WO2007080256A1 - Spring steel, method for producing a spring using said steel and a spring made from such steel - Google Patents

Spring steel, method for producing a spring using said steel and a spring made from such steel Download PDF

Info

Publication number
WO2007080256A1
WO2007080256A1 PCT/FR2006/002700 FR2006002700W WO2007080256A1 WO 2007080256 A1 WO2007080256 A1 WO 2007080256A1 FR 2006002700 W FR2006002700 W FR 2006002700W WO 2007080256 A1 WO2007080256 A1 WO 2007080256A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
spring
traces
fatigue
hardness
Prior art date
Application number
PCT/FR2006/002700
Other languages
French (fr)
Inventor
Nao Yoshihara
Kazuhisa Kawata
Julie Mougin
Jacques Languillaume
Original Assignee
Ascometal
Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020087017219A priority Critical patent/KR101048946B1/en
Application filed by Ascometal, Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) filed Critical Ascometal
Priority to PL06841905T priority patent/PL1966407T3/en
Priority to CN2006800474270A priority patent/CN101400818B/en
Priority to EP06841905A priority patent/EP1966407B1/en
Priority to RSP-2009/0515A priority patent/RS51070B/en
Priority to DE602006009705T priority patent/DE602006009705D1/en
Priority to CA2633153A priority patent/CA2633153C/en
Priority to US12/097,313 priority patent/US20080308195A1/en
Priority to BRPI0619892A priority patent/BRPI0619892B1/en
Priority to AT06841905T priority patent/ATE445026T1/en
Priority to MEP-2009-344A priority patent/ME01062B/en
Publication of WO2007080256A1 publication Critical patent/WO2007080256A1/en
Priority to NO20082766A priority patent/NO341748B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the invention relates to iron and steel, and more specifically to the field of spring steels.
  • FR-A-2,740,476 and JP-A-3,474,373 disclose a spring steel grade having good resistance to embrittlement by hydrogen and good strength. in the case of fatigue, in which the inclusions of carbonitrosulfides comprising at least one of titanium, niobium, zirconium, tantalum or hafnium, are controlled so as to have a reduced average size, less than 5 ⁇ m in diameter, and be very numerous (10,000 or more on a section of cut).
  • this type of steel leads, after quenching and tempering according to the industrial process of manufacturing springs, to a hardness level of only 50HRC or a little more, corresponding to a tensile strength of 1700 MPa or a little more , but hardly greater than 1900MPa, corresponding to a hardness of 53.5HRC. Because of this moderate hardness level, this steel has only moderate scuff resistance, and steel with higher tensile strength is required to improve the scuff resistance. Thus, such a steel does not provide an excellent compromise between a high strength, which would be greater than 2100MPa, a hardness that would be greater than 55HRC, a high resistance to fatigue in the air and a resistance to fatigue under corrosion. less equivalent, and even superior, to what is necessary for springs.
  • the object of the invention is to propose means for producing, simultaneously with known spring steels, an increase in the hardness and the tensile strength of the springs, the higher fatigue properties in the air, the properties in corrosion fatigue at least equivalent and even higher, a resistance to slackening of the upper spring and less sensitivity to surface defects that can be generated during the twisting of the spring.
  • the subject of the invention is a spring steel with high fatigue strength in air and under corrosion and with high resistance to cyclic wear, of composition, in weight percentages:
  • Ceq% [C%] + 0.12 [Si%] + 0.17 [Mn%] - 0.1 [Ni%] + 0.13 [Cr%] - 0.24 [V%] is between 0.80 and 1.00%, and whose hardness, after quenching and tempering, is greater than or equal to 55HRC.
  • 0.5mm of the surface of a bar, or a wire rod, a piece or a spring on 100mm 2 of the cutting surface is preferably less than or equal to 20 ⁇ m, said size being the square root of the surface inclusions considered as squares.
  • the composition of the steel is:
  • N 0.0020 - 0.0110% the rest being iron and impurities resulting from the elaboration.
  • the invention also relates to a method of manufacturing a spring steel with high fatigue resistance in air and under corrosion and with high resistance to cyclic scumming, according to which a liquid steel is produced in a converter or an electric furnace, its composition is adjusted, it is cast in the form of blooms or continuous casting billets or ingots which are allowed to cool to room temperature, it is rolled in the form of bars, wire rods or slugs and it is transformed into springs, characterized in that:
  • the steel is of the previous type; blooms, billets or ingots are imposed during or after their solidification, a minimum average cooling rate of 0.3 ° C / s between 1450 and 1300 0 C;
  • the invention also relates to springs made of such steel, and springs made of a steel obtained by the above method.
  • FIG. 1 shows the results of hardness and cyclic wear tests for steels according to the invention and reference steels;
  • FIG. 2 which shows the results of fatigue tests in the air as a function of the hardness of the steel, for steels according to the invention and reference steels;
  • FIG. 3 which shows the results of Charpy resilience tests as a function of the hardness of the steel, for steels according to the invention and reference steels;
  • - Figure 4 which shows the results of corrosion fatigue tests as a function of the hardness of the steel for steels according to the invention and reference steels.
  • the composition of the steel according to the invention must meet the following requirements.
  • the carbon content must be between 0.45 and 0.7%. Carbon, after quenching and tempering, increases the tensile strength and hardness of steel. If the carbon content is less than 0.45%, in the temperature range usually used for the manufacture of the springs, no quenching and tempering treatment leads to a high strength and high hardness of the steel described in the invention. On the other hand, if the carbon content exceeds 0.7% or even 0.65%, coarse and very hard carbides combined with chromium, molybdenum and vanadium may remain undissolved during austenitization performed prior to quenching, and can significantly affect fatigue life in air, fatigue resistance under corrosion and also toughness. As a result carbon contents above 0.7% are to be excluded. Preferably, they should not exceed 0.65%.
  • the silicon content is between 1.65 and 2.5%. Silicon is an important element for ensuring, thanks to its presence in solid solution, high levels of strength and hardness, as well as high Ceq equivalent carbon and resistance values. To obtain the values of tensile strength and hardness of the steel according to the invention, the Silicon content should not be less than 1.65%. In addition, silicon contributes at least partially to the deoxidation of the steel. If its content exceeds 2.5% or even 2.2%, the oxygen content of the steel may be, by thermodynamic reaction, greater than 0.0020 or even 0.0025%. This reflects the formation of oxides of various compositions that are detrimental to the fatigue resistance in the air.
  • silicon contents greater than 2.5% segregations of various combined elements such as manganese, chromium or the like may occur during solidification after casting. These segregations are very damaging to fatigue behavior in the air and resistance to fatigue under corrosion.
  • silicon content greater than 2.5% the decarburization on the surface of the bars or wires intended to form the springs becomes too important for the properties in service of the spring. This is why the silicon content should not exceed 2.5%, and preferably 2.2%.
  • the manganese content is between 0.20 and 0.75%.
  • Manganese in combination with residual sulfur between trace amounts and 0.015%, must be added at a level at least greater than ten times the sulfur content so as to avoid the formation of iron sulphides which are extremely damaging to the laminability of the iron. 'steel. As a result, a minimum manganese content of 0.20% is required.
  • manganese contributes to solid solution hardening during the quenching of steel, in the same way as nickel, chromium, molybdenum and vanadium, which makes it possible to obtain the values of tensile strength and high hardness and equivalent carbon Ceq values of the steel according to the invention.
  • the chromium content must be between 0.60 and 2%, and preferably between 0.80 and 1.70%. Chromium is added to obtain, in solid solution after austenitization, quenching and tempering, high values of resistance tensile strength and hardness, and to help achieve the equivalent value of carbon Ceq, but also to increase resistance to fatigue under corrosion.
  • the chromium content should be at least 0.60%, and preferably at least 0.80%. Above 2%, or even 1.7%, particular, coarse and very hard chromium carbides, in combination with vanadium and molybdenum, may remain after the austenitization treatment performed prior to quenching. Such carbides greatly affect the fatigue resistance in the air. This is why the chromium content must not exceed 2%.
  • the nickel content is between 0.15 and 1%. Nickel is added to increase the hardenability of the steel, as well as the tensile strength and hardness after quenching and tempering.
  • nickel contributes to the hardening of steel, just like chromium, molybdenum and vanadium, without the formation of particular coarse and hard carbides that would not be dissolved during the austenitization performed before quenching. and could be harmful to the fatigue resistance in the air. It also makes it possible to adjust the equivalent carbon between 0.8 and 1% in the steel according to the invention as necessary.
  • nickel improves fatigue resistance under corrosion. To ensure that these effects are significant, the nickel content should not be less than 0.15%. On the contrary, above 1% or even 0.80%, nickel can lead to a too high residual austenite content, the presence of which is very damaging to the resistance to fatigue under corrosion. In addition, high levels of nickel significantly increase the cost of steel. For all these reasons, the nickel content should not exceed 1%, better 0.80%
  • the molybdenum content must be between traces and 1%. Like chromium, molybdenum increases the hardenability of steel, as does its strength. In addition it has a low oxidation potential. For these two reasons, molybdenum is conducive to fatigue resistance in the air and under corrosion. But for contents higher than 1%, even 0.80%, coarse and very hard molybdenum carbides may remain, possibly combined with vanadium and chromium, after austenitization prior to quenching. These Particular carbides are very damaging to fatigue resistance in the air. Finally, addition of molybdenum exceeding 1% unnecessarily increases the cost of steel. This is why the molybdenum content should not exceed 1%, better 0.80%.
  • the vanadium content should be between 0.003 and 0.8%.
  • Vanadium is an element that increases quenchability, tensile strength and hardness after quenching and tempering.
  • vanadium makes it possible to form a large number of fine vanadium or vanadium nitrites and submicroscopic titanium to refine the grain and increase the levels of tensile strength and hardness. , thanks to a structural hardening.
  • vanadium must be present with a minimum content of 0.003%. But this element is expensive and must be kept close to this lower limit if a compromise between the cost of elaboration and the refining of the grain is sought.
  • the vanadium should not exceed 0.8% and preferably 0.5%, because above this value a precipitation of carbides containing coarse and very hard vanadium combined with chromium and molybdenum can remain in the undissolved state during the austenitization which takes place before quenching. This can be very unfavorable to the resistance to air fatigue, for the high values of strength and hardness of the steel according to the invention. And an addition of vanadium above 0.8% unnecessarily increases the cost of steel.
  • the copper content must be between 0.10 and 1%. Copper is an element that hardens steel when in solid solution after tempering and tempering treatment. Thus, it can be added with other elements contributing to increase the strength and hardness of the steel. Since it does not combine with carbon, it provides hardening of the steel without formation of hard and coarse carbides damaging the fatigue resistance in the air. From the electrochemical point of view, its passivation potential is higher than that of iron and, consequently, it is favorable to the resistance to corrosion fatigue of steel. To ensure that its effects are significant, the copper content should not be less than 0.10%. On the contrary, for contents above 1% even 0.90%, copper has a very damaging influence on the hot rolling behavior. This is why the copper content should not exceed 1%, better 0.90%.
  • the titanium content should be between 0.020 and 0.2%. Titanium is added to form, in combination with nitrogen, or even carbon and / or vanadium, fine submicroscopic nitrides or carbonitrides to refine the austenitic grain during the austenitization treatment that takes place before quenching. Thus, it increases the surface of the grain boundaries in the steel, thus leading to a reduction in the amount of unavoidable impurities segregated at grain boundaries, such as phosphorus. Such intergranular segregation would be very detrimental to toughness and fatigue resistance in the air if present at high concentrations per unit area at the grain boundaries.
  • titanium leads to the formation of other nitrides or fine carbonitrides producing an irreversible trapping effect of certain elements, such as the hydrogen formed during corrosion reactions, which can be extremely damaging to fatigue resistance under corrosion.
  • the titanium content should not be less than 0.020%.
  • above 0.2% or even 0.15% titanium can lead to the formation of coarse and hard nitrides or carbonitrides, very damaging to the resistance to fatigue in the air. This last effect is even more damaging to the high levels of tensile strength and hardness of the steel according to the invention.
  • the titanium content should not exceed 0.2%, better 0.15%.
  • niobium content must be between traces and 0.2%.
  • Niobium is added to form, in combination with carbon and nitrogen, extremely fine submicroscopic precipitates of nitrides and / or carbides and / or carbonitrides which allow, especially when the aluminum content is low (0.002% by example), to complete refinement of the austenitic grain during the austenitization treatment performed before quenching.
  • niobium increases the surface of grain boundaries in steel, and contributes to the same favorable effect as titanium with respect to embrittlement. grain boundaries by unavoidable impurities such as phosphorus, the effect of which is very damaging to the tenacity and resistance to fatigue under corrosion.
  • niobium nitrides or carbonitrides contribute to the hardening of the steel by structural hardening.
  • the niobium content must not exceed 0.2% or even 0.15%, so that the nitrides or carbonitrides remain very fine, to ensure refinement of the austenitic grain and avoid the formation of cracks or crevices during rolling. hot.
  • the niobium content should not exceed 0.2%, better still 0.15%.
  • the aluminum content must be between 0.002 and 0.050%.
  • Aluminum can be added to complete the deoxidation of the steel and obtain oxygen levels as low as possible, and in any case less than 0.0020% in the steel according to the invention.
  • aluminum contributes to refinement of the grain by the formation of submicroscopic nitrides.
  • an aluminum content of not less than 0.002% is required.
  • an aluminum content exceeding 0.05% can lead to the presence of large isolated inclusions or to finer but hard and angular aluminates, in the form of long strings, damaging to the fatigue life in the air and cleanliness of the steel. Therefore, the aluminum content must not exceed 0.05%.
  • the phosphorus content must be between traces and 0.015%.
  • Phosphorus is an inevitable impurity in steel.
  • elements such as chromium or manganese with the former austenitic grain boundaries. This results in a reduction of the cohesion of the grain boundaries and an intergranular embrittlement which is very damaging to the tenacity and to the resistance to fatigue in the air. These effects are even more damaging to the high tensile strengths and hardness required for the steels according to the invention.
  • the phosphorus content In order to simultaneously obtain a high tensile strength and a high hardness of the spring steel and a good resistance to fatigue in the air and fatigue under corrosion, the phosphorus content must be as low as possible and should not exceed 0.015%, preferably 0.010%.
  • the sulfur content is between traces and 0.015%. Sulfur is an inevitable impurity in steels. Its content should be as low as possible, between traces and 0.015%, and preferably not more than 0.010%. It is thus desired to avoid the presence of sulfides that are unfavorable to the resistance to fatigue under corrosion and to the resistance to fatigue in the air, for the high values of strength and hardness of the steel according to the invention.
  • the oxygen content must be between traces and 0.0020%.
  • Oxygen is also an inevitable impurity in steels. Combined with deoxidizing elements, oxygen can lead to the appearance of coarse inclusions, isolated, very hard and angular, or to thinner inclusions but in the form of long chains which are very damaging to the fatigue resistance in the air. These effects are even more damaging to the high values of tensile strength and hardness of the steels according to the invention. For these reasons, in order to ensure a good compromise between high tensile strength and hardness and high resistance to fatigue in the air and fatigue under corrosion for the steel according to the invention, the oxygen content must not exceed 0.0020%.
  • the nitrogen content must be between 0.0020 and 0.0110%.
  • the nitrogen must be controlled in this range so as to form, in combination with titanium, niobium, aluminum or vanadium very fine nitrides, carbides or carbonitrides submicroscopic sufficient, allowing a grain refinement.
  • the minimum nitrogen content should be 0.0020%. Its content must not exceed 0,0110% so as to avoid the formation of coarse and hard titanium nitrides or carbonitrides larger than 20 ⁇ m, observed at 1.5 mm + 0.5 mm from the surface of the bars or wire rods used to the manufacture of springs. This location is the most critical location for fatigue loading of springs.
  • such nitrides or carbonitrides of large size are very unfavorable to the resistance to fatigue in the air for the high values of strength and hardness of the steels according to the invention, given that during fatigue tests in the air, spring break occurs at the location of such large inclusions precisely located in the vicinity of the surface of the springs as mentioned, when these inclusions are present.
  • inclusions are considered squares and their size is equal to the square root of their surface.
  • a non-limiting example of a process for producing a steel according to the invention is as follows.
  • the liquid steel is produced either in a converter or in an electric furnace and then undergoes a pocket metallurgy treatment during which alloying element additions and deoxidation are performed, and in general all secondary metallurgy operations.
  • a steel having the composition according to the invention and avoiding the formation of complex sulfides or "carbonitrosulfides" of elements such as titanium and / or niobium and / or vanadium.
  • complex sulfides or "carbonitrosulfides" of elements such as titanium and / or niobium and / or vanadium.
  • the inventors unexpectedly discovered that the contents of the various elements, in particular those of titanium, nitrogen, vanadium and sulfur, must be carefully controlled. within the aforementioned limits.
  • the steel is then cast, either by continuous casting in the form of blooms or billets, or in the form of ingots.
  • the average cooling rate of these products must be regulated in such a way that to be equal to 0.3 ° C / s or more between 1450 and 1300 0 C.
  • the products having the precise composition according to the invention are then heated and rolled between 1200 and 800 0 C in the form of son son, or bars in a single or double sequence of heating and rolling.
  • the bars, the wires, the plots, or even the springs produced from these bars or machine wires are then subjected to a quenching treatment at the same time.
  • This quenching treatment is then followed by a treatment of income executed specifically between 300 and 55O 0 C, to obtain the high levels of the required tensile strength and hardness of the steel, and to avoid on the one hand a microstructure that would lead to income fragility, and on the other hand an excessively high presence of residual austenite. It has been found that an embrittlement to the income and an excessive presence of residual austenite are extremely damaging to the resistance to corrosion fatigue of the steel according to the invention.
  • the springs are made from untreated heat bars or from machine wires or slugs from such bars, the above mentioned treatments (quenching and tempering) shall be carried out on the springs themselves under the conditions which have been said. In the case where the springs are manufactured by cold forming, these heat treatments can be conducted on the bars, or on the machine wires or slugs from these bars before the spring is made.
  • the invention makes it possible to obtain spring steels capable of reconciling a high and improved hardness and tensile strength with respect to the prior art, together with fatigue properties in the air and resistance to fatigue. improved wear properties, corrosion-resistant properties at least equivalent to those of the steels known for this use, or even better, and less sensitivity to the stress concentrations produced by the surface defects that may occur during the manufacture of the spring, thanks to addition of microalloy elements, a reduction of residual elements and a control of the analysis and production chain of the steel.
  • Table 1 shows the steel compositions according to the invention and reference steels.
  • the equivalent carbon Ceq is given by the following formula:
  • Ceq [C] + 0.12 [Si] + 0.17 [Mn] - 0.1 [Ni] + 0.13 [Cr] - 0.24 [V] where [C], [Si], [ Mn], [Ni], [Cr] and [V] represent the content of each element in percentages by weight.
  • Table 1 Chemical compositions of the steels tested (in%)
  • Table 2 shows the hardness values obtained for steels according to the invention and reference steels, as a function of the tempering temperature applied to them.
  • Table 2 Hardness and tensile strength as a function of the tempering temperature.
  • Table 3 shows the maximum size of titanium nitride or carbonitride inclusions observed at 1.5mm of the surface of steels according to the invention and of reference steels, as defined above. The titanium contents of the various steels have also been reported.
  • the maximum size of inclusions of nitrides or carbonitrides of titanium is determined as follows. On a section of rod or wire rod from a given steel casting, a 100mm 2 surface is examined at a location 1.5mm + 0.5mm below the surface of the bar or wire rod. After these observations, the size of the inclusion of titanium nitride or carbonitride with the largest area is determined by considering that the inclusions are squares and that the size of each of these inclusions, including inclusion having the largest surface, is equal to the square root of this area. All inclusions are observed on a bar or wire rod cut for springs, observations being made on 100mm 2 of this section.
  • the steel casting is in accordance with the invention when the maximum size of the abovementioned inclusions observed over 100mm 2 at 1.5mm + 0.5mm below the surface is less than 20 ⁇ m.
  • the corresponding results obtained on steels according to the invention and reference steels are given in Table 3. With regard to the reference tests 1 and 3, their titanium content is practically zero and the size of the nitrides and carbonitrides observed is not applicable.
  • Table 3 Maximum sizes of the largest inclusions of titanium nitrides or carbonitrides found at 1.5mm from the surface of the samples.
  • Fatigue test sample preparation includes coarse machining, austenitization, oil quenching, tempering, grinding, and shot blasting. These samples were tested for fatigue-torsion in the air. The shear stress applied was 856 + 494MPA and the number of cycles to failure was counted. The tests were stopped after 2.10 6 cycles if the samples were not broken.
  • Sample preparation for fatigue testing includes coarse machining, austenitization, oil quenching, tempering, grinding, and shot blasting. These samples were tested for corrosion fatigue, that is, corrosion was applied at the same time as a fatigue load. Load in fatigue is a shear stress equal to 856 + 300MPa. The applied corrosion was cyclic corrosion in two stages alternating:
  • Moisture resistance was determined using a cyclic compression test on cylindrical samples. The diameter of the samples was 7mm and their height 12mm. They were taken from the steel bars.
  • the manufacture of the specimens of chill tests included rough machining, austenitization, oil quenching, tempering and final fine grinding.
  • the height of the sample was measured precisely before the start of the test using a comparator with a precision of 1 ⁇ m.
  • a preload was applied to simulate the pretensioning of the springs, this pretensioning being a compressive stress of 2200MPa.
  • Table 4 Results of fatigue tests, fatigue under corrosion and slump.
  • the reference steel 1 has, in particular, a sulfur content too high to achieve a good compromise between the fatigue resistance in the air and the fatigue content under corrosion.
  • its manganese content is too high, resulting segregations damaging to the homogeneity of the steel and fatigue resistance in the air.
  • Reference steel 2 has a carbon content and a carbon equivalent that is too low to ensure high hardness. Its tensile strength is too low for good resistance to fatigue in the air.
  • the reference steel 3 has, in particular, a silicon content that is too low to ensure good resistance to scumming, and also good resistance to fatigue in the air.
  • the wear resistance is higher for the steels of the invention than for the reference steels, as shown in FIG. 1, where it is clear that, according to the abovementioned abatement measurements, the wear-out values are at least 32% lower for the worst case of the steels of the invention (steel of the invention 1) compared to the best case of the reference steels (reference steel 1).
  • the fatigue life in the air is significantly higher for the steels of the invention compared to the reference steels. This is due to the increase in hardness, as shown in Figure 2. But an increase in hardness is not enough.
  • steels of high hardness are all the more sensitive to defects, such as inclusions and surface defects, the hardness is higher.
  • the steels according to the invention are less sensitive to defects, in particular to large inclusions such as titanium nitrides or carbonitrides, in view of the fact that the invention avoids the appearance of such oversized inclusions.
  • Table 3 the largest inclusions found in the steels according to the invention do not exceed the size of 14.1 ⁇ m, whereas inclusions larger than 20 ⁇ m are in the reference steel 2.
  • the slightest sensitivity to surface defects such as those that may occur during the manufacture of the spring or other operations when using steels of the invention can be illustrated by resilience tests performed on the steels of the invention and reference steels heat-treated and having hardnesses of 55HRC or more, see Figure 3.
  • the values measured in Charpy resiliency tests on the steels of the invention (where the notch of the specimen simulates a concentration of stresses as other stress concentrations that may be encountered on surface defects produced during the spring manufacturing or other operations) are higher than those measured on the reference steels. This shows that the steels according to the invention are less sensitive to the concentrations of stress on the defects than the reference steels according to the prior art. It is known that an increase in hardness reduces the resistance to fatigue under corrosion.
  • the steels according to the invention have the advantage that their resistance to fatigue under corrosion is higher than that of the reference steels according to the prior art, and in particular for hardnesses greater than 55HRC as shown
  • the invention makes it possible to obtain a higher hardness with a good compromise between the fatigue life in the air and a resistance to weariness which are greatly increased, and a service life of fatigue under corrosion which is better than that of the reference steel according to the prior art.

Abstract

The invention relates to spring steel having increased fatigue strength in air and in corrosive environments and high resistance to cyclical slackening. The composition of said steel contains the following components as expressed in percentages by weight, namely: C = 0.45 0.7 %; Si = 1.65 2.5 %; Mn = 0.2 0.75 %; Cr = 0.6 - 2 %; Ni = 0.15 - 1 %; Mo = trace - 1 %; V = 0.003 0.8 %; Cu = 0.1 - 1 %; Ti = 0.02 0.2 %; Nb = trace 0.2 %; Al = 0.002 0.05 %; P = trace 0.015 %; S = trace 0.015 %; O = trace 0.002 %; N = 0.002 0.011 %, the remainder comprising iron and impurities resulting from production. Moreover, the equivalent carbon content Ceq, which is calculated using formula Ceq % = [C %] + 0.12 [Si %]+ 0.17 [Mn %] 0.1 [Ni %] + 0.13[Cr %] 0.24 [V %], is between 0.8 and 1 % and hardness following quenching and tempering is greater than or equal to 55HRC. The invention also relates to a method for producing a spring using said steel and to the spring thus produced.

Description

Acier à ressorts, et procédé de fabrication d'un ressort utilisant cet acier, et ressort réalisé en un tel acier. Spring steel, and method of making a spring using this steel, and spring made of such steel.
L'invention concerne la sidérurgie et, plus précisément, le domaine des aciers à ressorts.The invention relates to iron and steel, and more specifically to the field of spring steels.
De manière générale, avec l'accroissement des sollicitations en fatigue appliquées aux ressorts, la dureté et la résistance à la traction exigées pour les ressorts s'accroît continuellement. En conséquence, la sensibilité à la rupture initiée sur des défauts, tels que des inclusions ou des défauts de surface générés pendant la fabrication des ressorts, augmente, et la résistance à la fatigue tend à devenir limitée. D'autre part, les ressorts utilisés dans un environnement fortement corrosif, tels que les ressorts de suspension, doivent présenter des propriétés en fatigue sous corrosion au moins équivalentes et même supérieures puisqu'ils utilisent des aciers présentant une dureté et une résistance à la traction supérieures. Ainsi, de tels ressorts tendent à se rompre au niveau de défauts, immédiatement pendant des cycles de fatigue à l'air, et plus tardivement pendant des cycles de fatigue dans un milieu corrosif. En particulier, pour la fatigue sous corrosion, des défauts peuvent s'initier sur des piqûres de corrosion. De plus, avec l'augmentation des contraintes appliquées, il est plus difficile d'améliorer la durée de vie en fatigue sous corrosion ou de la maintenir à un niveau équivalent, compte tenu du fait que les effets de la concentration de contraintes sur les piqûres de corrosion, sur les défauts de surface des ressorts éventuellement générés lors du bobinage du ressort ou d'autres étapes de sa fabrication, ou sur les inclusions non métalliques, deviennent plus critiques lorsque la dureté du ressort augmente.In general, with the increase in fatigue loadings applied to the springs, the hardness and tensile strength required for the springs increases continuously. As a result, the fracture sensitivity initiated on defects, such as inclusions or surface defects generated during the manufacture of the springs, increases, and the fatigue strength tends to become limited. On the other hand, springs used in a highly corrosive environment, such as suspension springs, must have at least equivalent and even higher fatigue corrosion properties since they use steels with hardness and tensile strength. higher. Thus, such springs tend to break at the level of defects, immediately during air fatigue cycles, and later during fatigue cycles in a corrosive environment. In particular, for fatigue under corrosion, defects can be initiated on pitting corrosion. In addition, with the increase in stress applied, it is more difficult to improve the fatigue life under corrosion or to maintain it at an equivalent level, given that the effects of the stress concentration on the bites corrosion, surface defects of the springs that may be generated during winding of the spring or other stages of its manufacture, or non-metallic inclusions, become more critical when the hardness of the spring increases.
Selon l'état de l'art connu, les documents FR-A-2 740 476 et JP-A- 3 474 373 décrivent une nuance d'acier à ressorts présentant une bonne résistance à la fragilisation par l'hydrogène et une bonne résistance à la fatigue, dans lequel les inclusions de carbonitrosulfures comportant au moins un élément parmi le titane, le niobium, le zirconium, le tantale ou le hafnium, sont contrôlées de manière à avoir une taille moyenne réduite, inférieure à 5μm en diamètre, et à être très nombreuses (10 000 ou davantage sur une section de coupe). Cependant, ce type d'aciers conduit, après une trempe et un revenu selon le procédé industriel de fabrication des ressorts, à un niveau de dureté de seulement 50HRC ou un peu plus, correspondant à une résistance à la traction de 1700MPa ou un peu plus, mais guère supérieure à 1900MPa, correspondant à une dureté de 53,5HRC. A cause de ce niveau de dureté modéré, cet acier ne présente qu'une résistance à l'avachissement modérée, un acier présentant une résistance à la traction plus élevée étant nécessaire pour améliorer la résistance à l'avachissement. Ainsi, un tel acier n'assure pas un excellent compromis entre une résistance élevée, qui serait supérieure à 2100MPa, une dureté qui serait supérieure à 55HRC, une résistance à la fatigue élevée dans l'air et une résistance à la fatigue sous corrosion au moins équivalente, et même supérieure, à ce qui est nécessaire pour des ressorts.According to the state of the prior art, FR-A-2,740,476 and JP-A-3,474,373 disclose a spring steel grade having good resistance to embrittlement by hydrogen and good strength. in the case of fatigue, in which the inclusions of carbonitrosulfides comprising at least one of titanium, niobium, zirconium, tantalum or hafnium, are controlled so as to have a reduced average size, less than 5 μm in diameter, and be very numerous (10,000 or more on a section of cut). However, this type of steel leads, after quenching and tempering according to the industrial process of manufacturing springs, to a hardness level of only 50HRC or a little more, corresponding to a tensile strength of 1700 MPa or a little more , but hardly greater than 1900MPa, corresponding to a hardness of 53.5HRC. Because of this moderate hardness level, this steel has only moderate scuff resistance, and steel with higher tensile strength is required to improve the scuff resistance. Thus, such a steel does not provide an excellent compromise between a high strength, which would be greater than 2100MPa, a hardness that would be greater than 55HRC, a high resistance to fatigue in the air and a resistance to fatigue under corrosion. less equivalent, and even superior, to what is necessary for springs.
Le but de l'invention est de proposer des moyens pour réaliser simultanément, par rapport aux aciers à ressorts connus, une augmentation de la dureté et de la résistance à la traction des ressorts, des propriétés de fatigue supérieures dans l'air, des propriétés en fatigue sous corrosion au moins équivalentes et même supérieures, une résistance à l'avachissement du ressort supérieure et une moindre sensibilité aux défauts de surface qui peuvent être générés pendant le torsadage du ressort. A cet effet l'invention a pour objet un acier à ressorts à tenue en fatigue élevée à l'air et sous corrosion et à haute résistance à l'avachissement cyclique, de composition, en pourcentages pondéraux :The object of the invention is to propose means for producing, simultaneously with known spring steels, an increase in the hardness and the tensile strength of the springs, the higher fatigue properties in the air, the properties in corrosion fatigue at least equivalent and even higher, a resistance to slackening of the upper spring and less sensitivity to surface defects that can be generated during the twisting of the spring. To this end, the subject of the invention is a spring steel with high fatigue strength in air and under corrosion and with high resistance to cyclic wear, of composition, in weight percentages:
C = 0,45 - 0,70%C = 0.45 - 0.70%
Si = 1 ,65 - 2,50% Mn = 0,20 - 0,75%Si = 1, 65 - 2.50% Mn = 0.20 - 0.75%
Cr = 0,60 - 2%Cr = 0.60 - 2%
Ni = 0,15 - 1%Ni = 0.15 - 1%
Mo = traces - 1 %Mo = traces - 1%
V = 0,003 - 0,8% Cu = 0,10 - 1%V = 0.003 - 0.8% Cu = 0.10 - 1%
Ti = 0,020 - 0,2%Ti = 0.020 - 0.2%
Nb = traces - 0,2% Al = 0,002 - 0,050%Nb = traces - 0.2% Al = 0.002 - 0.050%
P = traces - 0,015%P = traces - 0.015%
S = traces - 0,015%S = traces - 0.015%
O = traces - 0,0020% N = 0,0020 - 0,0110% le reste étant du fer et des impuretés résultant de l'élaboration, et dont la teneur en carbone équivalent Ceq, calculée selon la formuleO = traces - 0.0020% N = 0.0020 - 0.0110% the remainder being iron and impurities resulting from the preparation, and whose equivalent carbon content Ceq, calculated according to the formula
Ceq% = [C%] + 0,12 [Si%]+ 0,17 [Mn%] - 0,1 [Ni%] + 0,13[Cr%] - 0,24 [V%] est comprise entre 0,80 et 1 ,00%, et dont la dureté, après trempe et revenu, est supérieure ou égale à 55HRC.Ceq% = [C%] + 0.12 [Si%] + 0.17 [Mn%] - 0.1 [Ni%] + 0.13 [Cr%] - 0.24 [V%] is between 0.80 and 1.00%, and whose hardness, after quenching and tempering, is greater than or equal to 55HRC.
La taille maximale des nitrures ou carbonitrures de Ti observés à 1 ,5 +The maximum size of Ti nitrides or carbonitrides observed at 1, 5 +
0,5mm de la surface d'une barre, ou d'un fil machine, d'un lopin ou d'un ressort sur 100mm2 de la surface de coupe est de préférence inférieure ou égale à 20μm, ladite taille étant la racine carrée de la surface des inclusions considérées comme des carrés.0.5mm of the surface of a bar, or a wire rod, a piece or a spring on 100mm 2 of the cutting surface is preferably less than or equal to 20μm, said size being the square root of the surface inclusions considered as squares.
De préférence, la composition de l'acier est :Preferably, the composition of the steel is:
C = 0,45 - 0,65%C = 0.45 - 0.65%
Si = 1,65 - 2,20% Mn = 0,20 - 0,65%If = 1.65 - 2.20% Mn = 0.20 - 0.65%
Cr = 0,80 - 1,7%Cr = 0.80 - 1.7%
Ni = 0,15 - 0,80%Ni = 0.15 - 0.80%
Mo = traces - 0,80%Mo = traces - 0.80%
V = 0,003 - 0,5% Cu = 0,10 - 0,90%V = 0.003 - 0.5% Cu = 0.10 - 0.90%
Ti = 0,020 - 0,15%Ti = 0.020 - 0.15%
Nb = traces - 0,15%Nb = traces - 0,15%
Al = 0,002 - 0,050%Al = 0.002 - 0.050%
P = traces - 0,010% S = traces - 0,010%P = traces - 0.010% S = traces - 0.010%
O = traces - 0,0020%O = traces - 0.0020%
N = 0,0020 - 0,0110% le reste étant du fer et des impuretés résultant de l'élaboration.N = 0.0020 - 0.0110% the rest being iron and impurities resulting from the elaboration.
L'invention a aussi pour objet un procédé de fabrication d'un acier à ressorts à tenue en fatigue élevée à l'air et sous corrosion et à haute résistance à l'avachissement cyclique, selon lequel on élabore un acier liquide dans un convertisseur ou un four électrique, on ajuste sa composition, on le coule sous forme de blooms ou de billettes de coulée continue ou de lingots que l'on laisse refroidir à la température ambiante, on le lamine sous forme de barres, de fils machines ou de lopins et on le transforme en ressorts, caractérisé en ce que :The invention also relates to a method of manufacturing a spring steel with high fatigue resistance in air and under corrosion and with high resistance to cyclic scumming, according to which a liquid steel is produced in a converter or an electric furnace, its composition is adjusted, it is cast in the form of blooms or continuous casting billets or ingots which are allowed to cool to room temperature, it is rolled in the form of bars, wire rods or slugs and it is transformed into springs, characterized in that:
- l'acier est du type précédent ; - on impose aux blooms, billettes ou lingots pendant ou après leur solidification, une vitesse de refroidissement moyenne minimale de 0,3°C/s entre 1450 et 13000C ;- the steel is of the previous type; blooms, billets or ingots are imposed during or after their solidification, a minimum average cooling rate of 0.3 ° C / s between 1450 and 1300 0 C;
- on lamine lesdits blooms, billettes ou lingots entre 1200 et 8000C en un ou deux cycles de réchauffage et laminage ; - et on réalise sur les barres, les fils machines ou les lopins, ou sur les ressorts qui en sont issus, une austénitisation entre 850 et 10000C, suivie par une trempe à l'eau, une trempe polymère ou une trempe à l'huile, et par un revenu à 300-550°C, de manière à conférer à l'acier une dureté supérieure ou égale à 55HRC. L'invention a également pour objet des ressorts réalisés en un tel acier, et des ressorts en un acier obtenu par le procédé précédent.these blooms, billets or ingots are laminated between 1200 and 800 ° C. in one or two cycles of reheating and rolling; and on the bars, the machine wires or the plots, or on the springs resulting therefrom, austenitization is carried out between 850 and 1000 ° C., followed by water quenching, polymer quenching or quenching. oil, and by an income at 300-550 ° C, so as to give the steel a hardness greater than or equal to 55HRC. The invention also relates to springs made of such steel, and springs made of a steel obtained by the above method.
De manière inattendue, les inventeurs se sont aperçu qu'un acier présentant les caractéristiques de composition et de morphologie inclusionnaires précitées permettait d'assurer, après élaboration, coulée, laminage, trempe et revenu réalisés dans des conditions spécifiques, une dureté supérieure à 55HRC, tout en réalisant un excellent compromis entre une longue durée de vie en fatigue dans l'air et en fatigue sous corrosion, une résistance à l'avachissement cyclique élevée et une faible sensibilité aux défauts de surface survenant lors de la fabrication du ressort. L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence aux figures annexées suivantes : - la figure 1 qui montre les résultats d'essais de dureté et d'avachissement cyclique pour des aciers selon l'invention et des aciers de référence ;Unexpectedly, the inventors have found that a steel having the above-mentioned characteristics of inclusionary composition and morphology made it possible, after elaboration, casting, rolling, quenching and tempering, to obtain, under specific conditions, a hardness greater than 55HRC, while achieving an excellent compromise between a long fatigue life in the air and fatigue under corrosion, a high resistance to cyclic sagging and a low sensitivity to surface defects occurring during the manufacture of the spring. The invention will be better understood on reading the description which follows, given with reference to the following appended figures: FIG. 1, which shows the results of hardness and cyclic wear tests for steels according to the invention and reference steels;
- la figure 2 qui montre les résultats d'essais de fatigue dans l'air en fonction de la dureté de l'acier, pour des aciers selon l'invention et des aciers de référence ;FIG. 2 which shows the results of fatigue tests in the air as a function of the hardness of the steel, for steels according to the invention and reference steels;
- la figure 3 qui montre les résultats d'essais de résilience Charpy en fonction de la dureté de l'acier, pour des aciers selon l'invention et des aciers de référence ; - la figure 4 qui montre les résultats d'essais de fatigue sous corrosion en fonction de la dureté de l'acier pour des aciers selon l'invention et des aciers de référence.FIG. 3 which shows the results of Charpy resilience tests as a function of the hardness of the steel, for steels according to the invention and reference steels; - Figure 4 which shows the results of corrosion fatigue tests as a function of the hardness of the steel for steels according to the invention and reference steels.
La composition de l'acier selon l'invention doit répondre aux exigences suivantes. La teneur en carbone doit être comprise entre 0,45 et 0,7%. Le carbone permet, après la trempe et le revenu, d'augmenter la résistance à la traction et la dureté de l'acier. Si la teneur en carbone est inférieure à 0,45%, dans la gamme de température habituellement utilisée pour la fabrication des ressorts, aucun traitement de trempe et de revenu ne conduit à une haute résistance et à une haute dureté de l'acier décrit dans l'invention. D'autre part, si la teneur en carbone excède 0,7% voire 0,65%, des carbures grossiers et très durs, combinés à du chrome, du molybdène et du vanadium, peuvent rester à l'état non dissout pendant l'austénitisation exécutée avant la trempe, et peuvent significativement affecter la durée de vie en fatigue dans l'air, la résistance à la fatigue sous corrosion et également la ténacité. En conséquence des teneurs en carbone au dessus de 0,7% sont à exclure. De préférence, elles ne doivent pas dépasser 0,65%.The composition of the steel according to the invention must meet the following requirements. The carbon content must be between 0.45 and 0.7%. Carbon, after quenching and tempering, increases the tensile strength and hardness of steel. If the carbon content is less than 0.45%, in the temperature range usually used for the manufacture of the springs, no quenching and tempering treatment leads to a high strength and high hardness of the steel described in the invention. On the other hand, if the carbon content exceeds 0.7% or even 0.65%, coarse and very hard carbides combined with chromium, molybdenum and vanadium may remain undissolved during austenitization performed prior to quenching, and can significantly affect fatigue life in air, fatigue resistance under corrosion and also toughness. As a result carbon contents above 0.7% are to be excluded. Preferably, they should not exceed 0.65%.
La teneur en silicium est comprise entre 1 ,65 et 2,5%. Le silicium est un élément important permettant d'assurer, grâce à sa présence en solution solide, de hauts niveaux de résistance et de dureté, ainsi que des valeurs de carbone équivalent Ceq et de résistance à l'avachissement élevées. Pour obtenir les valeurs de résistance à la traction et de dureté de l'acier selon l'invention, la teneur en silicium ne doit pas être inférieure à 1 ,65%. De plus, le silicium contribue au moins partiellement à la désoxydation de l'acier. Si sa teneur excède 2,5%, voire 2,2%, la teneur en oxygène de l'acier peut être, par réaction thermodynamique, supérieure à 0,0020 ou même 0,0025%. Cela traduit la formation d'oxydes de diverses compositions qui sont dommageables à la résistance à la fatigue dans l'air. De plus, pour des teneurs en silicium supérieures à 2,5%, des ségrégations de différents éléments combinés tels que le manganèse, le chrome ou autres, peuvent survenir pendant la solidification, après la coulée. Ces ségrégations sont très dommageables au comportement en fatigue dans l'air et à la résistance à la fatigue sous corrosion. Enfin, pour une teneur en silicium supérieure à 2,5%, la décarburation à la surface des barres ou des fils destinés à former les ressorts devient trop importante pour les propriétés en service du ressort. C'est pourquoi la teneur en silicium ne doit pas excéder 2,5%, et de préférence 2,2%. La teneur en manganèse est comprise entre 0,20 et 0,75%. Le manganèse, en combinaison avec le soufre résiduel compris entre des traces et 0,015%, doit être ajouté à une teneur au moins supérieure à dix fois la teneur en soufre de manière à éviter la formation de sulfures de fer extrêmement dommageables à la laminabilité de l'acier. En conséquence, une teneur minimale en manganèse de 0,20% est nécessaire. De plus, le manganèse contribue au durcissement en solution solide pendant la trempe de l'acier, au même titre que le nickel, le chrome, le molybdène et le vanadium, ce qui permet d'obtenir les valeurs de résistance à la traction et de dureté élevées et les valeurs de carbone équivalent Ceq de l'acier selon l'invention. Pour des teneurs en manganèse supérieures à 0,75% voire 0,65%, des ségrégations, en combinaison avec le silicium, peuvent survenir pendant la phase de solidification suivant l'élaboration et la coulée de l'acier. Ces ségrégations sont dommageables aux propriétés en service de l'acier et à l'homogénéité de l'acier. C'est pourquoi la teneur en manganèse de l'acier ne doit pas excéder 0,75%, ou mieux 0,65%. La teneur en chrome doit être comprise entre 0,60 et 2%, et de préférence entre 0,80 et 1 ,70%. Le chrome est ajouté pour obtenir, en solution solide après austénitisation, trempe et revenu, des valeurs élevées de résistance à la traction et de dureté, et pour contribuer à l'obtention de la valeur du carbone équivalent Ceq, mais aussi pour accroître la résistance à la fatigue sous corrosion. Pour assurer ces propriétés, la teneur en chrome doit être d'au moins 0,60%, et de préférence d'au moins 0,80%. Au dessus de 2%, voire de 1 ,7%, des carbures de chrome particuliers, grossiers et très durs, en combinaison avec du vanadium et du molybdène, peuvent subsister après le traitement d'austénitisation exécuté avant la trempe. De tels carbures affectent grandement la résistance à la fatigue dans l'air. C'est pourquoi la teneur en chrome ne doit pas excéder 2%. La teneur en nickel est comprise entre 0,15 et 1%. Le nickel est ajouté de manière à accroître la trempabilité de l'acier, ainsi que la résistance à la traction et la dureté après trempe et revenu. Comme il ne forme pas de carbures, le nickel contribue au durcissement de l'acier, tout comme le chrome, le molybdène et le vanadium, sans formation de carbures particuliers grossiers et durs qui ne seraient pas dissous pendant l'austénitisation exécutée avant la trempe et pourraient être dommageables à la résistance à la fatigue dans l'air. Il permet également d'ajuster le carbone équivalent entre 0,8 et 1% dans l'acier selon l'invention comme cela est nécessaire. En tant qu'élément non oxydable, le nickel améliore la résistance à la fatigue sous corrosion. Pour s'assurer que ces effets soient significatifs, la teneur en nickel ne doit pas être inférieure à 0,15%. Au contraire, au dessus de 1% voire 0,80%, le nickel peut conduire à une teneur en austénite résiduelle trop élevée, dont la présence est très dommageable à la résistance à la fatigue sous corrosion. De plus, des teneurs élevées en nickel augmentent significativement le coût de l'acier. Pour toutes ces raisons, la teneur en nickel ne doit pas dépasser 1%, mieux 0,80%The silicon content is between 1.65 and 2.5%. Silicon is an important element for ensuring, thanks to its presence in solid solution, high levels of strength and hardness, as well as high Ceq equivalent carbon and resistance values. To obtain the values of tensile strength and hardness of the steel according to the invention, the Silicon content should not be less than 1.65%. In addition, silicon contributes at least partially to the deoxidation of the steel. If its content exceeds 2.5% or even 2.2%, the oxygen content of the steel may be, by thermodynamic reaction, greater than 0.0020 or even 0.0025%. This reflects the formation of oxides of various compositions that are detrimental to the fatigue resistance in the air. In addition, for silicon contents greater than 2.5%, segregations of various combined elements such as manganese, chromium or the like may occur during solidification after casting. These segregations are very damaging to fatigue behavior in the air and resistance to fatigue under corrosion. Finally, for a silicon content greater than 2.5%, the decarburization on the surface of the bars or wires intended to form the springs becomes too important for the properties in service of the spring. This is why the silicon content should not exceed 2.5%, and preferably 2.2%. The manganese content is between 0.20 and 0.75%. Manganese, in combination with residual sulfur between trace amounts and 0.015%, must be added at a level at least greater than ten times the sulfur content so as to avoid the formation of iron sulphides which are extremely damaging to the laminability of the iron. 'steel. As a result, a minimum manganese content of 0.20% is required. In addition, manganese contributes to solid solution hardening during the quenching of steel, in the same way as nickel, chromium, molybdenum and vanadium, which makes it possible to obtain the values of tensile strength and high hardness and equivalent carbon Ceq values of the steel according to the invention. For manganese contents greater than 0.75% or even 0.65%, segregations, in combination with silicon, may occur during the solidification phase following the preparation and casting of the steel. These segregations are damaging to the service properties of steel and the homogeneity of steel. This is why the manganese content of the steel must not exceed 0.75%, or better still 0.65%. The chromium content must be between 0.60 and 2%, and preferably between 0.80 and 1.70%. Chromium is added to obtain, in solid solution after austenitization, quenching and tempering, high values of resistance tensile strength and hardness, and to help achieve the equivalent value of carbon Ceq, but also to increase resistance to fatigue under corrosion. To ensure these properties, the chromium content should be at least 0.60%, and preferably at least 0.80%. Above 2%, or even 1.7%, particular, coarse and very hard chromium carbides, in combination with vanadium and molybdenum, may remain after the austenitization treatment performed prior to quenching. Such carbides greatly affect the fatigue resistance in the air. This is why the chromium content must not exceed 2%. The nickel content is between 0.15 and 1%. Nickel is added to increase the hardenability of the steel, as well as the tensile strength and hardness after quenching and tempering. As it does not form carbides, nickel contributes to the hardening of steel, just like chromium, molybdenum and vanadium, without the formation of particular coarse and hard carbides that would not be dissolved during the austenitization performed before quenching. and could be harmful to the fatigue resistance in the air. It also makes it possible to adjust the equivalent carbon between 0.8 and 1% in the steel according to the invention as necessary. As a non-oxidizable element, nickel improves fatigue resistance under corrosion. To ensure that these effects are significant, the nickel content should not be less than 0.15%. On the contrary, above 1% or even 0.80%, nickel can lead to a too high residual austenite content, the presence of which is very damaging to the resistance to fatigue under corrosion. In addition, high levels of nickel significantly increase the cost of steel. For all these reasons, the nickel content should not exceed 1%, better 0.80%
La teneur en molybdène doit être comprise entre des traces et 1%. Comme le chrome, le molybdène accroît la trempabilité de l'acier, de même que sa résistance. De plus il a un faible potentiel d'oxydation. Pour ces deux raisons, le molybdène est favorable à la tenue en fatigue dans l'air et sous corrosion. Mais pour des teneurs supérieures à 1%, voire 0,80%, des carbures de molybdène grossiers et très durs peuvent subsister, éventuellement combinés à du vanadium et à du chrome, après l'austénitisation précédant la trempe. Ces carbures particuliers sont très dommageables pour la tenue en fatigue dans l'air. Enfin, une addition de molybdène dépassant 1% accroît inutilement le coût de l'acier. C'est pourquoi la teneur en molybdène ne doit pas dépasser 1 %, mieux 0,80%. La teneur en vanadium doit être comprise entre 0,003 et 0,8%. Le vanadium est un élément qui permet d'augmenter la trempabilité, la résistance à la traction et la dureté après trempe et revenu. De plus, en combinaison avec l'azote, le vanadium permet de former un grand nombre de fins nitrures de vanadium ou de vanadium et de titane submicroscopiques permettant d'affiner le grain et d'augmenter les niveaux de résistance à la traction et de dureté, grâce à un durcissement structurel. Pour obtenir la formation de nitrures submicroscopiques de V et de Ti pour raffinement du grain, le vanadium doit être présent avec une teneur minimale de 0,003 %. Mais cet élément est coûteux et on doit le maintenir proche de cette limite inférieure si un compromis entre le coût de l'élaboration et l'affinage du grain est recherché. Le vanadium ne doit pas dépasser 0,8% et, de préférence, 0,5%, car au-delà de cette valeur, une précipitation de carbures contenant du vanadiums grossiers et très durs, combinés avec du chrome et du molybdène, peut rester à l'état non dissout pendant l'austénitisation qui a lieu avant la trempe. Cela peut être très défavorable à la tenue en fatigue à l'air, pour les hautes valeurs de résistance et de dureté de l'acier selon l'invention. Et une addition de vanadium au-delà de 0,8% augmente inutilement le coût de l'acier.The molybdenum content must be between traces and 1%. Like chromium, molybdenum increases the hardenability of steel, as does its strength. In addition it has a low oxidation potential. For these two reasons, molybdenum is conducive to fatigue resistance in the air and under corrosion. But for contents higher than 1%, even 0.80%, coarse and very hard molybdenum carbides may remain, possibly combined with vanadium and chromium, after austenitization prior to quenching. These Particular carbides are very damaging to fatigue resistance in the air. Finally, addition of molybdenum exceeding 1% unnecessarily increases the cost of steel. This is why the molybdenum content should not exceed 1%, better 0.80%. The vanadium content should be between 0.003 and 0.8%. Vanadium is an element that increases quenchability, tensile strength and hardness after quenching and tempering. In addition, in combination with nitrogen, vanadium makes it possible to form a large number of fine vanadium or vanadium nitrites and submicroscopic titanium to refine the grain and increase the levels of tensile strength and hardness. , thanks to a structural hardening. To obtain submicroscopic V and Ti nitride formation for grain refinement, vanadium must be present with a minimum content of 0.003%. But this element is expensive and must be kept close to this lower limit if a compromise between the cost of elaboration and the refining of the grain is sought. The vanadium should not exceed 0.8% and preferably 0.5%, because above this value a precipitation of carbides containing coarse and very hard vanadium combined with chromium and molybdenum can remain in the undissolved state during the austenitization which takes place before quenching. This can be very unfavorable to the resistance to air fatigue, for the high values of strength and hardness of the steel according to the invention. And an addition of vanadium above 0.8% unnecessarily increases the cost of steel.
La teneur en cuivre doit être comprise entre 0,10 et 1%. Le cuivre est un élément qui durcit l'acier lorsqu'il est en solution solide après le traitement de trempe et de revenu. Ainsi, il peut être ajouté avec d'autres éléments contribuant à accroître la résistance et la dureté de l'acier. Comme il ne se combine pas avec le carbone, il procure un durcissement de l'acier sans formation de carbures durs et grossiers dommageables à la résistance à la fatigue dans l'air. Du point de vue électrochimique, son potentiel de passivation est plus élevé que celui du fer et, en conséquence, il est favorable à la résistance à la fatigue sous corrosion de l'acier. Pour s'assurer que ses effets sont significatifs, la teneur en cuivre ne doit pas être inférieure à 0,10%. Au contraire, pour des teneurs supérieures à 1% voire 0,90%, le cuivre a une influence très dommageable sur le comportement au laminage à chaud. C'est pourquoi les teneurs en cuivre ne doivent pas excéder 1%, mieux 0,90%.The copper content must be between 0.10 and 1%. Copper is an element that hardens steel when in solid solution after tempering and tempering treatment. Thus, it can be added with other elements contributing to increase the strength and hardness of the steel. Since it does not combine with carbon, it provides hardening of the steel without formation of hard and coarse carbides damaging the fatigue resistance in the air. From the electrochemical point of view, its passivation potential is higher than that of iron and, consequently, it is favorable to the resistance to corrosion fatigue of steel. To ensure that its effects are significant, the copper content should not be less than 0.10%. On the contrary, for contents above 1% even 0.90%, copper has a very damaging influence on the hot rolling behavior. This is why the copper content should not exceed 1%, better 0.90%.
La teneur en titane doit être comprise entre 0,020 et 0,2%. Le titane est ajouté pour former, en combinaison avec l'azote, voire aussi le carbone et/ou le vanadium, de fins nitrures ou carbonitrures submicroscopiques permettant d'affiner le grain austénitique pendant le traitement d'austénitisation qui a lieu avant la trempe. Ainsi, il augmente la surface des joints de grains dans l'acier, conduisant ainsi à une réduction de la quantité d'impuretés inévitables ségrégées aux joints de grains, tel que le phosphore. De telles ségrégations intergranulaires seraient très dommageables à la ténacité et à la résistance à la fatigue dans l'air si elles sont présentes à des concentrations par unité de surface élevées au niveau des joints de grains. De plus, combiné au carbone et à l'azote, voire avec le vanadium et le niobium, le titane conduit à la formation d'autres nitrures ou carbonitrures fins produisant un effet de piégeage irréversible de certains éléments, tels que l'hydrogène formé pendant les réactions de corrosion, et qui peuvent être extrêmement dommageables à la résistance à la fatigue sous corrosion. Pour une bonne efficacité, la teneur en titane ne doit pas être inférieure à 0,020%. Au contraire, au dessus de 0,2% voire 0,15%, le titane peut conduire à la formation de nitrures ou de carbonitrures grossiers et durs, très dommageables à la résistance à la fatigue dans l'air. Ce dernier effet est encore plus dommageable pour les hauts niveaux de résistance à la traction et de dureté de l'acier selon l'invention. Pour ces raisons la teneur en titane ne doit pas excéder 0,2%, mieux 0,15%. La teneur en niobium doit être comprise entre des traces et 0,2%. Le niobium est ajouté pour former, en combinaison avec le carbone et l'azote, des précipités submicroscopiques extrêmement fins de nitrures et/ou de carbures et/ou de carbonitrures qui permettent, en particulier lorsque la teneur en aluminium est basse (0,002% par exemple), d'achever raffinement du grain austénitique pendant le traitement d'austénitisation exécuté avant la trempe. Ainsi, le niobium augmente la surface des joints de grains dans l'acier, et contribue au même effet favorable que le titane en ce qui concerne la fragilisation des joints de grains par des impuretés inévitables telles que le phosphore, dont l'effet est très dommageable à la ténacité et à la résistance à la fatigue sous corrosion. De plus, des précipités extrêmement fins de nitrures ou carbonitrures de niobium contribuent au durcissement de l'acier par durcissement structurel. Cependant, la teneur en niobium ne doit pas excéder 0,2% voire 0,15%, de sorte que les nitrures ou les carbonitrures demeurent très fins, pour assurer raffinement du grain austénitique et éviter la formation de fissures ou de crevasses lors du laminage à chaud. Pour ces raisons, la teneur en niobium ne doit pas excéder 0,2%, mieux 0,15%. La teneur en aluminium doit être comprise entre 0,002 et 0,050%.The titanium content should be between 0.020 and 0.2%. Titanium is added to form, in combination with nitrogen, or even carbon and / or vanadium, fine submicroscopic nitrides or carbonitrides to refine the austenitic grain during the austenitization treatment that takes place before quenching. Thus, it increases the surface of the grain boundaries in the steel, thus leading to a reduction in the amount of unavoidable impurities segregated at grain boundaries, such as phosphorus. Such intergranular segregation would be very detrimental to toughness and fatigue resistance in the air if present at high concentrations per unit area at the grain boundaries. In addition, combined with carbon and nitrogen, or even with vanadium and niobium, titanium leads to the formation of other nitrides or fine carbonitrides producing an irreversible trapping effect of certain elements, such as the hydrogen formed during corrosion reactions, which can be extremely damaging to fatigue resistance under corrosion. For good efficiency, the titanium content should not be less than 0.020%. On the contrary, above 0.2% or even 0.15%, titanium can lead to the formation of coarse and hard nitrides or carbonitrides, very damaging to the resistance to fatigue in the air. This last effect is even more damaging to the high levels of tensile strength and hardness of the steel according to the invention. For these reasons the titanium content should not exceed 0.2%, better 0.15%. The niobium content must be between traces and 0.2%. Niobium is added to form, in combination with carbon and nitrogen, extremely fine submicroscopic precipitates of nitrides and / or carbides and / or carbonitrides which allow, especially when the aluminum content is low (0.002% by example), to complete refinement of the austenitic grain during the austenitization treatment performed before quenching. Thus, niobium increases the surface of grain boundaries in steel, and contributes to the same favorable effect as titanium with respect to embrittlement. grain boundaries by unavoidable impurities such as phosphorus, the effect of which is very damaging to the tenacity and resistance to fatigue under corrosion. In addition, extremely fine precipitates of niobium nitrides or carbonitrides contribute to the hardening of the steel by structural hardening. However, the niobium content must not exceed 0.2% or even 0.15%, so that the nitrides or carbonitrides remain very fine, to ensure refinement of the austenitic grain and avoid the formation of cracks or crevices during rolling. hot. For these reasons, the niobium content should not exceed 0.2%, better still 0.15%. The aluminum content must be between 0.002 and 0.050%.
L'aluminium peut être ajouté pour parachever la désoxydation de l'acier et obtenir des teneurs en oxygène aussi basses que possible, et en tout cas inférieures à 0,0020% dans l'acier selon l'invention. De plus, combiné avec l'azote, l'aluminium contribue à raffinement du grain par la formation de nitrures submicroscopiques. Pour assurer ces deux fonctions, une teneur en aluminium qui n'est pas inférieure à 0,002% est exigée. Au contraire, une teneur en aluminium excédant 0,05% peut conduire à la présence de grosses inclusions isolées ou à des aluminates plus fins, mais durs et anguleux, sous forme de longs chapelets, dommageables à la durée de vie en fatigue dans l'air et à la propreté de l'acier. C'est pourquoi la teneur en aluminium ne doit pas excéder 0,05%.Aluminum can be added to complete the deoxidation of the steel and obtain oxygen levels as low as possible, and in any case less than 0.0020% in the steel according to the invention. In addition, combined with nitrogen, aluminum contributes to refinement of the grain by the formation of submicroscopic nitrides. To ensure these two functions, an aluminum content of not less than 0.002% is required. On the contrary, an aluminum content exceeding 0.05% can lead to the presence of large isolated inclusions or to finer but hard and angular aluminates, in the form of long strings, damaging to the fatigue life in the air and cleanliness of the steel. Therefore, the aluminum content must not exceed 0.05%.
La teneur en phosphore doit être comprise entre des traces et 0,015%. Le phosphore est une impureté inévitable dans l'acier. Pendant un traitement de trempe et de revenu, il co-ségrége avec des éléments tels que le chrome ou le manganèse aux anciens joints de grains austénitiques. Il en résulte une réduction de la cohésion des joints de grains et une fragilisation intergranulaire très dommageable à la ténacité et à la résistance à la fatigue dans l'air. Ces effets sont même encore plus dommageables pour les hautes résistances à la traction et dureté exigées pour les aciers selon l'invention. Dans le but d'obtenir simultanément une haute résistance à la traction et une haute dureté de l'acier à ressorts et une bonne résistance à la fatigue dans l'air et à la fatigue sous corrosion, la teneur en phosphore doit être aussi basse que possible et ne doit pas excéder 0,015%, de préférence 0,010%. La teneur en soufre est comprise entre des traces et 0,015%. Le soufre est une impureté inévitable dans les aciers. Sa teneur doit être aussi basse que possible, entre des traces et 0,015%, et de préférence au maximum de 0,010%. On veut ainsi éviter la présence de sulfures défavorables à la résistance à la fatigue sous corrosion et à la résistance à la fatigue dans l'air, pour les hautes valeurs de résistance et de dureté de l'acier selon l'invention.The phosphorus content must be between traces and 0.015%. Phosphorus is an inevitable impurity in steel. During tempering and tempering treatment, it co-segregates with elements such as chromium or manganese with the former austenitic grain boundaries. This results in a reduction of the cohesion of the grain boundaries and an intergranular embrittlement which is very damaging to the tenacity and to the resistance to fatigue in the air. These effects are even more damaging to the high tensile strengths and hardness required for the steels according to the invention. In order to simultaneously obtain a high tensile strength and a high hardness of the spring steel and a good resistance to fatigue in the air and fatigue under corrosion, the phosphorus content must be as low as possible and should not exceed 0.015%, preferably 0.010%. The sulfur content is between traces and 0.015%. Sulfur is an inevitable impurity in steels. Its content should be as low as possible, between traces and 0.015%, and preferably not more than 0.010%. It is thus desired to avoid the presence of sulfides that are unfavorable to the resistance to fatigue under corrosion and to the resistance to fatigue in the air, for the high values of strength and hardness of the steel according to the invention.
La teneur en oxygène doit être comprise entre des traces et 0,0020%. L'oxygène est aussi une impureté inévitable dans les aciers. Combiné avec des éléments désoxydants, l'oxygène peut conduire à l'apparition d'inclusions grossières, isolées, très dures et anguleuses, ou à des inclusions plus fines mais sous forme de longs chapelets qui sont très dommageables à la résistance à la fatigue dans l'air. Ces effets sont encore plus dommageables aux valeurs élevées de résistance à la traction et de dureté des aciers selon l'invention. Pour ces raisons, afin d'assurer un bon compromis entre de hautes résistance à la traction et dureté et de hautes résistances à la fatigue dans l'air et à la fatigue sous corrosion pour l'acier selon l'invention, la teneur en oxygène ne doit pas excéder 0,0020%.The oxygen content must be between traces and 0.0020%. Oxygen is also an inevitable impurity in steels. Combined with deoxidizing elements, oxygen can lead to the appearance of coarse inclusions, isolated, very hard and angular, or to thinner inclusions but in the form of long chains which are very damaging to the fatigue resistance in the air. These effects are even more damaging to the high values of tensile strength and hardness of the steels according to the invention. For these reasons, in order to ensure a good compromise between high tensile strength and hardness and high resistance to fatigue in the air and fatigue under corrosion for the steel according to the invention, the oxygen content must not exceed 0.0020%.
La teneur en azote doit être comprise entre 0,0020 et 0,0110%. L'azote doit être contrôlé dans cette gamme de manière à former, en combinaison avec le titane, le niobium, l'aluminium ou le vanadium de très fins nitrures, carbures ou carbonitrures submicroscopiques en nombre suffisant, permettant un affinage du grain. Ainsi, à cet effet, la teneur minimale en azote doit être de 0,0020%. Sa teneur ne doit pas excéder 0,0110% de manière à éviter la formation de nitrures ou carbonitrures de titane grossiers et durs plus grands que 20μm, observés à 1 ,5mm + 0,5mm de la surface des barres ou des fils machines utilisés pour la fabrication des ressorts. Cet emplacement est le lieu qui est le plus critique en ce qui concerne la sollicitation en fatigue des ressorts. De fait, de tels nitrures ou carbonitrures de grande taille sont très défavorables à la résistance à la fatigue dans l'air pour les valeurs élevées de résistance et de dureté des aciers selon l'invention, compte tenu du fait que pendant les essais de fatigue dans l'air, la rupture des ressorts survient à l'emplacement de telles grosses inclusions précisément situées au voisinage de la surface des ressorts comme mentionné, lorsque ces inclusions sont présentes.The nitrogen content must be between 0.0020 and 0.0110%. The nitrogen must be controlled in this range so as to form, in combination with titanium, niobium, aluminum or vanadium very fine nitrides, carbides or carbonitrides submicroscopic sufficient, allowing a grain refinement. Thus, for this purpose, the minimum nitrogen content should be 0.0020%. Its content must not exceed 0,0110% so as to avoid the formation of coarse and hard titanium nitrides or carbonitrides larger than 20 μm, observed at 1.5 mm + 0.5 mm from the surface of the bars or wire rods used to the manufacture of springs. This location is the most critical location for fatigue loading of springs. In fact, such nitrides or carbonitrides of large size are very unfavorable to the resistance to fatigue in the air for the high values of strength and hardness of the steels according to the invention, given that during fatigue tests in the air, spring break occurs at the location of such large inclusions precisely located in the vicinity of the surface of the springs as mentioned, when these inclusions are present.
Pour estimer la taille des nitrures et carbonitrures de titane, on considère les inclusions comme des carrés et on pose que leur taille est égale à la racine carrée de leur surface.To estimate the size of titanium nitrides and carbonitrides, inclusions are considered squares and their size is equal to the square root of their surface.
On va à présent décrire un procédé de fabrication de ressorts selon l'invention.A method of manufacturing springs according to the invention will now be described.
Un exemple non limitatif de procédé d'élaboration d'un acier conforme à l'invention est le suivant. L'acier liquide est produit soit dans un convertisseur, soit dans un four électrique, puis subit un traitement de métallurgie en poche pendant lequel les additions d'éléments d'alliage et la désoxydation sont exécutés, et en général toutes les opérations de métallurgie secondaire permettant d'obtenir un acier ayant la composition selon l'invention et évitant la formation de sulfure complexes ou de « carbonitrosulfures » d'éléments tels que le titane et/ou le niobium et/ou le vanadium. Pour éviter la formation de tels précipités grossiers pendant l'élaboration, les inventeurs ont découvert, de manière inattendue, que les teneurs des différents éléments, en particulier celles du titane, de l'azote, du vanadium et du soufre, doivent être soigneusement contrôlées dans les limites précitées. Après l'élaboration qui vient d'être décrite, l'acier est ensuite coulé, soit par coulée continue sous forme de blooms ou de billettes, soit sous forme de lingots. Mais pour éviter complètement ou autant que possible la formation de nitrures ou carbonitrures de titane grossiers pendant et après la solidification de ces produits, on a trouvé que la vitesse de refroidissement moyenne de ces produits (blooms, billettes ou lingots) doit être réglée de manière à être égale à 0,3°C/s ou davantage entre 1450 et 13000C. Quant on opère dans ces conditions pendant l'étape de solidification et de refroidissement, on observe de manière inattendue que la taille des plus gros nitrures ou carbonitrures de Ti observés sur les ressorts est toujours inférieure à 20 μm. On parlera plus loin de la situation et de la taille de ces précipités de titane.A non-limiting example of a process for producing a steel according to the invention is as follows. The liquid steel is produced either in a converter or in an electric furnace and then undergoes a pocket metallurgy treatment during which alloying element additions and deoxidation are performed, and in general all secondary metallurgy operations. to obtain a steel having the composition according to the invention and avoiding the formation of complex sulfides or "carbonitrosulfides" of elements such as titanium and / or niobium and / or vanadium. In order to avoid the formation of such coarse precipitates during production, the inventors unexpectedly discovered that the contents of the various elements, in particular those of titanium, nitrogen, vanadium and sulfur, must be carefully controlled. within the aforementioned limits. After the development which has just been described, the steel is then cast, either by continuous casting in the form of blooms or billets, or in the form of ingots. But to avoid completely or as much as possible the formation of coarse titanium nitrides or carbonitrides during and after the solidification of these products, it has been found that the average cooling rate of these products (blooms, billets or ingots) must be regulated in such a way that to be equal to 0.3 ° C / s or more between 1450 and 1300 0 C. When operating under these conditions during the solidification and cooling step, it is unexpectedly observed that the size of the largest nitrides or carbonitrides of Ti observed on the springs is always less than 20 microns. We will talk further about the situation and the size of these titanium precipitates.
Après leur passage à la température ambiante, les produits ayant la composition précise selon l'invention (blooms, billettes ou lingots) sont ensuite réchauffés et laminés entre 1200 et 8000C sous forme de fils machine, ou de barres en une séquence unique ou double de chauffage et de laminage. De manière à obtenir les propriétés de l'acier spécifiques de l'invention, les barres, les fils, les lopins, ou même les ressorts produits à partir de ces barres ou fils machines, sont ensuite soumis à un traitement de trempe à l'eau, de trempe polymère ou de trempe à l'huile après une austénitisation dans une gamme de températures de 850 à 10000C1 de manière à obtenir un grain austénitique fin tel qu'il n'y ait pas de grains plus grossiers que 9 sur l'échelle ASTM de taille du grain. Ce traitement de trempe est ensuite suivi par un traitement de revenu exécuté spécifiquement entre 300 et 55O0C, permettant d'obtenir les hauts niveaux de la résistance à la traction et de la dureté de l'acier exigés, et d'éviter d'une part une microstructure qui conduirait à une fragilité au revenu, et d'autre part une présence trop élevée d'austénite résiduelle. On a trouvé qu'une fragilisation au revenu et une présence trop forte d'austénite résiduelle sont extrêmement dommageables à la résistance à la fatigue sous corrosion de l'acier selon l'invention. Dans le cas où les ressorts sont fabriqués à partir de barres non traitées thermiquement ou à partir de fils machines ou de lopins issus de telles barres, les traitements susmentionnés (trempe et revenu) doivent être exécutés sur les ressorts eux-mêmes dans les conditions qui ont été dites. Dans le cas où les ressorts sont fabriqués par formage à froid, ces traitements thermiques peuvent être conduits sur les barres, ou sur les fils machines ou les lopins issus de ces barres avant la fabrication du ressort.After their passage at ambient temperature, the products having the precise composition according to the invention (blooms, billets or ingots) are then heated and rolled between 1200 and 800 0 C in the form of son son, or bars in a single or double sequence of heating and rolling. In order to obtain the properties of the specific steel of the invention, the bars, the wires, the plots, or even the springs produced from these bars or machine wires, are then subjected to a quenching treatment at the same time. water, polymeric quenching or oil quenching after austenitization in a temperature range of 850 to 1000 0 C 1 so as to obtain a fine austenitic grain such that there are no grains coarser than 9 on the ASTM grain size scale. This quenching treatment is then followed by a treatment of income executed specifically between 300 and 55O 0 C, to obtain the high levels of the required tensile strength and hardness of the steel, and to avoid on the one hand a microstructure that would lead to income fragility, and on the other hand an excessively high presence of residual austenite. It has been found that an embrittlement to the income and an excessive presence of residual austenite are extremely damaging to the resistance to corrosion fatigue of the steel according to the invention. Where the springs are made from untreated heat bars or from machine wires or slugs from such bars, the above mentioned treatments (quenching and tempering) shall be carried out on the springs themselves under the conditions which have been said. In the case where the springs are manufactured by cold forming, these heat treatments can be conducted on the bars, or on the machine wires or slugs from these bars before the spring is made.
Il est bien connu que la dureté d'un acier dépend non seulement de sa composition, mais aussi de la température du revenu auquel il a été soumis. Il doit être entendu que pour toutes les compositions de l'invention, il est possible de trouver des températures de revenu dans la gamme industrielle de 300- 5500C permettant d'obtenir la dureté minimale de 55HRC visée.It is well known that the hardness of a steel depends not only on its composition, but also on the temperature of the income to which it has been subjected. It should be understood that for all compositions of the invention, it is possible to find tempering temperatures in the industrial range of 300-550 ° C to obtain the minimum hardness of 55HRC referred.
Les nitrures et carbonitrures étant très durs, leur taille telle que définie précédemment n'évolue pratiquement pas lors des étapes de la transformation de l'acier. Il est donc sans importance qu'elle soit mesurée sur le demi-produit (barre, fil machine ou lopin) qui va servir à fabriquer le ressort ou sur le ressort lui-même. L'invention permet d'obtenir des aciers à ressorts capables de concilier une dureté et une résistance à la traction élevées et améliorées par rapport à l'art antérieur, en même temps que des propriétés en fatigue dans l'air et une résistance à l'avachissement améliorées, des propriétés en fatigue sous corrosion au moins équivalentes à celles des aciers connus pour cet usage, voire même meilleures, et une moindre sensibilité aux concentrations de contraintes produites par les défauts de surface pouvant survenir lors de la fabrication du ressort, grâce à une addition d'éléments de microalliage, une diminution des éléments résiduels et un contrôle de l'analyse et de la filière de production de l'acier.Nitrides and carbonitrides being very hard, their size as defined above hardly evolves during the stages of steel processing. It is therefore irrelevant whether it is measured on the half-product (bar, wire rod or billet) which will be used to manufacture the spring or the spring itself. The invention makes it possible to obtain spring steels capable of reconciling a high and improved hardness and tensile strength with respect to the prior art, together with fatigue properties in the air and resistance to fatigue. improved wear properties, corrosion-resistant properties at least equivalent to those of the steels known for this use, or even better, and less sensitivity to the stress concentrations produced by the surface defects that may occur during the manufacture of the spring, thanks to addition of microalloy elements, a reduction of residual elements and a control of the analysis and production chain of the steel.
L'invention va à présent être illustrée au moyen d'exemples et d'exemples de référence. Le tableau 1 montre les compositions d'acier selon l'invention et d'aciers de référence. Le carbone équivalent Ceq est donné par la formule suivante :The invention will now be illustrated by way of examples and reference examples. Table 1 shows the steel compositions according to the invention and reference steels. The equivalent carbon Ceq is given by the following formula:
Ceq = [C] + 0,12 [Si]+ 0,17 [Mn] - 0,1 [Ni] + 0,13[Cr] - 0,24 [V] où [C], [Si], [Mn], [Ni], [Cr] et [V] représentent la teneur de chaque élément en pourcentages pondéraux.Ceq = [C] + 0.12 [Si] + 0.17 [Mn] - 0.1 [Ni] + 0.13 [Cr] - 0.24 [V] where [C], [Si], [ Mn], [Ni], [Cr] and [V] represent the content of each element in percentages by weight.
Figure imgf000016_0001
Figure imgf000016_0001
Tableau 1 : Compositions chimiques des aciers testés (en%) Le tableau 2 montre les valeurs de dureté obtenues pour des aciers selon l'invention et des aciers de référence, en fonction de la température de revenu qui leur a été appliquée.Table 1: Chemical compositions of the steels tested (in%) Table 2 shows the hardness values obtained for steels according to the invention and reference steels, as a function of the tempering temperature applied to them.
Figure imgf000017_0001
Figure imgf000017_0001
Tableau 2 : Dureté et résistance à la traction en fonction de la température de revenu.Table 2: Hardness and tensile strength as a function of the tempering temperature.
Le tableau 3 montre la taille maximale des inclusions de nitrures ou carbonitrures de titane observées à 1 ,5mm de la surface d'aciers selon l'invention et d'aciers de référence, tel que définis précédemment. On a également reporté les teneurs en titane des divers aciers.Table 3 shows the maximum size of titanium nitride or carbonitride inclusions observed at 1.5mm of the surface of steels according to the invention and of reference steels, as defined above. The titanium contents of the various steels have also been reported.
La taille maximale des inclusions de nitrures ou carbonitrures de titane est déterminée comme suit. Sur une section de barre ou de fil machine provenant d'une coulée d'acier donnée, une surface de 100mm2 est examinée à un emplacement situé à 1 ,5mm + 0,5mm sous la surface de la barre ou du fil machine. Après ces observations, la taille de l'inclusion de nitrure ou carbonitrure de titane ayant la plus grande surface est déterminée en considérant que les inclusions sont des carrés et que la taille de chacune de ces inclusions, y compris l'inclusion ayant la plus grande surface, est égale à la racine carrée de cette surface. Toutes les inclusions sont observées sur une coupe de barre ou de fil machine pour ressorts, les observations étant exécutées sur 100mm2 de cette section. La coulée d'acier est conforme à l'invention lorsque la taille maximale des inclusions susmentionnées observées sur 100mm2 à 1 ,5mm + 0,5mm sous la surface est inférieure à 20μm. Les résultats correspondants obtenus sur des aciers selon l'invention et des aciers de référence sont donnés dans le tableau 3. En ce qui concerne les essais de référence 1 et 3, leur teneur en titane est pratiquement nulle et la taille des nitrures et carbonitrures observés est sans objet.The maximum size of inclusions of nitrides or carbonitrides of titanium is determined as follows. On a section of rod or wire rod from a given steel casting, a 100mm 2 surface is examined at a location 1.5mm + 0.5mm below the surface of the bar or wire rod. After these observations, the size of the inclusion of titanium nitride or carbonitride with the largest area is determined by considering that the inclusions are squares and that the size of each of these inclusions, including inclusion having the largest surface, is equal to the square root of this area. All inclusions are observed on a bar or wire rod cut for springs, observations being made on 100mm 2 of this section. The steel casting is in accordance with the invention when the maximum size of the abovementioned inclusions observed over 100mm 2 at 1.5mm + 0.5mm below the surface is less than 20 μm. The corresponding results obtained on steels according to the invention and reference steels are given in Table 3. With regard to the reference tests 1 and 3, their titanium content is practically zero and the size of the nitrides and carbonitrides observed is not applicable.
Figure imgf000018_0001
Figure imgf000018_0001
Tableau 3 : Tailles maximales des plus grosses inclusions de nitrures ou carbonitrures de titane trouvées à 1 ,5mm de la surface des échantillons.Table 3: Maximum sizes of the largest inclusions of titanium nitrides or carbonitrides found at 1.5mm from the surface of the samples.
On n'a pas mesuré la taille des inclusions des aciers de référence 1 et 3, comme leur teneur en Ti était faible et non-conforme à l'invention : le résultat aurait été sans signification.The size of the inclusions of the reference steels 1 and 3 was not measured, as their Ti content was low and not in accordance with the invention: the result would have been meaningless.
Des échantillons pour essais de fatigue ont été prélevés dans des barres, le diamètre final des échantillons d'éprouvettes étant de 11mm. La préparation des échantillons d'essais de fatigue comporte un usinage grossier, une austénitisation, une trempe à l'huile, un revenu, un meulage et un grenaillage. Ces échantillons ont été testés en fatigue-torsion dans l'air. La contrainte de cisaillement appliquée était de 856 + 494MPA et le nombre de cycles jusqu'à la rupture a été compté. Les essais ont été arrêtés après 2.106 cycles si les échantillons n'étaient pas rompus.Samples for fatigue tests were taken from bars, the final diameter of specimen samples being 11mm. Fatigue test sample preparation includes coarse machining, austenitization, oil quenching, tempering, grinding, and shot blasting. These samples were tested for fatigue-torsion in the air. The shear stress applied was 856 + 494MPA and the number of cycles to failure was counted. The tests were stopped after 2.10 6 cycles if the samples were not broken.
Les échantillons pour essai de fatigue sous corrosion ont été prélevés dans des barres, le diamètre final des éprouvettes étant de 11mm. La préparation des échantillons pour essais de fatigue comporte un usinage grossier, une austénitisation, une trempe à l'huile, un revenu, un meulage et un grenaillage. Ces échantillons ont été testés en fatigue sous corrosion, c'est-à-dire qu'une corrosion a été appliquée en même temps qu'une charge en fatigue. La charge en fatigue est une contrainte de cisaillement égale à 856 + 300MPa. La corrosion appliquée était une corrosion cyclique en deux étapes alternées :The samples for fatigue testing under corrosion were taken from bars, the final diameter of the test pieces being 11 mm. Sample preparation for fatigue testing includes coarse machining, austenitization, oil quenching, tempering, grinding, and shot blasting. These samples were tested for corrosion fatigue, that is, corrosion was applied at the same time as a fatigue load. Load in fatigue is a shear stress equal to 856 + 300MPa. The applied corrosion was cyclic corrosion in two stages alternating:
- une étape étant une étape humide avec la pulvérisation d'une solution saline contenant 5% de NaCI pendant 5 minutes à 35°C ; - une étape étant une étape à sec sans pulvérisation, de durée 30 minutes à une température maintenue à 35°C.a step being a wet step with spraying a saline solution containing 5% NaCl for 5 minutes at 35 ° C; a step being a dry step without spraying, of duration 30 minutes at a temperature maintained at 35 ° C.
Le nombre de cycles jusqu'à la rupture a été considéré comme la durée de vie en fatigue sous corrosion.The number of cycles to failure was considered the fatigue life under corrosion.
La résistance à l'avachissement a été déterminée en utilisant un essai de compression cyclique sur des échantillons cylindriques. Le diamètre des échantillons était de 7mm et leur hauteur de 12mm. Ils ont été prélevés dans les barres d'acier.Moisture resistance was determined using a cyclic compression test on cylindrical samples. The diameter of the samples was 7mm and their height 12mm. They were taken from the steel bars.
La fabrication des échantillons d'essais d'avachissement comportait un usinage grossier, une austénitisation, une trempe à l'huile, un revenu et un meulage fin final. La hauteur de l'échantillon a été mesuré précisément avant le début du test en utilisant un comparateur d'une précision de 1μm. Une précharge a été appliquée de manière à simuler le prétensionnement des ressorts, ce prétensionnement étant une contrainte de compression de 2200MPa.The manufacture of the specimens of chill tests included rough machining, austenitization, oil quenching, tempering and final fine grinding. The height of the sample was measured precisely before the start of the test using a comparator with a precision of 1 μm. A preload was applied to simulate the pretensioning of the springs, this pretensioning being a compressive stress of 2200MPa.
Puis le cycle de charge en fatigue a été appliqué. Cette contrainte était de 1270 + 730 MPa. La perte de hauteur de l'échantillon a été mesurée pendant l'exécution d'un certain nombre de cycles, jusqu'à 1 million. A la fin de l'essai, l'avachissement total a été déterminé par une mesure précise de la hauteur subsistante comparée à la hauteur initiale, la résistance à l'avachissement étant d'autant meilleure que la diminution de hauteur, en pourcentage de la hauteur initiale, était plus faible.Then the fatigue load cycle was applied. This constraint was 1270 + 730 MPa. The loss of sample height was measured during the execution of a number of cycles, up to 1 million. At the end of the test, the total loss was determined by an accurate measurement of the remaining height compared to the initial height, the wear resistance being all the better that the decrease in height, as a percentage of the initial height, was lower.
Les résultats des essais de fatigue, de fatigue sous corrosion et d'avachissement sur les aciers de l'invention et les aciers de référence sont donnés dans le tableau 4.
Figure imgf000020_0001
The results of fatigue, corrosion fatigue and wear tests on the steels of the invention and the reference steels are given in Table 4.
Figure imgf000020_0001
Tableau 4 : Résultats d'essais en fatigue, fatigue sous corrosion et avachissement.Table 4: Results of fatigue tests, fatigue under corrosion and slump.
De ces tableaux, il ressort que les différents aciers de référence sont insatisfaisants, notamment pour les raisons qui suivent.From these tables, it appears that the various reference steels are unsatisfactory, especially for the following reasons.
L'acier de référence 1 a, notamment, une teneur en soufre trop élevée pour réaliser un bon compromis entre la tenue en fatigue dans l'air et la teneur en fatigue sous corrosion. De plus, sa teneur en manganèse est trop élevée, ce qui entraîne des ségrégations dommageables pour l'homogénéité de l'acier et la tenue en fatigue dans l'air.The reference steel 1 has, in particular, a sulfur content too high to achieve a good compromise between the fatigue resistance in the air and the fatigue content under corrosion. In addition, its manganese content is too high, resulting segregations damaging to the homogeneity of the steel and fatigue resistance in the air.
L'acier de référence 2 a une teneur en carbone et un carbone équivalent trop bas pour assurer une dureté élevée. Sa résistance à la traction est trop basse pour une bonne tenue à la fatigue dans l'air.Reference steel 2 has a carbon content and a carbon equivalent that is too low to ensure high hardness. Its tensile strength is too low for good resistance to fatigue in the air.
L'acier de référence 3 a, notamment, une teneur en silicium trop basse pour assurer une bonne résistance à l'avachissement, et aussi une bonne tenue à la fatigue dans l'air. La résistance à l'avachissement est plus élevée pour les aciers de l'invention que pour les aciers de référence, comme le montre la figure 1 , où il est clair que, selon les mesures d'avachissement susmentionnées, les valeurs d'avachissement sont d'au moins 32% inférieures pour le pire cas des aciers de l'invention (acier de l'invention 1) par rapport au meilleur cas des aciers de référence (acier de référence 1). La durée de vie en fatigue dans l'air est nettement plus élevée pour les aciers de l'invention par rapport aux aciers de référence. Cela est dû à l'augmentation de la dureté, comme le montre la figure 2. Mais une augmentation de la dureté n'est pas suffisante. En fait, de façon générale, des aciers de dureté élevée sont d'autant plus sensibles aux défauts, tels que les inclusions et les défauts de surface, que la dureté est plus élevée. Ainsi, les aciers selon l'invention sont moins sensibles aux défauts, en particulier aux grosses inclusions telles que les nitrures ou carbonitrures de titane, compte tenu de ce que l'invention évite l'apparition de telles inclusions de trop grande taille. Comme le montre le tableau 3, les plus grosses inclusions trouvées dans les aciers selon l'invention n'excèdent pas la taille de 14,1μm, alors que des inclusions plus grosses que 20μm se trouvent dans l'acier de référence 2. De plus, la moindre sensibilité aux défauts de surface tels que ceux pouvant survenir lors de la fabrication du ressort ou d'autres opérations lorsqu'on utilise des aciers de l'invention peut être illustrée par des essais de résilience exécutés sur les aciers de l'invention et les aciers de référence ayant subis un traitement thermique et ayant des duretés de 55HRC ou davantage, voir la figure 3. Les valeurs mesurées lors d'essais de résilience Charpy sur les aciers de l'invention (où l'entaille de l'éprouvette simule une concentration de contraintes comme d'autres concentrations de contraintes que l'on peut rencontrer sur des défauts de surface produits lors de la fabrication du ressort ou d'autres opérations) sont plus élevées que celles mesurées sur les aciers de référence. Cela montre que les aciers selon l'invention sont moins sensibles aux concentrations de contraintes sur les défauts que les aciers de référence selon l'art antérieur. On sait qu'une augmentation de la dureté réduit la résistance à la fatigue sous corrosion. Ainsi, il apparaît que les aciers selon l'invention ont l'avantage que leur résistance à la fatigue sous corrosion est plus élevée que celle des aciers de référence selon l'art antérieur, et en particulier pour des duretés supérieures à 55HRC comme le montre la figure 4. Ainsi, l'invention permet d'obtenir une dureté plus élevée avec un bon compromis entre la durée de vie en fatigue dans l'air et une résistance à l'avachissement qui sont fortement accrues, et une durée de vie en fatigue sous corrosion qui est meilleure que celle des aciers de référence selon l'art antérieur. De plus, une moindre sensibilité à de possibles défauts de surface, en particulier ceux générés pendant la fabrication du ressort ou d'autres opérations, est aussi obtenue. The reference steel 3 has, in particular, a silicon content that is too low to ensure good resistance to scumming, and also good resistance to fatigue in the air. The wear resistance is higher for the steels of the invention than for the reference steels, as shown in FIG. 1, where it is clear that, according to the abovementioned abatement measurements, the wear-out values are at least 32% lower for the worst case of the steels of the invention (steel of the invention 1) compared to the best case of the reference steels (reference steel 1). The fatigue life in the air is significantly higher for the steels of the invention compared to the reference steels. This is due to the increase in hardness, as shown in Figure 2. But an increase in hardness is not enough. In fact, in general, steels of high hardness are all the more sensitive to defects, such as inclusions and surface defects, the hardness is higher. Thus, the steels according to the invention are less sensitive to defects, in particular to large inclusions such as titanium nitrides or carbonitrides, in view of the fact that the invention avoids the appearance of such oversized inclusions. As shown in Table 3, the largest inclusions found in the steels according to the invention do not exceed the size of 14.1 μm, whereas inclusions larger than 20 μm are in the reference steel 2. In addition , the slightest sensitivity to surface defects such as those that may occur during the manufacture of the spring or other operations when using steels of the invention can be illustrated by resilience tests performed on the steels of the invention and reference steels heat-treated and having hardnesses of 55HRC or more, see Figure 3. The values measured in Charpy resiliency tests on the steels of the invention (where the notch of the specimen simulates a concentration of stresses as other stress concentrations that may be encountered on surface defects produced during the spring manufacturing or other operations) are higher than those measured on the reference steels. This shows that the steels according to the invention are less sensitive to the concentrations of stress on the defects than the reference steels according to the prior art. It is known that an increase in hardness reduces the resistance to fatigue under corrosion. Thus, it appears that the steels according to the invention have the advantage that their resistance to fatigue under corrosion is higher than that of the reference steels according to the prior art, and in particular for hardnesses greater than 55HRC as shown Thus, the invention makes it possible to obtain a higher hardness with a good compromise between the fatigue life in the air and a resistance to weariness which are greatly increased, and a service life of fatigue under corrosion which is better than that of the reference steel according to the prior art. In addition, less sensitivity to possible surface defects, particularly those generated during spring making or other operations, is also achieved.

Claims

REVENDICATIONS
1. Acier à ressorts à tenue en fatigue élevée à l'air et sous corrosion et à haute résistance à l'avachissement cyclique, de composition, en pourcentages pondéraux : C = 0,45 - 0,70%1. Spring steel with high fatigue resistance in air and under corrosion and with high resistance to cyclic wear, of composition, in percentages by weight: C = 0.45 - 0.70%
Si = 1 ,65 - 2,50%Si = 1.65 - 2.50%
Mn = 0,20 - 0,75%Mn = 0.20 - 0.75%
Cr = 0,60 - 2%Cr = 0.60 - 2%
Ni = 0,15 - 1% Mo = traces - 1 %Ni = 0.15 - 1% Mo = traces - 1%
V = 0,003 - 0,8%V = 0.003 - 0.8%
Cu = 0,10 - 1%Cu = 0.10 - 1%
Ti = 0,020 - 0,2%Ti = 0.020 - 0.2%
Nb = traces - 0,2% Al = 0,002 - 0,050%Nb = traces - 0,2% Al = 0,002 - 0,050%
P = traces - 0,015%P = traces - 0.015%
S = traces - 0,015%S = traces - 0.015%
O = traces - 0,0020%O = traces - 0.0020%
N = 0,0020 - 0,0110% le reste étant du fer et des impuretés résultant de l'élaboration, et dont la teneur en carbone équivalent Ceq, calculée selon la formuleN = 0.0020 - 0.0110%, the rest being iron and impurities resulting from the preparation, and whose equivalent carbon content Ceq, calculated according to the formula
Ceq% = [C%] + 0,12 [Si%]+ 0,17 [Mn%] - 0,1 [Ni%] + 0,13[Cr%] - 0,24 [V%] est comprise entre 0,80 et 1 ,00%, et dont la dureté, après trempe et revenu, est supérieure ou égale à 55HRC.Ceq% = [C%] + 0.12 [Si%] + 0.17 [Mn%] - 0.1 [Ni%] + 0.13 [Cr%] - 0.24 [V%] is between 0.80 and 1.00%, and whose hardness, after quenching and tempering, is greater than or equal to 55HRC.
2. Acier à ressorts selon la revendication 1 , caractérisé en ce que la taille maximale des nitrures ou carbonitrures de Ti observés à 1 ,5 + 0,5mm de la surface d'une barre, ou d'un fil machine, d'un lopin ou d'un ressort sur 100mm2 de la surface de coupe est inférieure ou égale à 20μm, ladite taille étant la racine carrée de la surface des inclusions considérées comme des carrés.2. Spring steel according to claim 1, characterized in that the maximum size of Ti nitrides or carbonitrides observed at 1.5 + 0.5mm from the surface of a bar, or a wire rod, of a lopin or spring on 100mm 2 of the cutting surface is less than or equal to 20μm, said size being the square root of the surface of the inclusions considered as squares.
3. Acier à ressorts selon la revendication 1 ou 2, caractérisé en ce que sa composition est : C = 0,45 - 0,65%3. Spring steel according to claim 1 or 2, characterized in that its composition is: C = 0.45 - 0.65%
Si = 1 ,65 - 2,20%Si = 1, 65 - 2.20%
Mn = 0,20 - 0,65%Mn = 0.20 - 0.65%
Cr = 0,80 - 1 ,7% Ni = 0,15 - 0,80%Cr = 0.80 - 1, 7% Ni = 0.15 - 0.80%
Mo = traces - 0,80%Mo = traces - 0.80%
V = 0,003 - 0,5%V = 0.003 - 0.5%
Cu = 0,10 - 0,90%Cu = 0.10 - 0.90%
Ti = 0,020 - 0,15% Nb = traces - 0,15%Ti = 0.020 - 0.15% Nb = traces - 0.15%
Al = 0,002 - 0,050%Al = 0.002 - 0.050%
P = traces - 0,010%P = traces - 0.010%
S = traces - 0,010%S = traces - 0.010%
O = traces - 0,0020% N = 0,0020 - 0,0110% le reste étant du fer et des impuretés résultant de l'élaboration.O = traces - 0.0020% N = 0.0020 - 0.0110% the remainder being iron and impurities resulting from the preparation.
4. Procédé de fabrication d'un acier à ressorts à tenue en fatigue élevée à l'air et sous corrosion et à haute résistance à l'avachissement cyclique, selon lequel on élabore un acier liquide dans un convertisseur ou un four électrique, on ajuste sa composition, on le coule sous forme de blooms ou de billettes de coulée continue ou de lingots que l'on laisse refroidir à la température ambiante, on le lamine sous forme de barres, de fils machines ou de lopins et on le transforme en ressorts, caractérisé en ce que :4. A method of manufacturing a spring steel with high fatigue resistance in air and under corrosion and with high resistance to cyclic scumming, according to which a liquid steel is produced in a converter or electric furnace; its composition is cast in the form of blooms or continuous casting billets or ingots which are allowed to cool to room temperature, rolled in the form of bars, wire rods or plots and converted into springs characterized in that
- l'acier est du type selon l'une des revendications 1 à 3 ; - on impose aux blooms, billettes ou lingots pendant ou après leur solidification, une vitesse de refroidissement moyenne minimale de 0,3°C/s entre 1450 et 13000C ;the steel is of the type according to one of claims 1 to 3; blooms, billets or ingots are imposed during or after their solidification, a minimum average cooling rate of 0.3 ° C / s between 1450 and 1300 0 C;
- on lamine lesdits blooms, billettes ou lingots entre 1200 et 8000C en un ou deux cycles de réchauffage et laminage ; - et on réalise sur les barres, les fils machines ou les lopins, ou sur les ressorts qui en sont issus, une austénitisation entre 850 et 10000C, suivie par une trempe à l'eau, une trempe polymère ou une trempe à l'huile, et par un revenu à 300-5500C, de manière à conférer à l'acier une dureté supérieure ou égale à 55HRC.these blooms, billets or ingots are laminated between 1200 and 800 ° C. in one or two cycles of reheating and rolling; and on the bars, the machine wires or the plots, or on the springs resulting therefrom, austenitization is carried out between 850 and 1000 ° C., followed by water quenching, polymer quenching or quenching. oil, and by a returned at 300-550 0 C, so as to give the steel a hardness greater than or equal to 55HRC.
5. Ressort, caractérisé en ce qu'il est en un acier selon l'une des revendications 1 à 3. 5. Spring, characterized in that it is a steel according to one of claims 1 to 3.
6. Ressort selon la revendication 5, caractérisé en ce qu'il est en un acier obtenu par le procédé selon la revendication 4. 6. Spring according to claim 5, characterized in that it is a steel obtained by the process according to claim 4.
PCT/FR2006/002700 2005-12-15 2006-12-11 Spring steel, method for producing a spring using said steel and a spring made from such steel WO2007080256A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE602006009705T DE602006009705D1 (en) 2005-12-15 2006-12-11 SPRING STEEL, METHOD FOR PRODUCING A SPRING OF THIS STEEL AND A SPRING OF THIS STEEL
PL06841905T PL1966407T3 (en) 2005-12-15 2006-12-11 Spring steel, method for producing a spring using said steel and a spring made from such steel
CN2006800474270A CN101400818B (en) 2005-12-15 2006-12-11 Spring steel, method for producing a spring using said steel and a spring made from such steel
EP06841905A EP1966407B1 (en) 2005-12-15 2006-12-11 Spring steel, method for producing a spring using said steel and a spring made from such steel
RSP-2009/0515A RS51070B (en) 2005-12-15 2006-12-11 Spring steel, method for producing a spring using said steel and a spring made from such steel
KR1020087017219A KR101048946B1 (en) 2005-12-15 2006-12-11 Spring steel, method for producing spring using same and spring produced therefrom
CA2633153A CA2633153C (en) 2005-12-15 2006-12-11 Steel for springs, process of manufacture for spring using this steel, and spring made from such steel
AT06841905T ATE445026T1 (en) 2005-12-15 2006-12-11 SPRING STEEL, METHOD FOR PRODUCING A SPRING FROM THIS STEEL AND A SPRING FROM THIS STEEL
BRPI0619892A BRPI0619892B1 (en) 2005-12-15 2006-12-11 spring steel, spring steelmaking process and spring steel fabricated with such steel
US12/097,313 US20080308195A1 (en) 2005-12-15 2006-12-11 Steel For Springs, Process Of Manufacture For Spring Using This Steel, And Spring Made From Such Steel
MEP-2009-344A ME01062B (en) 2005-12-15 2006-12-11 Spring steel, method for producing a spring using said steel and a spring made from such steel
NO20082766A NO341748B1 (en) 2005-12-15 2008-06-16 Spring steel, method of making a spring using said steel and a spring made of such steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0512775 2005-12-15
FR0512775A FR2894987B1 (en) 2005-12-15 2005-12-15 SPRING STEEL, AND METHOD OF MANUFACTURING A SPRING USING THE SAME, AND SPRING REALIZED IN SUCH A STEEL

Publications (1)

Publication Number Publication Date
WO2007080256A1 true WO2007080256A1 (en) 2007-07-19

Family

ID=36933407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/002700 WO2007080256A1 (en) 2005-12-15 2006-12-11 Spring steel, method for producing a spring using said steel and a spring made from such steel

Country Status (18)

Country Link
US (1) US20080308195A1 (en)
EP (1) EP1966407B1 (en)
JP (1) JP4869051B2 (en)
KR (1) KR101048946B1 (en)
CN (1) CN101400818B (en)
AT (1) ATE445026T1 (en)
BR (1) BRPI0619892B1 (en)
CA (1) CA2633153C (en)
DE (1) DE602006009705D1 (en)
ES (1) ES2331539T3 (en)
FR (1) FR2894987B1 (en)
ME (1) ME01062B (en)
NO (1) NO341748B1 (en)
PL (1) PL1966407T3 (en)
RS (1) RS51070B (en)
RU (1) RU2397270C2 (en)
SI (1) SI1966407T1 (en)
WO (1) WO2007080256A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062010A2 (en) 2006-11-22 2008-05-29 Novo Nordisk A/S Method for making activated carboxypeptidases
EP2022867A1 (en) * 2007-07-23 2009-02-11 Kabushiki Kaisha Kobe Seiko Sho Spring wire rod excelling in fatigue characteristics

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268604A (en) * 2007-07-20 2011-12-07 株式会社神户制钢所 Steel wire material for spring and its producing method
US8328169B2 (en) * 2009-09-29 2012-12-11 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength
JP5653022B2 (en) * 2009-09-29 2015-01-14 中央発條株式会社 Spring steel and spring with excellent corrosion fatigue strength
CN102151693B (en) * 2010-12-02 2012-01-11 大冶特殊钢股份有限公司 Method for rolling low-hardness small-sized spring steel
JP5711539B2 (en) 2011-01-06 2015-05-07 中央発條株式会社 Spring with excellent corrosion fatigue strength
CN103014533B (en) * 2011-10-19 2015-02-04 宝钢集团新疆八一钢铁有限公司 Technique for prolonging fatigue life of 50CrVA plate spring
KR101353649B1 (en) 2011-12-23 2014-01-20 주식회사 포스코 Wire rod and steel wire having high corrosion resistance, method of manufacturing spring and steel wire for spring
ES2765016T3 (en) * 2012-01-11 2020-06-05 Kobe Steel Ltd Bolt and Bolt Manufacturing Method
CN102735749A (en) * 2012-06-28 2012-10-17 吴江市宏达探伤器材有限公司 Magnetic particle inspection test block and preparation method thereof
JP2015034324A (en) 2013-08-08 2015-02-19 山陽特殊製鋼株式会社 Steel excellent in rolling fatigue life
CN103499595B (en) * 2013-10-17 2016-01-13 武汉钢铁(集团)公司 Spring steel clip foreign material chemical composition microcell method for quantitative measuring
KR101446135B1 (en) 2013-12-26 2014-10-02 주식회사 세아베스틸 Steel for suspension spring with high strength and excellent fatigue and method producing the same
JP6282571B2 (en) * 2014-10-31 2018-02-21 株式会社神戸製鋼所 Manufacturing method of high strength hollow spring steel
CN105112799A (en) * 2015-09-01 2015-12-02 广西南宁智翠科技咨询有限公司 Special spring wire for vehicle engine
CN105178224B (en) * 2015-10-09 2017-05-03 耿志斌 Road and bridge collision avoidance protective device
KR101745192B1 (en) 2015-12-04 2017-06-09 현대자동차주식회사 Ultra high strength spring steel
KR101776462B1 (en) * 2015-12-04 2017-09-20 현대자동차주식회사 Coil spring steel
KR101745196B1 (en) * 2015-12-07 2017-06-09 현대자동차주식회사 Ultra high strength spring steel
KR101776490B1 (en) * 2016-04-15 2017-09-08 현대자동차주식회사 High strength spring steel having excellent corrosion resistance
KR101776491B1 (en) * 2016-04-15 2017-09-20 현대자동차주식회사 High strength spring steel having excellent corrosion resistance
JP6356309B1 (en) * 2016-10-19 2018-07-11 三菱製鋼株式会社 High-strength spring, method for manufacturing the same, steel for high-strength spring, and method for manufacturing the same
DE102017107487A1 (en) 2017-04-07 2018-10-11 Schaeffler Technologies AG & Co. KG Method for producing a torsion bar spring and stabilizer for a chassis of a motor vehicle
US11674193B2 (en) * 2017-05-25 2023-06-13 Sumitomo Electric Industries, Ltd. Canted coil spring and connector
JP6447799B1 (en) * 2017-06-15 2019-01-09 新日鐵住金株式会社 Rolled wire rod for spring steel
CN107550124A (en) * 2017-09-07 2018-01-09 南通通联海绵塑料有限公司 A kind of sponges spring mattress manufacture method
EP3796101A1 (en) * 2019-09-20 2021-03-24 Nivarox-FAR S.A. Hairspring for clock movement
CN114134431B (en) * 2021-05-10 2022-12-30 江阴兴澄特种钢铁有限公司 2000 Mpa-grade high-strength high-toughness high-hardenability spring steel by square billet continuous casting and rolling and manufacturing method thereof
CN113930680B (en) * 2021-09-29 2023-03-17 武汉钢铁有限公司 Low-temperature-resistant high-strength spring flat steel and production method thereof
JP2023120677A (en) 2022-02-18 2023-08-30 日本発條株式会社 Inclusion evaluation method
CN115125450B (en) * 2022-06-29 2023-03-21 浙江伊思灵双第弹簧有限公司 Microalloyed spring and manufacturing process thereof
CN114990451A (en) * 2022-08-05 2022-09-02 山东联美弹簧科技股份有限公司 Microalloyed steel for automobile spring stabilizer bar and preparation method thereof
CN115961215A (en) * 2022-12-09 2023-04-14 铜陵有色金神耐磨材料有限责任公司 High-wear-resistance Cr-Mo steel lining plate for light semi-autogenous mill and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740476A1 (en) * 1995-10-27 1997-04-30 Kobe Steel Ltd SPRING STEEL WITH EXCELLENT FRAGILIZATION RESISTANCE TO HYDROGEN AND FATIGUE
JPH09324219A (en) * 1996-06-05 1997-12-16 Kobe Steel Ltd Production of high strength spring excellent in hydrogen embrittlement resistance
JPH10121201A (en) * 1996-10-14 1998-05-12 Kobe Steel Ltd High strength spring excellent in delayed fracture resistance
JPH10299803A (en) * 1997-04-22 1998-11-13 Kobe Steel Ltd High strength spring favourable in environmental brittleness resistance
EP0943697A1 (en) * 1997-05-12 1999-09-22 Nippon Steel Corporation High-toughness spring steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3474373B2 (en) * 1995-10-27 2003-12-08 株式会社神戸製鋼所 Spring steel with excellent hydrogen embrittlement resistance and fatigue properties
JP3246733B2 (en) * 1999-10-29 2002-01-15 三菱製鋼室蘭特殊鋼株式会社 High strength spring steel
JP4476846B2 (en) * 2005-03-03 2010-06-09 株式会社神戸製鋼所 High strength spring steel with excellent cold workability and quality stability
JP4476863B2 (en) * 2005-04-11 2010-06-09 株式会社神戸製鋼所 Steel wire for cold forming springs with excellent corrosion resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740476A1 (en) * 1995-10-27 1997-04-30 Kobe Steel Ltd SPRING STEEL WITH EXCELLENT FRAGILIZATION RESISTANCE TO HYDROGEN AND FATIGUE
JPH09324219A (en) * 1996-06-05 1997-12-16 Kobe Steel Ltd Production of high strength spring excellent in hydrogen embrittlement resistance
JPH10121201A (en) * 1996-10-14 1998-05-12 Kobe Steel Ltd High strength spring excellent in delayed fracture resistance
JPH10299803A (en) * 1997-04-22 1998-11-13 Kobe Steel Ltd High strength spring favourable in environmental brittleness resistance
EP0943697A1 (en) * 1997-05-12 1999-09-22 Nippon Steel Corporation High-toughness spring steel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 04 31 March 1998 (1998-03-31) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 10 31 August 1998 (1998-08-31) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 02 26 February 1999 (1999-02-26) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062010A2 (en) 2006-11-22 2008-05-29 Novo Nordisk A/S Method for making activated carboxypeptidases
EP2022867A1 (en) * 2007-07-23 2009-02-11 Kabushiki Kaisha Kobe Seiko Sho Spring wire rod excelling in fatigue characteristics
US7901520B2 (en) 2007-07-23 2011-03-08 Kobe Steel, Ltd. Spring wire rod excelling in fatigue characteristics

Also Published As

Publication number Publication date
NO20082766L (en) 2008-07-14
CA2633153A1 (en) 2007-07-19
RS51070B (en) 2010-10-31
US20080308195A1 (en) 2008-12-18
RU2397270C2 (en) 2010-08-20
JP2007224413A (en) 2007-09-06
KR20080090424A (en) 2008-10-08
KR101048946B1 (en) 2011-07-12
FR2894987A1 (en) 2007-06-22
ES2331539T3 (en) 2010-01-07
PL1966407T3 (en) 2010-04-30
ATE445026T1 (en) 2009-10-15
BRPI0619892B1 (en) 2016-06-07
CA2633153C (en) 2013-05-07
EP1966407A1 (en) 2008-09-10
EP1966407B1 (en) 2009-10-07
NO341748B1 (en) 2018-01-15
CN101400818B (en) 2012-08-29
CN101400818A (en) 2009-04-01
JP4869051B2 (en) 2012-02-01
BRPI0619892A2 (en) 2011-10-25
SI1966407T1 (en) 2009-12-31
RU2008128865A (en) 2010-01-20
DE602006009705D1 (en) 2009-11-19
ME01062B (en) 2012-10-20
FR2894987B1 (en) 2008-03-14

Similar Documents

Publication Publication Date Title
EP1966407B1 (en) Spring steel, method for producing a spring using said steel and a spring made from such steel
CA2442299C (en) Steel and steel tube for high-temperature use
CA2607446C (en) Tempered martensitic steel, method of producing a part from said steel and part thus obtained
JP5114689B2 (en) Case-hardened steel and method for producing the same
KR101745224B1 (en) Steel for carburizing
JP5760453B2 (en) Carburized material
EP2164998B1 (en) Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained
FR2942808A1 (en) LOW-ALLOY STEEL WITH HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CRUSHING UNDER SULFIDE STRESS.
FR2933990A1 (en) LOW-COBALT HARDENED CURED MARTENSITIC STEEL, METHOD FOR MANUFACTURING A WORKPIECE THEREFROM, AND PIECE OBTAINED THEREBY
JP5607956B2 (en) Steel for machine structure and friction welding parts suitable for friction welding
FR2990218A1 (en) Hardened microalloyed bainitic steel useful for the production of e.g. automobile parts, comprises carbon, silicon, manganese, sulfur, copper, nickel, chromium, molybdenum, vanadium, iron and incidental impurities
WO2009138586A2 (en) Micro-alloyed steel for hot forging parts having high mechanical characteristics
FR2765890A1 (en) PROCESS FOR MANUFACTURING A MECHANICAL PIECE OF CEMENTED OR CARBONITURATED STEEL AND STEEL FOR MANUFACTURING THE SAME
EP1051531B1 (en) Steel and method for making cleavable mechanical parts
EP2134882B1 (en) Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties
CA2980878C (en) Parts with a bainitic structure having high strength properties and manufacturing process
JP7205112B2 (en) carbonitriding steel
JP5323369B2 (en) Case-hardened steel with excellent machinability and grain coarsening prevention properties
FR2784692A1 (en) Case hardenable low alloy constructional steel, especially for automobile gear wheels, comprises chromium, manganese, nickel, molybdenum, silicon, copper, sulfur, carbon, and aluminum
WO2022253912A1 (en) Hot-formed steel part and manufacturing method
KR20240013186A (en) Steel and a crankshaft made of the steel
MX2008007563A (en) Spring steel, method for producing a spring using said steel and a spring made from such steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680047427.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2633153

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006841905

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/007563

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008128865

Country of ref document: RU

Ref document number: 1020087017219

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12097313

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006841905

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: P-2009/0515

Country of ref document: RS

ENP Entry into the national phase

Ref document number: PI0619892

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080616