JP2008240019A - Steel excellent in rolling contact fatigue life - Google Patents

Steel excellent in rolling contact fatigue life Download PDF

Info

Publication number
JP2008240019A
JP2008240019A JP2007078604A JP2007078604A JP2008240019A JP 2008240019 A JP2008240019 A JP 2008240019A JP 2007078604 A JP2007078604 A JP 2007078604A JP 2007078604 A JP2007078604 A JP 2007078604A JP 2008240019 A JP2008240019 A JP 2008240019A
Authority
JP
Japan
Prior art keywords
steel
oxide
less
metallic inclusions
fatigue life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007078604A
Other languages
Japanese (ja)
Inventor
Kazuya Hashimoto
和弥 橋本
Takeshi Fujimatsu
威史 藤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2007078604A priority Critical patent/JP2008240019A/en
Publication of JP2008240019A publication Critical patent/JP2008240019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel which is used for machine components excellent in rolling contact fatigue life and can be obtained without prolonged ladle refining or degasification for reducing the amount and size of oxide non-metallic inclusions at melting in steelmaking process. <P>SOLUTION: The steel for machine structure shows a surface hardness of ≥58 HRC when used as machine components and includes ≤20 mass ppm O and <0.010% mass% Al. The steel includes oxide non-metallic inclusions having the largest inclusion diameter in an observation area of 3,000 mm<SP>2</SP>or all oxide non-metallic inclusions having inclusion diameter of ≥15 μm which comprise ≥30 mass% of SiO<SB>2</SB>, when inclusion diameter is defined as (length×width)<SP>1/2</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、軸受、ギア、ハブユニット、トロイダル型CVT装置、等速ジョイント、ピストンピンなどの転がり疲労寿命が求められ、表面硬さを58HRC以上に硬化させて使用される機械部品や装置に用いられる鋼に関するものである。   INDUSTRIAL APPLICABILITY The present invention is used for mechanical parts and devices that are required to have a rolling fatigue life such as bearings, gears, hub units, toroidal CVT devices, constant velocity joints, piston pins, etc., and whose surface hardness is hardened to 58 HRC or more. It is related to steel.

近年、各種の機械装置の高性能化にともない、転がり疲労寿命が求められる機械部品や装置の使用環境は非常に厳しくなり、寿命の向上ならびに信頼性の向上が強く求められている。このような要求に対し、鋼材の面からの対策としては、鋼成分の適正化や不純物元素の低減化が行われ、寿命の向上ならびに信頼性の向上が図られている。   In recent years, with the improvement in performance of various mechanical devices, the use environment of mechanical parts and devices that require a rolling fatigue life has become very severe, and there is a strong demand for improved life and improved reliability. In response to such demands, measures from the aspect of steel materials include optimization of steel components and reduction of impurity elements to improve life and reliability.

不純物元素のうちAl23その他の酸化物系非金属介在物は、破損の起点となるため、特に有害であることが知られている。さらに、それらの酸化物系非金属介在物の径が大きいほど、転がり疲労寿命は短くなることが知られている。そのため酸化物系非金属介在物量を少なく、すなわち、鋼の清浄度が高く、介在物径が20μm以上の大型の酸化物系非金属介在物の極めて少ない高清浄度鋼の製造方法が種々提案されている。 Among impurity elements, Al 2 O 3 and other oxide-based non-metallic inclusions are known to be particularly harmful because they are the starting point of damage. Furthermore, it is known that the rolling fatigue life is shortened as the diameter of these oxide-based nonmetallic inclusions increases. Therefore, various methods for producing high cleanliness steel with a small amount of oxide-based nonmetallic inclusions, that is, high cleanliness of steel and a large amount of large oxide-based nonmetallic inclusions with an inclusion diameter of 20 μm or more have been proposed. ing.

この高清浄度鋼の一般的な製造プロセスは、1)アーク溶解炉または転炉による溶鋼の酸化精錬、2)取鍋精錬炉(LF)による還元精錬、3)還流式真空脱ガス装置(RH)による還流真空脱ガス処理(RH処理)、4)連続鋳造または一般造塊による鋼塊の鋳造および5)鋼塊の圧延、圧鍛による加工および熱処理による製品鋼材の工程で製造される(例えば、特許文献1参照。)。   The general manufacturing process of this high cleanliness steel is as follows: 1) Oxidative refining of molten steel by arc melting furnace or converter, 2) Reductive refining by ladle refining furnace (LF), 3) Reflux vacuum degasser (RH) ) Reflux vacuum degassing treatment (RH treatment) by 4) Casting of steel ingot by continuous casting or general ingot casting and 5) Production of steel ingot by rolling of steel ingot, processing by pressure forging and heat treatment (for example, , See Patent Document 1).

この場合に、鋼材中の酸化物系非金属介在物を低減するために、取鍋精錬炉で脱酸材合金を投入して脱酸による還元精錬が行われ、さらに取鍋精錬や真空脱ガスにおいて生成酸化物を凝集・合体させて浮上分離させている。その際に除去できずに残留した酸化物が最終製品における破損の起点となる。   In this case, in order to reduce oxide-based non-metallic inclusions in the steel material, deoxidation alloy is introduced in the ladle refining furnace and reduction refining is performed by deoxidation, and further ladle refining and vacuum degassing are performed. The resulting oxide is agglomerated and coalesced for floating separation. In this case, the remaining oxide that cannot be removed becomes a starting point of damage in the final product.

取鍋精錬炉で投入する一般的な脱酸材合金としては、強力な脱酸材であるAlを主体としてSi、Mnなどを複合添加している(例えば、特許文献2参照。)。   As a general deoxidizing material alloy to be charged in a ladle refining furnace, Si, Mn and the like are added in combination with Al, which is a strong deoxidizing material as a main component (for example, see Patent Document 2).

このような従来の方法で製造された鋼材を用いても、短寿命で破損することを抑制することは十分にできていない。そのため、鋼材中の酸化物系非金属介在物を低減し、さらに小径化しようとすると、取鍋精錬時間や脱ガス時間を長時間にわたって処理する必要があった。   Even if the steel material manufactured by such a conventional method is used, it is not fully possible to suppress damage with a short life. Therefore, in order to reduce the oxide-based nonmetallic inclusions in the steel material and further reduce the diameter, it is necessary to treat the ladle refining time and degassing time for a long time.

特開2001−342512号公報JP 2001-342512 A 特開2006−200027号公報JP 2006-200027 A

本発明が解決しようとする課題は、製鋼の溶解時に酸化物系非金属介在物の低減および小径化のために、長時間の取鍋精錬や脱ガス処理をしなくても製造できる転がり疲労寿命に優れた機械用部品に使用される鋼を提供することである。   The problem to be solved by the present invention is a rolling fatigue life that can be produced without a long ladle refining or degassing treatment in order to reduce and reduce the diameter of oxide-based nonmetallic inclusions during steelmaking melting. It is to provide steel used for machine parts that are superior to each other.

軸受その他の機械部品において転動疲労寿命を改善するためには、これらの機械部品用の鋼から、ある大きさ以上の非金属介在物を少なくすることが重要である。さらに軸受その他の機械部品の転走面下に大きな酸化物系非金属介在物が存在すれば、はく離を発生させ、破損に至ることから、軸受その他の機械部品の転走面下の危険部位に出現する酸化物系非金属介在物を小さくすることが軸受その他の機械部品の寿命向上に対して特に重要であることが知られている。   In order to improve the rolling fatigue life of bearings and other machine parts, it is important to reduce non-metallic inclusions of a certain size or more from the steel for these machine parts. Furthermore, if there are large oxide-based non-metallic inclusions under the rolling surface of bearings and other machine parts, they will cause separation and damage. It is known that reducing the appearance of oxide-based nonmetallic inclusions is particularly important for improving the life of bearings and other mechanical parts.

本発明者らが鋭意検討した結果、上記の点に加えて、母相と酸化物系非金属介在物との界面や酸化物系非金属介在物と酸化物系非金属介在物の界面に空洞が存在する場合には、空洞が存在しない場合に比べて寿命が劣化することを他に先駆けて見出した。すなわち、同じ大きさの酸化物系非金属介在物であっても、空洞があれば短寿命はく離を引起し易い。これは軸受において、軸受のボールがレース上を転動中に、空洞が存在しない母相と密着した非金属介在物であれば、圧縮応力下のせん断応力によるき裂進展過程のみを経て、はく離に至る。これに対して母相との界面に空洞が存在する酸化物系非金属介在物の場合には、主応力による初期き裂がまず生成し、その後に圧縮応力下のせん断応力によるき裂進展を経てはく離に至るため、疲労初期の欠陥としては、同径の母相と密着した酸化物系非金属介在物以上の有害性を有する。一般的な鋼の中に含有する酸化物系非金属介在物は、実質的にAl23、CaO、MgO、SiO2、MnOから成り、その組成は溶鋼組成や、脱酸合金や、原材料などに影響される。そして、従来からのAlを主体とした脱酸材による脱酸工程を経た鋼材を用いた場合には、その鋼中にAl23、CaO−Al23やMgO−Al23といったAl23系の非金属介在物が主体となる。そして、これらの非金属介在物では、鋼材のマトリックとの界面や、集積した酸化物系非金属介在物間に空洞が存在することが判った。 As a result of intensive studies by the present inventors, in addition to the above points, there is a cavity at the interface between the parent phase and the oxide-based nonmetallic inclusions or at the interface between the oxide-based nonmetallic inclusions and the oxide-based nonmetallic inclusions. It was first pioneered that the lifetime was deteriorated in the case where there was no cavity as compared to the case where there was no cavity. That is, even if the oxide-based non-metallic inclusions have the same size, if there are cavities, short-life peeling is likely to occur. If the bearing ball is a non-metallic inclusion that is in close contact with the parent phase that does not have a cavity while the ball of the bearing is rolling on the race, it is peeled only through the crack propagation process due to the shear stress under compressive stress. To. On the other hand, in the case of oxide-based nonmetallic inclusions that have cavities at the interface with the parent phase, an initial crack is first generated due to the main stress, and then crack growth due to shear stress under compressive stress occurs. Since this leads to separation, the defect at the initial stage of fatigue is more harmful than an oxide-based non-metallic inclusion in close contact with the parent phase having the same diameter. The oxide-based non-metallic inclusions contained in general steel are substantially composed of Al 2 O 3 , CaO, MgO, SiO 2 , MnO, the composition of which is a molten steel composition, deoxidized alloy, or raw material. It is influenced by. Then, in the case of using the Al was subjected to deoxidation step by deoxidizer comprising mainly steel conventionally, such Al 2 O 3, CaO-Al 2 O 3 and MgO-Al 2 O 3 in the steel Al 2 O 3 -based non-metallic inclusions are mainly used. These non-metallic inclusions have been found to have cavities between the steel matrix interface and the accumulated oxide-based non-metallic inclusions.

これらの空洞は、鋼材の製造工程における凝固、熱間加工後の冷却時などに、酸化物系非金属介在物と母材自体の収縮能の違いや変形能の違いによって生成する。集積した酸化物系非金属介在物間の空洞については、鋼材の熱間加工時あるいは軸受転走時の酸化物系非金属介在物の割れに伴っても生成する。   These cavities are generated due to differences in shrinkage and deformability between the oxide-based non-metallic inclusions and the base metal itself during solidification in the steel material manufacturing process, cooling after hot working, and the like. Cavities between the accumulated oxide-based non-metallic inclusions are generated even when the steel-based non-metallic inclusions are cracked during hot working of the steel material or during rolling of the bearing.

母相との界面に空洞が生成せず、かつ、この鋼材の熱間加工時に割れない酸化物系非金属介在物の組成について検討した結果、SiO2を基本組成とする必要があることが判った。本発明は以上の新たに得た知見に基づきなされたものである。 As a result of examining the composition of oxide-based nonmetallic inclusions that do not generate cavities at the interface with the parent phase and that do not crack during hot working of this steel, it was found that SiO 2 should be the basic composition. It was. The present invention has been made based on the above newly obtained knowledge.

すなわち、上記の課題を解決するための本発明の手段は、請求項1の発明では、機械部品に使用する際の鋼の表面硬さが58HRC以上であり、かつ質量割合でOが20ppm以下、Alが0.010%未満を満足する機械構造用鋼であって、介在物径を(縦×横)1/2と定義するとき、その鋼中に存在する検鏡面積3,000mm2に存在する最大介在物径を有する酸化物系非金属介在物あるいは15μm以上の介在物径を有する全ての酸化物系非金属介在物の組成が質量%でSiO2:30%以上であることを特徴とする転がり疲労寿命に優れた機械用部品に使用される鋼である。 That is, the means of the present invention for solving the above-mentioned problem is that, in the invention of claim 1, the steel has a surface hardness of 58 HRC or more when used for a machine part, and O is 20 ppm or less by mass ratio. Al is a structural structural steel satisfying less than 0.010%, and when the inclusion diameter is defined as (longitudinal x lateral) 1/2 , it exists in the specular area 3,000 mm 2 existing in the steel. The composition of oxide-based nonmetallic inclusions having the largest inclusion diameter or all oxide-based nonmetallic inclusions having an inclusion diameter of 15 μm or more is, by mass%, SiO 2 : 30% or more. This steel is used for machine parts with excellent rolling fatigue life.

請求項2の発明では、鋼中に存在する酸化物系非金属介在物のうち、検鏡面積3,000mm2中に存在する最大介在物径が70μm以下であることを特徴とする請求項1に記載の転がり疲労寿命に優れた機械用部品に使用される鋼である。 The invention according to claim 2 is characterized in that, among oxide-based non-metallic inclusions present in steel, the maximum inclusion diameter existing in a specular area of 3,000 mm 2 is 70 μm or less. It is steel used for machine parts having excellent rolling fatigue life as described in 1.

本願発明の鋼は、上記の手段とすることで、製鋼の溶解時に酸化物系非金属介在物の低減および小径化のために長時間の取鍋精錬や脱ガス処理をしなくても得られ、表面硬さを58HRC以上として使用することができ、転がり疲労寿命に優れ、かつ短寿命はく離が抑制されているなど、極めて優れた機械用部品用の鋼である。   The steel of the present invention can be obtained without using a ladle refining or degassing treatment for a long time to reduce the oxide non-metallic inclusions and reduce the diameter when melting steel making by using the above means. It can be used with a surface hardness of 58 HRC or more, is excellent in rolling fatigue life, and has a very short steel life for machine parts.

本発明の手段の実施の形態を述べるに先立ち、本発明の鋼における化学組成およびそれらに含まれる酸化物系非金属介在物の組成とサイズの限定理由を以下に述べる。なお、ppmおよび%は質量割合で示す。   Prior to describing embodiments of the means of the present invention, the reasons for limiting the chemical composition of the steel of the present invention and the composition and size of oxide-based nonmetallic inclusions contained therein will be described below. In addition, ppm and% are shown by mass ratio.

O:20ppm以下、望ましくは10ppm以下
Oは鋼中に残存して軸受の転走中に、はく離の起点となる酸化物系非金属介在物を形成するので20ppm以下とするが、可能な限り低い方が望ましい。望ましくは10ppm以下である。本発明では、15μm以上の大きさを有するAl23系の非金属介在物の生成を可能な限り避ける必要がある。そのためには、転炉または電気炉による酸化精錬後の脱酸工程において、極めて強い脱酸力を有するAlを投入せずに、SiやMnなど合金形状は問わないで脱酸を行う必要がある。その場合には、Alを投入した脱酸に比べてOは高くなる。しかし、20ppm以下であれば、本発明の効果は得られ、かつ検鏡面積3,000mm2中に存在する最大介在物径が70μm以下を安定して満足することができる。
O: 20 ppm or less, desirably 10 ppm or less O remains in the steel and forms oxide-based non-metallic inclusions as a starting point of separation during rolling of the bearing, so it is 20 ppm or less, but it is as low as possible Is preferable. Desirably, it is 10 ppm or less. In the present invention, it is necessary to avoid the generation of Al 2 O 3 -based nonmetallic inclusions having a size of 15 μm or more as much as possible. For that purpose, in the deoxidation step after oxidative refining by a converter or electric furnace, it is necessary to perform deoxidation regardless of the alloy shape such as Si and Mn without introducing Al having extremely strong deoxidizing power. . In that case, O becomes higher than deoxidation in which Al is added. However, if it is 20 ppm or less, the effect of the present invention can be obtained, and the maximum inclusion diameter existing in the speculum area of 3,000 mm 2 can be stably satisfied with 70 μm or less.

Al:0.010%未満、望ましくは0.008%未満
従来のAlを投入した脱酸工程を経た場合の、鋼中のAl量は0.015〜0.025%程度である。この程度のAl量を含有する場合、Al23を多量に含む酸化物となり易い。そのため、出来るだけAlは少ない方が望ましく、0.010%未満が望ましい。また、脱酸工程にてAlを投入せずに脱酸を行っても、原材料やスラグおよび炉材からAlが混入する場合がある。Alが混入したとしても、脱酸合金にAlを使用しなければ、Alで0.008%未満は容易に達成することができ、かつ本発明のとおり、SiO2:30%以上からなる酸化物系非金属介在物の組成を容易に得ることができる。一方でAlの混入を防止するために、原材料や炉材質を厳選した場合には、製造原価の高騰を招く。
Al: Less than 0.010%, desirably less than 0.008% The Al content in steel when the conventional deoxidation step with Al is added is about 0.015 to 0.025%. When this amount of Al is contained, the oxide easily contains a large amount of Al 2 O 3 . Therefore, it is desirable that the Al content is as small as possible, and it is desirable that it be less than 0.010%. Even if deoxidation is performed without adding Al in the deoxidation step, Al may be mixed from raw materials, slag, and furnace materials. Even if Al is mixed, if Al is not used in the deoxidation alloy, less than 0.008% can be easily achieved with Al, and as in the present invention, an oxide composed of SiO 2 : 30% or more. The composition of the system nonmetallic inclusion can be easily obtained. On the other hand, when raw materials and furnace materials are carefully selected in order to prevent Al from being mixed, the manufacturing cost increases.

最大介在物径を有する酸化物系非金属介在物あるいは15μm以上の介在物径を有する全ての酸化物系非金属介在物の組成がSiO2:30%以上とする理由
酸化物系非金属介在物組成の内、SiO2:30%未満であれば、母相と酸化物系非金属介在物の界面に空洞が生成し、転がりにおける短寿命はく離を招き易くなる。特に、Al23やCaOが増えれば、増えるほど短寿命はく離が顕著になる。さらに、鋼中にAlを含有する場合には、たとえ僅かな含有量であっても、Al23の標準自由エネルギーが他の酸化物に比べて低いため、Al23系酸化物の生成は不可避である。しかしながら、Alの含有量が本発明の範囲内であれば、生成するAl23系酸化物は小さい。また、その大きさが20μm以下であれば、従来から知られているように転がり疲労に対する有害度は小さい。
Reason why the composition of oxide-based nonmetallic inclusions having the maximum inclusion diameter or all oxide-based nonmetallic inclusions having an inclusion diameter of 15 μm or more is SiO 2 : 30% or more Oxide-based nonmetallic inclusions If SiO 2 is less than 30% of the composition, cavities are formed at the interface between the parent phase and the oxide-based non-metallic inclusions, and short-life peeling during rolling is likely to occur. In particular, as Al 2 O 3 and CaO increase, the shorter the life becomes, the more the separation becomes. Further, when containing Al in the steel, even at small content, for the standard free energy of Al 2 O 3 is lower than other oxides of Al 2 O 3 based oxide Generation is inevitable. However, if the Al content is within the range of the present invention, the produced Al 2 O 3 oxide is small. Moreover, if the magnitude | size is 20 micrometers or less, the harmfulness with respect to rolling fatigue is small as conventionally known.

鋼中に存在する酸化物系非金属介在物のうち、検鏡面積3,000mm2中に存在する最大介在物径が70μm以下とする理由
鋼中にAl23、CaO−Al23やMgO−Al23といったAl23系の非金属介在物が主体である鋼であれば、20μm以上の大型の酸化物系非金属介在物を極めて少なくすることが重要であるが、15μm以上の介在物径を有する酸化物系非金属介在物の組成がSiO2:30%以上であれば、母相と酸化物系非金属介在物の界面に空洞が生成しないため、転がりにおける短寿命はく離を抑制することができる。ただし、それでも最大介在物径が70μm以上を有する場合には、短寿命はく離を招きかねない。
The reason why the maximum inclusion diameter in the specular area 3,000 mm 2 is 70 μm or less among the oxide-based non-metallic inclusions present in the steel is Al 2 O 3 , CaO—Al 2 O 3 in the steel. If the steel is mainly composed of Al 2 O 3 -based non-metallic inclusions such as MgO-Al 2 O 3, it is important to greatly reduce large oxide-based non-metallic inclusions of 20 μm or more, If the composition of the oxide-based nonmetallic inclusions having an inclusion diameter of 15 μm or more is SiO 2 : 30% or more, voids are not generated at the interface between the parent phase and the oxide-based nonmetallic inclusions. Life peeling can be suppressed. However, if the maximum inclusion diameter is 70 μm or more, short-life peeling may occur.

本発明の実施の形態の実施条件と得られた効果について具体的に説明する。先ず、表1に本発明の実施の形態の供試材A〜Kの成分組成を示す。本発明が適用可能な鋼は、高周波焼入れ、ズブ焼入れ、ベイナイト焼入れにより58HRC以上の硬さが得られる鋼である。本供試材では、同焼入れ方法を適用する頻度の高い鋼であるJIS G 4805の成分を満足する鋼、その改良(例えば高Cr化、高Si化)した鋼、JIS G 4051の成分を満足する鋼のうち、C≧0.42%を満足する鋼、およびその改良(例えば高Cr化)した鋼について実施した。これらの供試材は100kg真空溶解炉により溶製して鋳塊を製造したものである。溶製時に供試材A〜GおよびJ〜Kは脱酸材として金属AlやAl合金を添加せず、金属Si、Fe−Si、金属Mn、Fe−Mn(何れについてもAl含有量は不可避不純物として5%未満)のみを添加した。供試材H〜Iは脱酸材として金属AlやAl合金も加えた。得られた鋳塊に熱間加工を施してφ65の鋼材とした。供試材F以外の鋼材は800℃にて球状化焼鈍を施し、鋼材の長手方向に対して垂直に切断加工して外径φ60×内径φ20×厚さ5.8mmの円盤からなる試験片を作製した。この試験片を835℃で20分保持した後、油冷により焼入れし、次いで170℃で90分の焼戻し処理を行い、所望の58HRC以上の硬さを得た。これを表面研磨を行ってスラスト型転がり疲労試験を行った。一方、供試材Fについては、750℃にて球状化焼鈍を施し、鋼材の長手方向に対し垂直に切断加工して外径φ60×内径φ20×厚さ5.8mmの円盤からなる試験片を作製した。この試験片を高周波焼入れし、150℃で60分の焼戻処理を行い、所望の58HRC以上の硬さを得た後、表面研磨を行ってスラスト型転がり疲労試験を行った。このスラスト型転がり疲労試験は最大ヘルツ応力Pmax:5292MPaで行った。   The implementation conditions and the obtained effects of the embodiment of the present invention will be specifically described. First, Table 1 shows component compositions of the test materials A to K according to the embodiment of the present invention. Steels to which the present invention can be applied are steels having a hardness of 58 HRC or more obtained by induction hardening, sub-quenching, and bainite quenching. In this test material, steel that satisfies the components of JIS G 4805, which is a steel frequently applied with the same quenching method, steel that has been improved (for example, high Cr, high Si), and components of JIS G 4051 are satisfied. Among the steels to be processed, the steel that satisfies C ≧ 0.42% and the steel that has been improved (for example, high Cr) were carried out. These test materials were produced by melting with a 100 kg vacuum melting furnace to produce an ingot. At the time of melting, test materials A to G and J to K do not add metal Al or Al alloy as a deoxidizer, and metal Si, Fe-Si, metal Mn, Fe-Mn (Al content is unavoidable in any case) Only less than 5%) was added as an impurity. The test materials H to I also added metal Al or Al alloy as a deoxidizing material. The obtained ingot was hot-worked to obtain a φ65 steel material. Steel materials other than the test material F were subjected to spheroidizing annealing at 800 ° C. and cut perpendicularly to the longitudinal direction of the steel material to obtain a test piece consisting of a disk having an outer diameter φ60 × inner diameter φ20 × thickness 5.8 mm. Produced. After holding this test piece at 835 ° C. for 20 minutes, it was quenched by oil cooling, and then tempered at 170 ° C. for 90 minutes to obtain a desired hardness of 58 HRC or higher. This was subjected to surface polishing and a thrust type rolling fatigue test was conducted. On the other hand, the specimen F was subjected to spheroidizing annealing at 750 ° C. and cut perpendicularly to the longitudinal direction of the steel material to obtain a test piece made of a disk having an outer diameter φ60 × inner diameter φ20 × thickness 5.8 mm. Produced. This test piece was induction-hardened and subjected to a tempering treatment at 150 ° C. for 60 minutes to obtain a desired hardness of 58 HRC or higher, and then surface polishing was performed to perform a thrust type rolling fatigue test. This thrust type rolling fatigue test was conducted at a maximum hertz stress Pmax: 5292 MPa.

Figure 2008240019
Figure 2008240019

さらに、各供試材における酸化物系非金属介在物径と組成評価については、上記と同様に熱間加工を施してφ65材とし、スラスト型転がり疲労試験片と同様な球状化焼鈍を施した後に、各供試材のφ65材の直径Dの1/4の表面部から圧延方向と平行な面より10×10mmのミクロ試料を30個を切り出した。これらのミクロ試料を上記と同様な焼入・焼戻し処理を行った後に、試料測定面を研磨して、各100mm2中に存在する酸化物系非金属介在物のうち、(縦×横)1/2で15μm以上を有する酸化物系非金属介在物の大きさをそれぞれ測定し、3000mm2中に存在する最大介在物径を評価した。さらにエネルギー分散型蛍光X線分析装置により介在物組成を定量した。 Further, for the oxide-based non-metallic inclusion diameter and composition evaluation in each test material, hot working was performed in the same manner as described above to obtain a φ65 material, and spheroidizing annealing similar to that of the thrust type rolling fatigue test piece was performed. Later, 30 micro samples having a size of 10 × 10 mm were cut out from a surface parallel to the rolling direction from a surface portion of ¼ diameter D of φ65 material of each test material. These micro samples were subjected to the same quenching and tempering treatment as described above, and then the sample measurement surface was polished, and among the oxide-based non-metallic inclusions present in each 100 mm 2 (vertical x horizontal) 1 The size of oxide-based nonmetallic inclusions having a thickness of 15 μm or more at 1/2 was measured, and the maximum inclusion diameter existing in 3000 mm 2 was evaluated. Furthermore, the inclusion composition was quantified by an energy dispersive X-ray fluorescence analyzer.

表1において、供試材のA〜Gは本発明の構成要件を満足するものである。質量割合で、Al含有量は最高でも供試材Aの0.009%であり、O含有量は最高でも供試材Cの20ppmである。供試材H〜Kのうち、供試材Hと供試材IはAl含有量が本発明の範囲外であり、表1の備考に記載のように供試材Jと供試材Kは脱酸不足でO含有量が本発明の範囲外である。   In Table 1, A to G of the test materials satisfy the constituent requirements of the present invention. In terms of mass ratio, the Al content is at most 0.009% of the test material A, and the O content is at most 20 ppm of the test material C. Among the test materials H to K, the test material H and the test material I have an Al content outside the scope of the present invention, and as shown in the remarks in Table 1, the test material J and the test material K are O content is outside the scope of the present invention due to insufficient deoxidation.

これらの表1に示す各供試材からなる各試験片について、3000mm2中に存在する最大介在物径と、15μm以上を有する酸化物系非金属介在物の主要物であるSiO2、Al23、CaO+MnO、MgOの平均組成と、およびこれらの15μm以上を有する酸化物系非金属介在物のなかで最もSiO2の構成量が少ない試験片の酸化物系非金属介在物のSiO2量について、それぞれ表2に示す。 For each test piece made of each sample shown in these tables 1, the maximum inclusion diameter present in 3000 mm 2, SiO 2 is the main product of the oxide-based nonmetallic inclusions having the above 15 [mu] m, Al 2 The average composition of O 3 , CaO + MnO, and MgO, and the SiO 2 content of the oxide-based non-metallic inclusions of the test piece having the smallest amount of SiO 2 among the oxide-based non-metallic inclusions having 15 μm or more. Are shown in Table 2.

Figure 2008240019
なお、MgO欄の−は1%未満を示す。
Figure 2008240019
In the MgO column,-indicates less than 1%.

表2において、供試材A〜Gは本発明の請求項1および請求項2を満足する。一方、15μm以上を有する酸化物系非金属介在物のうちで、最もSiO2の構成量が少ない酸化物系非金属介在物のSiO2量については、供試材A〜Gは、表1で本発明の成分範囲を満足するものである。さらに、最もSiO2の構成量が少ない酸化物系非金属介在物のSiO2量は、最低のもので供試材Aの20%である。 In Table 2, the specimens A to G satisfy Claims 1 and 2 of the present invention. On the other hand, among the oxide-based nonmetallic inclusions having the above 15 [mu] m, for the most amount of SiO 2 structure of SiO 2 is less oxide-based nonmetallic inclusions, test materials A~G is in Table 1 The component range of the present invention is satisfied. Furthermore, the SiO 2 content of the oxide-based non-metallic inclusions with the smallest amount of SiO 2 is 20% of the specimen A at the lowest.

さらに、上記における焼入・焼戻し後の表面硬さとスラスト型転がり疲労試験を行った各供試材の10枚の試験片のうち、1×107サイクル未満ではく離した10枚中の枚数およびL10寿命を表3に示す。 Further, among the 10 test pieces of each specimen subjected to the surface hardness after quenching and tempering and the thrust type rolling fatigue test in the above, the number of 10 pieces separated in less than 1 × 10 7 cycles and L Table 3 shows the 10 lifespan.

Figure 2008240019
Figure 2008240019

表3において、本発明の構成を満足する供試材のA〜Gは、表面硬さは61.5HRC以上で、1×107サイクル未満ではく離した試験片は10枚中で0枚であり、かつL10寿命が最低のものでも供試材Gの10.7×106サイクル以上である。これに対し、本発明の以外のものである供試材H〜Kは、1×107サイクル未満ではく離した試験片は供試材H、供試材Iおよび供試材Kでは10枚中で2枚であり、供試材Jでは10枚中で1枚である。さらにL10寿命は最大のもので9.5×106サイクル未満であり、本発明のものに比し劣っている。 In Table 3, A to G of the test materials satisfying the configuration of the present invention had a surface hardness of 61.5 HRC or more, and the number of test pieces separated in less than 1 × 10 7 cycles was 0 out of 10 pieces. and it is L 10 life be of minimum test material 10.7 × 10 6 cycles over G. On the other hand, the specimens H to K which are other than the present invention are the specimens separated in less than 1 × 10 7 cycles, and 10 specimens are specimens H, specimen I and specimen K. 2 pieces, and in the specimen J, it is 1 piece out of 10 pieces. Further, the L 10 life is the maximum, less than 9.5 × 10 6 cycles, which is inferior to that of the present invention.

Claims (2)

機械部品に使用する際の鋼の表面硬さが58HRC以上であり、かつ質量割合でOが20ppm以下、Alが0.010%未満を満足する機械構造用鋼であって、介在物径を(縦×横)1/2と定義するとき、その鋼中に存在する検鏡面積3,000mm2に存在する最大介在物径を有する酸化物系非金属介在物あるいは15μm以上の介在物径を有する全ての酸化物系非金属介在物の組成が質量%でSiO2:30%以上であることを特徴とする転がり疲労寿命に優れた機械用部品に使用される鋼。 A steel for machine structural use that has a surface hardness of 58 HRC or more when used in a machine part, and satisfies a mass ratio of O of 20 ppm or less and Al of less than 0.010%. (Length x width) When defined as 1/2, it has an oxide-based nonmetallic inclusion having a maximum inclusion diameter existing in the speculum area of 3,000 mm 2 in the steel or an inclusion diameter of 15 μm or more. Steel used for machine parts having excellent rolling fatigue life, characterized in that the composition of all oxide-based nonmetallic inclusions is SiO 2 : 30% or more by mass. 鋼中に存在する酸化物系非金属介在物の内、検鏡面積3,000mm2中に存在する最大介在物径が70μm以下であることを特徴とする請求項1に記載の転がり疲労寿命に優れた機械用部品に使用される鋼。 2. The rolling fatigue life according to claim 1, wherein, among the oxide-based nonmetallic inclusions present in the steel, the maximum inclusion diameter present in the specular area of 3,000 mm 2 is 70 μm or less. Steel used for excellent machine parts.
JP2007078604A 2007-03-26 2007-03-26 Steel excellent in rolling contact fatigue life Pending JP2008240019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078604A JP2008240019A (en) 2007-03-26 2007-03-26 Steel excellent in rolling contact fatigue life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078604A JP2008240019A (en) 2007-03-26 2007-03-26 Steel excellent in rolling contact fatigue life

Publications (1)

Publication Number Publication Date
JP2008240019A true JP2008240019A (en) 2008-10-09

Family

ID=39911706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078604A Pending JP2008240019A (en) 2007-03-26 2007-03-26 Steel excellent in rolling contact fatigue life

Country Status (1)

Country Link
JP (1) JP2008240019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062526A (en) * 2010-09-16 2012-03-29 Sumitomo Metal Ind Ltd Rolling axis steel material
EP2692892A1 (en) * 2011-03-31 2014-02-05 Kabushiki Kaisha Kobe Seiko Sho Bearing steel with excellent rolling fatigue characteristics, and bearing parts
KR20150010698A (en) 2012-05-07 2015-01-28 산요오도꾸슈세이꼬 가부시키가이샤 Steel having excellent rolling fatigue life

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379741A (en) * 1989-08-22 1991-04-04 Daido Steel Co Ltd Steel excellent in rolling fatigue characteristic
JP2004353746A (en) * 2003-05-28 2004-12-16 Nsk Ltd Roller bearing unit for wheel support
JP2006063402A (en) * 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd Steel used in parts for machinery superior in rolling fatigue life
JP2006200027A (en) * 2005-01-24 2006-08-03 Nippon Steel Corp High-carbon chromium steel for bearing and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379741A (en) * 1989-08-22 1991-04-04 Daido Steel Co Ltd Steel excellent in rolling fatigue characteristic
JP2004353746A (en) * 2003-05-28 2004-12-16 Nsk Ltd Roller bearing unit for wheel support
JP2006063402A (en) * 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd Steel used in parts for machinery superior in rolling fatigue life
JP2006200027A (en) * 2005-01-24 2006-08-03 Nippon Steel Corp High-carbon chromium steel for bearing and production method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062526A (en) * 2010-09-16 2012-03-29 Sumitomo Metal Ind Ltd Rolling axis steel material
EP2692892A1 (en) * 2011-03-31 2014-02-05 Kabushiki Kaisha Kobe Seiko Sho Bearing steel with excellent rolling fatigue characteristics, and bearing parts
EP2692892A4 (en) * 2011-03-31 2015-01-28 Kobe Steel Ltd Bearing steel with excellent rolling fatigue characteristics, and bearing parts
US9394593B2 (en) 2011-03-31 2016-07-19 Kobe Steel, Ltd. Bearing steel material with excellent rolling contact fatigue properties and a bearing part
KR20150010698A (en) 2012-05-07 2015-01-28 산요오도꾸슈세이꼬 가부시키가이샤 Steel having excellent rolling fatigue life

Similar Documents

Publication Publication Date Title
JP5803824B2 (en) Method of melting carburized bearing steel
JP5794397B2 (en) Case-hardened steel with excellent fatigue properties
JP5803815B2 (en) Method of melting bearing steel
JP5794396B2 (en) Induction hardening steel with excellent fatigue properties
JP5266686B2 (en) Bearing steel and its manufacturing method
JP5825157B2 (en) Induction hardening steel
JP5740881B2 (en) Rolled bearing steel
JP5783056B2 (en) Carburized bearing steel
JP6652226B2 (en) Steel material with excellent rolling fatigue characteristics
JP5845784B2 (en) Bearing material and manufacturing method of bearing material
JP6569694B2 (en) Manufacturing method of high cleanliness steel
JP4900127B2 (en) Induction hardening steel and manufacturing method thereof
JP6515327B2 (en) Bearing steel and method of manufacturing the same
JP2012214832A (en) Steel for machine structure and method for producing the same
JP5605912B2 (en) Bearing steel and bearing parts with excellent rolling fatigue characteristics
JP2010007092A (en) Bearing steel and method for producing the same
JP5137082B2 (en) Steel for machine structure and manufacturing method thereof
JP2008240019A (en) Steel excellent in rolling contact fatigue life
KR20150038087A (en) Steel member having excellent rolling fatigue life
JP5473249B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
WO2009145168A1 (en) Manufacturing method for machine parts having superior rolling-contact fatigue life
JP5241185B2 (en) Steel manufacturing method with excellent rolling fatigue life
JP2013001940A (en) Bearing material
JP2009287057A (en) Method for manufacturing machine-parts excellent in rolling-fatigue life
JP5857888B2 (en) Method of melting steel for induction hardening

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100111

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20110115

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20120127

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120406

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121114