JP2015034324A - Steel excellent in rolling fatigue life - Google Patents

Steel excellent in rolling fatigue life Download PDF

Info

Publication number
JP2015034324A
JP2015034324A JP2013165629A JP2013165629A JP2015034324A JP 2015034324 A JP2015034324 A JP 2015034324A JP 2013165629 A JP2013165629 A JP 2013165629A JP 2013165629 A JP2013165629 A JP 2013165629A JP 2015034324 A JP2015034324 A JP 2015034324A
Authority
JP
Japan
Prior art keywords
steel
less
mgo
inclusions
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013165629A
Other languages
Japanese (ja)
Inventor
藤松 威史
Takeshi Fujimatsu
威史 藤松
常陰 典正
Norimasa Tokokage
典正 常陰
一郎 高須
Ichiro Takasu
一郎 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2013165629A priority Critical patent/JP2015034324A/en
Priority to US14/909,795 priority patent/US10060013B2/en
Priority to KR1020167003443A priority patent/KR20160040575A/en
Priority to CN201480043758.1A priority patent/CN105452510B/en
Priority to PCT/JP2014/070936 priority patent/WO2015020169A1/en
Publication of JP2015034324A publication Critical patent/JP2015034324A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races

Abstract

PROBLEM TO BE SOLVED: To provide steel for a machine component which regulates the contents of oxygen, sulfur and Al in the steel, the average composition ratio of an MgO-AlObased oxide and the number ratio of the MgO-AlObased oxide in the total oxides, and has excellent Llife and rolling fatigue life.SOLUTION: In steel excellent in rolling fatigue life, the content of oxygen is 8 ppm or less; the content of sulfur is 0.008% or less; the content of Al is 0.005 to 0.030%; the number of non-metallic inclusions detected in the steel material per 1000 mmwith ultrasonic flaw detection, having the inclusion diameter of 20 μm or more and less than 100 μm, is 12.0 pieces or less; the number of non-metallic inclusions detected in the steel material per 2.5 kg with ultrasonic flaw detection, having the inclusion diameter of 100 μm or more, is 2.0 pieces or less; the mass% ratio MgO/AlOin an MgO-AlObased oxide present in the steel is 0.25 to 1.50; and the number ratio of the MgO-AlObased oxide in the total oxide based inclusions is 70% or more.

Description

本発明は、軸受、ギア、ハブユニット、トロイダル型CVT装置、等速ジョイント、クランクピンなどの優れた転がり疲労寿命が要求される、表面硬さを58HRC以上に硬化させて使用される機械部品や装置として適用される鋼に関するものである。   The present invention relates to a mechanical component used for curing a surface hardness of 58 HRC or more, such as a bearing, a gear, a hub unit, a toroidal type CVT device, a constant velocity joint, a crankpin, etc. The present invention relates to steel applied as a device.

近年、各種機械装置の高性能化によって、転がり疲労寿命が求められる機械部品や装置の使用環境は過酷化している。それに伴い、これらの部品や装置の寿命向上ならびに信頼性向上に対する要求が高まっている。このような要求に対し、鋼材面の対策としては、鋼成分の適正化や転がり疲労寿命に有害な不純物元素の低減が行われており、寿命の向上ならびに信頼性の向上が図られている。   In recent years, due to the improvement in performance of various mechanical devices, the use environment of mechanical parts and devices that require a rolling fatigue life has become severe. Along with this, there are increasing demands for improving the life and reliability of these components and devices. In response to such demands, measures for steel surfaces include optimization of steel components and reduction of impurity elements that are harmful to rolling fatigue life, thereby improving life and improving reliability.

鋼組成に含有の不純物元素のうち、例えば、酸素はアルミナなどの破損の起点となりうる酸化物系介在物を構成する元素である。したがって、特に有害性が高い酸素に関しては、ppmオーダーへの低減が行われている。さらに高い品質が求められる場合には、VAR、ESRなどの特殊溶解によって、さらなる酸素量の低減が行われる場合もある。また、他の不純物元素に関しても、その含有量を0.01質量%オーダーまで低減することによって、それらの悪影響を防止する対策がとられている。   Among the impurity elements contained in the steel composition, for example, oxygen is an element that constitutes oxide inclusions that can be a starting point of damage such as alumina. Therefore, especially oxygen with high toxicity has been reduced to the ppm order. When higher quality is required, the oxygen amount may be further reduced by special dissolution such as VAR and ESR. In addition, measures are taken to prevent adverse effects of other impurity elements by reducing their content to the order of 0.01% by mass.

ところで、鋼中の酸素量が少ない高清浄度鋼は種々提案されている。これらの提案の中で、鋼中の酸化物個数に関して、{(MgO・Al23個数+MgO個数)/全酸化物系介在物個数}の値を0.80以上とする高炭素系高寿命軸受鋼が提案されている(例えば、特許文献1参照)。なお、特許文献1には、MgO、Al23の組成範囲は特に示されておらず、また表示も、MgO−Al23ではなく、化学量論組成であることを示すMgO・Al23と分子式で表記されていることから、質量%で28.3%のMgOと71.7%のAl23からなる化合物として示されている。さらに、アルミナ系とスピネル系との合計個数が全酸化物個数の60%未満である高炭素クロム軸受鋼およびその製造方法が提案されている(例えば、特許文献2参照)。この特許文献2内に限り、アルミナ系とは(MgO)も(SiO2)も3%未満で、かつ(CaO)も(CaO)/((CaO)+(Al23))の比で0.08以下であるものであり、スピネル系とは3%〜20%の範囲の(MgO)に残部が(Al23)である2元系に、15%以内の(CaO)および/または15%以内の(SiO2)が混入する場合があるスピネル型結晶構造のものであるとして定義されている。さらに、鋼中の酸素含有量が10ppm未満であり、かつ、電子ビーム溶融法により浮上させて凝集させた酸化物系介在物の表面露出面積が1グラム当たり20μm2以下である高清浄度軸受用鋼が提案されている(例えば、特許文献3参照。)。一方、本願発明の狙いとする転がり疲労寿命に優れた鋼、すなわち、スラスト型転がり疲労試験にて、L1寿命(同一ロットの試験片を同じ条件で試験した場合に、そのうちの99%の試験片がはく離することなく回転するcycle数)に優れた鋼を安定して提供する際に、L1寿命に影響を及ぼすような20μmを超える非金属介在物の発生は極めて偶発的、かつ、低い確率で発生するので、それらの発生の検出は非常に困難であり、かつ、特許文献3に記載の鋼では、介在物の融解および凝集が起こるため、正確な介在物径や個数を評価することができない。また、従来技術による非金属介在物の評価方法では、被検面積が小さいために鋼材の大体積を検査しようとすると多大な時間を要するため、鋼材の良否を判断することができない。 By the way, various high cleanliness steels with a small amount of oxygen in the steel have been proposed. Among these proposals, regarding the number of oxides in steel, a high carbon-based long life with a value of {(MgO · Al 2 O 3 number + MgO number) / total oxide-based inclusions} is 0.80 or more. Bearing steel has been proposed (see, for example, Patent Document 1). In Patent Document 1, the composition range of MgO and Al 2 O 3 is not particularly shown, and the display is not MgO—Al 2 O 3 but MgO · Al indicating that it is a stoichiometric composition. Since it is expressed by molecular formula as 2 O 3 , it is shown as a compound composed of 28.3% MgO and 71.7% Al 2 O 3 by mass%. Furthermore, a high carbon chromium bearing steel in which the total number of alumina and spinel is less than 60% of the total number of oxides and a method for producing the same have been proposed (for example, see Patent Document 2). As far as this patent document 2 is concerned, alumina is less than 3% of (MgO) and (SiO 2 ), and (CaO) is a ratio of (CaO) / ((CaO) + (Al 2 O 3 )). The spinel system is a binary system (MgO) in the range of 3% to 20% and the balance being (Al 2 O 3 ), and within 15% of (CaO) and / or Alternatively, it is defined as having a spinel crystal structure in which up to 15% of (SiO 2 ) may be mixed. Further, for high cleanliness bearings, the oxygen content in the steel is less than 10 ppm, and the exposed surface area of oxide inclusions floated and aggregated by the electron beam melting method is 20 μm 2 or less per gram. Steel has been proposed (see, for example, Patent Document 3). On the other hand, the steel with excellent rolling fatigue life targeted by the present invention, that is, the L 1 life in the thrust type rolling fatigue test (99% of the tests when the same lot of test pieces are tested under the same conditions) The occurrence of non-metallic inclusions exceeding 20 μm, which affects the L 1 life, is extremely accidental and low in stably providing a steel having an excellent cycle number that can be rotated without peeling. Since it occurs with probability, it is very difficult to detect these occurrences, and in the steel described in Patent Document 3, inclusions are melted and agglomerated, so the accurate inclusion diameter and number should be evaluated. I can't. Further, in the conventional method for evaluating non-metallic inclusions, it is impossible to judge whether the steel material is good or bad because it takes a long time to inspect a large volume of the steel material because the test area is small.

また、最大介在物径が略100μm以下の介在物については極値統計法を適用し、略100μm以上の介在物については探傷周波数を5〜25MHzとした超音波探傷法を適用するなどの両手法を併用した評価方法が提案されている(例えば、特許文献4参照。)。この記載の方法では、最大介在物径が100μm未満である非金属介在物については極値統計法を適用し、100μm以上である非金属介在物については探傷周波数を5〜25MHzとした超音波探傷法を適用するなどの併用による評価方法を提案している。しかしながら、極値統計法は上述と同様に被検面積が小さく、20μm以上、かつ、100μm未満である非金属介在物について見た場合の鋼材の良否を十分に判断できる手法とは言い難い。一方で、探傷周波数を5〜25MHzとした超音波探傷法で検出している介在物径が100μm以上であるため、やはり20μm以上で100μm未満の介在物についての十分な評価が出来ていないことから、L1寿命に優れた鋼を安定して提供できる評価方法とはいい難い。また、さらに100μm以下の介在物について探傷周波数を20〜125MHzとした超音波探傷法により評価することにより、転がり疲労寿命に優れた鋼としての介在物の個数と大きさを規定した鋼が提案されている(例えば、特許文献5参照)。ところで、この特許文献5に記載の方法では、硫黄含有量が0.008質量%以下で、かつ、超音波探傷法により鋼材体積300mm3当たりに検出される介在物径が20μm以上である非金属介在物の個数を300mm3当たりに12個以下であるように規定した、転がり疲労寿命に優れた鋼(スラスト型転がり疲労試験にて、最大ヘルツ応力Pmax=5.3GPaでL10寿命>1.0×107cycleが得られる鋼)およびその評価方法を提案している。ただし、使用中の軸受が計算寿命より極めて早期に破損することに対する信頼性は評価されていないため、早期破損に対する信頼性の目安となるL1寿命(同一ロットの試験片を同じ条件で試験した場合に、そのうちの99%の試験片がはく離することなく回転するcycle数)に優れた鋼を安定して提供できる鋼ではない。 Both methods, such as applying an extreme value statistical method to inclusions having a maximum inclusion diameter of about 100 μm or less, and applying an ultrasonic flaw detection method with a flaw detection frequency of 5 to 25 MHz for inclusions of about 100 μm or more. There has been proposed an evaluation method using the above (see, for example, Patent Document 4). In this method, the extreme value statistical method is applied to nonmetallic inclusions having a maximum inclusion diameter of less than 100 μm, and the flaw detection frequency is set to 5 to 25 MHz for nonmetallic inclusions having a diameter of 100 μm or more. We have proposed an evaluation method using a combination of methods such as applying the law. However, it is difficult to say that the extreme value statistical method can sufficiently judge the quality of a steel material when the non-metallic inclusions having a small test area as described above and having a size of 20 μm or more and less than 100 μm are viewed. On the other hand, since the inclusion diameter detected by the ultrasonic flaw detection method with a flaw detection frequency of 5 to 25 MHz is 100 μm or more, it is still impossible to sufficiently evaluate inclusions of 20 μm or more and less than 100 μm. , hard to say that the evaluation method that can provide an excellent steel L 1 life stability. In addition, steels that define the number and size of inclusions as steels with excellent rolling fatigue life have been proposed by evaluating the inclusions of 100 μm or less by ultrasonic flaw detection with a flaw detection frequency of 20 to 125 MHz. (For example, see Patent Document 5). By the way, in the method described in Patent Document 5, a non-metal having a sulfur content of 0.008% by mass or less and an inclusion diameter detected per 300 mm 3 of steel material volume by an ultrasonic flaw detection method is 20 μm or more. Steel with excellent rolling fatigue life, specified to have 12 or less inclusions per 300 mm 3 (in a thrust type rolling fatigue test, maximum hertz stress P max = 5.3 GPa and L 10 life> 1 Steel with which 0.0 × 10 7 cycle can be obtained) and its evaluation method. However, since the reliability of the bearings in use being damaged very early than the calculated life has not been evaluated, the L 1 life (a test piece of the same lot was tested under the same conditions) as a measure of reliability for early damage. In some cases, 99% of the specimens are not steels that can stably provide a steel having an excellent cycle number that rotates without peeling.

特開平8−3682号公報JP-A-8-3682 特開2006−200027号公報JP 2006-200027 A 特開平6−192790号公報JP-A-6-192790 特開2006−317192号公報JP 2006-317192 A 特開2008−121035号公報JP 2008-121035 A

本発明は、転がり疲労寿命が求められる機械部品における、計算寿命に対して極めて早期の破損を抑制することを目的としている。そこで、発明者らは、その信頼性の目安としてL1寿命(すなわち、同一ロットの試験片を同じ条件で試験した場合に、そのうちの99%の試験片がはく離することなく回転するcycle数)に注目した。このL1寿命については、従来技術では全く評価されていなかった。 An object of the present invention is to suppress damage that is extremely early with respect to the calculated life in a machine part that requires a rolling fatigue life. Therefore, the inventors used the L 1 life as a measure of reliability (that is, when the same lot of test pieces are tested under the same conditions, 99% of the test pieces rotate without peeling). I paid attention to. This L 1 life has not been evaluated at all by the prior art.

そこで、発明者らは、転がり疲労寿命を向上させるための非金属介在物の制御に関し、とりわけ転がり疲労寿命に対して有害度の高い酸化物系非金属介在物の影響を軽減する手段に関して鋭意検討した。その結果、従来技術において、むしろ避ける必要があるとされてきた、鋼中の硬質の酸化物系介在物において、Al23やMgOを含有するものについて、それらの組成比率や個数比率を適切に改質すること、さらに加えて超音波探傷法により一定量あたりの鋼中の非金属介在物個数が規制されたものとすることにより、L1寿命が向上することを見出した。 Therefore, the inventors have conducted intensive studies on the control of non-metallic inclusions for improving rolling fatigue life, and in particular, on means for reducing the influence of oxide-based non-metallic inclusions that are highly harmful to rolling fatigue life. did. As a result, the hard oxide inclusions in steel, which had been necessary to be avoided in the prior art, are appropriate for those containing Al 2 O 3 and MgO in the composition ratio and number ratio. It has been found that the L 1 life can be improved by further modifying the number of non-metallic inclusions in the steel per certain amount by the ultrasonic flaw detection method.

すなわち、転がり疲労寿命が求められる部品に対し、特に計算寿命に対する極く早期のはく離を抑制可能なL1寿命に優れた鋼とするために、鋼中の酸素含有量を質量割合で8ppm以下、硫黄含有量を0.008質量%以下、Al含有量を0.005〜0.030質量%とし、非金属介在物に関して、超音波探傷法により、鋼材の体積1000mm3当りに検出される、介在物の径(以下「介在物径」という。)が20μm以上で100μm未満である、非金属介在物の個数が12.0個以下であり、さらに、超音波探傷法により、鋼材の重量の2.5kg当りに検出される、介在物径が100μm以上である、非金属介在物の個数が2.0個以下であり、かつ、鋼中に存在するMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比を、0.25〜1.50、より好ましくは0.30〜1.30の範囲に規制し、かつMgO−Al23系酸化物の全酸化物系介在物に占める個数比率を70%以上、好ましくは80%以上に規制すれば良いことが分かった。なお、ここで定義するMgO−Al23系非金属介在物には、質量%で15%以下のCaO、および/または質量%で15%以下のSiO2を含有したものを含めて良い。酸素含有量を質量割合で8ppm以下、硫黄含有量を0.008質量%以下とする理由は、酸化物系介在物、ならびに比較的軟質で延伸しやすい硫化物系介在物の大きさと存在の頻度を低減するためである。より好ましくは酸素含有量は質量割合で6ppm以下、硫黄含有量は0.003質量%以下とする。さらに、軟質の介在物に改質させないため、かつ硬質であるものの鋼中で凝集してクラスター状となりやすい純アルミナ(Al23)の生成を抑制するため、Al含有量は0.005〜0.030質量%、より好ましくは0.008〜0.030質量%、さらに好ましくは0.011〜0.030質量%とする必要がある。 That is, in order to make the steel excellent in L 1 life capable of suppressing the very early peeling with respect to the calculated life, particularly for the parts requiring rolling fatigue life, the oxygen content in the steel is 8 ppm or less by mass ratio, Sulfur content is 0.008% by mass or less, Al content is 0.005 to 0.030% by mass, and non-metallic inclusions are detected per 1000 mm 3 volume of steel by ultrasonic flaw detection. The diameter of the object (hereinafter referred to as “inclusion diameter”) is 20 μm or more and less than 100 μm, and the number of non-metallic inclusions is 12.0 or less. The average of MgO—Al 2 O 3 -based oxides present in steel, with the inclusion diameter detected per 5 kg, the inclusion diameter is 100 μm or more, the number of nonmetallic inclusions is 2.0 or less (MgO) / (in composition The weight percent ratio of l 2 O 3), 0.25~1.50, more preferably restricted to a range of 0.30 to 1.30, and total oxide system MgO-Al 2 O 3 based oxide It has been found that the number ratio of inclusions may be regulated to 70% or more, preferably 80% or more. The MgO—Al 2 O 3 -based non-metallic inclusions defined herein may include those containing 15% or less of CaO by mass% and / or 15% or less of SiO 2 by mass%. The reason why the oxygen content is 8 ppm or less by mass and the sulfur content is 0.008 mass% or less is the size and frequency of the presence of oxide inclusions and sulfide inclusions that are relatively soft and easy to stretch. This is to reduce the above. More preferably, the oxygen content is 6 ppm or less by mass and the sulfur content is 0.003 mass% or less. Furthermore, in order not to modify the soft inclusions, and to suppress the formation of pure alumina (Al 2 O 3 ) which is hard but tends to agglomerate and form clusters in the steel, the Al content is 0.005 to 0.005. It is necessary to set it as 0.030 mass%, More preferably, it is 0.008-0.030 mass%, More preferably, it is 0.011-0.030 mass%.

酸化物系介在物の平均組成を規制し、かつ、酸化物系介在物の全酸化物系介在物に占める個数比率を上記の70%以上、好ましくは80%以上に規制した鋼においては、酸化物が高融点を有する組成であるために、鋼の鋳塊を製造する過程において溶鋼中から小径の酸化物が球状に近い形で晶出する。このように球状に近い形で晶出しても、その後に溶鋼中で凝集したクラスター状となり易い純アルミナ(Al23)を抑制しているため、溶鋼が凝固した後の鋳塊内において酸化物系介在物は小径でかつ球状に近い形で分散することになる。 In steels in which the average composition of oxide inclusions is regulated and the number ratio of oxide inclusions to all oxide inclusions is restricted to the above 70% or more, preferably 80% or more, oxidation is not possible. Since the material has a composition having a high melting point, a small-diameter oxide crystallizes in a nearly spherical shape from the molten steel in the process of producing a steel ingot. In this way, even if it is crystallized in a nearly spherical shape, pure alumina (Al 2 O 3 ) that tends to agglomerate in the molten steel afterwards is suppressed, so oxidation in the ingot after the molten steel solidifies. The physical inclusions are dispersed in a small diameter and nearly spherical shape.

さらに、熱間加工で鋳塊を圧延して棒鋼とし、その後、該棒鋼を素材として、さらなる熱間加工や冷間加工により部品素材となる棒鋼や鋼管にあるいは鍛造品にした場合には、酸化物系介在物は熱間あるいは冷間の加工温度域において母相の鋼より著しく硬質な介在物であるので、加工中に母相に追従して変形しにくいため、加工後も比較的球状に近い形状を維持することができる。   Furthermore, if the ingot is rolled into a steel bar by hot working, and then the steel bar is used as a raw material, it will be oxidized into a steel bar or steel pipe as a component material or a forged product by further hot working or cold working. Since inclusions are harder than the parent phase steel in the hot or cold processing temperature range, they are less likely to deform following the parent phase during processing, and therefore remain relatively spherical after processing. A close shape can be maintained.

その後、部品素材となる棒鋼や鋼管は、必要に応じて、例えば、CRFのようなさらなる冷間加工を経た後に、切削加工され、さらに適正な熱処理により、転がり疲れを受ける部品に所望される表面硬さ58HRC以上に調整された後に、機械部品として使用されるが、転がり疲れを受ける部品の転送面下の最大応力作用方向は、部品の素材となった鋼材中の非金属介在物の最小断面となる方向、例えば、比較的に軟質で熱間加工により延伸するような酸化物系介在物や硫化物系介在物においては、圧延方向と垂直な方向とは、必ずしも一致しない場合がある。   After that, the steel bars and pipes used as component materials are subjected to further cold processing such as CRF, if necessary, and then are processed by cutting, and further, the surface desired for the components subjected to rolling fatigue by appropriate heat treatment. After adjusting the hardness to 58HRC or more, it is used as a machine part, but the maximum stress acting direction under the transfer surface of the part subjected to rolling fatigue is the minimum cross section of the non-metallic inclusions in the steel material used as the material of the part. For example, in oxide inclusions and sulfide inclusions that are relatively soft and stretched by hot working, the direction perpendicular to the rolling direction may not always match.

そこで、発明者らは、高温で比較的軟質であり、熱間加工で延伸する酸化物系介在物を含有させた鋼を試験的に溶製し、該鋼の熱間圧延鋼材を素材として、酸化物系介在物の最大断面方向となる圧延方向と一致する面を転送面として、スラスト式の転がり疲労寿命試験を行い、極く短寿命でのはく離に対する信頼性指標としたL1寿命を評価したところ、圧延方向と垂直な方向を転送面とした場合に比べて、L1寿命が低下することを見出した。これは、高温で軟質な酸化物組成を有する介在物は、その融点が低いために、発生頻度は稀であるものの、大型化した介在物が鋼中に残存し、かつ、その介在物の熱間圧延後における最大断面(すなわち、欠陥の大きさとみなせる)となる方向が最大応力作用方向とほぼ一致したためと推測され、通常の部品寿命の指標として評価されるL10寿命(同一ロットの試験片を同じ条件で試験した場合に、そのうちの90%の試験片がはく離することなく回転するcycle数)には現れにくいが、これはL1寿命の評価により明確となったものである。硫化物についても熱間で軟質化しやすい組成の酸化物系介在物と同様に、加工にともなう介在物の延伸によって圧延方向とそれに対して垂直な方向では、介在物の最大断面の大きさに差が生じるため、前記の通り、部品の転送面の取り方によってはL1寿命に劣る場合が起こり得る。 Therefore, the inventors experimentally melted steel containing oxide inclusions that are relatively soft at high temperatures and stretched by hot working, and using the hot rolled steel of the steel as a raw material, Thrust-type rolling fatigue life test is performed using the surface that coincides with the rolling direction, which is the maximum cross-sectional direction of oxide inclusions, as a transfer surface, and the L 1 life is evaluated as a reliability index for debonding with an extremely short life. As a result, it has been found that the L 1 life is reduced as compared with the case where the direction perpendicular to the rolling direction is the transfer surface. This is because inclusions having a soft oxide composition at a high temperature have a low melting point, so the frequency of occurrence is rare, but large inclusions remain in the steel, and the heat of the inclusions. L 10 life (test specimen of the same lot), which is estimated to be because the direction of the maximum cross-section after hot rolling (that is, the size of the defect) is almost coincident with the direction of maximum stress action, and is evaluated as an index of normal part life When the test is performed under the same conditions, 90% of the test pieces are less likely to appear in the number of cycles that rotate without peeling), but this is clarified by the evaluation of the L 1 life. Similarly to oxide inclusions with a composition that tends to soften hot, the difference in maximum cross-section size of inclusions in the rolling direction and in the direction perpendicular to the rolling direction is due to the extension of inclusions during processing. Therefore, as described above, the L 1 life may be inferior depending on the way of taking the transfer surface of the part.

それに対して、発明者らが提案する鋼中で酸化物を形成する酸素の含有量、ならびに硫化物を形成する硫黄の含有量をともに低減し、かつ鋼中の酸化物系介在物が小径でかつ球状に近い形状で分散させた鋼においては、前記の結果とは異なって、圧延方向と一致する面を転送面とするスラスト式の転がり疲労寿命試験におけるL1寿命が改善されていることを見出し、本発明に至ったものである。すなわち、部品の素材となる鋼中の酸化物や硫化物の大きさや存在頻度を十分に低減するとともに、とりわけ転がり疲労寿命に対して有害度の高い鋼中の酸化物系介在物を、小径でかつ球状に近い形状で分散させることにより、部品に加工した場合の転送面が元の素材の圧延方向あるいは延伸方向に対して、如何なる方向に配置されたとしても、常に転がり疲労における最大応力作用方向に対する介在物断面積を最小化することができるため、転がり疲れに対する有害性が軽減され、転がり疲労寿命が向上する。さらに加えて、本願発明は超音波探傷法により、一定量あたりの鋼に含まれる非金属介在物の個数を適切に規制したものとすることにより、極く短寿命でのはく離の指標となるL1寿命に優れた鋼が安定して得られる。 In contrast, the oxygen content forming oxides in the steel proposed by the inventors and the sulfur content forming sulfides are both reduced, and the oxide inclusions in the steel have a small diameter. Further, in the steel dispersed in a shape close to a spherical shape, unlike the above results, the L 1 life in the thrust type rolling fatigue life test in which the surface coincident with the rolling direction is the transfer surface is improved. This is the headline and the present invention. In other words, the size and frequency of oxides and sulfides in the steel used as the component material are sufficiently reduced, and oxide inclusions in steel that are particularly harmful to rolling fatigue life are reduced in diameter. In addition, by dispersing in a nearly spherical shape, the maximum stress acting direction in rolling fatigue is always maintained regardless of the direction in which the transfer surface when processed into a part is arranged with respect to the rolling direction or stretching direction of the original material. Since the inclusion cross-sectional area with respect to can be minimized, the harmfulness to rolling fatigue is reduced, and the rolling fatigue life is improved. In addition, the present invention provides an index of separation with an extremely short life by appropriately regulating the number of non-metallic inclusions contained in steel per fixed amount by ultrasonic flaw detection. 1 Steel with excellent life can be obtained stably.

本発明が解決しようとする課題に対して、特許文献1〜5に記載の鋼はいずれもL1寿命が評価されておらず、部品の計算寿命に対して極く早期のはく離に対する信頼性が保証された鋼ではない。また、特許文献1に記載の鋼では、鋼中の酸化物個数に関して、{(MgO・Al23+MgO個数)/全酸化物系介在物個数}の値を0.80以上に規制しているが、酸化物組成をMgO・Al23ないしMgOの化学量論組成を有する酸化物主体に改質することが必須条件であり、そのためには精錬過程におけるMg添加、および鋼材中のMg含有が必須となるため、製造コストアップを招き、汎用性に劣っている。また、酸素含有量や硫黄含有量の規制についても十分とは言えず、鋼中の非金属介在物の含有頻度も評価していないため、L1寿命に優れた鋼を安定して提供できる技術ではない。 In order to solve the problem to be solved by the present invention, all the steels described in Patent Documents 1 to 5 have not been evaluated for the L 1 life, and have reliability against extremely early peeling with respect to the calculated life of the component. Not guaranteed steel. In the steel described in Patent Document 1, the value of {(MgO · Al 2 O 3 + MgO number) / total number of oxide inclusions} is regulated to 0.80 or more with respect to the number of oxides in the steel. However, it is an essential condition to modify the oxide composition to be mainly oxide having a stoichiometric composition of MgO.Al 2 O 3 or MgO. For this purpose, Mg addition in the refining process and Mg in the steel Since the inclusion is essential, the manufacturing cost is increased and the versatility is poor. Further, oxygen content and not be said also sufficient for regulation of sulfur content, since the content frequently non-metallic inclusions in the steel be not evaluated, stable technology that can provide a steel excellent in L 1 life is not.

また、引用文献2に記載の鋼では、アルミナ系(Al23主体)とスピネル系(MgO−Al23系)との合計個数が全酸化物個数の60%未満であるように規制して介在物組成の軟質化制御を行うことによって、L10寿命を向上させているのに対し、本発明はMgO−Al23系酸化物の合計個数が全酸化物個数の70%以上であるように規制することで極く短寿命でのはく離に対する信頼性の指標としたL1寿命を向上させたものであり、技術的思想が全く異なっている。 Further, in the steel described in Cited Document 2, the total number of alumina (Al 2 O 3 main) and spinel (MgO—Al 2 O 3 ) is regulated to be less than 60% of the total number of oxides. by performing the softening control of composition of inclusions and, while thereby improving the L 10 life, the present invention is MgO-Al 2 O 3 system total number of oxide at least 70% of the total oxide quantity The L 1 life as an index of reliability against peeling at an extremely short life is improved by regulating so that the technical idea is completely different.

また、特許文献3〜5はいずれも鋼中の硬質の酸化物系介在物における、その化学組成や個数比率の改質に関して何らの示唆もされていない。また、特許文献3に記載の鋼では、酸化物系介在物の表面露出面積を評価するための鋼試料が1〜5g程度と少なく、また、電子ビーム溶解法によって介在物の融解および凝集が起こるため、本願発明の目的である極く短寿命でのはく離に対する信頼性を向上させるのに必要な一定量あたりの鋼の清浄度を評価する指標としては十分なものとは言えない。   In addition, Patent Documents 3 to 5 do not provide any suggestion regarding modification of the chemical composition or the number ratio of hard oxide inclusions in steel. Moreover, in the steel of patent document 3, there are few steel samples for evaluating the surface exposure area of oxide inclusions at about 1-5 g, and melting and aggregation of inclusions occur by the electron beam melting method. Therefore, it cannot be said that it is sufficient as an index for evaluating the cleanliness of steel per a certain amount necessary for improving the reliability with respect to peeling with an extremely short life, which is the object of the present invention.

また、特許文献4に記載の鋼では、20μm以上、かつ、100μm未満である非金属介在物についての十分な評価が出来ていないことから、また、特許文献5に記載の鋼では、介在物径が20μm以上である非金属介在物の個数を300mm3当たりに12個以下であるように規定しているが、その規制は本願発明に照らして十分なものではないことから、いずれもL1寿命に優れた鋼を安定して提供できる方法とは言い難い。 Moreover, in the steel of patent document 4, since sufficient evaluation about the nonmetallic inclusion which is 20 micrometers or more and less than 100 micrometers cannot be performed, in the steel of patent document 5, the diameter of the inclusion The number of non-metallic inclusions having a thickness of 20 μm or more is specified to be 12 or less per 300 mm 3 , but the regulation is not sufficient in light of the present invention, so that both are L 1 lifetimes It is hard to say that it is a method that can stably provide excellent steel.

本発明は、このような従来の問題を解決するためになされたもので、本発明が解決しようとする課題は、鋼中の酸素含有量、硫黄含有量、およびAl含有量を規制するとともに、MgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比、MgO−Al23系酸化物が全酸化物に占める個数比率、ならびに鋼中の一定量あたりの20μm以上、かつ、100μm未満である非金属介在物個数、および鋼中の一定量あたりの100μm以上の非金属介在物個数を規制することにより、極めて早期はく離の指標であるL1寿命の向上を図って、転がり疲労寿命に優れた機械部品用の鋼を提供することである。 The present invention was made to solve such conventional problems, and the problems to be solved by the present invention are to regulate the oxygen content, sulfur content, and Al content in steel, weight% ratio of the average composition of MgO-Al 2 O 3 based oxide (MgO) / (Al 2 O 3), MgO-Al 2 O 3 based oxide number ratio of total oxides, as well as in steel By regulating the number of non-metallic inclusions of 20 μm or more per fixed quantity and less than 100 μm and the number of non-metallic inclusions of 100 μm or more per fixed quantity in steel, L 1 which is an index of very early peeling. The purpose is to provide a steel for machine parts having an excellent rolling fatigue life by improving the life.

上記の課題を解決するための手段は、第1の手段では、表面硬さを58HRC以上とする機械部品に用いる鋼に係るものである。すなわち、この鋼の鋼中の酸素含有量が質量割合で8ppm以下、硫黄含有量が0.008質量%以下、Al含有量が0.005〜0.030質量%であって、超音波探傷法により、鋼材の体積1000mm3当りに検出される、介在物の径(以下「介在物径」という。)が20μm以上で100μm未満である、非金属介在物の個数が12.0個以下である。さらに、超音波探傷法により、鋼材の重量の2.5kg当りに検出される、介在物径が100μm以上である、非金属介在物の個数が2.0個以下であり、かつ、鋼中に存在するMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比を0.25〜1.50の範囲に規制し、かつ、MgO−Al23系酸化物の全酸化物系介在物に占める個数比率を70%以上としたことからなる、転がり疲労寿命に優れた鋼である。 Means for solving the above-mentioned problem relates to steel used in a machine part having a surface hardness of 58 HRC or more in the first means. That is, the oxygen content in the steel of this steel is 8 ppm or less, the sulfur content is 0.008 mass% or less, the Al content is 0.005 to 0.030 mass%, and an ultrasonic flaw detection method. The number of inclusions (hereinafter referred to as “inclusion diameter”) detected per volume of 1000 mm 3 of the steel material is 20 μm or more and less than 100 μm, and the number of nonmetallic inclusions is 12.0 or less. . Furthermore, the number of non-metallic inclusions with a inclusion diameter of 100 μm or more, which is detected per 2.5 kg of the weight of the steel material by an ultrasonic flaw detection method, is 2.0 or less, and The mass% ratio of (MgO) / (Al 2 O 3 ) in the average composition of the MgO—Al 2 O 3 oxide present is regulated to a range of 0.25 to 1.50, and MgO—Al 2 O comprising a number ratio of total oxide inclusions of 3 based oxide because it was 70% or more, an excellent steel rolling fatigue life.

第2の手段では、表面硬さを58HRC以上とする機械部品に用いる鋼に係るものである。すなわち、この鋼の鋼中の酸素含有量が質量割合で6ppm以下、硫黄含有量が0.003質量%以下、Al含有量が0.005〜0.030質量%であって、超音波探傷法により、鋼材の体積1000mm3当りに検出される、介在物径が20μm以上で100μm未満である、非金属介在物の個数が9.0個以下である。さらに、超音波探傷法により、鋼材の重量の2.5kg当りに検出される、介在物径が100μm以上である、非金属介在物の個数が1.5個以下であり、かつ、鋼中に存在するMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比を0.25〜1.50の範囲に規制し、かつ、MgO−Al23系酸化物の全酸化物系介在物に占める個数比率を70%以上としたことからなる、転がり疲労寿命に優れた鋼である。 The second means relates to steel used for machine parts having a surface hardness of 58 HRC or more. That is, the oxygen content in the steel of this steel is 6 ppm or less, the sulfur content is 0.003 mass% or less, the Al content is 0.005 to 0.030 mass%, and an ultrasonic flaw detection method. Thus, the number of inclusions with a inclusion diameter of 20 μm or more and less than 100 μm detected per 1000 mm 3 of the steel material is 9.0 or less. Furthermore, by ultrasonic testing, the number of inclusions having a diameter of 100 μm or more, which is detected per 2.5 kg of the steel material, is 1.5 or less, and in the steel The mass% ratio of (MgO) / (Al 2 O 3 ) in the average composition of the MgO—Al 2 O 3 oxide present is regulated to a range of 0.25 to 1.50, and MgO—Al 2 O comprising a number ratio of total oxide inclusions of 3 based oxide because it was 70% or more, an excellent steel rolling fatigue life.

第3の手段では、介在物径が20μm以上で100μm未満である非金属介在物の個数は、超音波探傷法により総体積1500mm3以上を探傷することにより評価されたものであり、かつ、介在物径が100μm以上である非金属介在物の個数は、超音波探傷法により総重量3.0kg以上を探傷することにより評価されたものである、第1の手段または第2の手段の転がり疲労寿命に優れた鋼である。 In the third means, the number of inclusions with non-metallic inclusions having an inclusion diameter of 20 μm or more and less than 100 μm was evaluated by flaw detection with a total volume of 1500 mm 3 or more by ultrasonic flaw detection, and the inclusion The number of non-metallic inclusions having an object diameter of 100 μm or more was evaluated by flaw detection of a total weight of 3.0 kg or more by ultrasonic flaw detection, and the rolling fatigue of the first means or the second means. Steel with excellent life.

第4の手段では、転がり疲労寿命に優れた鋼は、JIS規格において規定される高炭素クロム軸受鋼鋼材(SUJ)、SAE規格またはASTM規格A295において規定される52100、DIN規格において規定される100Cr6、ならびにJIS規格において規定される機械構造用炭素鋼鋼材(SC)、もしくは機械構造用合金鋼鋼材のうちの中のいずれか1種の鋼材が挙げられる。このJIS規格において規定される機械構造用合金鋼材としては、その中のクロム鋼(SCr)、クロムモリブデン鋼(SCM)、またはニッケルクロムモリブデン鋼(SNCM)から選択したいずれか1種の鋼である、第1の手段〜第3の手段のいずれか1手段の転がり疲労寿命に優れた鋼である。
また、例えばSAE規格の4320、5120、4140、1053、1055などのようにJIS規格に対応した外国規格鋼についても本発明の適用が可能である。
In the fourth means, the steel having excellent rolling fatigue life is high carbon chromium bearing steel (SUJ) specified in JIS standard, 52100 specified in SAE standard or ASTM standard A295, and 100Cr6 specified in DIN standard. As well as any one of the steel materials for machine structural carbon steel (SC) and alloy steel materials for mechanical structure defined in JIS standards. The alloy steel material for machine structure specified in this JIS standard is any one steel selected from chromium steel (SCr), chromium molybdenum steel (SCM), or nickel chromium molybdenum steel (SNCM). The steel is excellent in rolling fatigue life of any one of the first to third means.
Further, the present invention can be applied to foreign standard steels corresponding to JIS standards such as SAE standards 4320, 5120, 4140, 1053, and 1055.

本発明の転がり疲労寿命に優れた鋼では、鋼中の酸素含有量、硫黄含有量、Al含有量を規制するとともに、鋼中のMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比、およびMgO−Al23系酸化物が全酸化物に占める個数比率を規制し、さらに、超音波探傷法により鋼中の非金属介在物を大体積で検出して非金属介在物の個数の制限された鋼とすることにより、転がり疲労寿命に優れた機械用部品に使用される鋼を得ることができる。 In the steel excellent in rolling fatigue life of the present invention, the oxygen content, sulfur content, and Al content in the steel are regulated, and (MgO) in the average composition of MgO—Al 2 O 3 oxides in the steel /% Ratio of (Al 2 O 3 ) and the number ratio of MgO-Al 2 O 3 -based oxides to the total oxides, and the non-metallic inclusions in steel are greatly increased by ultrasonic flaw detection. By using a steel with a limited number of non-metallic inclusions detected by volume, it is possible to obtain a steel used for machine parts having an excellent rolling fatigue life.

本発明の実施の形態である転がり疲労寿命に優れた鋼について、表を参照して以下に詳細に説明をする。   The steel excellent in rolling fatigue life according to the embodiment of the present invention will be described in detail below with reference to the table.

本発明の実施の形態である転がり疲労寿命に優れた鋼は、請求項1の発明の実施の形態では、表面硬さを58HRC以上とする機械部品に用いる鋼であって、この鋼の鋼中の酸素含有量が質量割合で8ppm以下、硫黄含有量が0.008質量%以下、Al含有量が0.005〜0.030質量%である。さらに、25〜125MHzの超音波探傷法により、鋼材体積1000mm3当たりに検出される、介在物径が20μm以上で100μm未満である、非金属介在物の個数が12.0個以下である。さらに、5〜25MHzの超音波探傷法により、鋼材重量2.5kg当りに検出される、介在物径が100μm以上である、非金属介在物の個数が2.0個以下である。さらに、この鋼中に存在するMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比を0.25〜1.50の範囲に規制し、かつ、MgO−Al23系酸化物の全酸化物系介在物に占める個数比率を70%以上とした転がり疲労寿命に優れた鋼である。 In the embodiment of the invention of claim 1, a steel excellent in rolling fatigue life according to an embodiment of the present invention is a steel used for a machine part having a surface hardness of 58 HRC or more. The oxygen content is 8 ppm or less, the sulfur content is 0.008 mass% or less, and the Al content is 0.005 to 0.030 mass%. Furthermore, the number of inclusions having a inclusion diameter of 20 μm or more and less than 100 μm detected per steel material volume of 1000 mm 3 by an ultrasonic flaw detection method of 25 to 125 MHz is 12.0 or less. Furthermore, the number of inclusions with a inclusion diameter of 100 μm or more, which is detected per 2.5 kg of steel material by an ultrasonic flaw detection method of 5 to 25 MHz, is 2.0 or less. Furthermore, the mass% ratio of (MgO) / (Al 2 O 3 ) in the average composition of MgO—Al 2 O 3 -based oxides present in this steel is regulated to a range of 0.25 to 1.50, and , A steel with excellent rolling fatigue life in which the number ratio of MgO—Al 2 O 3 oxide to the total oxide inclusions is 70% or more.

請求項2の発明の実施の形態では、表面硬さを58HRC以上とする機械部品に用いる鋼であって、この鋼の鋼中の酸素含有量が質量割合で6ppm以下、硫黄含有量が0.003質量%以下、Al含有量が0.005〜0.030質量%である。さらに、25〜125MHzの超音波探傷法により、鋼材の体積1000mm3当りに検出される、介在物径が20μm以上で100μm未満である、非金属介在物の個数が9.0個以下である。さらに、5〜25MHzの超音波探傷法により、鋼材重量2.5kg当りに検出される、介在物径が100μm以上である、非金属介在物の個数が1.5個以下である。さらに、この鋼中に存在するMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比を0.25〜1.50の範囲に規制し、かつ、MgO−Al23系酸化物の全酸化物系介在物に占める個数比率を70%以上とした転がり疲労寿命に優れた鋼である。 In an embodiment of the invention of claim 2, the steel is used for a machine part having a surface hardness of 58 HRC or more, and the oxygen content in the steel is 6 ppm or less by mass and the sulfur content is 0.00. It is 003 mass% or less, and Al content is 0.005-0.030 mass%. Furthermore, the number of inclusions with a inclusion diameter of 20 μm or more and less than 100 μm, which is detected per 1000 mm 3 of steel material by an ultrasonic flaw detection method of 25 to 125 MHz, is 9.0 or less. Furthermore, the number of non-metallic inclusions with an inclusion diameter of 100 μm or more, which is detected per 2.5 kg of steel material weight by an ultrasonic flaw detection method of 5 to 25 MHz, is 1.5 or less. Furthermore, the mass% ratio of (MgO) / (Al 2 O 3 ) in the average composition of MgO—Al 2 O 3 -based oxides present in this steel is regulated to a range of 0.25 to 1.50, and , A steel with excellent rolling fatigue life in which the number ratio of MgO—Al 2 O 3 oxide to the total oxide inclusions is 70% or more.

請求項3の発明の実施の形態では、介在物径が20μm以上で100μm未満である非金属介在物の個数は、25〜125MHzの超音波探傷法により総体積1500mm3以上を探傷することにより評価されたものである。さらに、介在物径が100μm以上である非金属介在物の個数は、5〜25MHzの超音波探傷法により総重量3.0kg以上の探傷により評価されたものである請求項1または2における転がり疲労寿命に優れた鋼である。 In an embodiment of the invention of claim 3, the number of non-metallic inclusions having an inclusion diameter of 20 μm or more and less than 100 μm is evaluated by flawing a total volume of 1500 mm 3 or more by an ultrasonic flaw detection method of 25 to 125 MHz. It has been done. Further, the number of non-metallic inclusions having an inclusion diameter of 100 μm or more was evaluated by flaw detection with a total weight of 3.0 kg or more by an ultrasonic flaw detection method of 5 to 25 MHz. Steel with excellent life.

請求項4の発明の実施の形態では、転がり疲労寿命に優れた鋼としては、軸受をはじめとする転動疲労寿命が要求される用途に用いられる鋼種であることが望ましい。具体的には、JIS規格において規定される高炭素クロム軸受鋼鋼材(SUJ)、SAE規格またはASTM規格A295において規定される52100、DIN規格において規定される100Cr6、JIS規格において規定される機械構造用炭素鋼鋼材、もしくは機械構造用合金鋼鋼材の中のいずれか1種の鋼材の鋼材が挙げられる。このJIS規格において規定される機械構造用合金鋼材としては、その中のクロム鋼(SCr)、クロムモリブデン鋼(SCM)、またはニッケルクロムモリブデン鋼(SNCM)から選択したいずれかいずれか1種の鋼からなる鋼材で、また、例えばSAE規格の4320、5120、4140、1053、1055などのようにJIS規格に対応した外国規格鋼についても本発明の適用が可能であり、請求項1〜3のいずれか1項における転がり疲労寿命に優れた鋼である。   In the embodiment of the invention of claim 4, it is desirable that the steel excellent in rolling fatigue life is a steel type used for applications requiring rolling fatigue life including bearings. Specifically, high carbon chromium bearing steel (SUJ) specified in JIS standard, 52100 specified in SAE standard or ASTM standard A295, 100Cr6 specified in DIN standard, for machine structure specified in JIS standard Examples of the steel material include any one of carbon steel materials and alloy steel materials for machine structural use. As an alloy steel material for machine structure defined in this JIS standard, any one steel selected from chromium steel (SCr), chromium molybdenum steel (SCM), or nickel chromium molybdenum steel (SNCM) therein Further, for example, the present invention can be applied to foreign standard steels corresponding to JIS standards such as SAE standards 4320, 5120, 4140, 1053, and 1055. This steel is excellent in rolling fatigue life in item 1.

上記の超音波探傷法においては、既に様々な種類の超音波探傷装置や探触子が市販されており、これらのものを利用することができる。好ましい探触子として、焦点型高周波探触子などが挙げられる。フラット型探触子の検出能は1/2波長といわれているが、焦点型探触子では1/4波長であり、精度の良い評価に対しては焦点型探触子が好適である。なお、本実施の形態の介在物径が20μm以上で100μm未満の介在物については、探触子の周波数は25〜125MHz程度が好ましく、特に好ましくは30〜100MHz程度である。また、本実施の形態の介在物径が100μm以上の介在物については、探触子の周波数は5〜25MHz程度が好ましく、これらは既に上記の請求項3の実施の形態のとおりである。   In the ultrasonic flaw detection method described above, various types of ultrasonic flaw detectors and probes are already on the market, and these can be used. As a preferable probe, a focus type high frequency probe and the like can be cited. The detection capability of the flat probe is said to be ½ wavelength, but the focus probe is ¼ wavelength, and the focus probe is suitable for accurate evaluation. For inclusions having an inclusion diameter of 20 μm or more and less than 100 μm in the present embodiment, the probe frequency is preferably about 25 to 125 MHz, particularly preferably about 30 to 100 MHz. In addition, for inclusions having an inclusion diameter of 100 μm or more in this embodiment, the probe frequency is preferably about 5 to 25 MHz, and these are already as in the embodiment of claim 3 above.

超音波探傷において、介在物径が20μm以上で100μm未満の介在物について介在物個数を確認するための総体積を1500mm3以上とし、介在物径が100μm以上の介在物について介在物個数を確認するための総重量を3.0kg以上とした理由は、安定した転がり疲労寿命が得られる鋼を提供する上で、評価精度の点から満足できる評価結果を得るために必要なためである。なお、かつ、本実施の形態の超音波探傷法における評価体積および評価重量は、従来の顕微鏡観察を主体とする評価方法では、処理時間が膨大となるので、現実的には評価不可能なものである。超音波探傷を行なうにあたっては、試験片の表面から探触子の周波数に応じた深さまでの不感帯領域を評価体積から除外し、必要に応じて熱処理等による組織異常や超音波探傷における測定ノイズの影響を受けやすい試験片の端部を焦点位置での超音波ビームの探傷範囲から除外した上で、探触子の周波数、性能に応じた水中焦点距離範囲に基づいて超音波探傷における評価体積を1500mm3以上(介在物径が20μm以上で100μm未満の介在物の個数を確認する場合)、ならびに超音波探傷における評価重量を3.0kg以上(介在物径が100μm以上の介在物の個数を確認する場合)を確保する必要がある。 In ultrasonic flaw detection, the total volume for confirming the number of inclusions for inclusions having an inclusion diameter of 20 μm or more and less than 100 μm is set to 1500 mm 3 or more, and the number of inclusions is confirmed for inclusions having an inclusion diameter of 100 μm or more. The reason why the total weight is 3.0 kg or more is that it is necessary to obtain a satisfactory evaluation result in terms of evaluation accuracy in providing steel that can provide a stable rolling fatigue life. In addition, the evaluation volume and the evaluation weight in the ultrasonic flaw detection method according to the present embodiment cannot be evaluated practically because the processing time is enormous in the conventional evaluation method mainly based on microscopic observation. It is. When performing ultrasonic flaw detection, the dead zone area from the surface of the specimen to the depth corresponding to the probe frequency is excluded from the evaluation volume, and if necessary, tissue abnormalities due to heat treatment etc. and measurement noise in ultrasonic flaw detection are detected. After excluding the end of the sensitive specimen from the ultrasonic beam flaw detection range at the focal position, the evaluation volume for ultrasonic flaw detection is determined based on the underwater focal length range according to the probe frequency and performance. 1500 mm 3 or more (when confirming the number of inclusions with an inclusion diameter of 20 μm or more and less than 100 μm) and an evaluation weight in ultrasonic flaw detection of 3.0 kg or more (confirming the number of inclusions with an inclusion diameter of 100 μm or more) Need to ensure).

本発明の鋼の母溶鋼の溶製は電気炉法または高炉−転炉法のいずれで行っても良い。続いて、鋼中のMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比、およびMgO−Al23系酸化物の個数比率を評価する方法については以下に説明する。 The melting of the mother molten steel of the present invention may be performed by either the electric furnace method or the blast furnace-converter method. Subsequently, the mass% ratio of (MgO) / (Al 2 O 3 ) in the average composition of the MgO—Al 2 O 3 oxide in steel and the number ratio of the MgO—Al 2 O 3 oxide are evaluated. The method will be described below.

本実施の形態の転がり疲労寿命に優れた鋼においては、MgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比、およびMgO−Al23系酸化物の個数比率を精度良く評価するため、鋼材断面の任意の箇所から選んだ少なくとも40mm2以上の被検面積における介在物径が1μm以上の酸化物介在物について、エネルギー分散型X線分析により酸化物組成の成分分析と酸化物数のカウントを行うものとする。その組成分析結果と酸化物カウント数に基づき、鋼中のMgO−Al23系酸化物の平均組成、およびMgO−Al23系酸化物の個数比率を算出すれば良い。なお、硫化物や窒化物と複合した酸化物については硫化物や窒化物を構成する元素については、その元素については除外してMgO−Al23系酸化物の平均組成を求めるものとした。 In the steel having an excellent rolling fatigue life of the present embodiment, the (MgO) / (Al 2 O 3 ) mass% ratio in the average composition of the MgO—Al 2 O 3 -based oxide, and the MgO—Al 2 O 3 Energy dispersive X-ray analysis of oxide inclusions with an inclusion diameter of 1 μm or more in a test area of at least 40 mm 2 or more selected from any part of the steel cross section in order to accurately evaluate the number ratio of system oxides Thus, the component analysis of the oxide composition and the count of the number of oxides are performed. Based on the oxide count and its composition analysis result, it may be calculated number ratio of the average composition, and MgO-Al 2 O 3 based oxide MgO-Al 2 O 3 system oxides in the steel. Note that the oxide complexed with sulfides and nitrides for elements constituting the sulfides and nitrides, and shall determine the average composition of MgO-Al 2 O 3 based oxide was excluded for the element .

以上、説明したように本実施の形態の転がり疲労寿命に優れた鋼によれば、鋼中の酸素含有量、硫黄含有量、およびAl含有量を規制するとともに、超音波探傷法により鋼中の非金属介在物を大体積で検出し、さらに、鋼中のMgO−Al23系酸化物の平均組成、およびMgO−Al23系酸化物が全酸化物に占める個数比率を規制することにより、転がり疲労寿命に優れた機械用部品に使用される鋼を提供することが可能となる。 As described above, according to the steel having an excellent rolling fatigue life according to the present embodiment, the oxygen content, the sulfur content, and the Al content in the steel are regulated, and an ultrasonic flaw detection method is used in the steel. Non-metallic inclusions are detected in a large volume, and the average composition of MgO—Al 2 O 3 oxides in steel and the number ratio of MgO—Al 2 O 3 oxides to the total oxides are regulated. Thus, it is possible to provide steel used for machine parts having excellent rolling fatigue life.

次に、実施例である供試材1〜28および比較例である供試材29〜34を挙げて、本発明の転がり疲労寿命に優れた鋼をより具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。   Next, the steels excellent in rolling fatigue life of the present invention will be described more specifically by taking the test materials 1 to 28 as examples and the test materials 29 to 34 as comparative examples. However, the present invention is not limited to these examples.

表1に供試材の成分組成を示す。表1の供試材1〜10および供試材29〜32については高炭素クロム軸受鋼であるJISのSUJ2鋼を、供試材11および供試材12についてはSAE規格において規定される52100を、供試材13および供試材14についてはASTM規格A295において規定される52100を、供試材15および供試材16についてはDIN規格において規定される100Cr6を、供試材17についてはJISのSUJ3鋼を、供試材18についてはJISのSUJ5鋼を、供試材19および供試材33についてはJISのSCr420鋼を、供試材20についてはSAEの5120鋼を、供試材21および供試材34についてはJISのSCM420鋼を、供試材22についてはJISのSNCM420鋼を、供試材23についてはSAEの4320鋼を、供試材24についてはJISのSCM435鋼を、供試材25についてはSAEの4140鋼を、供試材26についてはJISのS53C鋼を、供試材の27についてはJISのS55C鋼を、供試材28についてはSAEの1053鋼を用いた。供試材1〜34は、アーク溶解炉で溶製し、続いて取鍋精錬し、さらに真空脱ガス装置で脱ガスを行い連続鋳造により鋳塊を製造した。   Table 1 shows the component composition of the test materials. JIS SUJ2 steel, which is a high carbon chromium bearing steel, is used for the test materials 1 to 10 and 29 to 32 in Table 1, and 52100 defined in the SAE standard is used for the test materials 11 and 12. The test material 13 and the test material 14 are 52100 defined in ASTM standard A295, the test material 15 and the test material 16 are 100Cr6 defined in the DIN standard, and the test material 17 is JIS SUJ3 steel, JIS SUJ5 steel for specimen 18, JIS SCr420 steel for specimen 19 and specimen 33, SAE 5120 steel for specimen 20, specimen 21 and For specimen 34, JIS SCM420 steel, for specimen 22, JIS SNCM420 steel, for specimen 23, SA 4320 steel, JIS SCM435 steel for specimen 24, SAE 4140 steel for specimen 25, JIS S53C steel for specimen 26, and JIS for 27 specimen. The S55C steel was used, and the sample material 28 was SAE 1053 steel. Specimens 1 to 34 were melted in an arc melting furnace, subsequently smelted in a ladle, and further degassed with a vacuum degasser to produce an ingot by continuous casting.

その際、実施例の供試材1〜28については、事前に溶鋼の精錬過程において適宜試料を採取して介在物組成を確認しながら、スラグ組成を適切に調整して目的とする酸化物組成範囲と個数比率を満足するように検討した上で、母溶鋼の溶製を行った。一方、比較例の供試材29および供試材30については、母溶鋼の精錬過程において溶鋼中へのAlの添加を抑制し、Si脱酸を主に実施することにより軟質介在物への改質を行った。また、比較例の供試材31〜34は母溶鋼の精錬過程で溶鋼中にAlを積極添加して脱酸を行うことによりMgO−Al23系酸化物が少なく、Al23を主体とする酸化物となるように改質を行った。 At that time, for the test materials 1 to 28 of the examples, an appropriate oxide composition is prepared by appropriately adjusting the slag composition while appropriately collecting the sample in advance in the refining process of the molten steel and confirming the inclusion composition. After studying to satisfy the range and the number ratio, the mother molten steel was melted. On the other hand, for the test material 29 and the test material 30 of the comparative example, the addition of Al to the molten steel is suppressed during the refining process of the mother molten steel, and Si deoxidation is mainly performed to improve the soft inclusions. Done quality. Furthermore, test pieces 31-34 of the comparative example has less MgO-Al 2 O 3 based oxide by performing intentionally added to deoxidation of Al in the molten steel in the refining process of the mother molten steel, the Al 2 O 3 Modification was performed so that the main oxide was obtained.

Figure 2015034324
Figure 2015034324

(スラスト型転がり疲労試験)
供試材1〜18と供試材29〜32の鋼材は800℃にて球状化焼鈍を施し、鋼材の長手方向に対し平行な方向から外径52mmで、内径20mmで、厚さ5.8mmの円盤からなる試験片を作製した。この試験片を835℃で20分保持した後、油冷により焼入れし、次いで170℃で90分の焼戻し処理を行い、所望の58HRC以上の硬さを得て、その後に表面研磨を行ってスラスト型転がり疲労試験を行った。供試材19〜23、供試材33、供試材34の鋼材は、925℃にて焼ならしを施した後、また、供試材24、供試材25の鋼材は、870℃で焼ならしを施した後、鋼材の長手方向に対し平行な方向から外径52mmで、内径20mmで、厚さ8.3mmの円盤からなる試験片を作製した。この試験片を930℃で浸炭処理した後、油冷により焼入れし、次いで180℃で90分の焼戻し処理を行い、所望の58HRC以上の硬さを得て、その後に表面研磨を行ってスラスト型転がり疲労試験を行った。供試材26〜28の鋼材は870℃で焼ならしを施し、鋼材の長手方向に対し平行な方向から外径52mmで、内径20mmで、厚さ8.3mmの円盤からなる試験片を作製した。この試験片を高周波焼入れした後、次いで180℃で90分の焼戻し処理を行い、所望の58HRC以上の硬さを得て、その後に表面研磨を行ってスラスト型転がり疲労試験を行った。スラスト型転がり疲労試験は最大ヘルツ応力Pmax:5.3GPaで行った。なお、L1寿命を求めるうえでは、1.5×107cycle程度での打ち切り試験とし、試験評価時間の短縮を図った。
(Thrust type rolling fatigue test)
The steel materials of the test materials 1 to 18 and the test materials 29 to 32 were subjected to spheroidizing annealing at 800 ° C., the outer diameter was 52 mm from the direction parallel to the longitudinal direction of the steel material, the inner diameter was 20 mm, and the thickness was 5.8 mm. A test piece made of a disk was prepared. After holding this test piece at 835 ° C. for 20 minutes, it was quenched by oil cooling and then subjected to tempering treatment at 170 ° C. for 90 minutes to obtain a desired hardness of 58 HRC or more, followed by surface polishing and thrust. A mold rolling fatigue test was conducted. The steel materials of the test materials 19 to 23, the test material 33 and the test material 34 were normalized at 925 ° C., and the steel materials of the test material 24 and the test material 25 were 870 ° C. After normalizing, a test piece made of a disk having an outer diameter of 52 mm, an inner diameter of 20 mm, and a thickness of 8.3 mm from a direction parallel to the longitudinal direction of the steel material was produced. This test piece was carburized at 930 ° C., then quenched by oil cooling, then tempered at 180 ° C. for 90 minutes to obtain a desired hardness of 58 HRC or higher, and then surface polished to obtain a thrust type A rolling fatigue test was conducted. The steel materials of the test materials 26 to 28 were normalized at 870 ° C., and a test piece consisting of a disk having an outer diameter of 52 mm, an inner diameter of 20 mm, and a thickness of 8.3 mm from a direction parallel to the longitudinal direction of the steel material was produced. did. This test piece was induction hardened, and then tempered at 180 ° C. for 90 minutes to obtain a desired hardness of 58 HRC or higher, and then subjected to surface polishing to perform a thrust type rolling fatigue test. The thrust type rolling fatigue test was performed at a maximum Hertz stress Pmax: 5.3 GPa. In obtaining the L 1 life, the test evaluation time was shortened by a censoring test at about 1.5 × 10 7 cycles.

(酸化物組成および個数比率の評価)
鋼中に存在するMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比が0.25〜1.50であり、かつMgO−Al23系酸化物の全酸化物系介在物に占める個数比率が70%以上であることを評価するにあたり、供試材1〜18と供試材29〜32の鋼材は800℃にて球状化焼鈍を施した後、供試材19〜23、供試材33、供試材34の鋼材は、925℃にて焼ならしを施した後、また、供試材24〜28の鋼材は870℃で焼ならしを施した後、いずれも鋼材の長手方向に対し平行な方向から長手方向に10mm、径方向に10mmの被検査面積100mm2で厚さ7mmの試験片を切り出し、研磨時の非金属介在物の脱落を防止する目的でいずれも焼入焼戻しを行った後、被検査面に鏡面研磨を施し、エネルギー分散型X線分析により酸化物組成の成分分析と酸化物数のカウントを行った。その組成分析結果と酸化物カウント数に基づき、鋼中のMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比、およびMgO−Al23系酸化物の個数比率を算出した。
(Evaluation of oxide composition and number ratio)
The mass% ratio of (MgO) / (Al 2 O 3 ) in the average composition of MgO—Al 2 O 3 -based oxides present in the steel is 0.25 to 1.50, and MgO—Al 2 O 3 In evaluating that the number ratio of the system oxide to the total oxide inclusions is 70% or more, the steel materials of the test materials 1 to 18 and the test materials 29 to 32 were subjected to spheroidizing annealing at 800 ° C. After application, the steel materials of the test materials 19 to 23, the test material 33, and the test material 34 were normalized at 925 ° C., and the steel materials of the test materials 24 to 28 were 870 ° C. After normalizing, a test piece having a thickness of 7 mm and a test area of 100 mm 2 of 10 mm in the longitudinal direction and 10 mm in the radial direction is cut out from a direction parallel to the longitudinal direction of the steel material, and is non-metallic during polishing. In order to prevent the inclusions from falling off, the surfaces to be inspected are mirror-polished after quenching and tempering. Subjecting were counted oxide number and component analysis of the oxide composition by energy dispersive X-ray analysis. Based on the composition analysis result and the oxide count, the (MgO) / (Al 2 O 3 ) mass% ratio in the average composition of the MgO—Al 2 O 3 -based oxide in the steel, and MgO—Al 2 O 3 The number ratio of the system oxide was calculated.

これらの供試材の各試験片について、表面硬さ、鋼中のMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比、およびMgO−Al23系酸化物の個数比率を表2に示す。 About each test piece of these test materials, surface hardness, mass% ratio of (MgO) / (Al 2 O 3 ) in the average composition of MgO—Al 2 O 3 -based oxide in steel, and MgO—Al Table 2 shows the number ratio of 2 O 3 -based oxides.

Figure 2015034324
Figure 2015034324

表2において、比較例の供試材29〜34は、鋼中のMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比、および/または鋼中のMgO−Al23系酸化物個数の個数比率が、本発明の請求範囲外のものである。これら比較材の供試材29〜34に対し、鋼中のMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比、および鋼中のMgO−Al23系酸化物の個数比率のいずれもが、本発明の請求範囲を満足する実施例の供試材1〜28は比較例に比して、後述するように、L1寿命に優れている。 In Table 2, the specimens 29 to 34 of the comparative examples are (MgO) / (Al 2 O 3 ) mass% ratio in the average composition of MgO—Al 2 O 3 -based oxide in steel and / or steel. The number ratio of the number of MgO—Al 2 O 3 based oxides is outside the scope of the present invention. With respect to the test materials 29 to 34 of these comparative materials, the mass% ratio of (MgO) / (Al 2 O 3 ) in the average composition of MgO—Al 2 O 3 -based oxide in steel, and MgO— in steel All of the number ratios of the Al 2 O 3 -based oxides are excellent in L 1 life, as will be described later, as compared with the comparative examples. ing.

(超音波試験)
介在物径が20μm以上で100μm未満である非金属介在物を評価するに当たり、供試材1〜18、供試材29〜32の鋼材については800℃にて球状化焼鈍を施し、L断面試験片を切り出し、焼入焼戻し処理を行った後、供試材19〜23、供試材33、供試材34の鋼材については925℃にて焼ならしを施し、L断面試験片を切り出し、焼入焼戻し処理を行なった後、供試材24〜28の鋼材については870℃にて焼ならしを施し、L断面試験片を切り出し、焼入焼戻し処理を行なった後、超音波の伝達損失を軽減する目的でいずれも平面研磨を行った。平面研磨により、いずれも厚さ10mmに仕上げて、超音波探傷試験を行った。超音波探傷には、焦点型高周波探触子(50MHz)を備えた超音波探傷装置を用いた。また、超音波探傷体積は3000mm3とした。得られた介在物による反射波のデータから、鋼材の体積1000mm3当たりの20μm以上で100μm未満の介在物の検出個数を求めた。
(Ultrasonic test)
In evaluating non-metallic inclusions whose inclusion diameter is 20 μm or more and less than 100 μm, the steel materials of specimens 1 to 18 and specimens 29 to 32 are subjected to spheroidizing annealing at 800 ° C. After cutting out and quenching and tempering, the specimens 19 to 23, specimen 33, and specimen 34 were subjected to normalization at 925 ° C., and L-section specimens were cut out. After quenching and tempering, the steel materials 24 to 28 were normalized at 870 ° C., L-section test pieces were cut out, quenched and tempered, and then subjected to ultrasonic transmission loss. In order to alleviate this, surface polishing was performed. Each surface was finished to a thickness of 10 mm by surface polishing, and an ultrasonic flaw detection test was conducted. For ultrasonic flaw detection, an ultrasonic flaw detector equipped with a focus type high-frequency probe (50 MHz) was used. The ultrasonic flaw detection volume was 3000 mm 3 . The number of detected inclusions of 20 μm or more and less than 100 μm per 1000 mm 3 of the volume of the steel material was determined from the data of the reflected wave by the obtained inclusions.

また、介在物径が100μm以上である非金属介在物を評価するに当たり、供試材1〜18、供試材29〜32の鋼材については、800℃にて球状化焼鈍を施し、L断面試験片を切り出した後、供試材19〜23、供試材33、供試材34の鋼材については925℃にて焼ならしを施し、L断面試験片を切り出した後、供試材24〜28の鋼材については870℃にて焼ならしを施し、L断面試験片を切り出した後、いずれも平面研磨を行って厚さ45mmに仕上げて、超音波探傷試験を行った。超音波探傷には、焦点型高周波探触子(10MHz)を備えた超音波探傷装置を用いた。また、超音波探傷重量は10.0kgとした。得られた介在物による反射波のデータから、鋼材の重量2.5kg当たりの100μm以上の介在物検出個数を求めた。   Moreover, when evaluating the nonmetallic inclusion whose inclusion diameter is 100 μm or more, the steel materials of the test materials 1 to 18 and the test materials 29 to 32 were subjected to spheroidizing annealing at 800 ° C., and an L cross section test. After cutting out the pieces, the steel materials of the specimens 19 to 23, the specimen 33, and the specimen 34 were normalized at 925 ° C., and the L-section specimen was cut out, and then the specimens 24 to 24 were cut out. About 28 steel materials, after normalizing at 870 degreeC and cutting out the L cross-section test piece, all performed the surface grinding | polishing and finished in thickness 45mm, and the ultrasonic flaw test was done. For ultrasonic flaw detection, an ultrasonic flaw detector equipped with a focus type high-frequency probe (10 MHz) was used. The ultrasonic flaw detection weight was 10.0 kg. The number of detected inclusions of 100 μm or more per 2.5 kg of the weight of the steel material was determined from the data of the reflected wave by the obtained inclusions.

これらの供試材の各試験片について、表面硬さ、50MHzの焦点型高周波探触子で評価した超音波探傷による鋼材の体積1000mm3当たりの介在物検出個数、10MHzの焦点型高周波探触子で評価した超音波探傷による鋼材の重量2.5kg当たりの介在物検出数およびスラスト型転がり疲労試験によるL1 寿命を表3に示す。 About each test piece of these test materials, surface hardness, the number of detected inclusions per 1000 mm 3 of steel volume by ultrasonic flaw evaluation evaluated with a 50 MHz focal high frequency probe, 10 MHz focal high frequency probe Table 3 shows the number of inclusions detected per 2.5 kg of steel weight by ultrasonic flaw evaluation and the L 1 life measured by the thrust type rolling fatigue test.

Figure 2015034324
Figure 2015034324

表3において、実施例の供試材1〜5、供試材11、供試材13、供試材15、供試材18〜20、供試材25〜27は本発明を満足するものであり、L1寿命(比較例32を基準とする相対値)が最低のものでも、供試材1の3.3である。 In Table 3, sample materials 1-5, sample material 11, sample material 13, sample material 15, sample material 18-20, sample material 25-27 of the examples satisfy the present invention. Yes, even if the L 1 life (relative value based on the comparative example 32) is the lowest, it is 3.3 of the specimen 1.

この場合の鋼中の酸素含有量は質量割合で8ppm以下、硫黄含有量は0.008質量%以下であり、超音波探傷法により鋼材体積1000mm3当たりに検出される介在物径が20μm以上で100μm未満である非金属介在物の個数は12.0個以下であり、かつ、鋼材重量2.5kg当たりに検出される介在物径が100μm以上である非金属介在物の個数は2.0個以下であり、かつ、鋼中に存在するMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比が0.25〜1.50の範囲にあり、かつ、MgO−Al23系酸化物の全酸化物系介在物に占める個数比率が70%以上である、本発明の請求項1および請求項3の発明を満足するものである。 In this case, the oxygen content in the steel is 8 ppm or less in mass ratio, the sulfur content is 0.008 mass% or less, and the inclusion diameter detected per 1000 mm 3 of steel volume by the ultrasonic flaw detection method is 20 μm or more. The number of non-metallic inclusions less than 100 μm is 12.0 or less, and the number of non-metallic inclusions detected with a inclusion diameter of 100 μm or more per 2.5 kg of steel weight is 2.0. And the mass% ratio of (MgO) / (Al 2 O 3 ) in the average composition of MgO—Al 2 O 3 -based oxides present in the steel is in the range of 0.25 to 1.50. In addition, the present invention satisfies the inventions of claim 1 and claim 3 in which the number ratio of the MgO—Al 2 O 3 oxide to the total oxide inclusions is 70% or more.

また、鋼中の酸素含有量が質量割合で6ppm以下、硫黄含有量が0.003質量%以下であり、超音波探傷法により鋼材の体積1000mm3当たりに検出される介在物径が20μm以上で100μm未満である非金属介在物の個数が9.0個以下であり、かつ、鋼材重量2.5kg当たりに検出される介在物径が100μm以上である非金属介在物の個数が1.5個以下であり、かつ、鋼中に存在するMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比が0.25〜1.50の範囲にあり、かつ、MgO−Al23系酸化物の全酸化物系介在物に占める個数比率が70%以上である、実施例の供試材6〜10、供試材12、供試材14、供試材16、供試材17、供試材21〜24、供試材28は、本発明の請求項2および請求項3の発明を満足するものであり、L1寿命(比較例32を基準とする相対値)が最低のものでも供試材12の4.3であり、転がり疲労寿命にいっそう優れた鋼となっている。 Further, the oxygen content in the steel is 6 ppm or less by mass ratio, the sulfur content is 0.003 mass% or less, and the inclusion diameter detected per 1000 mm 3 of the steel material by the ultrasonic flaw detection method is 20 μm or more. The number of non-metallic inclusions of less than 100 μm is 9.0 or less, and the number of non-metallic inclusions detected per 2.5 kg of steel material weight is 100 μm or more is 1.5. And the mass% ratio of (MgO) / (Al 2 O 3 ) in the average composition of MgO—Al 2 O 3 -based oxides present in the steel is in the range of 0.25 to 1.50. And, the number ratio of the MgO-Al 2 O 3 based oxide to the total oxide inclusions is 70% or more, the test materials 6 to 10, the test material 12, the test material 14, and the like, The test material 16, the test material 17, the test materials 21 to 24, and the test material 28 are Is intended to satisfy the light of the invention of claim 2 and claim 3, (relative value relative to the Comparative Example 32) L 1 life was 4.3 test material 12 be of a minimum, the rolling fatigue The steel has a better life.

これに対し、比較例の供試材29〜34は鋼材体積1000mm3当たりに検出される20μm以上で100μm未満である非金属介在物の個数が12.0個を超え、かつ、鋼材重量2.5kg当たりに検出される100μm以上である非金属介在物の個数が2.0個を超えているもので、かつ、鋼中に存在するMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比が0.25〜1.50の範囲を外れ、かつ、MgO−Al23系酸化物の全酸化物系介在物に占める個数比率が70%を下回るなど、本発明の範囲外のものである。これら比較例の供試材29〜34は、L1寿命(比較例32を基準とする相対値)が最大のものでも供試材31の2.2と本実施例のものに比して劣っている。 In contrast, in the test materials 29 to 34 of the comparative example, the number of non-metallic inclusions that are 20 μm or more and less than 100 μm detected per 1000 mm 3 of the steel material volume exceeds 12.0, and the steel material weight is 2. The number of non-metallic inclusions of 100 μm or more detected per 5 kg exceeds 2.0 and (MgO in the average composition of MgO—Al 2 O 3 -based oxides present in the steel) ) / (Al 2 O 3 ) mass% ratio is outside the range of 0.25 to 1.50, and the number ratio of the MgO—Al 2 O 3 oxide to the total oxide inclusions is 70%. It is outside the scope of the present invention. The test materials 29 to 34 of these comparative examples are inferior to the test material 31 of 2.2 and this example even though the L 1 life (relative value based on the comparative example 32) is the maximum. ing.

Claims (4)

表面硬さを58HRC以上とする機械部品に用いる鋼であって、鋼中の酸素含有量が質量割合で8ppm以下、硫黄含有量が0.008質量%以下、Al含有量が0.005〜0.030質量%であり、超音波探傷法により鋼材の体積1000mm3当りに検出される介在物径が20μm以上で100μm未満である非金属介在物の個数が12.0個以下であり、かつ、超音波探傷法により鋼材重量2.5kg当りに検出される介在物径が100μm以上である非金属介在物の個数が2.0個以下であり、かつ、鋼中に存在するMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比を0.25〜1.50の範囲に規制し、かつ、MgO−Al23系酸化物の全酸化物系介在物に占める個数比率を70%以上としたことを特徴とする転がり疲労寿命に優れた鋼。 Steel used for machine parts having a surface hardness of 58 HRC or more, wherein the oxygen content in the steel is 8 ppm or less by mass, the sulfur content is 0.008 mass% or less, and the Al content is 0.005 to 0. 0.030% by mass, and the number of non-metallic inclusions having an inclusion diameter of 20 μm or more and less than 100 μm detected per 1000 mm 3 of steel by ultrasonic flaw detection is 12.0 or less, and The number of non-metallic inclusions with an inclusion diameter of 100 μm or more detected per 2.5 kg of steel material by ultrasonic flaw detection is 2.0 or less, and MgO—Al 2 O present in the steel. in the average composition of 3 based oxide mass% ratio of (MgO) / (Al 2 O 3) was restricted to a range of 0.25 to 1.50, and total oxidation of MgO-Al 2 O 3 based oxide The ratio of the number of physical inclusions to 70% or more Steel excellent in rolling fatigue life and wherein the a. 表面硬さを58HRC以上とする機械部品に用いる鋼であって、鋼中の酸素含有量が質量割合で6ppm以下、硫黄含有量が0.003質量%以下、Al含有量が0.005〜0.030質量%であり、超音波探傷法により鋼材の体積1000mm3当りに検出される介在物径が20μm以上で100μm未満である非金属介在物の個数が9.0個以下であり、かつ、超音波探傷法により鋼材重量2.5kg当りに検出される介在物径が100μm以上である非金属介在物の個数が1.5個以下であり、かつ、鋼中に存在するMgO−Al23系酸化物の平均組成における(MgO)/(Al23)の質量%比を0.25〜1.50の範囲に規制し、かつ、MgO−Al23系酸化物の全酸化物系介在物に占める個数比率を70%以上としたことを特徴とする転がり疲労寿命に優れた鋼。 Steel used for machine parts having a surface hardness of 58 HRC or more, wherein the oxygen content in the steel is 6 ppm or less by mass, the sulfur content is 0.003 mass% or less, and the Al content is 0.005 to 0. 0.030% by mass, and the number of non-metallic inclusions having an inclusion diameter of 20 μm or more and less than 100 μm detected per 1000 mm 3 of steel by ultrasonic flaw detection is 9.0 or less, and The number of non-metallic inclusions with an inclusion diameter of 100 μm or more detected per 2.5 kg of steel material by ultrasonic flaw detection is 1.5 or less, and MgO—Al 2 O present in the steel. in the average composition of 3 based oxide mass% ratio of (MgO) / (Al 2 O 3) was restricted to a range of 0.25 to 1.50, and total oxidation of MgO-Al 2 O 3 based oxide The ratio of the number of physical inclusions to 70% or more Steel excellent in rolling fatigue life and wherein the. 介在物径が20μm以上で100μm未満である非金属介在物の個数は、超音波探傷法により総体積1500mm3以上を探傷することにより評価されたものであり、かつ、介在物径が100μm以上である非金属介在物の個数は、超音波探傷法により総重量3.0kg以上を探傷することにより評価されたものであることを特徴とする請求項1または2に記載の転がり疲労寿命に優れた鋼。 The number of non-metallic inclusions having an inclusion diameter of 20 μm or more and less than 100 μm was evaluated by flaw detection of a total volume of 1500 mm 3 or more by the ultrasonic flaw detection method, and the inclusion diameter was 100 μm or more. The number of certain nonmetallic inclusions was evaluated by flaw detection with a total weight of 3.0 kg or more by ultrasonic flaw detection, and excellent in rolling fatigue life according to claim 1 or 2. steel. 転がり疲労寿命に優れた鋼は、JIS規格において規定される高炭素クロム軸受鋼鋼材、ならびにSAE規格またはASTM規格A295において規定される52100、ならびにDIN規格において規定される100Cr6、ならびにJIS規格において規定される機械構造用炭素鋼鋼材、もしくは機械構造用合金鋼鋼材の中のクロム鋼、クロムモリブデン鋼およびニッケルクロムモリブデン鋼から選択したいずれか1種の鋼であることを特徴とする請求項1〜3のいずれか1項に記載の転がり疲労寿命に優れた鋼。   Steels with excellent rolling fatigue life are specified in high carbon chromium bearing steels specified in JIS standards, 52100 specified in SAE standards or ASTM standards A295, and 100Cr6 specified in DIN standards, and in JIS standards. A carbon steel material for machine structure or an alloy steel material for machine structure is any one steel selected from chrome steel, chrome molybdenum steel, and nickel chrome molybdenum steel. The steel excellent in the rolling fatigue life of any one of these.
JP2013165629A 2013-08-08 2013-08-08 Steel excellent in rolling fatigue life Pending JP2015034324A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013165629A JP2015034324A (en) 2013-08-08 2013-08-08 Steel excellent in rolling fatigue life
US14/909,795 US10060013B2 (en) 2013-08-08 2014-08-07 Steel having superior rolling fatigue life
KR1020167003443A KR20160040575A (en) 2013-08-08 2014-08-07 Steel having superior rolling fatigue life
CN201480043758.1A CN105452510B (en) 2013-08-08 2014-08-07 Steel with excellent rolling fatigue life
PCT/JP2014/070936 WO2015020169A1 (en) 2013-08-08 2014-08-07 Steel having superior rolling fatigue life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013165629A JP2015034324A (en) 2013-08-08 2013-08-08 Steel excellent in rolling fatigue life

Publications (1)

Publication Number Publication Date
JP2015034324A true JP2015034324A (en) 2015-02-19

Family

ID=52461494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013165629A Pending JP2015034324A (en) 2013-08-08 2013-08-08 Steel excellent in rolling fatigue life

Country Status (5)

Country Link
US (1) US10060013B2 (en)
JP (1) JP2015034324A (en)
KR (1) KR20160040575A (en)
CN (1) CN105452510B (en)
WO (1) WO2015020169A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102419450B1 (en) * 2018-01-22 2022-07-12 닛폰세이테츠 가부시키가이샤 Bearing steel parts and bars for bearing steel parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323938A (en) * 2003-04-25 2004-11-18 Daido Steel Co Ltd Bearing steel having excellent rolling life characteristic and its producing method
JP2007224413A (en) * 2005-12-15 2007-09-06 Kobe Steel Ltd Spring steel, method for producing spring using the steel, and spring made from the steel
JP2013185250A (en) * 2012-03-12 2013-09-19 Nippon Steel & Sumitomo Metal Corp Steel material for induction hardening
JP2013253314A (en) * 2012-05-07 2013-12-19 Sanyo Special Steel Co Ltd Steel excellent in rolling fatigue life

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192790A (en) * 1992-12-26 1994-07-12 Aichi Steel Works Ltd High cleanliness bearing steel
JP3556968B2 (en) 1994-06-16 2004-08-25 新日本製鐵株式会社 High carbon high life bearing steel
JP4630075B2 (en) * 2005-01-24 2011-02-09 新日本製鐵株式会社 High carbon chromium bearing steel and manufacturing method thereof
JP5085013B2 (en) 2005-05-10 2012-11-28 山陽特殊製鋼株式会社 Steel reliability evaluation method
JP5139667B2 (en) 2006-11-09 2013-02-06 山陽特殊製鋼株式会社 Steel evaluation method with excellent rolling fatigue life
SE536953C2 (en) 2008-05-27 2014-11-11 Sanyo Special Steel Co Ltd Procedure for the production of machine parts
JP5605912B2 (en) 2011-03-31 2014-10-15 株式会社神戸製鋼所 Bearing steel and bearing parts with excellent rolling fatigue characteristics
JP5224424B1 (en) 2012-05-07 2013-07-03 山陽特殊製鋼株式会社 Steel with excellent rolling fatigue life
JP6192790B2 (en) 2016-10-06 2017-09-06 キヤノン株式会社 Imaging apparatus and imaging system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323938A (en) * 2003-04-25 2004-11-18 Daido Steel Co Ltd Bearing steel having excellent rolling life characteristic and its producing method
JP2007224413A (en) * 2005-12-15 2007-09-06 Kobe Steel Ltd Spring steel, method for producing spring using the steel, and spring made from the steel
JP2013185250A (en) * 2012-03-12 2013-09-19 Nippon Steel & Sumitomo Metal Corp Steel material for induction hardening
JP2013253314A (en) * 2012-05-07 2013-12-19 Sanyo Special Steel Co Ltd Steel excellent in rolling fatigue life

Also Published As

Publication number Publication date
CN105452510A (en) 2016-03-30
US10060013B2 (en) 2018-08-28
WO2015020169A1 (en) 2015-02-12
CN105452510B (en) 2017-07-28
US20160201174A1 (en) 2016-07-14
KR20160040575A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
JP5139667B2 (en) Steel evaluation method with excellent rolling fatigue life
JP2006063402A5 (en)
JP5260032B2 (en) Induction hardened steel excellent in cold workability, rolling member made of the steel, and linear motion device using the rolling member
JP6376725B2 (en) Steel member with excellent rolling fatigue life
US20080047633A1 (en) Rolling-Sliding Elements and Process for Production of the Same
JP5224424B1 (en) Steel with excellent rolling fatigue life
JP2015034324A (en) Steel excellent in rolling fatigue life
JP5283788B1 (en) Steel with excellent rolling fatigue life
JP5848187B2 (en) Steel sorting method with excellent rolling fatigue life
JP2003113448A (en) Steel for bearing superior in silent property
JP2009052111A (en) Steel having excellent rolling fatigue life
JP2013227633A (en) Steel excellent in rolling fatigue life
JP2008240019A (en) Steel excellent in rolling contact fatigue life
JP2016069695A (en) Rolling bearing
JP2015090207A (en) Rolling bearing
JPH11279710A (en) Bearing steel excellent in acoustic property and quietness
JP2015110831A (en) Roller bearing
JP2015232156A (en) Rolling shaft bearing
JP6350156B2 (en) Crankshaft and crankshaft steel
JP2023104372A (en) Steel material and bearing component
CN117772982A (en) Preparation method of bearing steel with improved wear resistance
JP2008075147A (en) Rolling member and rolling bearing
WO2017154652A1 (en) Steel material for bearing having excellent rolling fatigue characteristics, method for manufacturing same, and bearing component
JP2005114149A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180320