JPH09310146A - Production of non-heat treated steel for high strength connecting rod and high strength connecting rod - Google Patents

Production of non-heat treated steel for high strength connecting rod and high strength connecting rod

Info

Publication number
JPH09310146A
JPH09310146A JP12615096A JP12615096A JPH09310146A JP H09310146 A JPH09310146 A JP H09310146A JP 12615096 A JP12615096 A JP 12615096A JP 12615096 A JP12615096 A JP 12615096A JP H09310146 A JPH09310146 A JP H09310146A
Authority
JP
Japan
Prior art keywords
connecting rod
strength
heat treated
steel
treated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12615096A
Other languages
Japanese (ja)
Inventor
Satoshi Abe
安部  聡
Yoshitake Matsushima
義武 松島
Koji Itakura
浩二 板倉
Takuo Yamaguchi
拓郎 山口
Masahiro Yoshikawa
雅宏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Nissan Motor Co Ltd
Original Assignee
Kobe Steel Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nissan Motor Co Ltd filed Critical Kobe Steel Ltd
Priority to JP12615096A priority Critical patent/JPH09310146A/en
Publication of JPH09310146A publication Critical patent/JPH09310146A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-heat treated steel for high strength connecting rod, having high yield ratio even after straightening while securing machinability and excellent in strength. SOLUTION: This steel has a composition consisting of 0.3-0.6% C, 0.05-2.5% Si, 0.3-2.0% Mn, 0.03-0.5% V, 0.001-0.6% Al, 0.003-0.03% N, 0.01-0.12% S, and the balance Fe with inevitable impurities and satisfying the relations in inequalities X=0.7[C]+0.1[Si]+[Mn]-1.6[S]+0.3[V]+0.4[Cr]+0.2[Mo]>=1.50 and Y=[C]+0.1[Si]+0.3[Mn]-[S]+1.7[V]+0.3[Cr]+1.2[Mo]<=1.30. At this time, each symbol of element in the inequalities means its content (%), where [Cr] and [Mo] mean the amounts contained as impurities, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車や建設機械
等のエンジン部品であるコンロッド用非調質鋼およびコ
ンロッドの製造方法に関するものであり、特に熱間鍛造
後に実施される焼入れ・焼戻しの調質処理を省略し非調
質のままでも高い強度を得ることのできるコンロッド用
非調質鋼、および該非調質鋼を用いて高強度コンロッド
を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-heat treated steel for connecting rods, which is an engine part of automobiles and construction machines, and a method for manufacturing connecting rods. In particular, it relates to a quenching / tempering adjustment performed after hot forging. The present invention relates to a non-heat treated steel for connecting rods that can obtain high strength even without heat treatment by omitting a quality treatment, and a method for producing a high strength connecting rod using the non-heat treated steel.

【0002】[0002]

【従来の技術】自動車や建設機械等に用いられる機械構
造用部品は、通常機械構造用炭素鋼や機械構造用合金鋼
を素材とし、必要な強度と靭性を確保するため熱間鍛造
後に焼入れ・焼戻し処理を行なう(調質処理)ことによ
って製造されてきた。
2. Description of the Related Art Machine structural parts used in automobiles and construction machinery are usually made of carbon steel for machine structural use or alloy steel for machine structural use, and are hardened after hot forging in order to secure necessary strength and toughness. It has been manufactured by performing a tempering treatment (tempering treatment).

【0003】しかし近年、上記の様な調質処理に要する
エネルギーの節約と仕掛り品のコスト低減を目的とし
て、例えばJIS G 4051に規定される機械構造用
炭素鋼やJIS G 4106に規定される機械構造用マ
ンガン鋼に、VやNb等の析出硬化型元素を添加した非
調質鋼が開発され、上記コネクティングロッド(以下コ
ンロッドと略す)等のエンジン部品や足回り部品、ある
いは他の建設機械部品等に適用されている。
However, in recent years, for the purpose of saving the energy required for the above-mentioned tempering treatment and reducing the cost of work-in-process, for example, carbon steel for machine structure specified in JIS G 4051 and JIS G 4106 are specified. A non-heat treated steel in which a precipitation hardening element such as V or Nb is added to a manganese steel for machine structure has been developed, and engine parts such as the above connecting rod (hereinafter abbreviated as connecting rod), underbody parts, or other construction machinery. It is applied to parts, etc.

【0004】これらの非調質鋼は、熱間鍛造の後冷却し
て組織をフェライト・パーライト混合組織とし、フェラ
イト部にV等の炭化物や窒化物を析出させることによっ
て目標強度を得るものであり、この様な非調質鋼を使用
すると、熱間鍛造後の焼入れ・焼戻し処理を省略するこ
とができ、更には焼入れ時に発生する熱処理歪みが減少
するためその後の矯正加工が簡略化されるといった利点
がある。
These non-heat treated steels are obtained by cooling after hot forging to form a ferrite / pearlite mixed structure and precipitating carbides and nitrides such as V in the ferrite part to obtain the target strength. If such non-heat treated steel is used, quenching and tempering treatment after hot forging can be omitted, and further, the heat treatment strain generated during quenching is reduced, and the subsequent straightening process is simplified. There are advantages.

【0005】一方、自動車の燃費低減を図るために自動
車の軽量化に対する要求は、近年、益々強くなってお
り、上述した機械構造用部品についても同様に軽量化が
求められている。特にエンジン部品であるコンロッドは
運動部品であることから、コンロッドの軽量化を達成す
ることができれば、運動慣性力の低減にもつながり、自
動車の燃費低減にも大きな効果を奏することが期待され
る。
On the other hand, in recent years, the demand for weight reduction of automobiles in order to reduce the fuel consumption of automobiles has become stronger and stronger, and the weight reduction of the above-mentioned mechanical structural parts is also required. In particular, since the connecting rod, which is an engine component, is a moving component, if it is possible to reduce the weight of the connecting rod, it is expected to lead to a reduction in the motion inertial force and a great effect in reducing the fuel consumption of an automobile.

【0006】コンロッドを軽量化するためには、エンジ
ンのシリンダー側の端部(小端部)とクランクシャフト
側の端部(大端部)をつなぐ1セクション部の座屈強度
と曲げ疲労強度の向上が必要である。これらの強度を向
上させるためには、引張強さ、もしくは該引張強さとの
相関関係の高い「硬さ」を高める手段を施すことが考え
られるが、硬さを上げると機械加工を行う上記小端部と
大端部の被削性が極端に低下するという問題がある。
In order to reduce the weight of the connecting rod, the buckling strength and bending fatigue strength of one section connecting the cylinder-side end (small end) of the engine and the crankshaft-side end (large end) are to be improved. Improvement is needed. In order to improve these strengths, it is conceivable to provide a means for increasing the tensile strength or the "hardness" having a high correlation with the tensile strength. There is a problem that the machinability of the end portion and the large end portion is extremely reduced.

【0007】そこで硬さを上げずに、即ち被削性を保持
したまま座屈強度と曲げ疲労強度を高めることのできる
手段を提供すべく、これらの強度と、種々の材料特性値
との関係について検討したところ、これらの強度特性
は、引張強さよりも、むしろ耐力との相関関係が高いこ
とを見出した。従って、引張強さ(硬さ)を上げずに1
セクション部の耐力を上げること、即ち引張強さに対す
る耐力の比で算出される耐力比(以下、耐力比と呼ぶ)
を高める方法が有効であることが予想される。
Therefore, in order to provide a means capable of increasing the buckling strength and the bending fatigue strength without increasing the hardness, that is, while maintaining the machinability, the relationship between these strengths and various material characteristic values. The inventors have found that these strength characteristics have a high correlation with the yield strength rather than the tensile strength. Therefore, 1 without increasing the tensile strength (hardness)
Increasing the yield strength of the section, that is, the yield strength ratio calculated by the ratio of the yield strength to the tensile strength (hereinafter referred to as the yield strength ratio)
Is expected to be effective.

【0008】ところが、焼戻しマルテンサイト組織を有
する従来の調質鋼では、コンロッドの製造過程で必須的
に施される1セクション部の冷間での矯正加工によって
上記耐力比が向上するのに対し、フェライト・パーライ
ト組織を有する非調質鋼では、矯正加工によって耐力比
が大幅に低下するという問題がある。例えばJISG
4051に規定される中炭素鋼にVを添加した鋼を用い
て製造した部品に加工率5%の矯正加工を施した場合、
矯正加工前には0.7程度あった耐力比(0.01%耐
力と引張強さの比)が0.50未満にまで低下してしま
い、所望の座屈強度や曲げ疲労強度が得られない。
However, in the conventional tempered steel having a tempered martensite structure, the above-mentioned yield strength ratio is improved by cold straightening of one section, which is essential in the manufacturing process of connecting rods. The non-heat treated steel having the ferrite / pearlite structure has a problem that the yield strength ratio is significantly reduced by the straightening process. For example, JISG
When straightening with a working rate of 5% is applied to a part manufactured using a steel in which V is added to medium carbon steel specified in 4051,
The proof stress ratio (0.01% proof stress to tensile strength ratio), which was about 0.7 before the straightening process, decreased to less than 0.50, and the desired buckling strength and bending fatigue strength were obtained. Absent.

【0009】従って、矯正加工を施した後の耐力比を
0.50以上にすることができれば、被削性を確保した
まま強度の向上が可能になることから、この様な要件を
満足することのできる新規な高強度コンロッド用非調質
鋼の提供が切望されている。
Therefore, if the yield strength ratio after the straightening process can be made 0.50 or more, the strength can be improved while the machinability is ensured, so that such requirements must be satisfied. It has been earnestly desired to provide a new non-heat treated steel for a high-strength connecting rod that is capable of

【0010】[0010]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、被削
性を確保したまま、矯正加工後も高い耐力比を有し、1
セクション部の座屈強度および疲労強度が著しく高めら
れた高強度コンロッド用非調質鋼および該非調質鋼を用
いて高強度コンロッドを効率よく製造することのできる
方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its purpose is to provide a high yield strength ratio even after straightening while maintaining machinability. 1
An object of the present invention is to provide a non-heat treated steel for a high-strength connecting rod in which the buckling strength and fatigue strength of a section are remarkably enhanced, and a method capable of efficiently manufacturing a high-strength connecting rod using the non-heat treated steel. .

【0011】[0011]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る高強度コンロッド用非調質鋼の構
成は、C:0.3〜0.6%(質量%、以下同じ),S
i:0.05〜2.5%,Mn:0.3〜2.0%,
V:0.03〜0.5%,Al:0.001〜0.06
%,N:0.003〜0.03%,S:0.01〜0.
12%の要件を満たし、残部がFeおよび不可避不純物
からなると共に、下記式(1)および(2)の関係を満
足するところに要旨を有するものである。 X=0.7 [C]+0.1 [Si]+[Mn]−1.6 [S]+0.3 [V]+0.4 [Cr]+0.2 [Mo]≧1.50 …(1) Y=[C]+0.1 [Si]+0.3 [Mn]−[S]+1.7 [V]+0.3[Cr] +1.2 [Mo]≦1.30 …(2) [式中の元素記号は、夫々の含有量(%)を意味する。
但し、[Cr],[Mo]は不可避不純物として含まれ
る量である。]
The constitution of the non-heat treated steel for high-strength connecting rod according to the present invention, which has been able to solve the above-mentioned problems, has a composition of C: 0.3 to 0.6% (mass%, the same applies hereinafter). , S
i: 0.05 to 2.5%, Mn: 0.3 to 2.0%,
V: 0.03 to 0.5%, Al: 0.001 to 0.06
%, N: 0.003 to 0.03%, S: 0.01 to 0.
The gist is that it satisfies the requirement of 12%, the balance is Fe and unavoidable impurities, and satisfies the relationships of the following formulas (1) and (2). X = 0.7 [C] +0.1 [Si] + [Mn] -1.6 [S] +0.3 [V] +0.4 [Cr] +0.2 [Mo] ≧ 1.50 (1) Y = [ C] +0.1 [Si] +0.3 [Mn]-[S] +1.7 [V] +0.3 [Cr] +1.2 [Mo] ≦ 1.30 (2) [Symbol in the formula Means the content (%) of each.
However, [Cr] and [Mo] are included as unavoidable impurities. ]

【0012】本発明において、他の元素として下記,
を含有するものは好ましい実施態様であり、この様な
構成とすることによって、後述する如く非調質鋼の特性
を更に高めることができる。 Cr:0.2〜1.5%および/またはMo:0.0
5〜0.50%を含有する非調質鋼。 Pb:0.3%以下,Zr:0.2%以下,Ca:
0.01%以下,Te:0.1%以下およびBi:0.
1%以下よりなる群から選択される少なくとも1種を含
有する非調質鋼(但し、いずれの元素も0%を含まな
い)。
In the present invention, as other elements,
Is a preferred embodiment, and by adopting such a constitution, the properties of the non-heat treated steel can be further enhanced as described later. Cr: 0.2-1.5% and / or Mo: 0.0
Non-heat treated steel containing 5 to 0.50%. Pb: 0.3% or less, Zr: 0.2% or less, Ca:
0.01% or less, Te: 0.1% or less, and Bi: 0.
A non-heat treated steel containing at least one selected from the group consisting of 1% or less (however, none of the elements contains 0%).

【0013】また本発明に係る製造法の構成は、上述し
た非調質鋼を用い、800〜1100℃の鍛造終了温度
で熱間鍛造することによって成形加工した後、800〜
500℃の温度域を1〜300℃/minの平均冷却速
度で冷却するところに要旨を有するものであり、こうし
た構成を特定することによって高強度コンロッドを効率
よく製造することができる。
Further, the manufacturing method according to the present invention comprises the above-mentioned non-heat treated steel, which is hot-forged at a forging end temperature of 800 to 1100 ° C., and is then formed into 800-
The gist is to cool the temperature range of 500 ° C. at an average cooling rate of 1 to 300 ° C./min. By specifying such a structure, a high-strength connecting rod can be efficiently manufactured.

【0014】[0014]

【発明の実施の形態】上述した様に本発明は、鋼材の成
分組成を夫々特定すると共に、鋼の組織学的見地等に鑑
みて上記成分組成を総合的に勘案することによって、被
削性を保持しつつ矯正加工後の耐力比を向上させるとい
う所期の目的を達成し得たものであり、その結果、座屈
強度と疲労強度に優れた高強度コンロッド用非調質を得
ることに成功したのである。更に、上記非調質鋼を用
い、熱間鍛造終了温度および熱間鍛造後の平均冷却速度
を特定することによって、高強度コンロッドを効率良く
製造することに成功したものである。まず鋼材の化学成
分を定めた理由を明らかにする。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, according to the present invention, the machinability is determined by identifying the composition of each of the steel materials and by comprehensively considering the composition of the above in consideration of the histological viewpoint of the steel. It was possible to achieve the intended purpose of improving the proof stress ratio after straightening while maintaining the above, and as a result, to obtain a non-heat treated high-strength connecting rod excellent in buckling strength and fatigue strength. It was successful. Furthermore, by using the above-mentioned non-heat treated steel and specifying the hot forging end temperature and the average cooling rate after hot forging, the high-strength connecting rod was successfully manufactured. First of all, the reasons for defining the chemical composition of steel materials will be clarified.

【0015】C:0.3〜0.6% Cは、熱間鍛造・冷却後における鍛造品の金属組織中の
パーライト量を増大させて必要な強度を確保するのに欠
くことのできない元素であり、そのためには少なくとも
0.3%以上含有させなければならない。好ましい下限
値は0.35%である。しかしながらC量が多くなり過
ぎると、靭性が低下すると共に被削性も大幅に低下して
くるので、その上限を0.6%以下に抑えなければなら
ない。好ましい上限値は0.55%である。
C: 0.3 to 0.6% C is an element indispensable for increasing the amount of pearlite in the metal structure of the forged product after hot forging and cooling to secure the necessary strength. For that purpose, at least 0.3% or more must be contained. A preferable lower limit value is 0.35%. However, if the amount of C is too large, the toughness is reduced and the machinability is also significantly reduced, so the upper limit must be suppressed to 0.6% or less. A preferred upper limit is 0.55%.

【0016】Si:0.05〜2.5% Siは、鋼材溶製時の脱酸に有効に作用する他、鋼材の
フェライト地に固溶して熱間鍛造・冷却後の鍛造品を強
化するのに有効な元素であり、特に該鍛造品の耐力や疲
労強度の向上に有効に作用する。こうした作用を有効に
発揮させるには少なくとも0.05%以上含有させなけ
ればならない。好ましい下限値は0.1%である。しか
しながら多過ぎると被削性に悪影響が現れてくると共に
熱間鍛造時の脱炭を促進し、1セクション部の疲労強度
が低下するので2.5%を上限とする。好ましい上限値
は2.0%である。
Si: 0.05 to 2.5% Si effectively acts on deoxidation during melting of steel materials, and also forms a solid solution in the ferrite material of steel materials to strengthen the forged products after hot forging and cooling. It is an effective element for improving the yield strength and fatigue strength of the forged product. In order to exert such an effect effectively, it must be contained at least 0.05% or more. A preferred lower limit is 0.1%. However, if the amount is too large, the machinability is adversely affected, decarburization during hot forging is promoted, and the fatigue strength of one section is reduced, so the upper limit is 2.5%. A preferable upper limit value is 2.0%.

【0017】Mn:0.3〜2.0% Mnは、鋼材溶製時の脱酸・脱硫元素として有効な元素
であり、また鍛造品のフェライト地に固溶してフェライ
トを強化すると共に、パーライト焼入れ性を高めてパー
ライト量を増大させ、パーライト中のラメラー間隔を細
かくして耐力比や疲労強度の増大に寄与する。こうした
効果を有効に発揮させるには、少なくとも0.3%以上
含有させなければならない。好ましい下限値は0.5%
である。しかし多過ぎると、熱間鍛造・冷却後の金属組
織中にベイナイトが生成して被削性に悪影響を及ぼす様
になるので、2.0%以下に抑えなければならない。好
ましい上限値は1.8%である。
Mn: 0.3 to 2.0% Mn is an element effective as a deoxidizing / desulfurizing element during the melting of steel materials, and is solid-solved in the ferrite material of the forged product to strengthen the ferrite. It enhances the hardenability of pearlite to increase the amount of pearlite, and makes the lamellar spacing in pearlite finer to contribute to the increase of the yield strength ratio and fatigue strength. In order to exert such effects effectively, at least 0.3% or more must be contained. The preferred lower limit is 0.5%
It is. However, if it is too large, bainite is generated in the metal structure after hot forging and cooling, which adversely affects the machinability, so it must be suppressed to 2.0% or less. A preferred upper limit is 1.8%.

【0018】V:0.03〜0.5% Vは、炭化物あるいは窒化物として鍛造品のフェライト
部に微細に析出して耐力比および疲労強度を向上させる
のに有効な元素である。こうした効果を有効に発揮させ
るには、少なくとも0.03%以上含有させなければな
らない。好ましい下限値は0.05%である。しかしな
がら、0.5%を超えて添加しても上記効果が飽和して
しまい経済的に無駄であるので、その上限を0.5%と
する。好ましい上限値は0.4%である。
V: 0.03 to 0.5% V is an element effective for improving the proof stress ratio and the fatigue strength by finely precipitating as carbide or nitride in the ferrite part of the forged product. In order to exert such effects effectively, at least 0.03% or more must be contained. A preferred lower limit is 0.05%. However, even if added over 0.5%, the above effect is saturated and it is economically useless, so the upper limit is made 0.5%. A preferable upper limit value is 0.4%.

【0019】Al:0.001〜0.06% Alは、鋼材溶製時の脱酸元素として有効に作用するほ
か、窒化物の生成によってオーステナイト結晶粒を微細
化して靭性向上に寄与するものであり、それらの効果を
有効に発揮させるには0.001%以上含有させなけれ
ばならない。好ましい下限値は0.005%である。し
かし、多過ぎるとオーステナイト結晶粒が却って粗大化
して靭性に悪影響を及ぼす様になるので、0.06%以
下に抑えなければならない。好ましい上限値は0.05
%である。
Al: 0.001 to 0.06% Al effectively acts as a deoxidizing element during the melting of steel materials, and also contributes to the improvement of toughness by refining austenite crystal grains due to the formation of nitrides. Therefore, in order to effectively exhibit these effects, the content must be 0.001% or more. A preferable lower limit value is 0.005%. However, if the amount is too large, the austenite crystal grains are rather coarsened and the toughness is adversely affected. Therefore, it must be suppressed to 0.06% or less. The preferred upper limit is 0.05
%.

【0020】N:0.003〜0.03% NはAl等の窒化物形成元素と結合してオーステナイト
結晶粒を微細化し、靭性を向上させる効果がある。ま
た、VNを形成して微細析出することにより鍛造品を強
化する効果もある。この様な効果を有効に発揮させるに
は0.003%以上含有させなければならない。好まし
い下限値は0.005%である。しかし、多過ぎると鍛
造鋼の靭性が低下したり、あるいは熱間加工性に悪影響
を与えて鋳造や熱間加工時に割れを起こし易くなるの
で、0.03%以下に抑えなければならない。好ましい
上限値は0.02%である。
N: 0.003 to 0.03% N has an effect of combining with a nitride forming element such as Al to refine austenite crystal grains and improving toughness. It also has the effect of strengthening the forged product by forming VN and finely depositing it. In order to exert such effects effectively, the content must be 0.003% or more. A preferable lower limit value is 0.005%. However, if the amount is too large, the toughness of the forged steel is lowered, or the hot workability is adversely affected, and cracks are likely to occur during casting or hot working. Therefore, it must be suppressed to 0.03% or less. A preferable upper limit value is 0.02%.

【0021】S:0.01〜0.12% SはMnSを形成し、被削性向上作用を有すると共に、
オーステナイト結晶粒の微細化や粒内フェライトの生成
によってフェライト・パーライト組織を微細化させ、耐
力や疲労強度、靭性の向上に寄与する元素である。この
様な作用を有効に発揮させるには0.01%以上の添加
が必要である。しかしながら、過剰に添加すると、逆に
疲労強度や横目のが靭性が低下するので、その上限を
0.12%以下に抑えなければならない。好ましい上限
値は0.10%である。
S: 0.01 to 0.12% S forms MnS and has the effect of improving machinability.
It is an element that contributes to the improvement of yield strength, fatigue strength, and toughness by refining the ferrite-pearlite structure by refining austenite crystal grains and forming intragranular ferrite. Addition of 0.01% or more is necessary to effectively exhibit such an effect. However, if added excessively, conversely, the fatigue strength and the toughness of the side grain are lowered, so the upper limit must be suppressed to 0.12% or less. A preferable upper limit value is 0.10%.

【0022】 X=0.7 [C]+0.1 [Si]+[Mn]−1.6 [S]+0.3 [V]+0.4 [Cr]+0.2 [Mo]≧1.50 …(1) 上記式(1)は、冷間加工により矯正加工を施した後の
耐力比を向上するための指標として特に設定されたもの
である。式中の元素が上記式(1)を満足するものは、
矯正加工を施した後においても0.50以上の耐力比を
確保することが可能であり、冷間加工時における加工率
が2〜20%の範囲ならば加工率の影響もほとんど受け
ない。好ましい下限値は1.60%である。
X = 0.7 [C] +0.1 [Si] + [Mn] -1.6 [S] +0.3 [V] +0.4 [Cr] +0.2 [Mo] ≧ 1.50 (1) The above formula (1) is particularly set as an index for improving the yield strength ratio after the straightening process is performed by cold working. If the elements in the formula satisfy the above formula (1),
It is possible to secure a yield strength ratio of 0.50 or more even after performing the straightening process, and there is almost no effect of the work ratio if the work ratio during cold working is in the range of 2 to 20%. A preferable lower limit value is 1.60%.

【0023】 Y=[C]+0.1 [Si]+0.3 [Mn]−[S]+1.7 [V]+0.3[Cr] +1.2 [Mo]≦1.30 …(2) [式中、[Cr],[Mo]は不可避不純物として含ま
れる量である。] 上記式(2)は、ドリル加工やブローチ加工の際におけ
るドリル寿命やブローチ寿命を向上するための指標とし
て特に設定されたものである。上述した様に、耐力の向
上にはMnやV等の元素の添加が有用であるが、これら
の元素を過剰に添加し過ぎると、ドリル加工の際、コン
ロッド大端部のドリル寿命が大幅に低下したり、ブロー
チ加工の際、ブローチ寿命が大幅に低下する等して部品
のコスト高を招く。式中の元素が上記式(2)を満足す
るものは、これらの寿命向上に極めて有用である。
Y = [C] +0.1 [Si] +0.3 [Mn]-[S] +1.7 [V] +0.3 [Cr] +1.2 [Mo] ≦ 1.30 (2) [In the formula, [Cr] and [Mo] are amounts contained as inevitable impurities. The above formula (2) is particularly set as an index for improving the drill life or the broach life during drilling or broaching. As described above, the addition of elements such as Mn and V is useful for improving the proof stress. However, if these elements are added excessively, the drill life at the large end of the connecting rod will greatly increase during drilling. And the life of the broach is greatly reduced during broaching, leading to higher cost of parts. Those in which the elements in the formula satisfy the above formula (2) are extremely useful for improving their life.

【0024】本発明に係わる非調質鋼は、上記構成要件
を満足することを必須とするものであるが、その他に、
下記の元素を選択的許容成分として添加し得る。 Cr:0.2〜1.5%および/またはMo:0.0
5〜0.50% これらの元素は強度を高めるのに有効な元素である。こ
のうちCrは、前記Mnと同様にパーライト焼入性を高
めて耐力比および疲労強度の向上に有効な元素であり、
こうした効果は0.2%程度以上含有させることによっ
て有効に発揮される。しかし1.5%を超えて過剰に含
有させると、鍛造品の金属組織中にベイナイトが生成し
て被削性に悪影響を及ぼす様になる。
The non-heat treated steel according to the present invention is indispensable to satisfy the above constitutional requirements.
The following elements may be added as selectively acceptable ingredients. Cr: 0.2-1.5% and / or Mo: 0.0
5 to 0.50% These elements are effective for increasing the strength. Of these, Cr is an element effective for enhancing the pearlite hardenability and improving the proof stress ratio and the fatigue strength, like Mn,
Such effects are effectively exhibited by containing about 0.2% or more. However, if it is contained in excess of 1.5%, bainite is generated in the metal structure of the forged product, which adversely affects the machinability.

【0025】またMoは靭性を損なうことなく強度を向
上させるのに有効な元素であり、こうした効果は0.0
5%以上含有させることによって有効に発揮される。し
かし0.50%を超えて過剰に含有させると鍛造品の金
属組織中にベイナイトが形成されて被削性が低下する。
Further, Mo is an element effective in improving the strength without impairing the toughness, and such an effect is 0.0
It is effectively exhibited by containing 5% or more. However, if it exceeds 0.50% and is contained excessively, bainite is formed in the metal structure of the forged product and the machinability is deteriorated.

【0026】Pb:0.3%以下,Zr:0.2%以
下,Ca:0.01%以下,Te:0.1%以下および
Bi:0.1%以下よりなる群から選択される少なくと
も1種を含有する非調質鋼(但し、いずれの元素も0%
を含まない)。 上記の元素は何れも快削性元素である。このうちZr,
Ca,Te,Biは、MnSを粒状化して鍛造品の異方
性を改善し、疲労強度の低下を防ぐ効果を有する。しか
しながら、各元素を上述した上限値を超えて添加しても
被削性や異方性の向上効果は認められず、逆に靭性や疲
労強度が低下するので、夫々上限値を超える添加は避け
なければならない。
At least one selected from the group consisting of Pb: 0.3% or less, Zr: 0.2% or less, Ca: 0.01% or less, Te: 0.1% or less and Bi: 0.1% or less. Non-heat treated steel containing 1 type (However, each element is 0%
Not included). All of the above elements are free-cutting elements. Of these, Zr,
Ca, Te and Bi have the effect of granulating MnS to improve the anisotropy of the forged product and prevent the fatigue strength from decreasing. However, the effect of improving machinability and anisotropy is not observed even if each element is added in excess of the above-mentioned upper limit, and conversely, toughness and fatigue strength decrease, so additions exceeding the respective upper limits are avoided. There must be.

【0027】次に、本発明に係わる高強度コンロッドの
製造方法について説明する。上記機械構造用部品を製造
するに当たっては、上述した高強度コンロッド用非調質
鋼を用い、800〜1100℃の鍛造終了温度で熱間鍛
造することによって成形加工した後、800〜500℃
の温度域を1〜300℃/minの平均冷却速度で冷却
することが必要である。
Next, a method for manufacturing the high strength connecting rod according to the present invention will be described. In manufacturing the machine structural component, after using the above-mentioned non-heat treated steel for high-strength connecting rod to perform forming by hot forging at a forging end temperature of 800 to 1100 ° C., 800 to 500 ° C.
It is necessary to cool the temperature range of 1 to 300 ° C./min at an average cooling rate.

【0028】以下に、本発明に係わる製造方法におい
て、必須構成要件として規定したところの熱間鍛造終了
温度および熱間鍛造終了後の或る特定温度領域における
平均冷却速度の限定理由について説明する。
In the manufacturing method according to the present invention, the reasons for limiting the hot forging end temperature and the average cooling rate in a specific temperature range after the hot forging, which are defined as essential constituents, will be described below.

【0029】(i)熱間鍛造終了温度:800〜110
0℃ 上記熱間鍛造終了温度が800℃未満では、鋼材の変形
抵抗が大きくなり、鍛造に使用する金型の摩擦や割れに
より、寿命が極端に短くなったり、また欠肉が生じる。
好ましい下限値は850℃である。一方、上記温度が1
100℃を超えると鍛造品のオーステナイト結晶粒が粗
大化し、耐力比や疲労強度が低下する。上限値として好
ましいのは1050℃である。
(I) Hot forging end temperature: 800 to 110
0 ° C. When the hot forging end temperature is less than 800 ° C., the deformation resistance of the steel material increases, and the die used for forging has a significantly shortened life or lack of wall due to friction or cracking.
A preferable lower limit value is 850 ° C. On the other hand, if the temperature is 1
If it exceeds 100 ° C, the austenite crystal grains of the forged product become coarse and the yield strength ratio and the fatigue strength decrease. A preferable upper limit is 1050 ° C.

【0030】(ii)熱間鍛造終了後の平均冷却速度(8
00〜500℃):1〜300℃/min 上記平均冷却速度が300℃/minを超えるとベイナ
イト組織やマルテンサイト組織が生成し、切削加工時の
工具寿命が短くなると共に耐力比が低下する。従って、
その上限を300℃/minとした。好ましい上限値は
250℃/minである。
(Ii) Average cooling rate after completion of hot forging (8
(00 to 500 ° C.): 1 to 300 ° C./min If the average cooling rate exceeds 300 ° C./min, a bainite structure or a martensite structure is generated, which shortens the tool life during cutting and reduces the yield strength ratio. Therefore,
The upper limit was 300 ° C./min. A preferable upper limit value is 250 ° C./min.

【0031】一方、上記平均冷却速度が1℃/min未
満では、V等の添加による析出強化効果がほとんど得ら
れず、強度低下や耐力比の低下を招く他、生産性が極端
に悪くなるため、その下限を1℃/minに規定した。
好ましい下限値は2℃/minである。
On the other hand, if the average cooling rate is less than 1 ° C./min, almost no precipitation strengthening effect due to addition of V or the like can be obtained, which leads to a decrease in strength and a proof stress ratio, and extremely deteriorates productivity. The lower limit was defined as 1 ° C / min.
A preferable lower limit value is 2 ° C./min.

【0032】この様に、本発明の製造方法では上記構成
要件を特定したところに特徴を有するものであり、その
他の熱間鍛造条件や冷間加工条件等については特に制限
されず、高強度の機械構造用部品を得ることのできる一
般的な条件を適宜採用し得る。
As described above, the manufacturing method of the present invention is characterized in that the above-mentioned constitutional requirements are specified, and other hot forging conditions, cold working conditions and the like are not particularly limited, and high strength can be obtained. General conditions under which a mechanical structural component can be obtained can be appropriately adopted.

【0033】ただし熱間鍛造後の冷間加工率は、2〜2
0%とすることが推奨される。この様な範囲内であれ
ば、加工率の変化による、上述した式(1)および式
(2)に及ぼす影響はほとんどなく、従来の非調質鋼を
用いた場合に比べて卓越した強度特性を有する部品が得
られる様になる。しかし、冷間加工率が20%を超える
と、加工硬化によって過度に加工硬化し、冷間加工に使
用する金型の寿命が極端に短くなる。また、上記冷間加
工率が2%未満では強制加工が不十分であり、曲がりに
よって疲労強度が低下する等の弊害が生じる。尚、ここ
で規定する冷間加工率とは、据え込み加工時における元
の高さに対する減少率をいう。
However, the cold working rate after hot forging is 2 to 2
0% is recommended. Within such a range, there is almost no effect of the change of the working rate on the above-mentioned formulas (1) and (2), and the strength characteristics are superior to those of the case where the conventional non-heat treated steel is used. It becomes possible to obtain a part having However, if the cold working ratio exceeds 20%, the work hardening excessively causes work hardening, and the life of the die used for cold working becomes extremely short. Further, if the cold working ratio is less than 2%, the forced working is insufficient and bending causes a problem such as a decrease in fatigue strength. The cold working rate defined here means the rate of decrease with respect to the original height during upsetting.

【0034】上述した本発明法により得られたコンロッ
ドは、矯正加工を施した後においても0.50以上の耐
力比を有するので、良好な被削性を確保したまま座屈強
度や疲労強度を向上させることができ、自動車の軽量化
に大きく寄与することができるものである。
The connecting rod obtained by the above-mentioned method of the present invention has a yield strength ratio of 0.50 or more even after being subjected to the straightening process, so that the buckling strength and the fatigue strength of the connecting rod can be improved while ensuring good machinability. It can be improved and can greatly contribute to the weight reduction of automobiles.

【0035】[0035]

【実施例】次に実施例を挙げて本発明の構成および作用
効果をより具体的に説明するが、本発明はもとより下記
実施例によって制限を受けるものではなく、前後記の趣
旨に適合し得る範囲で変更を加えて実施することも勿論
可能であり、それらはいずれも本発明の技術的範囲に含
まれる。
EXAMPLES Next, the structure and operation and effect of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and can be adapted to the spirit of the preceding and following examples. Of course, the present invention can be implemented with modifications within the scope, and all of them are included in the technical scope of the present invention.

【0036】実施例1 表1に示す化学組成の鋼材を実験室規模で溶製した後、
該鋼材を用いて、コンロッドの1セクション部の引張特
性を以下の様にして評価した。まず、断面形状がφ25
mmの角棒になる様、熱間鍛造を施した。次いで、12
50℃に加熱してから熱間で板厚8mm,板幅50mm
の板材に鍛造加工した。このときの鍛造終了温度は95
0℃、熱間鍛造後の800〜500℃の平均冷却速度は
150℃/minとした。この様にして得られた板材か
ら板厚8mm,板幅14mmの圧縮試験片を作製し、矯
正加工を模倣して、無拘束で所定の圧縮率で圧縮加工を
施した。更に上記圧縮加工後に、JIS14号Bに規定
される引張試験片を作製し、引張試験を実施すると共
に、引張試験片のひずみをひずみゲージで測定し、0.
01%ひずみ時の引張応力を耐力として測定した。この
様にして測定された引張強さに対する耐力の比を耐力比
として算出した。その結果を表2および表3に示す。
Example 1 After steel materials having the chemical composition shown in Table 1 were melted on a laboratory scale,
Using the steel material, the tensile properties of one section of the connecting rod were evaluated as follows. First, the cross-sectional shape is φ25
Hot forging was performed so as to obtain a mm square rod. Then 12
After heating to 50 ° C, the plate thickness is 8mm and the plate width is 50mm.
Forged into the plate material. The forging end temperature at this time is 95
The average cooling rate of 0 ° C. and 800 to 500 ° C. after hot forging was 150 ° C./min. A compression test piece having a plate thickness of 8 mm and a plate width of 14 mm was prepared from the plate material thus obtained, and imitation of the straightening process was performed, and the compression process was performed at a predetermined compression rate without restraint. Further, after the above compression processing, a tensile test piece specified in JIS No. 14B was prepared, a tensile test was performed, and the strain of the tensile test piece was measured with a strain gauge.
Tensile stress at 01% strain was measured as proof stress. The yield strength ratio to the tensile strength thus measured was calculated as the yield strength ratio. The results are shown in Tables 2 and 3.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】次に、コンロッド大端部のドリル切削性を
以下の要領にて評価した。まず、断面形状がφ40mm
の丸棒になる様、熱間鍛造を施した。次いで、1250
℃に加熱してからφ25mmの丸帽に鍛造加工後、空冷
し、大端部と同等の硬さが得られる様に調整した。ドリ
ル寿命を評価するに当たっては、材質がSKH51,φ
10のドリルを用い、切削速度20m/min、送り速
度:0.15mm/rev、無潤滑の条件にて行い、ド
リルが破損するまでに切削した長さの合計をドリル寿命
とした。その結果を表4に示す。
Next, the drill machinability of the large end of the connecting rod was evaluated in the following manner. First, the cross-sectional shape is φ40 mm
It was hot forged so that it became a round bar. Then 1250
After being heated to ℃, forged into a round cap of φ25 mm, air-cooled, and adjusted to obtain hardness equivalent to that of the large end. In evaluating the drill life, the material is SKH51, φ
Using 10 drills, the cutting speed was 20 m / min, the feed rate was 0.15 mm / rev, and no lubrication was performed. The total cutting length before the drill was broken was taken as the drill life. The results are shown in Table 4.

【0041】[0041]

【表4】 [Table 4]

【0042】表2〜表4の結果から以下の様に考察する
ことができる。鋼種記号1〜19は本発明の規定要件を
全て満足する実施例であり、冷間加工によって耐力比が
低下する傾向が見られるが、いずれの鋼も耐力が500
N/mm2 以上、耐力比も0.50以上であり、優れた
特性を有することが分かる。また硬さについては、鍛造
のままで350HV以下であり、矯正加工を施さない部
分に機械加工する際、工具寿命が極端に短くなるといっ
た従来の不具合を生じないことが分かった。
From the results of Tables 2 to 4, the following can be considered. Steel type symbols 1 to 19 are examples satisfying all the requirements of the present invention, and the yield strength ratio tends to decrease due to cold working, but any steel has a yield strength of 500.
N / mm 2 or more and the proof stress ratio is 0.50 or more, and it can be seen that it has excellent characteristics. Further, it was found that the hardness was 350 HV or less as it was forged, and when machining the part which is not subjected to the straightening process, the conventional problem that the tool life becomes extremely short does not occur.

【0043】これに対し、鋼種記号20〜29は、本発
明で定める規定要件の何れかを欠く比較例であり、夫
々、以下に示す様な不具合を生じる。 20:Xの値が1.50以下であるため、耐力比が目標
値である0.50を大きく下回った。 21:Yの値が1.30よりも大きいため硬さが350
HVを超えてドリル寿命が大幅に短くなった。 22:C量が少ないためXの値が1.50未満となり、
耐力および耐力比が共に低下した。
On the other hand, the steel grade symbols 20 to 29 are comparative examples lacking any of the prescribed requirements defined in the present invention, and each of them has the following problems. Since the value of 20: X was 1.50 or less, the yield strength ratio was much lower than the target value of 0.50. 21: Hardness is 350 because Y value is larger than 1.30
The drill life was significantly shortened beyond HV. 22: Since the amount of C is small, the value of X becomes less than 1.50,
Both yield strength and yield ratio decreased.

【0044】23:C量が多いためYの値が1.30よ
り大きくなり、硬さが350HVを超え、ドリル寿命が
大幅に短くなった。 24:Si添加量が多いためYの値が1.30より大き
くなり、硬さが350HVを超えてドリル寿命が大幅に
短くなった。 25:Mn添加量が多いためベイナイトが生成し、且つ
Yの値が1.30より大きくなり、硬さが350HVを
超えてドリル寿命が大幅に短くなった。 26:Cr添加量が多いためベイナイトが生成し、且つ
Yの値が1.30より大きくなり、硬さが350HVを
超え、ドリル寿命が大幅に短くなった。
23: Due to the large amount of C, the value of Y became larger than 1.30, the hardness exceeded 350 HV, and the drill life was significantly shortened. 24: Due to the large amount of Si added, the value of Y became larger than 1.30, the hardness exceeded 350 HV, and the drill life was significantly shortened. 25: Bainite was generated due to the large amount of Mn added, and the Y value became larger than 1.30, the hardness exceeded 350 HV, and the drill life was significantly shortened. 26: Bainite was generated due to the large amount of added Cr, the value of Y became larger than 1.30, the hardness exceeded 350 HV, and the drill life was significantly shortened.

【0045】27:Vが無添加でXの値が1.50未満
であるため、耐力および耐力比の双方が低くなった。 28:Moを多く添加したためベイナイトが生成し、Y
の値が1.30よりも大きくなり、硬さが350HVを
超え、ドリル寿命が大幅に短くなった。 29:Al添加量が多いため、圧縮加工時に割れが発生
した。
27: Since V was not added and the value of X was less than 1.50, both the yield strength and the yield strength ratio were low. 28: Bainite is generated because a large amount of Mo is added, and Y
Value was larger than 1.30, the hardness exceeded 350 HV, and the drill life was significantly shortened. 29: Since a large amount of Al was added, cracking occurred during compression processing.

【0046】実施例2 前記表1に示した鋼種1(本発明鋼)および20(比較
鋼)を用い、表5に示す如く、熱間鍛造終了温度と、8
00〜500℃の温度域における平均冷却速度を種々変
化させた場合における耐力、引張強さ、耐力比、疲れ限
度および疲れ限度比を夫々測定した。このうち耐力およ
び引張強さは、実施例1と同様にして測定した。疲労試
験は平行部の直径が8mmの小野式回転曲げ疲労試験片
にて行った。その結果を表5に併記する。
Example 2 Using the steel types 1 (inventive steels) and 20 (comparative steels) shown in Table 1 above, as shown in Table 5, the hot forging end temperature was 8
The yield strength, tensile strength, yield strength ratio, fatigue limit and fatigue limit ratio were measured for various average cooling rates in the temperature range of 00 to 500 ° C. Of these, the proof stress and the tensile strength were measured in the same manner as in Example 1. The fatigue test was carried out on an Ono-type rotary bending fatigue test piece having a parallel portion with a diameter of 8 mm. The results are also shown in Table 5.

【0047】[0047]

【表5】 [Table 5]

【0048】表5からも明らかなように、本発明鋼1を
用い、本発明で規定される製造要件で製造したものは耐
力比が高く、優れた疲れ限度と疲れ限度比が得られるの
に対し、製造要件が本発明の要件を外れるものは耐力
比、疲れ限度および疲れ限度比のいずれもが低下するこ
とが分かった。また、比較鋼20を用いた場合は、いず
れの条件下でも耐力比が低下し、疲れ限度や疲れ限度比
も低下することが分かった。
As is clear from Table 5, those produced using Steel 1 of the present invention with the production requirements specified in the present invention have a high yield strength ratio and can obtain excellent fatigue limit and fatigue limit ratio. On the other hand, it was found that when the manufacturing requirements were out of the requirements of the present invention, the yield strength ratio, the fatigue limit and the fatigue limit ratio were all lowered. It was also found that when Comparative Steel 20 was used, the proof stress ratio decreased, and the fatigue limit and the fatigue limit ratio also decreased under any of the conditions.

【0049】[0049]

【発明の効果】本発明は以上の様に構成されているの
で、矯正加工を施した後も高い耐力比を有する結果、被
削性を確保したまま座屈強度や疲労強度に優れたコンロ
ッド用非調質鋼を得ることができる。また、本発明の製
造方法を用いれば、上述した特性を有効に発揮し得るコ
ンロッドを効率よく製造することができる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, as a result of having a high yield strength ratio even after being subjected to straightening processing, for connecting rods excellent in buckling strength and fatigue strength while maintaining machinability. Non-heat treated steel can be obtained. Further, by using the manufacturing method of the present invention, it is possible to efficiently manufacture a connecting rod that can effectively exhibit the above-mentioned characteristics.

フロントページの続き (72)発明者 板倉 浩二 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 山口 拓郎 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 吉川 雅宏 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内Front page continued (72) Inventor Koji Itakura 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Takuro Yamaguchi 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Invention Person Masahiro Yoshikawa 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.3〜0.6%(質量%、以下同
じ),Si:0.05〜2.5%,Mn:0.3〜2.
0%,V:0.03〜0.5%,Al:0.001〜
0.06%,N:0.003〜0.03%,S:0.0
1〜0.12%の要件を満たし、残部がFeおよび不可
避不純物からなると共に、下記式(1)および(2)の
関係を満足することを特徴とする高強度コンロッド用非
調質鋼。 X=0.7 [C]+0.1 [Si]+[Mn]−1.6 [S]+0.3 [V]+0.4 [Cr]+0.2 [Mo]≧1.50 …(1) Y=[C]+0.1 [Si]+0.3 [Mn]−[S]+1.7 [V]+0.3[Cr] +1.2 [Mo]≦1.30 …(2) [式中の元素記号は、夫々の含有量(%)を意味する。
但し、[Cr],[Mo]は不可避不純物として含まれ
る量である。]
1. C: 0.3 to 0.6% (mass%, the same hereinafter), Si: 0.05 to 2.5%, Mn: 0.3 to 2.
0%, V: 0.03-0.5%, Al: 0.001-
0.06%, N: 0.003 to 0.03%, S: 0.0
A high-strength non-heat treated steel for connecting rod, which satisfies the requirement of 1 to 0.12%, the balance is Fe and inevitable impurities, and satisfies the relations of the following formulas (1) and (2). X = 0.7 [C] +0.1 [Si] + [Mn] -1.6 [S] +0.3 [V] +0.4 [Cr] +0.2 [Mo] ≧ 1.50 (1) Y = [ C] +0.1 [Si] +0.3 [Mn]-[S] +1.7 [V] +0.3 [Cr] +1.2 [Mo] ≦ 1.30 (2) [Symbol in the formula Means the content (%) of each.
However, [Cr] and [Mo] are included as unavoidable impurities. ]
【請求項2】 他の元素としてCr:0.2〜1.5%
および/またはMo:0.05〜0.50%を含有する
請求項1に記載の高強度コンロッド用非調質鋼。
2. As another element, Cr: 0.2 to 1.5%
And / or Mo: 0.05 to 0.50%, The non-heat treated steel for high-strength connecting rod according to claim 1.
【請求項3】 更に他の元素として、 Pb:0.3%以下(0%を含まない),Zr:0.2
%以下(0%を含まない),Ca:0.01%以下(0
%を含まない),Te:0.1%以下(0%を含まな
い)およびBi:0.1%以下(0%を含まない)より
なる群から選択される少なくとも1種を含有するもので
ある請求項1または2に記載の高強度コンロッド用非調
質鋼。
3. As other elements, Pb: 0.3% or less (not including 0%), Zr: 0.2
% Or less (not including 0%), Ca: 0.01% or less (0
%), Te: not more than 0.1% (not including 0%) and Bi: not more than 0.1% (not including 0%), at least one selected from the group consisting of The non-heat treated steel for a high strength connecting rod according to claim 1 or 2.
【請求項4】 請求項1〜3のいずれかに記載の鋼を用
い、800〜1100℃の鍛造終了温度で熱間鍛造する
ことによって成形加工した後、800〜500℃の温度
域を1〜300℃/minの平均冷却速度で冷却するこ
とを特徴とする高強度コンロッドの製造方法。
4. The steel according to any one of claims 1 to 3 is formed by hot forging at a forging end temperature of 800 to 1100 ° C., and then a temperature range of 800 to 500 ° C. A method for producing a high-strength connecting rod, which comprises cooling at an average cooling rate of 300 ° C./min.
JP12615096A 1996-05-21 1996-05-21 Production of non-heat treated steel for high strength connecting rod and high strength connecting rod Withdrawn JPH09310146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12615096A JPH09310146A (en) 1996-05-21 1996-05-21 Production of non-heat treated steel for high strength connecting rod and high strength connecting rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12615096A JPH09310146A (en) 1996-05-21 1996-05-21 Production of non-heat treated steel for high strength connecting rod and high strength connecting rod

Publications (1)

Publication Number Publication Date
JPH09310146A true JPH09310146A (en) 1997-12-02

Family

ID=14927924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12615096A Withdrawn JPH09310146A (en) 1996-05-21 1996-05-21 Production of non-heat treated steel for high strength connecting rod and high strength connecting rod

Country Status (1)

Country Link
JP (1) JPH09310146A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055715A (en) * 2001-08-09 2003-02-26 Kobe Steel Ltd Method for producing hot forged non-heat treated connecting rod
JP2008240129A (en) * 2007-03-29 2008-10-09 Sumitomo Metal Ind Ltd Non-heat treated steel material
US7670444B2 (en) * 2001-03-21 2010-03-02 Daido Steel Co., Ltd. Non-heat treated steel for hot forging with easy fracture splitting
CN102766804A (en) * 2012-07-17 2012-11-07 上海大学 High-strength high-ductility medium-carbon vanadium-containing silico-manganese steel and preparation method thereof
EP3050994A1 (en) * 2013-09-26 2016-08-03 Peking University Founder Group Co., Ltd Non-quenched and tempered steel and manufacturing method therefor
JP2016141864A (en) * 2015-02-04 2016-08-08 愛知製鋼株式会社 Method of manufacturing connecting rod
EP3050995A4 (en) * 2013-09-26 2017-04-19 Peking University Founder Group Co., Ltd Non-quenched and tempered steel and manufacturing method therefor
JP2017171977A (en) * 2016-03-23 2017-09-28 愛知製鋼株式会社 Crankshaft, manufacturing method therefor, and steel for crankshaft
CN114058943A (en) * 2021-09-14 2022-02-18 武汉钢铁有限公司 Microalloyed steel and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670444B2 (en) * 2001-03-21 2010-03-02 Daido Steel Co., Ltd. Non-heat treated steel for hot forging with easy fracture splitting
JP2003055715A (en) * 2001-08-09 2003-02-26 Kobe Steel Ltd Method for producing hot forged non-heat treated connecting rod
JP2008240129A (en) * 2007-03-29 2008-10-09 Sumitomo Metal Ind Ltd Non-heat treated steel material
CN102766804A (en) * 2012-07-17 2012-11-07 上海大学 High-strength high-ductility medium-carbon vanadium-containing silico-manganese steel and preparation method thereof
EP3050994A1 (en) * 2013-09-26 2016-08-03 Peking University Founder Group Co., Ltd Non-quenched and tempered steel and manufacturing method therefor
EP3050994A4 (en) * 2013-09-26 2017-04-05 Peking University Founder Group Co., Ltd Non-quenched and tempered steel and manufacturing method therefor
EP3050995A4 (en) * 2013-09-26 2017-04-19 Peking University Founder Group Co., Ltd Non-quenched and tempered steel and manufacturing method therefor
JP2016141864A (en) * 2015-02-04 2016-08-08 愛知製鋼株式会社 Method of manufacturing connecting rod
JP2017171977A (en) * 2016-03-23 2017-09-28 愛知製鋼株式会社 Crankshaft, manufacturing method therefor, and steel for crankshaft
CN114058943A (en) * 2021-09-14 2022-02-18 武汉钢铁有限公司 Microalloyed steel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4013969B2 (en) Hot forged product with excellent fatigue strength, method for producing the same, and machine structural component
JP4415219B2 (en) Age hardened steel
JP5080708B2 (en) Non-tempered steel forged product, method for producing the same, and connecting rod component for internal combustion engine using the same
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JPS5853709B2 (en) As-forged high-strength forging steel
JPH09310146A (en) Production of non-heat treated steel for high strength connecting rod and high strength connecting rod
JPH09324219A (en) Production of high strength spring excellent in hydrogen embrittlement resistance
JPH08277437A (en) Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JPH1112678A (en) Martensite-bainite type hot forged parts, and their production
JP3988661B2 (en) Non-tempered steel
JPH10324954A (en) Steel for machine structural use
JPH1129842A (en) Ferrite-pearlite type non-heat treated steel
JPH09111401A (en) Steel for machine structural use, excellent in machinability and quenching crack resistance, and its production
JP3445478B2 (en) Machine structural steel and fracture splitting machine parts using the same
JPH09194999A (en) Ferrite-pearlite-type non-heat treated steel
JPH04154936A (en) Precipitation hardening nitriding steel
JP3617187B2 (en) Manufacturing method of high strength connecting rod
JPH10265891A (en) Ferrite/pearlite type non-heat treated steel
JPH09310152A (en) Non-heat treated steel for hot forging
JPH07102340A (en) Production of non-heattreated steel excellent in fatigue characteristic
JP3543581B2 (en) Ferrite / pearlite non-heat treated steel
JP4343019B2 (en) Non-tempered steel for induction-hardened connecting rods with easy fracture separation
JP3584726B2 (en) High strength non-heat treated steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805