JPH09324219A - Production of high strength spring excellent in hydrogen embrittlement resistance - Google Patents

Production of high strength spring excellent in hydrogen embrittlement resistance

Info

Publication number
JPH09324219A
JPH09324219A JP14332096A JP14332096A JPH09324219A JP H09324219 A JPH09324219 A JP H09324219A JP 14332096 A JP14332096 A JP 14332096A JP 14332096 A JP14332096 A JP 14332096A JP H09324219 A JPH09324219 A JP H09324219A
Authority
JP
Japan
Prior art keywords
tempering
spring
less
steel
hydrogen embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14332096A
Other languages
Japanese (ja)
Inventor
Masaki Shimotsusa
正貴 下津佐
Nobuhiko Ibaraki
信彦 茨木
Takenori Nakayama
武典 中山
Takashi Iwata
多加志 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14332096A priority Critical patent/JPH09324219A/en
Publication of JPH09324219A publication Critical patent/JPH09324219A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a high strength spring increased in tensile strength and hardness after quench-and-temper treatment and excellent in corrosion resistance and hydrogen embrittlement by using a steel in which respective contents of C and Si are limited as a stock and performing tempering at a temp. controlled to a specific value. SOLUTION: As a stock, a steel, which has a composition containing, by mass, 0.30-0.60% C and 1.0-3.0% Si, further containing, preferably, 0.1-1.0% Mn and 0.5-2.0% Cr and also containing 0.005-0.5% Ti and/or 0.005-0.5% Nb, further containing, if necessary, <=150ppm N, <=1.0% Cu, <=1.0% Ni, <=1.0% V, <=0.5% Al, and <=1.0% Mo, and having the balance Fe with inevitable impurities, is used. At the time of tempering this low carbon steel for spring, the temp. K is controlled to a value satisfying an inequality. Further, as to the tempering time (t), proper tempering time is about 30min to 2hr in the case of a hot formed spring and <= about 1hr in the case of a cold formed spring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の弁ばね
や懸架ばね等に使用される高強度ばねの製造方法に関
し、特に、重要なばね特性である焼入焼戻後の引張強さ
(硬さ)を充分満足すると共に、水素雰囲気下における
耐水素脆性にも優れた高強度ばねを効率良く製造する方
法に関するものである。尚、本明細書において鋼材と
は、ばね状に加工する前の原料である棒や線材、および
ばね状に加工された最終製品としてのばねを包含するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-strength spring used for a valve spring, a suspension spring, etc. of an internal combustion engine, and particularly to an important spring characteristic, that is, tensile strength after quenching and tempering ( (Hardness), and a method for efficiently producing a high-strength spring excellent in hydrogen embrittlement resistance in a hydrogen atmosphere. In the present specification, the term "steel material" includes rods and wires that are raw materials before being processed into a spring shape, and springs as a final product processed into a spring shape.

【0002】[0002]

【従来の技術】ばねを製造するには、JIS G356
5〜3567及び4801等に規定されるばね用鋼を用
い、該鋼材から製造した熱間圧延線材(以降、圧延材と
呼ぶ)を、所定の線径まで引抜加工しオイルテンパー処
理してからばね加工(冷間加工)したり、或いは、該圧
延材を引抜加工またはピーリング加工した後加熱してば
ね成形してから焼入焼戻を行う(熱間加工)等の方法が
採用されている。
2. Description of the Related Art To manufacture a spring, JIS G356
5 to 3567 and 4801 and the like are used for springs, and a hot rolled wire rod (hereinafter referred to as a rolled wire) manufactured from the steel is drawn to a predetermined wire diameter and oil tempered, and then the spring. A method such as working (cold working) or drawing or peeling the rolled material, then heating and spring-forming and then quenching and tempering (hot working) is adopted.

【0003】近年では、軽量化の為にばねの高応力化に
対する要望が益々強くなり、その為には、焼入焼戻後の
強度が1900MPa以上の高強度ばね用鋼が必要であ
る。ところが、一般にばね用鋼が硬くなると欠陥が発生
し易く、周囲の環境にも影響され易くなる。特に腐食環
境下では、ばねの腐食疲労寿命は著しく低下する傾向に
あり、早期切損を起こすことが懸念されている。腐食疲
労寿命が低下する原因としては、表面に生成する腐食ピ
ットが応力集中源となり、疲労亀裂の発生を促進するこ
とが考えられる。更に、腐食反応により水素が発生する
が、高強度材になる程水素により脆化し易くなり、それ
に伴う腐食疲労亀裂の促進、更には腐食疲労亀裂伝播時
の粒界破壊等により早期切損を一層促進することが懸念
されている。
In recent years, there has been an increasing demand for higher stress in springs in order to reduce their weight, and for that purpose, high strength spring steel having a strength after quenching and tempering of 1900 MPa or more is required. However, generally, when the spring steel becomes hard, defects are likely to occur, and the surrounding environment is likely to be affected. In particular, under a corrosive environment, the corrosion fatigue life of springs tends to be remarkably shortened, and there is a concern that early cutting may occur. It is considered that the reason why the corrosion fatigue life is shortened is that the corrosion pits formed on the surface serve as a stress concentration source and accelerate the occurrence of fatigue cracks. Furthermore, although hydrogen is generated by the corrosion reaction, the higher the strength of the material, the easier it becomes to embrittle due to hydrogen, which promotes the corrosion fatigue cracks, and further promotes the early cutting loss due to the intergranular fracture during the propagation of the corrosion fatigue cracks. There is concern about promoting it.

【0004】この様な腐食疲労寿命や耐水素脆性の低下
を防止するには、素材の靭性向上を目指して、鋼の低炭
素化を図ると共にSi,Cr,Ni等を添加する必要が
ある。しかし、これらの添加元素は焼入性向上効果も大
きいため、多量に添加すると圧延材中に過冷却組織(マ
ルテンサイトやベイナイト等)が生成して焼鈍等の軟化
熱処理が必要となり、工程数の増加やそれに伴なう製造
コストの増大および生産性の低下といった問題が生じ
る。
In order to prevent such deterioration of corrosion fatigue life and hydrogen embrittlement resistance, it is necessary to reduce the carbon content of steel and to add Si, Cr, Ni, etc. in order to improve the toughness of the material. However, since these additive elements also have a large effect of improving the hardenability, if added in a large amount, a supercooled structure (such as martensite or bainite) is generated in the rolled material, and softening heat treatment such as annealing is required. There are problems such as an increase, an increase in manufacturing cost and a decrease in productivity.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、その目的は、ばね特性の
一つである焼入焼戻後の強度が1900MPa以上で硬
さHRC52以上の高強度・高硬度を有すると共に、耐
水素脆性を飛躍的に向上させることができる高強度ばね
の製造方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is a hardness HRC52 with a strength after quenching and tempering, which is one of spring characteristics, of 1900 MPa or more. An object of the present invention is to provide a method for producing a high-strength spring which has the above-mentioned high strength and high hardness and can dramatically improve the hydrogen embrittlement resistance.

【0006】[0006]

【課題を解決するための手段】上記課題を解決し得た本
発明に係わる耐水素脆性に優れた高強度ばねの製造方法
とは、C:0.30〜0.60%(質量%、以下同じ)
及びSi:1.0〜3.0%を含有する鋼を用い、下式
(1)を満足する温度に抑制して焼戻しするところに要
旨を有するものである。
The method for producing a high-strength spring excellent in hydrogen embrittlement resistance according to the present invention, which can solve the above-mentioned problems, is C: 0.30 to 0.60% (mass%, the same)
And Si: steel containing 1.0 to 3.0% is used, and the gist is that the tempering is performed while suppressing the temperature to satisfy the following formula (1).

【0007】[0007]

【数2】 [Equation 2]

【0008】上記鋼において、 Mn:0.1〜1.0%及びCr:0.5〜2.0%
を含有すると共に、Ti:0.005〜0.5%及び/
又はNb:0.005〜0.5%を含有し、残部:Fe
および不可避不純物を満足するものは、上記特性を著し
く向上させる点で本発明の好ましい実施態様であり、更
に、一層優れた特性を得ることを目的として N :150ppm以下に抑制したり、或いは Cu:1.0%以下及び/又はNi:1.0%以下 V :1.0%以下及び/又はAl:0.5%以下 Mo:1.0%以下 を積極的に添加すること(いずれの元素も0を含まな
い)が推奨される。
In the above steel, Mn: 0.1-1.0% and Cr: 0.5-2.0%
In addition to containing Ti: 0.005 to 0.5% and / or
Or Nb: 0.005-0.5%, balance: Fe
And satisfying the unavoidable impurities is a preferred embodiment of the present invention in that the above properties are remarkably improved, and further, N: is suppressed to 150 ppm or less or Cu: 1.0% or less and / or Ni: 1.0% or less V: 1.0% or less and / or Al: 0.5% or less Mo: 1.0% or less (any element Also does not include 0) is recommended.

【0009】更に、熱間圧延線材に対して焼鈍等の軟化
熱処理を行わずに引抜加工やピーリング加工を行う場合
には、下式(2)を満足する様、成分調整することによ
ってコストの低減を図ることが可能である。 2.5≦(FP)≦4.5 … (2) 上記において、鋼材が熱間圧延によって得られる棒・線
材である場合は、熱間圧延後の直径をD(mm)とした
とき、下式(3)の関係を満たす様に成分調整すること
によって、その性能を一層確実に発揮させることができ
る。 2.0≦(FP/log D)≦4.0 … (3)
Further, when the hot-rolled wire is subjected to drawing or peeling without softening heat treatment such as annealing, the cost can be reduced by adjusting the components so as to satisfy the following expression (2). Is possible. 2.5 ≦ (FP) ≦ 4.5 (2) In the above, in the case where the steel material is a rod / wire material obtained by hot rolling, when the diameter after hot rolling is D (mm), By adjusting the components so as to satisfy the relationship of the expression (3), the performance can be exhibited more reliably. 2.0 ≦ (FP / log D) ≦ 4.0 (3)

【0010】[0010]

【発明の実施の形態】本発明者らは、上記目的を達成す
る為に、即ち、従来のばねの腐食疲労寿命や耐水素脆性
を改善すると共に、熱間圧延線材に対して焼鈍等の軟化
熱処理を行わずに引抜加工やピーリング加工を行うこと
を目的として、種々のばね用鋼を既に開示している。例
えば特開平7−173577号公報は、鋼材の化学成分
を特定すると共に、殊に熱間圧延時の過冷却組織を抑制
するという観点から上式(2)および(3)の関係を定
めることにより耐食性の向上を図るものであり、また、
特願平7−280931号公報は、Ti,Nbの炭・窒
・硫化物からなる粗大介在物のサイズや個数を特定する
ことにより耐食性や耐水素脆性の向上を目指すものであ
る。これらのばね用鋼は、いずれも0.30〜0.60
%程度の低炭素鋼をベースとするものであるが、本発明
では、この様な低炭素ばね用鋼を用いてばねを製造する
場合に当たり、より優れた特性を得る為の製造条件につ
いて鋭意検討した結果、本発明を完成したのである。即
ち、本発明では、低炭素ばね用鋼材に対し、上式(1)
を満足する温度で焼戻しを行うことにより、焼入焼戻後
の旧オーステナイト結晶粒度No.8.5以上、引張強度
1900MPa、硬さHRC52以上の高強度・高硬度
を有し、しかも、これと同等の硬さを有する従来鋼(S
UP7)に比べて、耐腐食疲労性・耐水素脆性の両特性
を飛躍的に改善できることを見出したのである。
BEST MODE FOR CARRYING OUT THE INVENTION In order to achieve the above-mentioned object, the present inventors have improved the corrosion fatigue life and hydrogen embrittlement resistance of conventional springs, and softened the hot rolled wire rod by annealing or the like. Various spring steels have already been disclosed for the purpose of performing drawing or peeling without heat treatment. For example, Japanese Unexamined Patent Application Publication No. 7-173577 discloses that by specifying the chemical composition of a steel material, and particularly by defining the relationships of the above formulas (2) and (3) from the viewpoint of suppressing the supercooling structure during hot rolling. It is intended to improve corrosion resistance, and
Japanese Patent Application No. 7-280931 aims to improve corrosion resistance and hydrogen embrittlement resistance by specifying the size and number of coarse inclusions of carbon, nitrogen, and sulfide of Ti and Nb. All of these spring steels are 0.30 to 0.60.
% Is based on low carbon steel, but in the present invention, when manufacturing a spring using such a low carbon spring steel, earnestly studying manufacturing conditions for obtaining better characteristics. As a result, the present invention has been completed. That is, in the present invention, the above formula (1) is applied to the low carbon spring steel material.
By tempering at a temperature that satisfies the above condition, the austenite grain size after quenching and tempering is 8.5 or more, the tensile strength is 1900 MPa, and the hardness is HRC52 or more. Conventional steel with the same hardness (S
It was discovered that both the corrosion fatigue resistance and the hydrogen embrittlement resistance can be dramatically improved compared to UP7).

【0011】この様に、本発明は、耐食性・耐水素脆性
に優れたばねを製造するに当たり、低炭素ばね用鋼を使
用した場合における最適な焼戻温度[T(K),以下略
記する場合がある]を見出した点に最大の特徴を有する
ものである。具体的には、上式(1)に示す関係を満足
するものであれば良いが、安定した耐水素脆性を得る為
には、その焼戻温度を、右辺の式で算出される値よりも
25K以上低く設定することが好ましく、より好ましく
は50K以上である。ここで、焼戻時間(t)は、ばね
の製造に当たり通常採用される時間であれば特に限定さ
れず、熱間成形ばねの場合は概ね30分〜2時間、冷間
成形ばねの場合は概ね1時間以内である。
As described above, according to the present invention, when manufacturing a spring having excellent corrosion resistance and hydrogen embrittlement resistance, the optimum tempering temperature [T (K), when a low carbon spring steel is used, may be abbreviated as follows. It has the greatest feature in the point of finding [Yes]. Specifically, it is sufficient if it satisfies the relationship shown in the above formula (1), but in order to obtain stable hydrogen embrittlement resistance, the tempering temperature is higher than the value calculated by the formula on the right side. It is preferable to set it lower than 25K, more preferably 50K or higher. Here, the tempering time (t) is not particularly limited as long as it is a time usually adopted in manufacturing a spring, and is generally 30 minutes to 2 hours in the case of a hot-formed spring and approximately 30 minutes to 2 hours in the case of a cold-formed spring. Within 1 hour.

【0012】更に、焼戻温度を規定する上式(1)の右
辺には、鋼中の元素としてCおよびSiが含まれてい
る。即ち、所望の焼戻温度でばねを製造するには、鋼中
のC量およびSi量を適切に制御することが必要であ
る。各元素の限定理由は以下の通りである。
Further, C and Si are contained as elements in the steel on the right side of the above equation (1) which regulates the tempering temperature. That is, in order to manufacture a spring at a desired tempering temperature, it is necessary to appropriately control the amounts of C and Si in steel. The reasons for limiting each element are as follows.

【0013】C:0.30〜0.60% Cは焼入焼戻後の強度(硬さ)を確保するために必要な
元素であり、0.30%未満では強度が不足する。好ま
しくは0.35%以上である。一方、0.60%を超え
て過剰に添加すると焼入焼戻後の靭性・延性が劣化する
のみならず、耐食性にも悪影響を及ぼす様になるので、
その上限を0.60%にした。好ましくは0.55%以
下である。
C: 0.30 to 0.60% C is an element necessary for ensuring the strength (hardness) after quenching and tempering, and if less than 0.30%, the strength is insufficient. It is preferably 0.35% or more. On the other hand, if added in excess of 0.60%, not only the toughness and ductility after quenching and tempering will deteriorate, but also the corrosion resistance will be adversely affected.
The upper limit was set to 0.60%. It is preferably 0.55% or less.

【0014】Si:1.0〜3.0% Siは固溶強化元素として有用であり、1.0%未満で
はマトリックスの強度が不十分になる。好ましくは1.
2%以上である。しかしながら、3.0%を超えて過剰
に添加すると、焼入れ加熱時における炭化物の溶け込み
が不十分になる為、均一にオーステナイト化させるには
高温での加熱が必要になり、その結果、表面に過度の脱
炭が生じてばねの疲労特性が悪くなる。好ましくは2.
5%以下である。
Si: 1.0 to 3.0% Si is useful as a solid solution strengthening element, and if it is less than 1.0%, the strength of the matrix becomes insufficient. Preferably 1.
It is 2% or more. However, if it is added excessively in excess of 3.0%, the melting of carbides during quenching heating becomes insufficient, so heating at a high temperature is necessary for uniform austenitization, and as a result, excessive addition to the surface results. Decarburization occurs and the spring fatigue characteristics deteriorate. Preferably 2.
It is 5% or less.

【0015】本発明では、焼戻温度の設定に係わる上記
元素の含有量のみを特定するものであり、他の元素につ
いては、本発明の作用を損なわない範囲で適宜添加され
得るが、好ましい成分含有量について以下に記載する。
In the present invention, only the contents of the above-mentioned elements relating to the setting of the tempering temperature are specified, and other elements can be appropriately added within a range not impairing the action of the present invention, but preferable components. The content will be described below.

【0016】Mn:0.1〜1.0% Mnは焼入れ性向上元素として有用であり、この様な作
用を有効に発揮させるには0.1%以上の添加が好まし
い。しかし、1.0%を超えて添加すると、焼入れが入
り過ぎて圧延時に過冷組織が出現し易くなるので、その
上限を1.0%以下にすることが好ましい。更に、Mn
は耐食性や耐水素脆性に悪影響を及ぼすことを考慮すれ
ば、0.5%以下に制御することが推奨される。
Mn: 0.1 to 1.0% Mn is useful as an element for improving hardenability, and it is preferable to add 0.1% or more in order to effectively exhibit such an action. However, if added in excess of 1.0%, quenching becomes excessive and a supercooled structure is likely to appear during rolling, so the upper limit is preferably made 1.0% or less. Further, Mn
Considering that it adversely affects the corrosion resistance and the hydrogen embrittlement resistance, it is recommended to control the content to 0.5% or less.

【0017】Cr:0.5〜2.0% Crは耐食性向上作用を有すると共に、上記Mnと同
様、焼入れ性の向上に寄与する元素である。この様な作
用を有効に発揮させるには0.5%以上の添加が好まし
い。しかし、2.0%を超えて添加すると焼入れが入り
過ぎて、圧延後に過冷組織が出現するので2.0%以下
にすることが好ましい。
Cr: 0.5 to 2.0% Cr is an element which has an effect of improving corrosion resistance and contributes to the improvement of hardenability, like the above Mn. Addition of 0.5% or more is preferable to effectively exhibit such an effect. However, if added in excess of 2.0%, quenching becomes excessive and a supercooled structure appears after rolling, so it is preferable to make it 2.0% or less.

【0018】Ti:0.005〜0.5%及び/又はN
b:0.005〜0.5% Tiは炭窒化物を形成し、拡散性水素のトラップサイト
として作用する為、耐水素脆性の向上に有用である。更
に、結晶粒度を微細化して耐力比やへたり性を向上させ
る作用も有する。この様な作用は0.005%以上(よ
り好ましくは0.01%以上)の添加によって有効に発
揮される。しかし、0.5%を超えると粗大な炭窒化物
を生成し易くなり、その結果、耐疲労寿命が低下する。
より好ましくは0.3%以下である。
Ti: 0.005-0.5% and / or N
b: 0.005 to 0.5% Ti forms a carbonitride and acts as a trap site for diffusible hydrogen, so it is useful for improving hydrogen embrittlement resistance. Further, it also has the effect of making the grain size finer to improve the yield strength ratio and the sag. Such an effect is effectively exhibited by adding 0.005% or more (more preferably 0.01% or more). However, if it exceeds 0.5%, coarse carbonitrides are likely to be formed, and as a result, the fatigue life is reduced.
It is more preferably 0.3% or less.

【0019】Nbも、上記Tiと同様、結晶粒度を微細
化して耐力比を向上させ、へたり性を高める作用を有す
る。その効果は0.005%以上(より好ましくは0.
01%以上)の添加によって有効に発揮される。しか
し、0.5%を超えて含有させてもそれ以上の効果は得
られず、むしろ焼入れ加熱時に粗大な化合物が生成して
耐疲労寿命を劣化させる。より好ましくは0.3%以下
である。
Similar to Ti, Nb also has the effect of making the grain size finer, improving the yield strength ratio, and increasing the sag. The effect is 0.005% or more (more preferably 0.
(01% or more) is effectively exhibited. However, even if the content exceeds 0.5%, no further effect is obtained, and rather a coarse compound is formed during quenching and heating, and the fatigue life is deteriorated. It is more preferably 0.3% or less.

【0020】更には、本発明による作用を一段と高める
ことを目的として、N量を抑制したり、或いはCu及び
/又はNi;V及び/又はAl;Moを積極的に含有す
ることが可能である(いずれの元素も0を含まない)。
これら元素の好ましい含有量は以下の通りである。
Further, for the purpose of further enhancing the action of the present invention, it is possible to suppress the amount of N or to positively contain Cu and / or Ni; V and / or Al; Mo. (Neither element contains 0).
The preferred contents of these elements are as follows.

【0021】N:150ppm以下 Nは、Ti等と結合して窒化物を形成し疲労寿命に悪影
響を及ぼす他、焼入焼戻後の素材靭性を低下させる為、
その上限を150ppm以下にすることが好ましい。よ
り好ましくは80ppm以下である。
N: 150 ppm or less N combines with Ti and the like to form a nitride, which adversely affects the fatigue life and also reduces the material toughness after quenching and tempering.
The upper limit is preferably 150 ppm or less. It is more preferably 80 ppm or less.

【0022】Cu:1.0%以下 Cuは電気化学的に見て鉄より貴な元素であり、耐食性
を高める作用を有する。この様な作用は0.1%以上の
添加により有効に発揮されるが、1.0%を超えて含有
させてもそれ以上の効果は得られず、むしろ熱間圧延時
に素材の脆化を招く恐れがある。より好ましくは0.5
%以下である。
Cu: 1.0% or less Cu is an element that is electrochemically nobler than iron and has the function of enhancing corrosion resistance. Such an effect is effectively exhibited by the addition of 0.1% or more, but even if it is contained in an amount of more than 1.0%, no further effect is obtained, rather, the material becomes brittle during hot rolling. May invite you. More preferably 0.5
% Or less.

【0023】Ni:1.0%以下 Niは焼入焼戻後の素材靭性および耐食性を向上させる
作用を有すると共に、重要なばね特性であるへたり特性
を大幅に改善する作用も有する。これらの作用を有効に
発揮させるには、0.1%以上の添加が好ましく、更に
耐食性を向上させる為には、0.2%以上の添加が推奨
される。しかし、1.0%を超えて添加すると焼入性が
増大し、圧延後に過冷組織が出現し易くなる。
Ni: 1.0% or less Ni has the effect of improving the material toughness and the corrosion resistance after quenching and tempering, and also has the effect of significantly improving the fatigue property, which is an important spring property. Addition of 0.1% or more is preferable to effectively exert these effects, and addition of 0.2% or more is recommended to further improve the corrosion resistance. However, if added over 1.0%, the hardenability increases, and a supercooled structure is likely to appear after rolling.

【0024】V:1.0%以下 Vは結晶粒度を微細化して耐力比を高め、耐へたり性を
改善するのに有効な元素である。この様な作用を有効に
発揮させるには0.01%以上(より好ましくは0.0
5%以上)の添加が好ましい。しかし、0.5%を超え
て添加すると、焼入れ加熱時に、オーステナイト中に固
溶しない合金炭化物の割合が増大し、大きな塊状物とな
って残存する為、疲労寿命が低下する。より好ましくは
0.3%以下である。
V: 1.0% or less V is an element effective for refining the grain size to increase the yield strength ratio and improve the sag resistance. 0.01% or more (more preferably 0.0
5% or more) is preferable. However, if added in excess of 0.5%, the proportion of alloy carbide that does not form a solid solution in austenite increases at the time of quenching and heating, and remains as a large lump, which reduces the fatigue life. It is more preferably 0.3% or less.

【0025】Al:0.5%以下 Alは、Nbと同様に結晶粒度を微細化して耐力比を向
上させ、へたり性の向上に寄与する元素である。その様
な効果は0.01%以上(より好ましくは0.05%以
上)の添加によって有効に発揮される。しかし、0.5
%を超えて添加してもそれ以上の効果は得られず、むし
ろ酸化物系介在物(Al23 等)が多量に生成して粗
大化してしまい、かえって耐疲労寿命が低下する。より
好ましくは0.3%以下である。
Al: 0.5% or less Al is an element which, like Nb, refines the grain size to improve the yield strength ratio and contributes to the improvement of the sag. Such an effect is effectively exhibited by adding 0.01% or more (more preferably 0.05% or more). However, 0.5
%, No further effect is obtained, but rather oxide-based inclusions (Al 2 O 3 etc.) are produced in a large amount and coarsen, rather reducing the fatigue life. It is more preferably 0.3% or less.

【0026】Mo:1.0%以下 Moは焼入性を向上させると共に、耐へたり性の向上作
用も有する。耐へたり性の向上作用を有効に発揮させる
には0.1%以上の添加が好ましい。しかし、1.0%
を超えて添加すると焼入性が増大し、コストが高くなる
等の不都合を招く。より好ましくは0.5%以下であ
る。更に、圧延後焼鈍等の軟化熱処理を省略して引抜加
工やピーリング加工を行うには、上式(2)や(3)の
要件を満たす様、成分調整を行うことが推奨される。
Mo: 1.0% or less Mo improves not only hardenability but also sag resistance. Addition of 0.1% or more is preferable in order to effectively exert the effect of improving the sag resistance. However, 1.0%
If it is added in excess, the hardenability will increase and the cost will increase. It is more preferably 0.5% or less. Furthermore, in order to perform the drawing process and the peeling process while omitting the softening heat treatment such as the post-rolling annealing, it is recommended to adjust the components so as to satisfy the requirements of the above formulas (2) and (3).

【0027】このうち式(2)において、FP<2.5
では、焼入焼戻時に焼きが均一に入らなくなり所定の強
度を得ることが不可能である。一方、FP>4.5で
は、圧延後に過冷組織が出現して圧延後の強度が135
0MPa以上になり、その後に行なわれる引抜加工等に
先立って軟化熱処理が必要となってしまう。
In the equation (2), FP <2.5
Then, quenching and tempering do not uniformly occur, and it is impossible to obtain a predetermined strength. On the other hand, when FP> 4.5, a supercooled structure appears after rolling and the strength after rolling is 135.
The pressure becomes 0 MPa or more, and the softening heat treatment is required prior to the subsequent drawing process or the like.

【0028】また、式(3)において、(FP/log
D)<2.0では、焼入焼戻時に均一な焼きが入らなく
なり、所定の強度を得ることが不可能になる。一方、
(FP/logD)>4.0では、圧延後に過冷組織が
出現し、その後に行われる引抜加工やピーリング加工の
為に、焼鈍等の軟化熱処理が更に必要になってくる。
In the equation (3), (FP / log
If D) <2.0, uniform quenching does not occur during quenching and tempering, and it becomes impossible to obtain a predetermined strength. on the other hand,
When (FP / logD)> 4.0, a supercooled structure appears after rolling, and softening heat treatment such as annealing is further required for the subsequent drawing process and peeling process.

【0029】尚、前記式(3)において圧延材の直径D
(mm)を鋼材の成分組成を決定する際の要素として組
み込んだのは、熱間圧延時の冷却速度、ひいては得られ
る圧延材の金属組織などに該圧延材の直径が少なからぬ
影響を及ぼすからであり、本発明者等が確認したところ
によると、(3)式で規定する(FP/logD)の値
が2.0〜4.0の範囲となる様に鋼材の成分組成をう
まくコントロールすれば、得られるばね用棒・線材の性
能を一段と安定したものにできることが確認された。
The diameter D of the rolled material in the above formula (3)
(Mm) was incorporated as an element for determining the composition of the steel material because the cooling rate during hot rolling, and eventually the metal structure of the obtained rolled material, has a considerable effect on the diameter of the rolled material. According to the confirmation by the present inventors, the composition of the steel material should be well controlled so that the value of (FP / logD) defined by the formula (3) is in the range of 2.0 to 4.0. It was confirmed that the performance of the obtained spring rod / wire can be further stabilized.

【0030】この様に、本発明法は、焼入れ後の焼戻し
温度を特定したところに最大特徴を有するものであり、
この方法を用いれば、熱間成形ばね・冷間成形ばねのい
ずれにおいても、所望の特性を発揮させることができ
る。
As described above, the method of the present invention has the greatest feature in that the tempering temperature after quenching is specified.
By using this method, desired characteristics can be exhibited in both hot-formed springs and cold-formed springs.

【0031】具体的には、熱間成形ばねを製造するに
は、上記ばね用鋼を加熱(900〜1000℃)し、熱
間成形によりばねを成形した後、油焼入れし、所定の温
度で焼戻ししてから均一線径ばねやテーパーばねを作製
するものであり、一方、冷間成形ばねを製造するには、
熱間成形と同様、上記ばね用鋼を加熱(900〜100
0℃)してから、油焼入れ・所定の焼戻しを行い、冷間
成形によりばねを成形した後、所望のばねを作製するも
のである。
Specifically, in order to manufacture a hot-formed spring, the spring steel is heated (900 to 1000 ° C.), the spring is formed by hot forming, and then oil quenching is performed at a predetermined temperature. Uniform tempered springs and taper springs are manufactured after tempering. On the other hand, in order to manufacture cold-formed springs,
Like the hot forming, the spring steel is heated (900 to 100).
After 0 ° C.), oil quenching and predetermined tempering are performed, the spring is formed by cold forming, and then the desired spring is manufactured.

【0032】以下本発明を実施例によってさらに詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に適合し得る範囲で適当に変
更して実施することはいずれも本発明の技術的範囲に含
まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention and can be carried out with appropriate modifications within a range compatible with the gist of the preceding and the following. All of these are included in the technical scope of the present invention.

【0033】[0033]

【実施例】表1及び表2に示す種々の化学成分からなる
鋼を溶製した後、鍛造により155mmの角ビレットを
製造し、熱間圧延により発明鋼においてはφ8mmまた
は14mm、比較鋼においてはφ14mmの各線材を作
製した。
EXAMPLES Steels having various chemical compositions shown in Tables 1 and 2 were melted and then forged to form square billets of 155 mm, and hot rolled to obtain φ8 mm or 14 mm in the invention steels, and in the comparative steels. Each wire rod having a diameter of 14 mm was produced.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】このうちφ14mmに圧延した線材を用
い、φ12.5mmまで引抜加工を施した後、熱間圧延
を行った。次いで、各種試験に供する様、切出し試験を
行った後、焼入条件:925℃×10minで油焼入を
行い、焼戻温度(焼戻時間60min)を適宜調整する
ことにより試験片の硬さをHRC54〜53に調整し
た。
Of these wires, a wire rod rolled to φ14 mm was used, and after drawing work to φ12.5 mm, hot rolling was performed. Then, after conducting a cutting-out test so as to be subjected to various tests, quenching conditions: oil quenching at 925 ° C. × 10 min, and appropriately adjusting the tempering temperature (tempering time 60 min) Was adjusted to HRC 54-53.

【0037】この試験片を用いて、引張強度および旧オ
ーステナイト結晶粒度を測定した。尚、旧オーステナイ
ト結晶粒度は、JIS G0551の方法に準じて測定
した。また耐食性は、8hrの塩水噴霧に続いて16h
r放置(35℃,60%RH)する工程を1サイクルと
し、これを7サイクル行った後、試験片表面の腐食ピッ
ト深さを測定し、極値解析にて最大腐食ピット深さを推
定することにより評価した。
Using this test piece, tensile strength and prior austenite grain size were measured. The austenite grain size was measured according to the method of JIS G0551. Corrosion resistance is 16 hours after 8 hours of salt spray.
r The process of leaving (35 ° C., 60% RH) as 1 cycle, after 7 cycles of this, the corrosion pit depth on the surface of the test piece is measured, and the maximum corrosion pit depth is estimated by extreme value analysis. It was evaluated by

【0038】水素脆性試験の場合には、熱間板圧延を行
い、上記焼入焼戻を施した後、機械加工により板状水素
脆性試験片(15mm×60mm×2mm)を作製し、
以下の環境下で、4点曲げによる陰極チャージ試験に供
した。
In the case of the hydrogen embrittlement test, hot plate rolling is performed, the above quenching and tempering is performed, and then a plate-like hydrogen embrittlement test piece (15 mm × 60 mm × 2 mm) is produced by machining.
Under the following environment, a cathode charge test by 4-point bending was performed.

【0039】[水素脆性試験環境] 試験溶液:H2 SO4 (0.5 mol/L )およびKSCN
(0.01mol/L )の混合液 陰極電位:−700mV 更に、圧延後の材質を確認する為に、各圧延材における
引張試験および組織観察を行った。これらの結果を表3
〜5に示す。尚、表3中のNo.2*は、No.2の組成か
らなる鋼を用い、冷間成形ばねをシミュレートしたもの
(焼戻時間15min)である。
[Hydrogen embrittlement test environment] Test solution: H 2 SO 4 (0.5 mol / L) and KSCN
(0.01 mol / L) mixed liquid Cathode potential: -700 mV Further, in order to confirm the material after rolling, a tensile test and a structure observation were performed on each rolled material. Table 3 shows these results.
Are shown in FIGS. Note that No. 2 * in Table 3 is a cold-formed spring simulated (tempering time 15 min) using steel having a composition of No. 2.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【表5】 [Table 5]

【0043】表4より、従来鋼(JIS SUP7)で
は硬度をHRC50から順次高めていくと破断寿命が顕
著に低下する傾向が認められることから、この従来鋼を
用いて所望の特性を得るには限界があることが分かる。
From Table 4, it can be seen that the conventional steel (JIS SUP7) has a tendency that the breaking life remarkably decreases as the hardness is gradually increased from HRC50. Therefore, in order to obtain desired properties using this conventional steel. I see that there is a limit.

【0044】これに対して、本発明の要件を満足する本
発明鋼は、HRC54程度の高硬度を有するにもかかわ
らず、HRC50を有する上記従来鋼に比べても、優れ
た破断寿命を有することが分かる。尚、No.25は、T
iやNbを含有しない本発明例であり、No.1〜16
は、Ti及び/又はNbを含有する本発明例であるが、
TiやNbを添加することにより水素脆性試験での破断
寿命を格段に向上し得ることが分かる。なかでも、No.
10及びNo.14を除く鋼は、いずれも(1)式の右辺
で算出される数値が、焼戻温度に比べて25K以上大き
いものであり、破断寿命が著しく向上することが分か
る。
On the other hand, the steel of the present invention satisfying the requirements of the present invention has a high breaking hardness, even though it has a high hardness of about HRC54, compared with the conventional steel having HRC50. I understand. In addition, No. 25 is T
This is an example of the present invention containing no i or Nb, and Nos. 1 to 16
Is an example of the present invention containing Ti and / or Nb,
It is understood that the fracture life in the hydrogen embrittlement test can be significantly improved by adding Ti or Nb. Above all, No.
In all the steels except No. 10 and No. 14, the numerical value calculated on the right side of the formula (1) is 25 K or more higher than the tempering temperature, and it can be seen that the fracture life is remarkably improved.

【0045】また、No.2とNo.16は、N量以外はほ
ぼ同じ化学組成を有するものであるが、No.2に比べて
N量の多いNo.16は破断寿命が低下することから、N
量をできるだけ抑制することが好ましいことが分かる。
更に、本発明鋼は、耐食性(腐食ピット深さ)について
も従来鋼に比べて優れていることも確認できる。
Further, No. 2 and No. 16 have almost the same chemical composition except for the amount of N, but No. 16 having a larger amount of N than No. 2 has a shorter fracture life. , N
It can be seen that it is preferable to suppress the amount as much as possible.
Furthermore, it can be confirmed that the steel of the present invention is also superior in corrosion resistance (corrosion pit depth) to the conventional steel.

【0046】また表5より、本発明鋼においてFP値や
(FP/logD)値が本発明の好ましい要件を満足す
るものは、圧延後に焼鈍等の軟化熱処理を施さなくと
も、引抜加工が可能であることが分かる。
Further, from Table 5, the steels of the present invention whose FP value and (FP / logD) value satisfy the preferable requirements of the present invention can be drawn without being subjected to softening heat treatment such as annealing after rolling. I know there is.

【0047】更に、No.2とNo.2*を対比すると、い
ずれも良好な特性が得られることから、本発明法は、熱
間成形ばね・冷間成形ばねのいずれに成形加工した場合
にも有用であることを確認できた。
Further, when No. 2 and No. 2 * are compared, good characteristics can be obtained, so that the method of the present invention can be applied to any of a hot-formed spring and a cold-formed spring. It was confirmed that it was also useful.

【0048】これに対して、本発明の要件を満足しない
比較鋼(No.17〜26)では、夫々以下の様な不具合
を伴っている。このうちNo.17/No.18は、C量が
多い/少ない為に本発明で規定する焼戻条件を満足しな
い例である。No.17は、SUP7と同様、破断寿命に
劣り且つ耐食性も悪いものであり、逆にNo.18の様に
C量が少ないと焼入焼戻後の引張強度が低下する。
On the other hand, the comparative steels (Nos. 17 to 26) that do not satisfy the requirements of the present invention are accompanied by the following problems. Of these, No. 17 / No. 18 are examples that do not satisfy the tempering conditions specified in the present invention because the C content is large / small. Similar to SUP7, No. 17 has an inferior breaking life and poor corrosion resistance. On the contrary, when the C content is small like No. 18, the tensile strength after quenching and tempering decreases.

【0049】また、No.19/No.20は、Si量が多
い/少ない為に本発明で規定する焼戻条件を満足しない
例である。No.19の様にSi量が多くなると、オース
テナイト化が不十分な為、所望の機械的性質が得られ
ず、No.20の如くSi量が少ない場合も焼入焼戻後に
所望の機械的性質が得られない。尚、No.18〜20
は、本発明で要求される強度(1900MPa以上)を
満足しない為、水素脆性試験での破断寿命や腐食ピット
の深さ、γ粒度については、一部測定しなかったものが
ある(表4中「−」で示す)。
Further, No. 19 / No. 20 is an example which does not satisfy the tempering conditions specified in the present invention because the amount of Si is large / small. When the amount of Si is large like No. 19, the desired mechanical properties cannot be obtained because the austenitization is insufficient. Even when the amount of Si is small like No. 20, the desired mechanical properties are not obtained after quenching and tempering. I can't get the property. In addition, No. 18-20
Does not satisfy the strength (1900 MPa or more) required in the present invention, so some of the fracture life in the hydrogen embrittlement test, the depth of corrosion pits, and γ grain size were not measured (see Table 4). "-").

【0050】No.21/No.22は、Mn量が多い/少
ない例である。No.21の様にMn量が多いと破断寿命
が低下し、FP値も非常に高くなるので、圧延材中に過
冷組織が出現してしまう。逆にNo.22の如くMn量が
少ないとFP値が低い為焼入性が小さく、焼入焼戻後に
所望の機械的性質が得られない。No.23/No.24
は、Cr量が多い/少ない例である。No.23の様にC
r量が多いと破断寿命が低下し、逆にNo.24の様にC
r量が少なくなると耐食性が低下する。
No. 21 / No. 22 are examples in which the amount of Mn is large / small. If the amount of Mn is large like No. 21, the fracture life is shortened and the FP value is also very high, so that a supercooled structure appears in the rolled material. On the other hand, if the Mn content is small as in No. 22, the hardenability is low because the FP value is low and the desired mechanical properties cannot be obtained after quenching and tempering. No.23 / No.24
Are examples in which the amount of Cr is large / small. C like No.23
If the amount of r is large, the rupture life will be shortened.
If the amount of r decreases, the corrosion resistance decreases.

【0051】[0051]

【発明の効果】本発明は以上の様に構成されており、C
量およびSi量を調整する等して所定の温度で焼戻しを
行うことにより、旧オーステナイト結晶粒度No.8.5
以上、引張強度1900MPa以上若しくは硬さHRC
52以上を有すると共に、耐食性および耐水素脆性に優
れたばねを効率よく提供することができた。
The present invention is constituted as described above,
The former austenite grain size No. 8.5 is obtained by tempering at a predetermined temperature by adjusting the amount of Si and the amount of Si.
Above, tensile strength more than 1900MPa or hardness HRC
A spring having not less than 52 and excellent in corrosion resistance and hydrogen embrittlement resistance could be efficiently provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩田 多加志 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Iwata Takashi Iwata 1-5-5 Takatsukadai, Nishi-ku, Kobe City Kobe Steel Research Institute, Kobe Steel Research Institute

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】C :0.30〜0.60%(質量%、以
下同じ),及びSi:1.0〜3.0%を含有する鋼を
用い、 下式(1)を満足する温度に抑制して焼戻しすることを
特徴とする耐水素脆性に優れた高強度ばねの製造方法。 【数1】
1. A steel containing C: 0.30 to 0.60% (mass%, hereinafter the same) and Si: 1.0 to 3.0%, at a temperature satisfying the following formula (1): A method for producing a high-strength spring excellent in hydrogen embrittlement resistance, which is characterized by suppressing tempering and tempering. [Equation 1]
【請求項2】 前記鋼が、更にMn:0.1〜1.0
%,及びCr:0.5〜2.0%を含有すると共に、 Ti:0.005〜0.5%,及び/又はNb:0.0
05〜0.5%を含有し、 残部:Feおよび不可避不純物を満足するものである請
求項1に記載の製造方法。
2. The steel further comprises Mn: 0.1 to 1.0.
%, And Cr: 0.5 to 2.0%, Ti: 0.005 to 0.5%, and / or Nb: 0.0
The manufacturing method according to claim 1, wherein the content of Fe and unavoidable impurities is 0.5 to 0.5%.
【請求項3】 更に、 N:150ppm以下に抑制されたものである請求項1
または2に記載の製造方法。
3. Further, the content of N is suppressed to 150 ppm or less.
Or the production method according to 2.
【請求項4】 更に、 Cu:1.0%以下(0%を含まない),及び/又はN
i:1.0%以下(0%を含まない)を含有する請求項
1〜3のいずれかに記載の製造方法。
4. Further, Cu: 1.0% or less (not including 0%), and / or N
i: 1.0% or less (not including 0%) is contained, The manufacturing method in any one of Claims 1-3.
【請求項5】 更に、 V :1.0%以下(0%を含まない),及び/又はA
l:0.5%以下(0%を含まない)を含有する請求項
1〜4のいずれかに記載の製造方法。
5. Further, V: 1.0% or less (not including 0%), and / or A
l: 0.5% or less (not including 0%) is contained, The manufacturing method in any one of Claims 1-4.
【請求項6】 更に、 Mo:1.0%以下(0%を含まない)を含有する請求
項1〜5のいずれかに記載の製造方法。
6. The manufacturing method according to claim 1, further containing Mo: 1.0% or less (not including 0%).
【請求項7】 更に、下式(2)の要件を満たす様に成
分調整のなされたものである請求項1〜6のいずれかに
記載の製造方法。 2.5≦(FP)≦4.5 … (2) 式中、FP=(0.23[C]+0.1) ×(0.7[Si]+1) ×(3.5[Mn]
+1) × (2.2[Cr]+1)×(0.4[Ni]+1) ×(3[Mo]+1) (但し、[元素]は各元素の質量%を表わす)
7. The production method according to claim 1, wherein the components are adjusted so as to satisfy the requirement of the following formula (2). 2.5 ≦ (FP) ≦ 4.5 (2) In the formula, FP = (0.23 [C] +0.1) × (0.7 [Si] +1) × (3.5 [Mn]
+1) x (2.2 [Cr] +1) x (0.4 [Ni] +1) x (3 [Mo] +1) (where [element] represents the mass% of each element)
【請求項8】 鋼材が棒・線材であり、熱間圧延後の直
径をD(mm)としたとき、下式(3)の要件を満たす
様に成分調整のなされたものである請求項1〜7のいず
れかに記載の製造方法。 2.0≦(FP/log D)≦4.0 … (3) 式中、FP=(0.23[C]+0.1) ×(0.7[Si]+1) ×(3.5[Mn]
+1) × (2.2[Cr]+1)×(0.4[Ni]+1) ×(3[Mo]+1)
8. The steel material is a rod / wire material, and its composition is adjusted so as to satisfy the requirement of the following formula (3), where D (mm) is the diameter after hot rolling. 7. The manufacturing method according to any one of to 7. 2.0 ≦ (FP / log D) ≦ 4.0 (3) In the formula, FP = (0.23 [C] +0.1) × (0.7 [Si] +1) × (3.5 [Mn]
+1) × (2.2 [Cr] +1) × (0.4 [Ni] +1) × (3 [Mo] +1)
JP14332096A 1996-06-05 1996-06-05 Production of high strength spring excellent in hydrogen embrittlement resistance Withdrawn JPH09324219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14332096A JPH09324219A (en) 1996-06-05 1996-06-05 Production of high strength spring excellent in hydrogen embrittlement resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14332096A JPH09324219A (en) 1996-06-05 1996-06-05 Production of high strength spring excellent in hydrogen embrittlement resistance

Publications (1)

Publication Number Publication Date
JPH09324219A true JPH09324219A (en) 1997-12-16

Family

ID=15336050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14332096A Withdrawn JPH09324219A (en) 1996-06-05 1996-06-05 Production of high strength spring excellent in hydrogen embrittlement resistance

Country Status (1)

Country Link
JP (1) JPH09324219A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050327A1 (en) * 2000-12-20 2002-06-27 Nippon Steel Corporation High-strength spring steel and spring steel wire
KR100419648B1 (en) * 1999-10-12 2004-02-25 주식회사 포스코 A method for manufacturing ultra high tensile strenth steel
JP2005350736A (en) * 2004-06-11 2005-12-22 Jfe Bars & Shapes Corp High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor
EP1686195A1 (en) * 2005-01-28 2006-08-02 Kabushiki Kaisha Kobe Seiko Sho High strength spring steel having excellent hydrogen embrittlement resistance
FR2894987A1 (en) * 2005-12-15 2007-06-22 Ascometal Sa Spring steel with high hardness, elevated fatigue properties in air or under corrosion and with a high resistance to cyclic flexion
CN100410410C (en) * 2005-01-28 2008-08-13 株式会社神户制钢所 High strength spring steel having excellent hydrogen embrittlement resistance
WO2008102573A1 (en) * 2007-02-22 2008-08-28 Nippon Steel Corporation High-strength spring steel wire, high-strength springs and processes for production of both
WO2011074600A1 (en) 2009-12-18 2011-06-23 愛知製鋼株式会社 Steel for leaf spring with high fatigue strength, and leaf spring component
WO2016068082A1 (en) * 2014-10-31 2016-05-06 株式会社神戸製鋼所 Method for manufacturing steel for high-strength hollow spring
EP2803742A4 (en) * 2012-01-11 2016-06-15 Kobe Steel Ltd Steel for bolts, bolt, and method for producing bolt
US9573432B2 (en) 2013-10-01 2017-02-21 Hendrickson Usa, L.L.C. Leaf spring and method of manufacture thereof having sections with different levels of through hardness
CN110438390A (en) * 2019-09-03 2019-11-12 山东钢铁股份有限公司 A kind of the petroleum pipeline valve body steel and its production method of the big specification pole material of Φ 280mm
CN114875326A (en) * 2022-05-21 2022-08-09 湖南华菱湘潭钢铁有限公司 Production method of flat spring steel

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419648B1 (en) * 1999-10-12 2004-02-25 주식회사 포스코 A method for manufacturing ultra high tensile strenth steel
US7789974B2 (en) 2000-12-20 2010-09-07 Nippon Steel Corporation High-strength spring steel wire
WO2002050327A1 (en) * 2000-12-20 2002-06-27 Nippon Steel Corporation High-strength spring steel and spring steel wire
JP2005350736A (en) * 2004-06-11 2005-12-22 Jfe Bars & Shapes Corp High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor
US7438770B2 (en) 2005-01-28 2008-10-21 Kobe Steel, Ltd. High strength spring steel having excellent hydrogen embrittlement resistance
EP1686195A1 (en) * 2005-01-28 2006-08-02 Kabushiki Kaisha Kobe Seiko Sho High strength spring steel having excellent hydrogen embrittlement resistance
CN100410410C (en) * 2005-01-28 2008-08-13 株式会社神户制钢所 High strength spring steel having excellent hydrogen embrittlement resistance
WO2007080256A1 (en) * 2005-12-15 2007-07-19 Ascometal Spring steel, method for producing a spring using said steel and a spring made from such steel
FR2894987A1 (en) * 2005-12-15 2007-06-22 Ascometal Sa Spring steel with high hardness, elevated fatigue properties in air or under corrosion and with a high resistance to cyclic flexion
NO341748B1 (en) * 2005-12-15 2018-01-15 Asco Ind Spring steel, method of making a spring using said steel and a spring made of such steel
EP2058414A4 (en) * 2007-02-22 2016-11-23 Nippon Steel & Sumitomo Metal Corp High-strength spring steel wire, high-strength springs and processes for production of both
WO2008102573A1 (en) * 2007-02-22 2008-08-28 Nippon Steel Corporation High-strength spring steel wire, high-strength springs and processes for production of both
JP2008202124A (en) * 2007-02-22 2008-09-04 Nippon Steel Corp Steel wire for high-strength spring, high-strength spring and method for manufacturing them
WO2011074600A1 (en) 2009-12-18 2011-06-23 愛知製鋼株式会社 Steel for leaf spring with high fatigue strength, and leaf spring component
US8741216B2 (en) 2009-12-18 2014-06-03 Nhk Spring Co., Ltd. Steel for leaf spring with high fatigue strength, and leaf spring parts
EP2803742A4 (en) * 2012-01-11 2016-06-15 Kobe Steel Ltd Steel for bolts, bolt, and method for producing bolt
US9573432B2 (en) 2013-10-01 2017-02-21 Hendrickson Usa, L.L.C. Leaf spring and method of manufacture thereof having sections with different levels of through hardness
US9890440B2 (en) 2013-10-01 2018-02-13 Hendrickson Usa, L.L.C. Leaf spring and method of manufacture thereof having sections with different levels of through hardness
JP2016089201A (en) * 2014-10-31 2016-05-23 株式会社神戸製鋼所 Method for producing steel for high-strength hollow spring
WO2016068082A1 (en) * 2014-10-31 2016-05-06 株式会社神戸製鋼所 Method for manufacturing steel for high-strength hollow spring
US10526675B2 (en) 2014-10-31 2020-01-07 Kobe Steel, Ltd. Method for manufacturing steel for high-strength hollow spring
CN110438390A (en) * 2019-09-03 2019-11-12 山东钢铁股份有限公司 A kind of the petroleum pipeline valve body steel and its production method of the big specification pole material of Φ 280mm
CN114875326A (en) * 2022-05-21 2022-08-09 湖南华菱湘潭钢铁有限公司 Production method of flat spring steel

Similar Documents

Publication Publication Date Title
JP2932943B2 (en) High corrosion resistance and high strength steel for springs
JPH05195153A (en) High-strength spring steel
WO1995010635A1 (en) Process for producing hot forging steel with excellent fatigue strength, yield strength and cuttability
JPH05117804A (en) Bearing steel having excellent workability and rolling fatigue property
JPH09324219A (en) Production of high strength spring excellent in hydrogen embrittlement resistance
JP4415219B2 (en) Age hardened steel
JPH10110247A (en) Spring steel excellent in hydrogen embrittlement resistance and fatigue characteristic
JPH07109545A (en) Non-heat treated steel for hot forging excellent in tensile strength, fatigue strength and machinability
JPH08277437A (en) Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof
JPH07179985A (en) High strength suspension spring excellent in corrosion resistance and its production
JP2003253391A (en) Spring steel for cold forming
JP6390685B2 (en) Non-tempered steel and method for producing the same
JPH09310146A (en) Production of non-heat treated steel for high strength connecting rod and high strength connecting rod
JP4044460B2 (en) Cold forming spring steel
JPH05148581A (en) Steel for high strength spring and production thereof
JPH10245656A (en) Martensitic stainless steel excellent in cold forgeability
JPH07157846A (en) Steel for high strength spring
JPH09202921A (en) Production of wire for cold forging
JPH06299296A (en) Steel for high strength spring excellent in decarburizing resistance
JPH11270531A (en) High strength bolt having good delayed fracture characteristic and manufacture thereof
JP2000063947A (en) Manufacture of high strength stainless steel
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
KR20010060754A (en) Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface
JP3387235B2 (en) Precipitation hardening stainless steel
JP7273295B2 (en) Steel for bolts, bolts, and method for manufacturing bolts

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805