする硫化物系介在物を形成し、これが鋼の変形とともに展伸して鋼中に分散している。そして、切削などの工具の刃先近傍にて亀裂の開始点になって切削抵抗を下げ、仕上げ面を美麗にしたり、工具と鋼との間の潤滑効果性をもたらすとされている。
【0005】
ところが熱間鍛造品の場合、被削性を改善するためSの含有量を増すと、このMnS系の介在物が増加し、仕上げの研削時に研削割れの起点になったり、通常用いられる磁粉探傷検査時に、この介在物があたかも傷であるかのように認識されることがある。磁粉探傷は鋼の磁化の際、傷があれば磁化の乱れが生じ、磁粉の集積が異なって傷が検出される。MnSは非磁性であるため、磁化が乱れて傷の疑似模様が生じ、時には鍛造品としての欠陥は無いにもかかわらず不良品としてスクラップダウンされることもあり、また場合によっては浸透探傷試験までおこなって、開口性の問題ある欠陥かどうかを追加検査せざるを得ず、検査工数を増加させていた。
【0006】
【発明が解決しようとする課題】
本発明の目的は、Sにより被削性を向上させ、しかも硫化物系の介在物による研削割れを抑止し、製品の磁粉探傷検査時に傷の疑似模様の発生することのない、高周波焼入れ後に仕上げ研削されてクランク軸に用いられる熱間鍛造用鋼を提供することにある。
【0007】
【課題を解決するための手段】
鋼の被削性を向上させるには、より多くのSの添加や、Pb、Caなどの被削性を向上させる元素の添加、その他組織の調整や黒鉛化などの方法がある。しかしながら、熱間鍛造品を対象とするとき、熱間加工性を阻害せず、強度の高い調質後の被削性をも改善し、鍛造製品の靱性や疲労強度を劣化させことなく、しかもコスト的にも不利にならない方法となると、Sの添加以外の手段はほとんど考えられない。
【0008】
本発明者らは、通常熱間鍛造にて製造される部品に適用されるCの含有量が0.2〜0.6%の、炭素鋼ないしは低合金鋼を対象に、Sの含有量を低下することなく、すなわち被削性をそのままか、さらに向上させて、研削割れが抑制され、傷の疑似模様の発生しない鋼の可能性について検討をおこなうことにした。通常、Sは鋼中でMnSを主とする硫化物系の介在物となり、それらは粘性変形して鋼のメタルフローの方向に引き延ばされた形となる。近年の製鋼技術の進歩により、鋼中の介在物が低減され酸素などが減少すると、この傾向はますます強くなり、展伸した硫化物による研削割れや、傷の疑似模様が多く生ずるようになってきている。
【0009】
鋼中の硫化物系介在物の形態を変える方法としては、特定元素の添加を種々試みることとした。硫化物系介在物の形態を変え得る添加元素では、従来よりCa、希土類元素、Ti、Zr、V、Nbなどが知られている。そこでまず、これらの元素について、熱間鍛造性、被削性、効果の安定性、経済性等を、研削割れや傷の疑似模様の発生と合わせて調査したが、いずれの元素もこれらのすべてについて十分であるとはいえなかった。しかし、その中で比較的有意と思われたTiについてさらに調査を進めたところ、特に窒素含有量を低下させた場合に、被削性の向上と、研削割れ抑制および傷の疑似模様低減の効果が顕著に現れることを見出したのである。
【0010】
Tiの添加は、鋼板に用いられる比較的Cの低い低炭素鋼には、よく利用されている。例えば冷延鋼板においては、極低炭素とし鋼中のCをすべてTiCとして固定すれば、非時効性で深絞り性の極めて優れた鋼板が得られる。またCが0.25%以下の鋼により熱間圧延のままで高強度とする鋼板を製造する場合、少量添加することなどである。しかながら、熱間鍛造などによく用いられるCが0.4%前後の高C鋼においては、前述のMnに代わってSによる熱間脆性を抑止できること以外、その添加の効果はほとんど知られていない。これは、一つにはCと結合してTiCとなってしまい、その影響がほとんど出てこないためであり、さらにはNと結合して硬いTiN介在物を作り、被削性を悪くするためと思われた。
【0011】
これに対し、Nをできるだけ低くすると上記のような効果が現れるのは、凝固直後の高温で、Nが高ければTiNとなるところ、Nが少なくかつS量に対応する十分な量のTiがあれば、TiSがまず形成され、温度低下とともにこれが炭硫化物に変化していくためと推定される。炭硫化物は形成されたときは比較的大きいが、MnSのように粘性変形することなく、加工により破壊され分散する。それによって、研削割れが抑止され、磁粉探傷の際の、傷の疑似模様が低減する。そして、MnSと同様に切削抵抗を下げる効果があり、その上介在物としては比較的軟質なためMnSよりは潤滑効果があり、被削性をより向上させるのではないかと思われる。Nの低下は、溶鋼真空処理など鋼の製錬技術の進歩によって、容易にできるようになってきている。
【0012】
このような、熱間鍛造用鋼におけるTi添加の効果について、さらにその効果を十分に発揮できる適用限界を明確にして、本発明を完成させた。本発明の要旨とするところは、重量%にて、C:0.2〜0.6%、Si:0.05〜1.5%、Mn:0.1〜3.0%、P:0.08%以下、S:0.01〜0.2%、Ti:0.04〜1.0%、N:0.008%以下、Cr: 5以下(但し 0 %を除く)Mo: 1.0以下(但し 0 %を除く)およびAl: 1以下(但し 0 %を除く)を含有し、残部はFeおよび不可避的不純物からなり、かつ下式(1)で示されるfn1が正(fn1>0)であるTiおよびSの含有量であり、高周波焼入れ後に仕上げ研削されてクランク軸に用いられることを特徴とする熱間鍛造用鋼、
fn1=Ti(%)−1.2×S(%)・・・(1)、
である。
【0013】
【発明の実施の形態】
本発明において、鋼組成を限定した理由は次のとおりである。
【0014】
C:0.2〜0.6%
Cは強度など鋼の特性を決定する基本的な元素である。熱間鍛造後、調質非調質の如何にかかわらず必要な強度を得るためには、0.2%以上の含有が必要であるが、多くなりすぎると鍛造の加工性低下、熱処理時の焼き割れ、被削性の低下等の問題が生じてくるので、多くても0.6%までとする。
【0015】
Si:0.05〜1.50%
Siは鋼溶製時に脱酸のため添加する。含有量が0.05%未満では脱酸不十分となり、鋳片の健全性が低下する。しかし、多くなりすぎると鍛造時に表面脱炭が生じやすくなり、また鍛造品表面のスケール残りなど外観を悪くするので、1.50%までとする。
【0016】
Mn:0.1〜3.0%
Mnは、鋼の脱酸、Sによる熱間加工脆性の抑止、熱処理時の焼入れ性向上等の効果がある。このような効果を得るためには、通常は0.3%程度以上の含有が必要であるが、本発明の鋼ではS量に対し十分な量のTiを含有させるので、0.1以上の含有で同様な効果が得られる。0.1%未満では焼入れ性向上等の効果が不十分となる。しかし過剰の添加は、熱処理時の焼割れの原因となり、また被削性を低下させるので多くても3.0%までとする。
【0017】
P:0.08%以下
Pは不可避的不純物の一つであり、鋼の靱性を劣化させるので、通常はその含有量は少なければ少ないほどよい。しかし、鍛造品によってはPの含有量を増すと疲労強度増す場合があり、必要に応じ添加する。ただし、多すぎると靱性が劣化するので、悪影響が顕著でない範囲として多くても0.08%までとする。
【0018】
S:0.01〜0.2
熱間鍛造品にて十分な被削性を得るには、少なくとも0.01%以上の含有が必要である。しかし、過剰の添加は熱間鍛造時の割れ発生を招き、また得られた鍛造品の靱性を悪くするので、多くても0.2%までである。すなわちSの含有範囲は0.01〜0.2%とする。なお、望ましいのは0.04%以上の含有である。
【0019】
Ti:0.04〜1.0%
Tiは、硫化物の形態を変えることにより、鍛造後の被削性を向上させ、研削割れを抑制し、傷の疑似模様を低減させる重要な元素である。この効果を得るためには少なくとも0.04%以上の含有が必要である。しかし、1.0%を超えて含有させてもその効果は飽和し、さらには鋼の靱性を低下させ、コストも嵩んでくる。
fn1=Ti(%)−1.2×S(%):正(fn1>0)
Tiの含有量からSの含有量の1.2倍を引いた数をfn1とする。fn1はSを十分にTiと結合させるのに必要なTiの量を示すもので、本発明の場合fn1>0とする。fn1≦0になると、Tiと結合する以外のSは、Mnと結合した硫化物となる。この場合、Sが十分含有されておれば、被削性は確保できても研削割れや傷の疑似模様の抑止は不十分になる。またこのようにSに対し十分にTiを含有させれば、Mn量が少なくても、熱間加工割れは防止できる。
【0020】
Nの含有量は0.008%以下とするが、本発明においては少なければ少ないほど好ましい。Nが0.008%を超えると、たとえ(1)式を満足するTi量であっても、十分な被削性向上、研削割れ防止、および傷の疑似模様の抑止の効果が得られなくなる。これは、TiはSよりもNと結合しやすいため、Nが多く存在すると、先にTiNを作ってしまい、Sと硫化物を作るためのTiが不足してしまうからである。望ましいのはNを0.006%以下とすることである。
【0023】
Cr: 5以下(但し 0 %を除く)
Crは、焼入れ性向上の効果がある。多量になると被削性を悪くするので 5%までとする必要がある。したがって、Crの含有量を、 5 %以下(但し 0 %を除く)とした。
【0024】
Mo: 1.0以下(但し 0 %を除く)
Moは、焼入れ性の向上、焼戻し軟化抵抗の向上、および靭性向上の効果がある。ただし、多く添加しても効果は飽和し、コストも上昇するので、1.0%までとする必要がある。したがって、Moの含有量を、 1.0 %以下(但し 0 %を除く)とした。
【0025】
Al: 1以下(但し 0 %を除く)
Alは、強力な脱酸作用があり、鋳片の健全性を確実にするため含有させる。しかし、多く含有させてもその効果は飽和し表面傷などを増すだけなので 1%までとする必要がある。したがって、Alの含有量を、 1 %以下(但し 0 %を除く)とした。
【0032】
【実施例】
表1に示す化学組成の鋼をそれぞれ1tonの高周波真空溶解炉にて溶製した。鋼番号1〜6はTiを含有させたもの、鋼番号7〜12はTiを添加しないものである。これらは、それぞれSの含有量を変え、それ以外の組成はできるだけ同一になるようにした。ただし、Tiを添加した場合では(1)式のfn1が正(fn1>0)となるよう、S含有量の増加とともにTiの含有量も増加させ、Tiを添加しないものでは、熱間脆性を抑止するために、Mnの含有量を増加させた。得られた鋼塊は圧延して100mm角のビレットとした。これらのビレットを1250℃に加熱後打ち上げ温度1100℃として、ピンジャーナル径が60mmφのクランク軸に型鍛造し、空冷した。鍛造後、通常条件にて焼入れ焼戻しをおこない、硬さをHB250とした。ピン部より直径55mm、長さ60mmの丸棒試験片を切り出し、被削性については長さ方向に6mmφの貫通穴を明け、穿孔可能な穴の数にて評価した。このような丸棒試験片の円周面部を高周波焼入れし、研磨後電流値2500Aの軸通電法にて磁粉探傷における円周面部の疑似模様発生の有無を調査し、認められた場合にはその長さの総長を測定した。また、丸棒試験片の円周面部について、高周波焼入れ後、重研削条件にて研削をおこない、電流値1000Aの磁粉探傷にて研削割れの有無を調査し、認められた場合にはその長さの総長を測定した。
【0033】
【表1】

Figure 0003893756
【0034】
これらの調査結果について、横軸にS含有量を取り、縦軸にそれぞれの測定値をプロットした結果を図2〜図4に示す。図2では、S含有量が少ない場合、ドリル穴明け数が少なく被削性がよくないが、S含有量の増加とともに穴明け個数が増加し、被削性が向上している。そして、同じS含有量で比較すると、本発明のTiを添加したものは、添加のないものよりも被削性がすぐれていることがわかる。また、図3、または図4に示されるように、S量の増加とともに探傷時の疑似模様も研削時の割れも増加するが、本発明のTiを添加した鋼では、疑似模様および研削割れのどちらも、添加しない鋼に比較して著しく減少している。
【0035】
【発明の効果】
本発明の鋼は、鍛造後の調質、あるいは非調質鋼とする場合は鍛造ままにてすぐれた被削性を示し、しかも磁粉探傷時の疑似模様の発生がなく、研削時の割れ発生も少ない。このような鋼をクランク軸に用いることにより、製品の製造コストを大幅に低下させることが可能となる。
【図面の簡単な説明】
【図1】熱間鍛造品の製造工程を示す図である。
【図2】鋼のS含有量と鍛造鋼の被削性の関係を示す図である。
【図3】鋼のS含有量と磁粉探傷時の疑似欠陥模様の発生との関係を示す図である。
【図4】鋼のS含有量と表面硬化後研削したときの研削割れ発生との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates is that the steel used in the crankshaft and the die forging in hot.
[0002]
[Prior art]
Hot forged part of the crankshaft, so as to minimize the cutting allowance, but the steel to nearly the final required shape is hot forging, for ensuring accuracy of the time, such as binding or in combination with other components, inevitably In addition, machining such as cutting and grinding is added.
[0003]
As shown in FIG. 1, an example of the manufacturing process as a hot forged product is as follows. As shown in FIG. 1, the material ingot (billet) is heated and then hot forged into a desired shape, followed by heat treatment such as quenching and tempering. Temper to the required mechanical properties. When non-tempered steel is used, the required mechanical properties are obtained by controlling the cooling after forging. These forgings, etc. joint and the mounting portion of the other parts which require dimensional accuracy, machined such as cutting or drilling, more for improve abrasion resistance and fatigue strength improvement, induction hardening Leo And finish grinding.
[0004]
In general, S in steel deteriorates hot workability and becomes an inclusion, which deteriorates the toughness and ductility of steel. For this reason, it is said that the lower the S content, the better for plastic working such as rolling and forging of steel, and for use as a strength member. However, when the amount of S decreases, there is a problem that machinability such as cutting resistance and cutting tool life is lowered, and the finished surface of the cut surface and the ground surface is deteriorated. In steels that are used for hot forging, it is desirable that the S content is as low as possible from the viewpoint of the performance of the forged product, but cutting and drilling must be performed in a high strength state after tempering. Therefore, the steel content is often made to have a high S content in consideration of machinability. S usually forms sulfide-based inclusions containing MnS as a main component, which expands with the deformation of the steel and is dispersed in the steel. And it is said that it becomes a crack starting point near the cutting edge of a tool such as cutting, lowers the cutting resistance, makes the finished surface beautiful, and brings about a lubrication effect between the tool and steel.
[0005]
However, in the case of hot forged products, if the content of S is increased to improve machinability, this MnS inclusion increases, which becomes the starting point of grinding cracks during finish grinding, and is usually used for magnetic particle flaw detection. At the time of inspection, this inclusion may be recognized as if it were a wound. In the magnetic particle flaw detection, when the steel is magnetized, if there is a flaw, the magnetization is disturbed, and the accumulation of the magnetic powder is different to detect the flaw. Since MnS is non-magnetic, the magnetization is disturbed and a pseudo pattern of scratches is generated. Sometimes, there is no defect as a forged product, but it may be scrapped down as a defective product. As a result, it was necessary to additionally inspect whether the defect had a problem of opening, and the number of inspection steps was increased.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to improve the machinability by S, suppress grinding cracks due to sulfide inclusions, and finish after induction hardening without generating a fake pattern of flaws during magnetic particle inspection of products. An object of the present invention is to provide a hot forging steel which is ground and used for a crankshaft .
[0007]
[Means for Solving the Problems]
In order to improve the machinability of steel, there are methods such as addition of more S, addition of elements that improve machinability such as Pb and Ca, and other adjustment of the structure and graphitization. However, when hot forging products are targeted, hot workability is not hindered, machinability after tempering with high strength is improved, and the toughness and fatigue strength of forged products are not deteriorated. If the method is not disadvantageous in terms of cost, means other than the addition of S are hardly considered.
[0008]
The inventors of the present invention target carbon steel or low alloy steel having a C content of 0.2 to 0.6%, which is normally applied to parts manufactured by hot forging, without reducing the S content. In other words, the machinability was left as it was or was further improved to investigate the possibility of steel that could prevent grinding cracks and generate no fake pattern. Usually, S becomes a sulfide-based inclusion mainly composed of MnS in steel, and they are deformed in a viscous manner and stretched in the direction of the metal flow of the steel. With the recent progress in steelmaking technology, this tendency becomes more intense as inclusions in steel are reduced and oxygen etc. are reduced, resulting in a lot of grinding cracks due to expanded sulfides and fake patterns of flaws. It is coming.
[0009]
As a method of changing the form of sulfide inclusions in steel, various attempts were made to add specific elements. Conventionally known additive elements that can change the form of sulfide inclusions include Ca, rare earth elements, Ti, Zr, V, and Nb. First of all, these elements were investigated for hot forgeability, machinability, stability of effects, economic efficiency, etc. together with the occurrence of grinding cracks and pseudo-patterns of scratches. Was not enough. However, when further investigation was made on Ti, which was considered to be relatively significant, the machinability was improved, grinding cracks were suppressed, and the fake pattern of scratches was reduced, especially when the nitrogen content was reduced. Was found to appear prominently.
[0010]
Addition of Ti is often used for a low carbon steel having a relatively low C used for a steel sheet. For example, in a cold-rolled steel sheet, if it is extremely low carbon and all C in the steel is fixed as TiC, a steel sheet that is non-aging and extremely excellent in deep drawability can be obtained. Moreover, when manufacturing the steel plate which makes it high strength with hot-rolling with the steel whose C is 0.25% or less, it is adding a small amount. However, in a high C steel having a C content of about 0.4%, which is often used for hot forging and the like, the effect of addition is hardly known except that hot brittleness due to S can be suppressed in place of Mn described above. This is because, in part, it combines with C to become TiC, and the effect thereof hardly appears. Further, it combines with N to form hard TiN inclusions, which deteriorates machinability. So I thought.
[0011]
On the other hand, when N is made as low as possible, the above effect appears at a high temperature immediately after solidification. When N is high, it becomes TiN, but there is a small amount of Ti and a sufficient amount of Ti corresponding to the amount of S. For example, it is presumed that TiS is formed first, and this is changed to a carbon sulfide as the temperature decreases. Carbon sulfide is relatively large when formed, but it is broken and dispersed by processing without causing viscous deformation as in MnS. As a result, grinding cracks are suppressed, and the fake pattern of flaws during magnetic particle inspection is reduced. And, like MnS, it has the effect of lowering the cutting resistance. In addition, since inclusions are relatively soft, it has a lubricating effect as compared with MnS, and it seems that machinability is further improved. N can be easily reduced by progress in steel refining technology such as molten steel vacuum treatment.
[0012]
With respect to the effect of Ti addition in such hot forging steel, the application limit capable of sufficiently exhibiting the effect was clarified, and the present invention was completed. The gist of the present invention is that, by weight, C: 0.2 to 0.6%, Si: 0.05 to 1.5%, Mn: 0.1 to 3.0%, P: 0.08% or less, S: 0.01 to 0.2%, Ti: 0.04~1.0%, N: 0.008% or less under, Cr: 5% or less (excluding 0%), Mo: 1.0% or less (excluding 0%) and Al: 1% or less (excluding 0%) containing the balance consisting of Fe and unavoidable impurities, and Ri content der of Ti and S is a fn1 positive represented by the following formula (1) (fn1> 0) , it is finished by grinding after induction hardening hot forging steel according to claim Rukoto used on the crankshaft,
fn1 = Ti (%) − 1.2 × S (%) (1),
It is.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the reason for limiting the steel composition is as follows.
[0014]
C: 0.2-0.6%
C is a basic element that determines steel properties such as strength. After hot forging, in order to obtain the required strength regardless of whether tempered or not tempered, the content of 0.2% or more is necessary. Since problems such as deterioration of machinability occur, the maximum content is 0.6%.
[0015]
Si: 0.05-1.50%
Si is added for deoxidation when melting steel. If the content is less than 0.05%, deoxidation is insufficient, and the soundness of the slab is lowered. However, if the amount is too large, surface decarburization is likely to occur during forging, and the appearance such as scale residue on the surface of the forged product is deteriorated.
[0016]
Mn: 0.1-3.0%
Mn has effects such as deoxidation of steel, suppression of hot work brittleness due to S, and improvement of hardenability during heat treatment. In order to obtain such an effect, it is usually necessary to contain approximately 0.3% or more. However, since the steel of the present invention contains a sufficient amount of Ti with respect to the S content, it is the same with a content of 0.1 or more. An effect is obtained. If it is less than 0.1%, the effect of improving the hardenability becomes insufficient. However, excessive addition causes burning cracks during heat treatment, and also reduces machinability, so at most 3.0%.
[0017]
P: 0.08% or less P is one of inevitable impurities, and deteriorates the toughness of steel. Therefore, the smaller the content, the better. However, depending on the forged product, when the P content is increased, the fatigue strength may increase, and it is added as necessary. However, if the amount is too large, the toughness deteriorates, so the range where the adverse effect is not remarkable is at most 0.08%.
[0018]
S: 0.01-0.2
In order to obtain sufficient machinability with a hot forged product, it is necessary to contain at least 0.01%. However, excessive addition causes cracking during hot forging, and deteriorates the toughness of the obtained forged product, so it is at most 0.2%. That is, the S content range is 0.01 to 0.2%. Desirably, the content is 0.04% or more.
[0019]
Ti: 0.04-1.0%
Ti is an important element that improves the machinability after forging by suppressing the form of sulfide, suppresses grinding cracks, and reduces the fake pattern of flaws. In order to obtain this effect, it is necessary to contain at least 0.04%. However, even if the content exceeds 1.0%, the effect is saturated, and further, the toughness of the steel is lowered and the cost is increased.
fn1 = Ti (%) − 1.2 × S (%): Positive (fn1> 0)
The number obtained by subtracting 1.2 times the S content from the Ti content is defined as fn1. fn1 indicates the amount of Ti necessary for sufficiently bonding S to Ti, and in the present invention, fn1> 0. When fn1 ≦ 0, S other than bonded to Ti becomes a sulfide bonded to Mn. In this case, if S is contained sufficiently, even if machinability can be ensured, suppression of grinding cracks and fake pseudo patterns becomes insufficient. Further, if Ti is sufficiently contained in S as described above, hot work cracking can be prevented even if the amount of Mn is small.
[0020]
The N content is 0.008% or less. In the present invention, the smaller the content, the better. When N exceeds 0.008%, even if the amount of Ti satisfies the formula (1) , sufficient machinability improvement, prevention of grinding cracks, and suppression of fake pseudo patterns cannot be obtained. This is because Ti is easier to bond with N than S, so if there is a large amount of N, TiN is formed first, and Ti for forming S and sulfide is insufficient. It is desirable that N is 0.006% or less.
[0023]
Cr: 5 % or less ( excluding 0 %)
Cr has the effect of quenching improvement. Since poor machinability become multi amount should be limited to 5%. Therefore, the Cr content is set to 5 % or less ( excluding 0 %).
[0024]
Mo: 1.0 % or less ( excluding 0 %)
Mo is quenching improvement, improve temper softening resistance, and the effect of improving toughness. However, even if it is added in a large amount, the effect is saturated and the cost increases, so it is necessary to make it 1.0% . Therefore, the Mo content is set to 1.0 % or less ( excluding 0 %).
[0025]
Al: 1 % or less ( excluding 0 %)
Al has a strong deoxidizing action and is contained in order to ensure the soundness of the slab . However, its effect also contain many because only increase and saturated surface flaws, it is necessary to up to 1%. Therefore, the Al content is set to 1 % or less ( excluding 0 %).
[0032]
【Example】
Steels having chemical compositions shown in Table 1 were melted in a 1-ton high-frequency vacuum melting furnace. Steel numbers 1 to 6 contain Ti, and steel numbers 7 to 12 do not contain Ti. In each of these, the content of S was changed, and the other compositions were made as identical as possible. However, when Ti is added, the content of Ti is increased with the increase of the S content so that fn1 in formula (1) becomes positive (fn1> 0). In order to suppress, the content of Mn was increased. The obtained steel ingot was rolled into a 100 mm square billet. These billets were heated to 1250 ° C., the launch temperature was 1100 ° C., the die was forged onto a crankshaft with a pin journal diameter of 60 mmφ, and air-cooled. After forging, quenching and tempering were performed under normal conditions, and the hardness was set to HB250. A round bar test piece having a diameter of 55 mm and a length of 60 mm was cut out from the pin portion, and the machinability was evaluated by making a 6 mmφ through hole in the length direction and the number of holes that can be drilled. The circumferential surface of such a round bar test piece was induction-hardened, and the presence or absence of a pseudo-pattern on the circumferential surface of the magnetic particle flaw was investigated by an axial energization method with a current value of 2500A after polishing. The total length was measured. In addition, the circumference of the round bar test piece was ground under high-frequency quenching and then subjected to heavy grinding conditions, and the presence or absence of grinding cracks was investigated by magnetic particle flaw detection with a current value of 1000A. The total length of was measured.
[0033]
[Table 1]
Figure 0003893756
[0034]
Regarding these investigation results, the horizontal axis represents the S content, and the vertical axis represents the respective measured values plotted in FIGS. In FIG. 2, when the S content is small, the number of drill holes is small and the machinability is not good, but the number of holes increases as the S content increases, and the machinability is improved. And when it compares by the same S content, it turns out that what added Ti of this invention was excellent in machinability rather than the thing without addition. Further, as shown in FIG. 3 or FIG. 4, the pseudo pattern at the time of flaw detection and the crack at the time of grinding increase with the increase of the amount of S. However, in the steel to which Ti of the present invention is added, the pseudo pattern and the grinding crack are increased. Both are significantly reduced compared to steel without addition.
[0035]
【The invention's effect】
Steel of the present invention, tempering after forging, or if the Hicho quality steel indicates excellent in still forging machinability, yet does not generate the pseudo pattern during magnetic particle, cracking during grinding There is little outbreak. By using such a steel crankshaft, it becomes possible to greatly reduce the manufacturing cost of the products.
[Brief description of the drawings]
FIG. 1 is a diagram showing a manufacturing process of a hot forged product.
FIG. 2 is a graph showing the relationship between the S content of steel and the machinability of forged steel.
FIG. 3 is a diagram showing the relationship between the S content of steel and the occurrence of pseudo defect patterns during magnetic particle flaw detection.
FIG. 4 is a diagram showing the relationship between the S content of steel and the occurrence of grinding cracks when grinding after surface hardening.

Claims (1)

重量%にて、C:0.2〜0.6%、Si:0.05〜1.5%、Mn:0.1〜3.0%、P:0.08%以下、S:0.01〜0.2%、Ti:0.04〜1.0%、N:0.008%以下、Cr: 5以下(但し 0 %を除く)Mo: 1.0以下(但し 0 %を除く)およびAl: 1以下(但し 0 %を除く)を含有し、残部はFeおよび不可避的不純物からなり、かつTiおよびSの含有量は、下式(1)で示されるfn1が正(fn1>0)であり、高周波焼入れ後に仕上げ研削されてクランク軸に用いられることを特徴とする熱間鍛造用鋼。
fn1=Ti(%)−1.2×S(%)・・・(1)
C: 0.2-0.6%, Si: 0.05-1.5%, Mn: 0.1-3.0%, P: 0.08% or less, S: 0.01-0.2%, Ti: 0.04-1.0%, N: 0.008% following, Cr: (excluding where 0%) 5% or less, Mo: 1.0% or less (excluding 0%) and Al: 1% or less contain (excluding 0%), the balance being Fe and unavoidable the content of the specific consists impurities, and Ti and S, Ri fn1 positive (fn1> 0) der represented by the following formula (1), characterized isosamples is finish grinding after induction hardening is used on the crankshaft Steel for hot forging.
fn1 = Ti (%) − 1.2 × S (%) (1)
JP19287898A 1998-07-08 1998-07-08 Hot forging steel Expired - Fee Related JP3893756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19287898A JP3893756B2 (en) 1998-07-08 1998-07-08 Hot forging steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19287898A JP3893756B2 (en) 1998-07-08 1998-07-08 Hot forging steel

Publications (2)

Publication Number Publication Date
JP2000026933A JP2000026933A (en) 2000-01-25
JP3893756B2 true JP3893756B2 (en) 2007-03-14

Family

ID=16298489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19287898A Expired - Fee Related JP3893756B2 (en) 1998-07-08 1998-07-08 Hot forging steel

Country Status (1)

Country Link
JP (1) JP3893756B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180053696A (en) 2015-10-19 2018-05-23 신닛테츠스미킨 카부시키카이샤 Hot forging and hot forging
US11111568B2 (en) 2016-09-30 2021-09-07 Nippon Steel Corporation Steel for cold forging and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070068607A1 (en) * 2005-09-29 2007-03-29 Huff Philip A Method for heat treating thick-walled forgings
KR101173054B1 (en) 2010-07-08 2012-08-13 현대자동차주식회사 Alloy compound composite for connecting rod and menufacturing method for connecting rod using it
JP5392207B2 (en) 2010-08-31 2014-01-22 新日鐵住金株式会社 Induction hardening steel and crankshaft manufactured using the same
KR101227616B1 (en) 2011-05-26 2013-01-30 (주)씬터온 Manufacturing method of high strength connecting rod for High pressure combustion engine
CN102383036A (en) * 2011-11-17 2012-03-21 江苏金源锻造股份有限公司 Medium carbon alloy steel applicable to forging afterheat quenching
CN104372263B (en) * 2014-11-11 2016-04-27 南京钢铁股份有限公司 A kind of electric furnace production technique of high-purity non-modified crankshaft steel
CN104975229A (en) * 2015-06-15 2015-10-14 柳州金特新型耐磨材料股份有限公司 Gear sleeve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180053696A (en) 2015-10-19 2018-05-23 신닛테츠스미킨 카부시키카이샤 Hot forging and hot forging
US10844466B2 (en) 2015-10-19 2020-11-24 Nippon Steel Corporation Hot forging steel and hot forged product
US11111568B2 (en) 2016-09-30 2021-09-07 Nippon Steel Corporation Steel for cold forging and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000026933A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
US6406565B1 (en) High toughness spring steel
US8192562B2 (en) Spring steel wire excellent in fatigue characteristic and wire drawability
JP5503195B2 (en) Steel for machine structure suitable for friction welding, manufacturing method thereof, friction welding component
US8821652B2 (en) Steel for induction hardening and induction hardened steel part
EP3034643A1 (en) Electric-resistance-welded steel pipe with excellent weld quality and method for producing same
JP2011149089A (en) High-strength spring steel
JP4594150B2 (en) Method for producing high-strength screws with excellent toughness and cold workability
JP3255296B2 (en) High-strength steel for spring and method of manufacturing the same
JP3893756B2 (en) Hot forging steel
JP6798557B2 (en) steel
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
US7387691B2 (en) Hot forged non-heat treated steel for induction hardening
KR20220134014A (en) EH 550 MPa grade quenched and tempered marine steel plate for high heat input welding and manufacturing method thereof
JPH05311334A (en) Hardened roll for rolling and its manufacture
JP3304550B2 (en) Manufacturing method of induction hardened parts with notches
JP3255612B2 (en) Method of manufacturing super-cuttable steel rod and wire and super-cuttable steel rod and wire thereby
KR20180082543A (en) High strength bolt
JPH0649914B2 (en) Quenching roll for rolling and rolling mill
JPH10330836A (en) Production of hot forged parts excellent in machinability and fatigue characteristic
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
EP0707089A1 (en) High-carbon steel wire or steel therefor excellent in workability in wire drawing and process for producing the same
JP2005350736A (en) High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP3320958B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees