JP2006200027A - High-carbon chromium steel for bearing and production method therefor - Google Patents

High-carbon chromium steel for bearing and production method therefor Download PDF

Info

Publication number
JP2006200027A
JP2006200027A JP2005015319A JP2005015319A JP2006200027A JP 2006200027 A JP2006200027 A JP 2006200027A JP 2005015319 A JP2005015319 A JP 2005015319A JP 2005015319 A JP2005015319 A JP 2005015319A JP 2006200027 A JP2006200027 A JP 2006200027A
Authority
JP
Japan
Prior art keywords
less
steel
mass
cao
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005015319A
Other languages
Japanese (ja)
Other versions
JP4630075B2 (en
Inventor
Yoshiaki Kusano
祥昌 草野
Hiroshi Hirata
浩 平田
Yoshimichi Nabeshima
良径 鍋嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005015319A priority Critical patent/JP4630075B2/en
Publication of JP2006200027A publication Critical patent/JP2006200027A/en
Application granted granted Critical
Publication of JP4630075B2 publication Critical patent/JP4630075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-carbon chromium steel for bearing superior in machinability and rolling fatigue life, and to provide a production method therefor. <P>SOLUTION: The high-carbon chromium steel for bearing has a chemical composition which satisfies JIS G 4805 and also satisfies 0.0009 mass% or less O, 0.005 mass% or less Al and 0.005 mass% or less S; and includes oxides among which the number of oxides with sizes of 3 μm or larger existing in a cross section of 160 mm<SP>2</SP>in parallel to a rolling direction when observed by a microscope is 100 or less and the number of oxides with sizes of 10 μm or larger is 2 or less, and among which the total number of alumina-based and spinel-based oxides is less than 60% of the total oxide number, when their composition ratios are further referred to. The method for producing the high-carbon chromium steel for bearing comprises a deoxidizing step of using a deoxidizer which does not substantially contain Al; and a subsequent ladle-refining step of controlling basicity ((CaO)%/(SiO<SB>2</SB>)%) in slag to less than 0.8 to 3.0. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、玉軸受、コロ軸受などの転がり軸受の要素部材に加工するための軸受用鋼の改良に関し、鋼中の微量な酸化物のサイズと個数およびその組成を制御することによって、切削加工時の工具寿命および軸受としての転動疲労寿命とを同時に大幅に改善する鋼とその製造方法に関する。   The present invention relates to an improvement in bearing steel for processing into element members of rolling bearings such as ball bearings and roller bearings, and by controlling the size and number of trace amounts of oxides in the steel and the composition thereof. The present invention relates to a steel and a method for manufacturing the same that greatly improve the tool life and rolling fatigue life as a bearing at the same time.

転がり軸受にはJIS G 4805に規定されている高炭素クロム軸受鋼が多用されているが、このいわゆる軸受鋼は、使用時の性能である転動疲労寿命を支配している材料側の最大の因子が、脱酸後にどうしても除去しきれないで残留してしまう極微量の硬質の酸化物系介在物であるとされ、そのために軸受鋼メーカーでは酸化物系介在物を徹底的に取り除く製造工程の改良を推し進め、近年では鋼中に含まれる酸化物系介在物の総量を表す指標と考えられる酸素(以下単にOと記す)含有量が0.0009質量%以下(この質量比をppmで表す時に1桁になるので以下シングルppmという、また以降の鋼中含有量またはスラグ成分を表す%はすべて質量%を意味する)という極めて清浄な軸受鋼が、わが国で生産される軸受鋼としては通常の品質になっている。   A high carbon chromium bearing steel specified in JIS G 4805 is often used for rolling bearings. This so-called bearing steel is the largest material on the material side that controls the rolling fatigue life, which is the performance in use. It is said that the factor is a very small amount of hard oxide inclusions that cannot be completely removed after deoxidation, and that is why bearing steel manufacturers are in the process of thoroughly removing oxide inclusions. In recent years, the oxygen content (hereinafter simply referred to as O), which is considered to be an index representing the total amount of oxide inclusions contained in steel, is 0.0009 mass% or less (when this mass ratio is expressed in ppm). The bearing steel produced in Japan is an extremely clean bearing steel, which is single-digit because it is a single digit, and all the percentages in the following steels or percentages representing slag components mean mass%) Is of normal quality.

上記のわが国における高清浄軸受鋼の標準的製造方法は、非特許文献1に総括されているが、そこにある記述の中で、本発明が背景技術とは根本的に異なることを明確に示す内容は、以下のように記されている。   The standard manufacturing method of high clean bearing steel in Japan is summarized in Non-Patent Document 1, but in the description there, it is clearly shown that the present invention is fundamentally different from the background art. The contents are written as follows.

まずわが国の高清浄軸受鋼の低O化が何による脱酸で実現されているかについて、p160に「Alによる完全脱酸鋼である軸受鋼」と記され、そのための鋼中Al量の代表的成分値としてp164表5に、Al量0.010%を掲げている。即ち現在のわが国の高清浄軸受鋼は、強力な脱酸剤であるAlを0.010%程度添加することにより完全に脱酸していることによってその低O値が実現できていると理解される。   First, p160 describes “bearing steel that is fully deoxidized steel by Al” as to what is achieved by deoxidation of high-clean bearing steel in Japan. As the component value, p164 Table 5 lists the Al amount of 0.010%. That is, it is understood that the current high clean bearing steel in Japan can achieve its low O value by completely deoxidizing by adding about 0.010% of Al which is a strong deoxidizer. The

次に、還元精練工程におけるスラグ組成に関しては、スラグの塩基度(CaO)%/(SiO2)%が高いほどスラグ中の低級酸化物(FeOやMnO)濃度が低くなって鋼中Oが低下したという某社の報告がp165の図15と図16に、また国内各社の全体のデータとしては、同じく(CaO)%/(SiO2)%が3以上あれば、鋼中O濃度は同程度のシングルppmが得られるとp167の図19に示されている。これらの記述は、現在の高清浄軸受鋼の低O値は、強力なAlで脱酸した後で、還元精練工程においてスラグの塩基度を3以上の高い値に選んでスラグ中の再酸化性成分を減少させることにより実現していると理解される。 Next, regarding the slag composition in the reduction smelting step, the lower the slag basicity (CaO)% / (SiO 2 )%, the lower the concentration of lower oxides (FeO and MnO) in the slag and the lower the O in steel. 15 and 16 on p165, and the overall data of domestic companies is that if the (CaO)% / (SiO 2 )% is 3 or more, the O concentration in steel is similar. A single ppm is shown in FIG. 19 on p167. These descriptions show that the low O value of current high cleanliness bearing steel is deoxidized with strong Al, and then the basicity of the slag is selected to a high value of 3 or more in the reduction scouring process, so that the reoxidation property in the slag It is understood that this is achieved by reducing the components.

しかしながら上記の製造条件で製造した高清浄軸受鋼は、最終的に鋼中に残留する酸化物系介在物の量が含有O量でシングルppmという極めて少ない量であっても、溶鋼中のOを取り除くための脱酸剤として最も強力なAlを使っているために、以下のようにして極めて硬質な酸化物系介在物を生成する。   However, the high-clean bearing steel manufactured under the above-described manufacturing conditions does not contain O in the molten steel even if the amount of oxide inclusions finally remaining in the steel is an extremely small amount of single ppm in the amount of O contained. Since the strongest Al is used as a deoxidizer for removal, extremely hard oxide inclusions are produced as follows.

即ち酸化精錬後に脱酸のためにAlを添加すると鋼中Oは先ずアルミナ(Al23)を生成し、このアルミナは次の取鍋精錬において、取鍋のスラグラインなどに使用されているMgO−Cレンガから解離溶出したMgと反応して大部分がスピネル(Al23・MgO)となり、少量がアルミナのまま残る。 That is, when Al is added for deoxidation after oxidative refining, O in the steel first forms alumina (Al 2 O 3 ), and this alumina is used for the slag line of the ladle in the next ladle refining. Most of it reacts with Mg dissociated and eluted from MgO-C brick to become spinel (Al 2 O 3 .MgO), and a small amount remains as alumina.

このようにしてできる大部分のスピネル(Al23・MgO)系(スピネル系とは、化学量論上のスピネル(Al23・MgO)から組成がずれていても同じ結晶構造で同様な物理的特性を示す成分範囲の酸化物を指す)およびアルミナ(Al23)系(アルミナ系とは、純粋なアルミナではなく少量の他の成分を含んでいてもアルミナと同様な物理的特性を示す成分範囲のものを指す)酸化物(以降特にことわらない限り、このアルミナ系も含めてスピネル系等と呼ぶ)はいずれも極めて硬質であるため、その残留量が極めて少ないにも係わらず、以下に挙げるような加工工程での問題および製品軸受としての性能上の問題があった。 Most of the spinel (Al 2 O 3 .MgO) system that can be formed in this way (the spinel system is the same in crystal structure even if the composition is shifted from the stoichiometric spinel (Al 2 O 3 .MgO)). And alumina (Al 2 O 3 ) system (alumina system is the same physical as alumina with small amounts of other components but not pure alumina). Oxide (referred to as a component range indicating characteristics) (hereinafter referred to as “spinel”, etc., unless otherwise specified) is extremely hard, although its residual amount is extremely small. However, there were problems in the processing steps and performance problems as product bearings as listed below.

軸受鋼中の酸化物がスピネル系等の極めて硬質なものであるために発生している第1の問題は、その部品が軸受のレースの場合には切削加工によって最終製品に近い形状に加工されるが、その切削加工工程において工具の摩耗が速いことである。軸受の加工においても切削加工工程のコストは他の多くの機械部品の場合と同様に総コストの中で比較的大きい割合を占めており、軸受メーカーからは切削加工が容易な軸受鋼が望まれていた。   The first problem that occurs because the oxide in the bearing steel is extremely hard, such as spinel, is that when the part is a bearing race, it is processed into a shape close to the final product by cutting. However, tool wear is fast in the cutting process. In the machining of bearings, the cost of the cutting process is a relatively large part of the total cost, as in the case of many other machine parts, and bearing manufacturers want a bearing steel that can be easily cut. It was.

鋼中酸化物が極めて硬質であることによる第2の問題即ち製品軸受の性能の問題は、問題にしている酸化物の量が極めて微量である割には軸受の転動疲労寿命が短いことであり、ボールがレースの上を毎回通り過ぎる度に硬質なスピネル系等の介在物の周囲に強い応力集中が発生することによりき裂が発生しやすいことがその原因である。   The second problem due to the extremely hard oxide in steel, that is, the performance problem of the product bearing, is that the rolling fatigue life of the bearing is short for the very small amount of oxide in question. The reason is that cracks tend to occur due to strong stress concentration around inclusions such as a hard spinel system each time the ball passes over the race.

上記のように微量に残留する酸化物系介在物が、極めて硬質なスピネル系等であるために、加工工程および製品軸受性能として難点があることを認識し、それを避けるために酸化物の組成を硬質でないものに変えることを狙った試みまたはそれに類似する試みは、これまでにいくつか報告されている。   Recognizing that the oxide inclusions remaining in a trace amount as described above are extremely hard spinel, etc., there is a difficulty in the machining process and product bearing performance, and in order to avoid it, the composition of the oxide Several attempts have been reported so far to try to change to a non-rigid or similar.

例えば 非特許文献2には、酸化物組成を硬質なものにしないことを狙って酸化精錬後の脱酸にAlを使わない方法が報告されているが、その報告では最も強力な脱酸剤であるAlを使わない結果として鋼中O含有量は0.0008%〜0.0015%の範囲に止まっており、高い清浄度の軸受鋼を安定的に製造できてはいない。   For example, Non-Patent Document 2 reports a method in which Al is not used for deoxidation after oxidative refining with the aim of not making the oxide composition hard, but in that report it is the most powerful deoxidizer. As a result of not using certain Al, the O content in the steel remains in the range of 0.0008% to 0.0015%, and high cleanliness bearing steel cannot be stably produced.

また特許文献1には、製品軸受の転動疲労寿命を改善するために非金属介在物量を徹底的に低下させる方法として、高塩基度スラグの存在下で還元精練を行い、Alをできるだけ使わずに真空脱ガス精練法にてOを0.0006%以下とする高清浄度軸受鋼とその製造法が開示されているが、当該技術では酸化物組成を硬質でないものに変えることが不十分であるため製品軸受の転動疲労寿命は改善したものの被削性は従来鋼並みを維持したのみであり、その両方を改善できてはいない。   In Patent Document 1, as a method of thoroughly reducing the amount of non-metallic inclusions in order to improve the rolling fatigue life of product bearings, reduction scouring is performed in the presence of high basicity slag, and Al is not used as much as possible. Discloses a high cleanliness bearing steel in which O is 0.0006% or less by a vacuum degassing smelting method and a method for producing the same, but this technology is insufficient to change the oxide composition to a non-hard one. For this reason, although the rolling fatigue life of the product bearing has been improved, the machinability has only been maintained at the same level as conventional steel, and both of them have not been improved.

特公平4−5742号公報Japanese Patent Publication No. 4-5742 西山記念技術講座テキスト「軸受鋼の清浄化」(社)日本鉄鋼協会平成16年10月22日開催Nishiyama Memorial Technology Lecture Text “Bearing Steel Cleaning” Held on October 22, 2004 by the Japan Steel Association 「Stahl und Eisen」117(1997) Nr.8,p79−89“Stahl und Eisen” 117 (1997) Nr. 8, p79-89

本発明は、以上のような背景からなる軸受鋼の被削性と転動疲労寿命との両立課題に対して、鋼中OとAlを著しく低減した上で、なお且つ鋼中の硬質酸化物系介在物の構成比率を低減させた高炭素クロム軸受鋼と、その製造方法に関して、何らかの元素を添加するような有害な副作用を発生し易い方法ではなくて、酸化精錬後の脱酸によって生成しどうしても全部は除去できない酸化物系介在物を、転動疲労寿命や切削時の工具寿命に対して不利である硬質のものにならないように、脱酸剤として使用する元素を適正に選び、かつその後の取鍋精練においても、逐次溶鋼中から除去を図っていく酸化物系介在物が硬質のものに変化しないようにスラグ組成を適正に整えて清浄鋼を製造する方法を提供するものである。   The present invention is to solve the problem of compatibility between the machinability and the rolling fatigue life of the bearing steel having the background as described above, while significantly reducing O and Al in the steel, and also in the hard oxide in the steel. High carbon chromium bearing steel with a reduced proportion of system inclusions and its manufacturing method are not prone to harmful side effects such as adding some elements, but are produced by deoxidation after oxidative refining. The oxide inclusions that cannot be completely removed are selected appropriately for the element to be used as a deoxidizer so as not to be hard, which is disadvantageous to the rolling fatigue life and tool life during cutting. The present invention also provides a method for producing clean steel by appropriately adjusting the slag composition so that the oxide inclusions that are sequentially removed from the molten steel are not changed to hard ones in ladle smelting.

本発明者らは、単に鋼中OとAlを低減しただけでは転動疲労寿命と被削性は大幅に改善されず、更に新たな手段による酸化物系介在物のサイズと個数およびその組成の軟質化制御が必要であることを知見し、本発明を完成するに至った。   The inventors of the present invention do not significantly improve the rolling fatigue life and machinability simply by reducing O and Al in the steel, and further, the size and number of oxide inclusions and the composition of the oxide inclusions by new means. The inventors have found that softening control is necessary, and have completed the present invention.

即ち、発明の要旨は、
(1)鋼の化学成分が、JIS G 4805を満足すると共に、O:0.0009%以下、Al:0.005%以下およびS:0.005%以下を満足する鋼からなり、鋼中に存在する大きさ3μm以上の酸化物の個数が検鏡視野面積160mm2中100個以下で且つそのうち大きさ10μm以上のものが2個以下であり、更にその組成に関し、下記定義によるアルミナ系とスピネル系との合計個数が全酸化物個数の60%未満であることを特徴とする高炭素クロム軸受鋼。
アルミナ系:(MgO)も(SiO2)も3%未満で且つ(CaO)も(CaO)/((CaO)+(Al23))の比で0.08以下であるもの。
スピネル系:3%〜20%の範囲の(MgO)に残部が(Al23)である2元系に、15%以内の(CaO)および/または15%以内の(SiO2)が混入する場合があるスピネル型結晶構造のもの。
(2)鋼の化学成分が、JIS G 4805を満足すると共に、O:0.0009%以下、Al:0.005%以下およびS:0.005%以下を満足する高炭素クロム軸受鋼の製造方法であって、転炉または電気炉による酸化精錬後の脱酸およびその後の成分調整に際し実質Alを含まない脱酸剤を使用する工程、次の取鍋精練におけるスラグの塩基度((CaO)%/(SiO2)%)が0.8以上且つ3.0未満となるように制御する工程、それに引き続く35分間以上の真空脱ガス処理工程を含むことを特徴とする高炭素クロム軸受鋼の製造方法。
That is, the gist of the invention is:
(1) The steel is composed of steel that satisfies JIS G 4805, O: 0.0009% or less, Al: 0.005% or less, and S: 0.005% or less. The number of oxides having a size of 3 μm or more is 100 or less in a viewing field area of 160 mm 2 and 2 or less of those having a size of 10 μm or more. A high carbon chromium bearing steel characterized in that the total number with the system is less than 60% of the total number of oxides.
Alumina system: (MgO) and (SiO 2 ) are less than 3%, and (CaO) and (CaO) / ((CaO) + (Al 2 O 3 )) are not more than 0.08.
Spinel system: (MgO) in the range of 3% to 20% and binary system with the balance being (Al 2 O 3 ) contain 15% (CaO) and / or 15% (SiO 2 ). It may have a spinel crystal structure.
(2) Production of high carbon chromium bearing steel in which the chemical composition of the steel satisfies JIS G 4805, and satisfies O: 0.0009% or less, Al: 0.005% or less, and S: 0.005% or less. A method of using a deoxidizer containing substantially no Al for deoxidation after oxidation refining by a converter or an electric furnace and subsequent component adjustment, basicity of slag in the next ladle scouring ((CaO)) % / (SiO 2 )%) of 0.8 or more and less than 3.0, followed by a vacuum degassing treatment step of 35 minutes or more. Production method.

本発明の軸受鋼は、近年の超硬工具によるクーラントを使わない高速切削において工具寿命が大幅に向上し、また製品軸受としては長期の安定稼動に適するので、産業上の利用価値が非常に大きい。   The bearing steel of the present invention greatly improves the tool life in high-speed cutting without using coolant with a carbide tool in recent years, and is suitable for long-term stable operation as a product bearing, so the industrial utility value is very large .

また本発明で得られる効果は、Si,Mn,Cr,Moの含有量の多少の変動には影響を受けないので、実施例で示した高炭素クロム軸受鋼第2種SUJ2ばかりでなく、他の第1種〜第5種まで含めて全く同様な効果が得られるものである。   Further, the effect obtained by the present invention is not affected by the slight fluctuations in the contents of Si, Mn, Cr, and Mo. Therefore, not only the high carbon chrome bearing steel type 2 SUJ2 shown in the examples but also other The same effects can be obtained including the first to fifth types.

また、被削性および転動疲労寿命を改善することができた原因が、鋼中の非常に硬質な酸化物を改質してその硬度を焼入れ硬化処理をした軸受鋼の生地の硬度に近付けたためであるので、軸受鋼の生地の中にある酸化物の生地に対する異質性が弱まったといえる。その結果、レースとボールが軸受の回転の都度互いに擦れ合う時に発生する擦過音も大幅に小さくなることが期待されるので、音響機器や病院など静粛な環境で連続運転される空調機器などに使われる軸受用に適していると考えられる。   In addition, the reason why machinability and rolling fatigue life could be improved is that the hardness of the bearing steel that has been hardened and hardened by modifying a very hard oxide in the steel is approached. Therefore, it can be said that the heterogeneity with respect to the oxide fabric in the bearing steel fabric has weakened. As a result, it is expected that the rubbing noise generated when the race and ball rub against each other each time the bearing rotates will be greatly reduced, so it is used for air conditioners that are continuously operated in quiet environments such as acoustic equipment and hospitals. It is considered suitable for bearings.

先ず、本発明の軸受鋼における化学組成およびそれに含まれる酸化物のサイズと個数およびその組成とその比率の限定理由について述べる。   First, the chemical composition of the bearing steel of the present invention, the size and number of oxides contained therein, and the reasons for limiting the composition and ratio thereof will be described.

本発明の高炭素クロム軸受鋼は第1に、鋼の化学成分がJIS G 4805を満足する。JIS G 4805を満足する化学成分とは、Sを除いて、「JISハンドブック(1)鉄鋼I」(財団法人日本規格協会、2004年1月31日第1版第1刷発行)の第1111頁の「高炭素クロム軸受鋼鋼材」に掲載されている「表2 化学成分」および該表下の備考欄に記載された成分を満足するものである。表2にはSUJ1〜5の5種類が規定されており、例えばSUJ2(単位%)においては、C:0.95〜1.10、Si:0.15〜0.35、Mn:0.50以下、P:0.025以下、S:0.025以下、Cr:1.30〜1.60と記載されている。   First, in the high carbon chromium bearing steel of the present invention, the chemical composition of the steel satisfies JIS G 4805. Chemical constituents that satisfy JIS G 4805, except for S, page 1111 of “JIS Handbook (1) Steel I” (Japan Standards Association, 31st January 2004, first edition, first edition) Of “High Carbon Chromium Bearing Steel” in “Table 2 Chemical Components” and the components listed in the remarks column below the table. In Table 2, five types of SUJ1 to 5 are defined. For example, in SUJ2 (unit%), C: 0.95 to 1.10, Si: 0.15 to 0.35, Mn: 0.50 Hereinafter, P: 0.025 or less, S: 0.025 or less, and Cr: 1.30 to 1.60.

O:9ppm以下
Oは鋼中に残存して基本的に有害な酸化物を形成するのでできるだけ少ないことが望ましく、できれば6ppm以下が望ましい。しかし通常の酸化精錬→取鍋精練→真空脱ガス工程で容易に得られる9ppm以下であれば、本発明の効果は得られるので9ppm以下とする。
O: 9 ppm or less O remains in the steel and basically forms harmful oxides, so it is preferably as small as possible, preferably 6 ppm or less. However, if it is 9 ppm or less that can be easily obtained by ordinary oxidation refining → ladle refining → vacuum degassing step, the effect of the present invention can be obtained, so the content is 9 ppm or less.

Al:0.005%以下
Alは、鋼中の酸化物を硬質にするのでできるだけ少ない方が望ましく、できれば0.002%以下が望ましい。しかし脱酸剤としてAlを使わなければ容易に達せられる0.005%以下であれば本発明の効果は得られるので、0.005%以下とする。
Al: 0.005% or less Since Al makes the oxide in the steel hard, it is desirable that it be as little as possible, preferably 0.002% or less. However, if Al is not used as a deoxidizer, the effect of the present invention can be obtained if it is 0.005% or less, which can be easily achieved. Therefore, the content is made 0.005% or less.

S:0.005%以下
Sは、近年の軸受鋼のようにOがシングルppmとなっている場合には、酸化物に代わって硫化物が疲労破壊の起点となり易く、従って転動疲労寿命からはできるだけ低い方が良い。また本発明が狙いとする超硬工具による高速ドライ切削の場合には、Sの含有量は工具寿命には影響が小さいので、その点からもSを低くすることは差し支えない。しかしながら、本発明による低塩基度スラグによる取鍋精練では、背景技術である高塩基度スラグの場合よりも溶鋼からSを除去しにくいので、転動疲労寿命の点からも十分で且つ本発明による製造方法で容易に達成できる成分範囲としてSを0.005%以下とする。しかし0.002%以下とすればなお良い。
S: 0.005% or less S is a starting point of fatigue failure in the case where O is single ppm as in the case of bearing steel in recent years. Should be as low as possible. Further, in the case of high-speed dry cutting with a cemented carbide tool targeted by the present invention, the S content has little influence on the tool life, so it is possible to reduce S from that point as well. However, the ladle scouring with the low basicity slag according to the present invention is less difficult to remove S from the molten steel than the case of the high basicity slag which is the background art, and is sufficient from the viewpoint of rolling fatigue life and according to the present invention. S as 0.005% or less as a component range that can be easily achieved by the production method. However, 0.002% or less is even better.

酸化物のサイズと個数
圧延方向に平行な断面の160mm2中に観察される酸化物のサイズと個数が、円相当直径3μm以上のものが100個以下で、且つそのうち10μm以上のものが2個以下であること。ここで円相当直径とは、「√(長径×短径)」で算定するものとする。またここで言う酸化物は、単独で存在するものはもちろんのこと、硫化物等と複合している場合でも、その複合状態での酸化物の輪郭で算定計数する。このように酸化物のサイズ別観察個数の上限を規定するのは、転動疲労寿命に対して最も有害な硬質酸化物を軟質化することによってその有害性を改善しても、やはり大きい酸化物は有害であるからである。転動疲労寿命に対して本当に有害なのは、軸受になった時に大きい接触応力が発生する部位に存在する最も大きい酸化物であるので、上記の10μm以上のものがほぼ直接的に対応するが、3μm以上のものの個数は検出数が多くて10μm以上の個数のように当たりはずれがないので、極めて大きいものの検出頻度のレベル感を査定する意味の規定である。
Size and number of oxides The size and number of oxides observed in 160 mm 2 of the cross section parallel to the rolling direction are 100 or less, and two of which are 10 μm or more, with a circle equivalent diameter of 3 μm or more. The following. Here, the equivalent circle diameter is calculated by “√ (major axis × minor axis)”. In addition, the oxide referred to here is calculated and counted by the contour of the oxide in the composite state even when it is combined with sulfide as well as those existing alone. In this way, the upper limit of the number of observations by size of oxide is defined by the fact that even if the harmfulness is improved by softening the hardest oxide that is most harmful to the rolling fatigue life, it is still a large oxide. Because it is harmful. What is really detrimental to the rolling fatigue life is the largest oxide present at the site where large contact stress is generated when it becomes a bearing, so the above 10 μm or more corresponds almost directly, but 3 μm Since the number of detections is large and the number of detections is 10 μm or more, there is no chance of hitting them.

酸化物の組成
前項のようにして観察した粒径3μm以上の酸化物の組成として、アルミナ系とスピネル系との合計個数が全酸化物個数の60%未満であること。このように酸化物の組成別構成比率を規定するのは、転動疲労寿命と切削加工時の工具寿命の両方にとって極めて有害な硬質酸化物の軟質化改質を達成した比率を規定するためである。清浄度が高い軸受鋼を製造する背景技術では、もともと脱酸剤としてAlを使うために最終的に鋼中に残留する酸化物は極めて硬質なスピネル(Al23・MgO)系等が主体となる。本発明による方法では、脱酸剤としてAlを使わなくても、添加合金中にいくらか含まれるAlや、溶鋼が接する耐火物から入ってくるAlにより酸化物組成はスピネル系等となる傾向を示すため、更に取鍋精練時のスラグ組成を適正に選んで、酸化物組成をスピネル系等でないものに誘導した。本発明による方法では、極めて硬質なスピネル系等の酸化物の個数比率を60%未満に減少させることができ、その時切削加工時の工具寿命と転動疲労寿命との両方が、背景技術に対して大幅に向上することを見出したので、上記の通り酸化物組成の構成比率を規定する。
Composition of oxide As the composition of oxide having a particle size of 3 μm or more as observed in the previous section, the total number of alumina and spinel systems should be less than 60% of the total number of oxides. The reason why the composition ratios of the oxides are defined in this way is to define the ratio at which the softening modification of the hard oxide is achieved, which is extremely harmful to both the rolling fatigue life and the tool life during cutting. is there. In the background technology for producing bearing steel with high cleanliness, the oxides that finally remain in the steel are mainly hard spinel (Al 2 O 3 .MgO) because Al is used as a deoxidizer. It becomes. In the method according to the present invention, even if Al is not used as a deoxidizer, the oxide composition tends to be a spinel system or the like due to some Al contained in the additive alloy or Al coming from a refractory in contact with molten steel. Therefore, the slag composition at the time of ladle scouring was appropriately selected, and the oxide composition was induced to something other than a spinel system. In the method according to the present invention, the number ratio of extremely hard spinel oxides and the like can be reduced to less than 60%, and both the tool life and rolling fatigue life at the time of cutting are compared with the background art. Therefore, the composition ratio of the oxide composition is defined as described above.

次に、本発明の高炭素クロム軸受鋼の製造方法について、下記(1)〜(6)にて順次説明を行う。   Next, the manufacturing method of the high carbon chromium bearing steel of the present invention will be sequentially described in the following (1) to (6).

(1)本発明の第1の要点は、転炉または電気炉による軸受鋼の酸化精錬後の脱酸およびその後の成分調整のための合金添加において、脱酸生成物として極めて硬質のスピネル系等ができてしまうことを避けるために脱酸力が強いAlを使わないで、実質的にAlを含まないFe−Siまたは金属Siで脱酸および成分調整することである。ここで実質Alを含まない脱酸剤とは、金属Siおよび、Fe−Siの場合にはSiの含有量に対するAlの含有量の比率が0.03以下のものを指す。   (1) The first essential point of the present invention is that, in deoxidation after oxidation refining of bearing steel in a converter or electric furnace, and addition of an alloy for adjusting the components thereafter, an extremely hard spinel system as a deoxidation product, etc. In order to avoid this, it is possible to deoxidize and adjust the components with Fe-Si or metal Si which does not substantially contain Al, without using Al having a strong deoxidizing power. Here, the deoxidizer which does not substantially contain Al refers to metal Si and, in the case of Fe—Si, one having a ratio of the Al content to the Si content of 0.03 or less.

(2)脱酸力がAlに比べて非常に弱いSiで脱酸しても、軸受鋼の場合にはその鋼中Oは、シングルppmまで下げることができる。その理由は、軸受鋼の場合にはC含有量が約1%と極めて高いことにより、還元精練工程の次に引き続いてかまたは同時に行われる「真空脱ガス処理工程」において、Cによって良く真空脱酸できるので、AlやSiなどの脱酸剤にだけ依存しなくてもよいという特徴があるためである。即ち、この「真空脱ガス処理工程」においては、溶鋼中のOとCとの間で C+O→CO↑ の反応が起こるが、この反応は左辺のCが高ければ反応平衡は右へ進み、即ち脱酸反応はより進むこととなり、また対象溶鋼を真空に引いて脱ガス処理するために溶鋼は高い真空度の雰囲気に晒されるから、上記反応の平衡はガス発生側の右辺へ進むので、やはり脱酸反応は良く進むからである。   (2) Even in the case of bearing steel, O in the steel can be reduced to a single ppm even if it is deoxidized with Si, which has a weaker deoxidizing power than Al. The reason for this is that, in the case of bearing steel, the C content is extremely high at about 1%, so that in the “vacuum degassing process step” that is performed subsequent to or simultaneously with the reduction smelting step, the vacuum degassing is better. This is because it can be acidified, and it does not have to depend only on a deoxidizing agent such as Al or Si. That is, in this “vacuum degassing process”, a reaction of C + O → CO ↑ occurs between O and C in the molten steel, but this reaction proceeds to the right if C on the left side is high, that is, Since the deoxidation reaction proceeds further, and the molten steel is exposed to a high vacuum atmosphere in order to degas the target molten steel by vacuum, the equilibrium of the reaction proceeds to the right side on the gas generation side. This is because the deoxidation reaction proceeds well.

(3)即ち脱酸力の弱いSiで脱酸してもシングルppmの十分に清浄な低O鋼が得られるのであるが、従来の清浄な軸受鋼の製造技術では、Siで脱酸しても硬質なスピネル系等の酸化物の比率を十分には低くできなかった。その理由は前記背景技術に記載の通り、低O鋼を得るために、還元精練工程におけるスラグの塩基度を3.0以上に高くしたからである。   (3) That is, even if deoxidizing with Si with weak deoxidizing power, single ppm sufficiently clean low O steel can be obtained. However, in the conventional manufacturing technology of clean bearing steel, deoxidizing with Si However, the ratio of hard spinel oxides could not be lowered sufficiently. The reason is that, as described in the background art, the basicity of slag in the reduction scouring process was increased to 3.0 or more in order to obtain low O steel.

(4)還元精練工程において従来と同様な高塩基度スラグを用いる場合には、その多元系スラグ組成としての平衡酸素濃度が極めて低くなるために、強力な脱酸元素の脱酸生成物であるアルミナまでAl23→2Al+3Oの分解反応を起こす傾向が強まり、脱酸剤としてAlを使わないにもかかわらず、真空脱ガス処理工程において、溶鋼鍋の内張りレンガなどの成分であるAl23から、更にはスラグ中のAl23からAlが少々溶鋼に戻ることとなる。その結果鋼中に戻ったAlは、次の鋳造工程に進んで、溶鋼温度が凝固温度に向けて低下するに伴って更に脱酸反応が進むため、また鋳造工程でタンディッシュ廻りや鋳型廻りで溶鋼が何らかの再酸化源に触れたりする場合に、極めて硬質なスピネル系等の酸化物を形成することとなるので、初めからAlで脱酸する場合よりはかなり改善されるものの、Si脱酸で狙った「硬質な酸化物を作らない」ことが十分には達成されない。 (4) When the same high basicity slag as in the conventional case is used in the reduction smelting process, the equilibrium oxygen concentration as the multi-component slag composition is extremely low, which is a strong deoxidation product of a deoxidizing element. intensified prone to decomposition reaction of Al 2 O 3 → 2Al + 3O to alumina, even though not used Al as a deoxidizer in a vacuum degassing process, a component such as a lining brick ladle Al 2 O 3 and further Al returns slightly from the Al 2 O 3 in the slag to the molten steel. As a result, the Al that has returned to the steel proceeds to the next casting process, and as the molten steel temperature decreases toward the solidification temperature, the deoxidation reaction further proceeds, and in the casting process around the tundish and around the mold. When molten steel comes into contact with some kind of reoxidation source, it forms an extremely hard oxide such as a spinel system. The target "do not make hard oxide" is not fully achieved.

(5)そこで本発明の第2の要点である「還元精練におけるスラグ組成を、従来よりも低塩基度側に適度に調整する」ことにより、低O値を維持しつつ溶鋼へAlが戻らないようにし、鋳造工程以降で新たに生成する脱酸生成物が硬質のスピネル系等にならないようにして、切削加工時の工具寿命と製品軸受としての転動疲労寿命の両方を同時に大幅に改善したものである。スラグ塩基度を低下させるためには原料の中の生石灰を減じて軽焼ドロマイトまたはケイ石を増量すれば良い。スラグ塩基度を低下させると溶鋼中に残るAlを減ずることができるが、溶鋼中のOおよびSを除去しない傾向が強まるので、塩基度を低下させ過ぎることも好ましくない。そこで、スラグの脱酸能および脱硫能の面から塩基度の下限を0.8以上とし、酸化物の軟質化効果が得られる塩基度の上限として3.0未満とした。   (5) Therefore, Al does not return to the molten steel while maintaining a low O value by “adjusting the slag composition in the reduction smelting to a lower basicity side than before”, which is the second essential point of the present invention. As a result, the deoxidation product newly generated after the casting process does not become a hard spinel system, etc., and both the tool life during cutting and the rolling fatigue life as a product bearing have been greatly improved at the same time. Is. In order to lower the slag basicity, light calcined dolomite or quartzite may be increased by reducing quick lime in the raw material. When the slag basicity is lowered, Al remaining in the molten steel can be reduced. However, since the tendency not to remove O and S in the molten steel is increased, it is not preferable to reduce the basicity too much. Therefore, the lower limit of the basicity is set to 0.8 or more from the viewpoint of the deoxidizing ability and the desulfurizing ability of the slag, and the upper limit of the basicity for obtaining the softening effect of the oxide is set to less than 3.0.

(6)最後に本発明の第3の要点は、真空脱ガス処理時間を35分以上とする真空脱ガス処理工程によって溶鋼を十分に環流し、鋼中に懸濁浮遊する酸化物をできるだけ浮上分離してトップスラグ中に吸収除去することである。真空脱ガス処理工程としては、RH真空脱ガス処理を用いると好ましい。RHによらない他の真空脱ガス処理工程においてもその性能に応じて処理時間を十分に確保することによりこれと同様な効果が得られる。   (6) Finally, the third essential point of the present invention is that the molten steel is sufficiently circulated by the vacuum degassing treatment step in which the vacuum degassing treatment time is 35 minutes or more, and the oxide suspended and suspended in the steel is floated as much as possible. It is separated and absorbed in the top slag. As the vacuum degassing process, RH vacuum degassing is preferably used. In other vacuum degassing process steps that do not depend on RH, the same effect can be obtained by sufficiently securing the processing time according to the performance.

以下に、本発明の実施条件とそこで得られた効果について、具体的に説明する。なお、下記表1、2、4に付されたアンダーラインは、本発明範囲から外れることを示す。   Below, the implementation conditions of the present invention and the effects obtained there will be described in detail. In addition, the underline attached | subjected to following Table 1, 2, 4 shows that it remove | deviates from the scope of the present invention.

本発明が対象とする軸受鋼は、JIS G 4805に規定されている高炭素クロム軸受鋼であり、その実施例としては、転炉〜LF〜RH〜CC(連続鋳造)工程にて、本発明による方法と本発明の一部分だけを適用した方法および背景技術による方法とで、表1に示す化学成分の高清浄軸受鋼を製造し、所定の均熱拡散処理の後、熱間圧延で162mm角のビレットとした。   The bearing steel targeted by the present invention is a high carbon chrome bearing steel defined in JIS G 4805. As an example of the bearing steel, the present invention is applied in a converter-LF-RH-CC (continuous casting) process. And a method using only a part of the present invention and a method according to the background art produce high-clean bearing steels having the chemical components shown in Table 1, and after a predetermined soaking diffusion treatment, hot rolling is performed to 162 mm square. Billet.

Figure 2006200027
Figure 2006200027

被削性試験および転動疲労試験用には、このビレットを更に熱間圧延で65mmΦの棒鋼とし、次に炭化物の球状化のための焼鈍処理を行って供試鋼とした。   For the machinability test and the rolling fatigue test, the billet was further rolled into a 65 mmφ bar steel, and then annealed for spheroidizing carbides to obtain a test steel.

被削性試験については、上記の供試鋼をそのまま使用し、切削試験条件は、切削速度200m/分、切り込み量2mm、送り量0.25mm/revで、JIS−P20相当超硬合金にTiN等のコーティングをした工具を用い、クーラントなしで外周旋削して5分毎に工具の摩耗を測定し、逃げ面摩耗幅が0.2mmに達する時間をもって工具寿命と判定した。   For the machinability test, the above test steel was used as it was, and the cutting test conditions were a cutting speed of 200 m / min, a cutting depth of 2 mm, a feed rate of 0.25 mm / rev, and a JIS-P20 equivalent cemented carbide with TiN. Using a tool coated with the above-mentioned coating, the outer periphery was turned without coolant, and the wear of the tool was measured every 5 minutes. The time when the flank wear width reached 0.2 mm was determined as the tool life.

また転動疲労寿命の評価試験には、上記供試鋼の素材を輪切りにして粗加工し、通常の焼入れおよび低温焼き戻しの熱処理の後表面を機械仕上げ加工した複数の円盤型試験片を用いて、森式スラスト型転動疲労試験機に供してフレーキングが発生するまでの各試験片の負荷回数を測定し、供試試験片数の10%が疲労破壊する10%破損寿命をワイブル確率紙によって求めた。   For the rolling fatigue life evaluation test, a plurality of disk-shaped test pieces were used, which were roughly cut from the material of the above test steel and machined after normal quenching and low-temperature tempering heat treatment. Using the Mori-type thrust rolling fatigue tester, measure the number of loadings of each test piece until flaking occurs, and 10% of the number of the test specimens will have a 10% failure life that causes fatigue failure. Asked by paper.

表2は、本発明と背景技術との差異を特徴づける酸化精錬後の脱酸剤とLFでの還元精練工程の最後でサンプリングしたスラグ組成およびRHでの真空脱ガス処理時間を示している。使用した脱酸剤の成分組成を表3に示す。   Table 2 shows the slag composition sampled at the end of the reductive smelting step with deoxidizer and LF after oxidative refining, which characterizes the difference between the present invention and the background art, and the vacuum degassing time with RH. Table 3 shows the composition of the deoxidizer used.

Figure 2006200027
Figure 2006200027

Figure 2006200027
Figure 2006200027

さて本発明では、上述の製造法で清浄な軸受鋼を製造した場合に、被削性と転動疲労寿命が大幅に改善される原因を鋼材内質の様々な要素から調査した結果、特に酸化物のサイズと個数およびその組成に特定の条件が整っている場合に、上記2特性が同時に大幅に改善することを見出した。   Now, in the present invention, when clean bearing steel is manufactured by the above-described manufacturing method, the cause of greatly improving the machinability and rolling fatigue life was investigated from various factors of the steel material quality. It has been found that the above two properties are greatly improved at the same time when specific conditions are established in the size and number of the objects and their composition.

まず酸化物サイズと個数に関しては、65mmφ棒鋼の1/2半径部で圧延方向に平行な断面から検鏡サンプルを作製し、測定視野160mm2中に認められる円相当直径3μm以上の酸化物を全数カウントし、その個数が100個以下であること、且つそのうち粒径10μm以上のものが2個以下であることである。上の円相当直径とは、√(長径×短径)にて算定する。 First, regarding the size and number of oxides, a microscopic sample was prepared from a cross section parallel to the rolling direction at a ½ radius portion of a 65 mmφ steel bar, and all oxides having an equivalent circle diameter of 3 μm or more found in a measurement field of view 160 mm 2 were obtained. It is counted that the number is 100 or less, and that the number of particles having a particle size of 10 μm or more is 2 or less. The upper equivalent circle diameter is calculated by √ (major axis × minor axis).

ここで光学顕微鏡による酸化物の判定方法は、酸化物は硫化物よりも色合いが濃く黒味を帯びており、またしばしば観察されるTiの炭窒化物は独特のピンク色なので、容易に判定できる。また酸化物に硫化物やTiの炭窒化物が隣接したり周囲を覆うなど単純に複合している場合には、酸化物だけの輪郭で大きさを算定しカウントする。もしも酸化物と他の組成のものが複雑に複合している場合には、一旦全体を酸化物の大きさとして算定しておき、次の工程でのエネルギー分散型X線分光法による組成の測定結果により、主として酸化物として算入するかまたは主として他の組成の介在物であるとして除外するかの判定を行う。   Here, the determination method of the oxide by an optical microscope can be easily determined because the oxide is darker and darker than the sulfide, and the Ti carbonitride often observed is a unique pink color. . In addition, when the oxide is simply combined such as sulfide or Ti carbonitride adjoining or surrounding the oxide, the size is calculated based on the outline of the oxide only and counted. If oxides and other compositions are complexly combined, calculate the total oxide size once and measure the composition by energy dispersive X-ray spectroscopy in the next step. Based on the result, a determination is made as to whether it is mainly included as an oxide or excluded mainly as inclusions of other compositions.

次にその酸化物組成の調査方法は、前項のようにして観察した大きさ3μm以上の酸化物全数について、その組成をエネルギー分散型X線分光法で測定し、それらの組成を(Al23)−(CaO)−(MgO)−(SiO2)の4元系に換算した時に、ほぼすべての酸化物が以下の4種類の成分系に分類できることがわかった。
第1分類:(MgO)も(SiO2)も3%未満で且つ(CaO)も(CaO)/((CaO)+(Al23))の比で0.08以下であって、結局殆どが(Al23)であるもの。したがってこれをアルミナ系と呼ぶ。
第2分類:3%〜20%の範囲の(MgO)に残部が(Al23)である2元系の場合が多いが、15%程度以内の(CaO)およびまたは15%程度以内の(SiO2)が混入する場合もしばしばある。結晶構造としてはスピネルと呼ばれるのでこの組成のものをスピネル系と呼ぶ。
第3分類:(MgO)も(SiO2)も3%未満であり、且つ(CaO)が(CaO)/((CaO)+(Al23))の比で0.08を超えるもので、この比は0.50に及ぶ場合がある。(CaO)−(Al23)の2元系に近いのでカルシウムアルミネート系と呼ぶ。
第4分類:(MgO)は殆ど含まないで、(CaO)−(Al23)の2元系に3%以上最大で50%程度までの様々な量の(SiO2)を含むもの。ここでは各成分の頭文字をとってC−A−S3元系と呼ぶ。
Next, as a method for investigating the oxide composition, the total number of oxides having a size of 3 μm or more observed as described above was measured by energy dispersive X-ray spectroscopy, and the composition was determined as (Al 2 O 3 ) When converted to a quaternary system of-(CaO)-(MgO)-(SiO 2 ), it was found that almost all oxides can be classified into the following four types of component systems.
First classification: (MgO) and (SiO 2 ) are both less than 3% and (CaO) is a ratio of (CaO) / ((CaO) + (Al 2 O 3 )) of 0.08 or less. Mostly (Al 2 O 3 ). Therefore, this is called an alumina system.
Second classification: In many cases, the binary system is (MgO) in the range of 3% to 20% and the balance is (Al 2 O 3 ), but within about 15% (CaO) and / or within about 15% (SiO 2 ) is often mixed. Since the crystal structure is called spinel, this composition is called a spinel system.
Third classification: (MgO) and (SiO 2 ) are less than 3%, and (CaO) exceeds 0.08 in the ratio of (CaO) / ((CaO) + (Al 2 O 3 )). This ratio may reach 0.50. Since it is close to the binary system of (CaO)-(Al 2 O 3 ), it is called a calcium aluminate system.
Fourth classification: (MgO) is hardly contained, and (CaO)-(Al 2 O 3 ) binary system contains various amounts of (SiO 2 ) of 3% or more and up to about 50%. Here, the acronym for each component is taken and called the C-A-S ternary system.

表4は、本発明による軸受鋼と比較材の酸化物のサイズと個数およびそれらを上記4分類に従って分類した時の構成比を整理し、それに前記試験条件で実施した外周旋削試験における工具寿命および転動疲労寿命を示したものである。ここで1個の酸化物が2相以上から構成され、各相が上記4分類の異なる分類である場合があるが、そのような場合は面積率の最も大きい分類に割り付けた。   Table 4 summarizes the size and number of oxides of the bearing steel and the comparative material according to the present invention and the composition ratio when they are classified according to the above four classifications, and the tool life and the tool life in the peripheral turning test conducted under the test conditions. It shows the rolling fatigue life. Here, one oxide may be composed of two or more phases, and each phase may be classified into the above four classifications. In such a case, they are assigned to the classification having the largest area ratio.

Figure 2006200027
Figure 2006200027

表3の結果から、酸化精錬後の脱酸およびその後の成分調整に対して、実質Alを含まないFe−Siまたは金属Siを使用し、LFでの還元精練におけるスラグ組成として(CaO)%/(SiO2)%を0.8以上3.0未満に選び、且つRHでの真空脱ガス処理時間を35分以上とした場合だけ、大きさ3μm以上の酸化物個数を抑制することができ、且つその組成がスピネル系等の硬質なものばかりになることを避けることができて、切削加工における工具寿命と転動疲労寿命とを同時に大幅に改善できることが明白である。 From the results in Table 3, Fe-Si or metal Si containing no substantial Al was used for deoxidation after oxidation refining and subsequent component adjustment, and (CaO)% / as slag composition in reductive refining with LF Only when (SiO 2 )% is selected from 0.8 to less than 3.0 and the vacuum degassing time in RH is set to 35 minutes or more, the number of oxides having a size of 3 μm or more can be suppressed. In addition, it is obvious that the composition can be prevented from becoming only a hard material such as a spinel system, and the tool life and rolling fatigue life in cutting can be greatly improved at the same time.

Claims (2)

鋼の化学成分が、JIS G 4805を満足すると共に、O:0.0009質量%以下、Al:0.005質量%以下およびS:0.005質量%以下を満足する鋼からなり、圧延方向に平行な検鏡断面積160mm2中に存在する大きさ3μm以上の酸化物個数が100個以下、そのうち大きさ10μm以上のものが2個以下であり、更にそれらの組成別構成比率として、下記定義によるアルミナ系とスピネル系との合計個数が全酸化物個数の60%未満であることを特徴とする高炭素クロム軸受鋼。
アルミナ系:(MgO)も(SiO2)も3%未満で且つ(CaO)も(CaO)/((CaO)+(Al23))の比で0.08以下であるもの。
スピネル系:3%〜20%の範囲の(MgO)に残部が(Al23)である2元系に、15%以内の(CaO)および/または15%以内の(SiO2)が混入する場合があるスピネル型結晶構造のもの。
The steel chemical composition satisfies JIS G 4805, and is made of steel that satisfies O: 0.0009 mass% or less, Al: 0.005 mass% or less, and S: 0.005 mass% or less in the rolling direction. The number of oxides having a size of 3 μm or more existing in a parallel microscopic cross-sectional area of 160 mm 2 is 100 or less, of which 2 or less is 10 μm or more, and the composition ratios by composition are defined as follows: A high carbon chromium bearing steel characterized in that the total number of alumina and spinel based on the above is less than 60% of the total number of oxides.
Alumina system: (MgO) and (SiO 2 ) are less than 3%, and (CaO) and (CaO) / ((CaO) + (Al 2 O 3 )) are not more than 0.08.
Spinel system: (MgO) in the range of 3% to 20% and binary system with the balance being (Al 2 O 3 ) contain 15% (CaO) and / or 15% (SiO 2 ). It may have a spinel crystal structure.
鋼の化学成分が、JIS G 4805を満足すると共に、O:0.0009質量%以下、Al:0.005質量%以下およびS:0.005質量%以下を満足する高炭素クロム軸受鋼の製造方法であって、転炉または電気炉による酸化精錬後の脱酸およびその後の成分調整に際し実質Alを含まない脱酸剤を使用する工程、次の取鍋精練におけるスラグの塩基度((CaO)%/(SiO2)%)が0.8以上3.0未満となるように制御する工程、それに引き続く35分以上の真空脱ガス処理工程を含むことを特徴とする高炭素クロム軸受鋼の製造方法。 Production of high carbon chromium bearing steel in which the chemical composition of the steel satisfies JIS G 4805 and satisfies O: 0.0009 mass% or less, Al: 0.005 mass% or less, and S: 0.005 mass% or less. A method of using a deoxidizer containing substantially no Al for deoxidation after oxidation refining by a converter or an electric furnace and subsequent component adjustment, basicity of slag in the next ladle scouring ((CaO)) % / (SiO 2 )%) is controlled so as to be 0.8 or more and less than 3.0, followed by a vacuum degassing treatment process of 35 minutes or more. Method.
JP2005015319A 2005-01-24 2005-01-24 High carbon chromium bearing steel and manufacturing method thereof Expired - Fee Related JP4630075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015319A JP4630075B2 (en) 2005-01-24 2005-01-24 High carbon chromium bearing steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015319A JP4630075B2 (en) 2005-01-24 2005-01-24 High carbon chromium bearing steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006200027A true JP2006200027A (en) 2006-08-03
JP4630075B2 JP4630075B2 (en) 2011-02-09

Family

ID=36958285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015319A Expired - Fee Related JP4630075B2 (en) 2005-01-24 2005-01-24 High carbon chromium bearing steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4630075B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240019A (en) * 2007-03-26 2008-10-09 Sanyo Special Steel Co Ltd Steel excellent in rolling contact fatigue life
JP2009074151A (en) * 2007-09-21 2009-04-09 Sanyo Special Steel Co Ltd Production method of steel excellent in rolling fatigue life
WO2009145168A1 (en) * 2008-05-27 2009-12-03 山陽特殊製鋼株式会社 Manufacturing method for machine parts having superior rolling-contact fatigue life
JP2009287056A (en) * 2008-05-27 2009-12-10 Sanyo Special Steel Co Ltd Method for manufacturing machine-parts excellent in rolling fatigue life
JP2010007092A (en) * 2008-06-24 2010-01-14 Sumitomo Metal Ind Ltd Bearing steel and method for producing the same
JP2012062526A (en) * 2010-09-16 2012-03-29 Sumitomo Metal Ind Ltd Rolling axis steel material
JP2012132094A (en) * 2010-11-30 2012-07-12 Jfe Steel Corp Bearing material and method of manufacturing the same
JP2013023739A (en) * 2011-07-22 2013-02-04 Nippon Steel & Sumitomo Metal Corp High cleanliness bearing steel and method for producing the same
JP5283788B1 (en) * 2012-05-07 2013-09-04 山陽特殊製鋼株式会社 Steel with excellent rolling fatigue life
EP2692892A1 (en) * 2011-03-31 2014-02-05 Kabushiki Kaisha Kobe Seiko Sho Bearing steel with excellent rolling fatigue characteristics, and bearing parts
EP2878694A4 (en) * 2012-07-24 2016-03-16 Kobe Steel Ltd Bearing steel material with excellent rolling fatigue property and bearing part
CN105452510A (en) * 2013-08-08 2016-03-30 山阳特殊制钢株式会社 Steel having superior rolling fatigue life
EP3249068A4 (en) * 2015-01-23 2018-08-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel material for bearings that has excellent rolling fatigue characteristics, and bearing part
WO2020040190A1 (en) * 2018-08-24 2020-02-27 日本製鉄株式会社 Steel material, forged heat-treated article, and method for manufacturing forged heat-treated article
CN111455135A (en) * 2020-04-03 2020-07-28 中天钢铁集团有限公司 Pretreatment-free method for discontinuously producing bearing steel RH vacuum tank
CN112410650A (en) * 2020-10-30 2021-02-26 建龙北满特殊钢有限责任公司 Control method for improving low-power quality and segregation index of high-carbon chromium bearing steel
CN113073269A (en) * 2021-03-31 2021-07-06 安徽富凯特材有限公司 Smelting process of high-carbon chromium stainless bearing steel parent metal
JP2021176980A (en) * 2020-05-08 2021-11-11 株式会社神戸製鋼所 Electric furnace steelmaking process
CN114774619A (en) * 2022-04-29 2022-07-22 中国铁建重工集团股份有限公司 Low-nitrogen high-carbon chromium bearing steel and production method thereof
CN115478204A (en) * 2022-09-14 2022-12-16 中天钢铁集团有限公司 Method for controlling titanium content of bearing steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145883A (en) * 1992-11-02 1994-05-27 Daido Steel Co Ltd High purity bearing steel and its production
JPH07316631A (en) * 1994-05-23 1995-12-05 Sumitomo Metal Ind Ltd Deoxidizing and cleaning method of molten steel
JPH09291340A (en) * 1996-02-29 1997-11-11 Kawasaki Steel Corp Bearing material
JP2001342516A (en) * 2000-06-05 2001-12-14 Sanyo Special Steel Co Ltd Highly clean steel and production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194047A (en) * 1984-03-14 1985-10-02 Aichi Steel Works Ltd High quality bearing steel and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145883A (en) * 1992-11-02 1994-05-27 Daido Steel Co Ltd High purity bearing steel and its production
JPH07316631A (en) * 1994-05-23 1995-12-05 Sumitomo Metal Ind Ltd Deoxidizing and cleaning method of molten steel
JPH09291340A (en) * 1996-02-29 1997-11-11 Kawasaki Steel Corp Bearing material
JP2001342516A (en) * 2000-06-05 2001-12-14 Sanyo Special Steel Co Ltd Highly clean steel and production method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240019A (en) * 2007-03-26 2008-10-09 Sanyo Special Steel Co Ltd Steel excellent in rolling contact fatigue life
JP2009074151A (en) * 2007-09-21 2009-04-09 Sanyo Special Steel Co Ltd Production method of steel excellent in rolling fatigue life
WO2009145168A1 (en) * 2008-05-27 2009-12-03 山陽特殊製鋼株式会社 Manufacturing method for machine parts having superior rolling-contact fatigue life
JP2009287056A (en) * 2008-05-27 2009-12-10 Sanyo Special Steel Co Ltd Method for manufacturing machine-parts excellent in rolling fatigue life
JP2010007092A (en) * 2008-06-24 2010-01-14 Sumitomo Metal Ind Ltd Bearing steel and method for producing the same
JP2012062526A (en) * 2010-09-16 2012-03-29 Sumitomo Metal Ind Ltd Rolling axis steel material
JP2012132094A (en) * 2010-11-30 2012-07-12 Jfe Steel Corp Bearing material and method of manufacturing the same
EP2692892A1 (en) * 2011-03-31 2014-02-05 Kabushiki Kaisha Kobe Seiko Sho Bearing steel with excellent rolling fatigue characteristics, and bearing parts
EP2692892A4 (en) * 2011-03-31 2015-01-28 Kobe Steel Ltd Bearing steel with excellent rolling fatigue characteristics, and bearing parts
US9394593B2 (en) 2011-03-31 2016-07-19 Kobe Steel, Ltd. Bearing steel material with excellent rolling contact fatigue properties and a bearing part
JP2013023739A (en) * 2011-07-22 2013-02-04 Nippon Steel & Sumitomo Metal Corp High cleanliness bearing steel and method for producing the same
JP5283788B1 (en) * 2012-05-07 2013-09-04 山陽特殊製鋼株式会社 Steel with excellent rolling fatigue life
WO2013168574A1 (en) * 2012-05-07 2013-11-14 山陽特殊製鋼株式会社 Steel having excellent rolling fatigue life
KR20150010698A (en) 2012-05-07 2015-01-28 산요오도꾸슈세이꼬 가부시키가이샤 Steel having excellent rolling fatigue life
EP2878694A4 (en) * 2012-07-24 2016-03-16 Kobe Steel Ltd Bearing steel material with excellent rolling fatigue property and bearing part
CN105452510A (en) * 2013-08-08 2016-03-30 山阳特殊制钢株式会社 Steel having superior rolling fatigue life
US10060013B2 (en) 2013-08-08 2018-08-28 Sanyo Special Steel Co., Ltd. Steel having superior rolling fatigue life
EP3249068A4 (en) * 2015-01-23 2018-08-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel material for bearings that has excellent rolling fatigue characteristics, and bearing part
JPWO2020040190A1 (en) * 2018-08-24 2021-04-08 日本製鉄株式会社 Manufacturing method of steel materials, forged heat-treated products, and forged heat-treated products
WO2020040190A1 (en) * 2018-08-24 2020-02-27 日本製鉄株式会社 Steel material, forged heat-treated article, and method for manufacturing forged heat-treated article
JP7063386B2 (en) 2018-08-24 2022-05-09 日本製鉄株式会社 Manufacturing method of steel materials, forged heat-treated products, and forged heat-treated products
CN111455135A (en) * 2020-04-03 2020-07-28 中天钢铁集团有限公司 Pretreatment-free method for discontinuously producing bearing steel RH vacuum tank
JP2021176980A (en) * 2020-05-08 2021-11-11 株式会社神戸製鋼所 Electric furnace steelmaking process
JP7377763B2 (en) 2020-05-08 2023-11-10 株式会社神戸製鋼所 Electric furnace steelmaking method
CN112410650B (en) * 2020-10-30 2022-01-28 建龙北满特殊钢有限责任公司 Control method for improving low-power quality and segregation index of high-carbon chromium bearing steel
CN112410650A (en) * 2020-10-30 2021-02-26 建龙北满特殊钢有限责任公司 Control method for improving low-power quality and segregation index of high-carbon chromium bearing steel
CN113073269A (en) * 2021-03-31 2021-07-06 安徽富凯特材有限公司 Smelting process of high-carbon chromium stainless bearing steel parent metal
CN114774619A (en) * 2022-04-29 2022-07-22 中国铁建重工集团股份有限公司 Low-nitrogen high-carbon chromium bearing steel and production method thereof
CN114774619B (en) * 2022-04-29 2023-10-24 中国铁建重工集团股份有限公司 Low-nitrogen high-carbon chromium bearing steel and production method thereof
CN115478204A (en) * 2022-09-14 2022-12-16 中天钢铁集团有限公司 Method for controlling titanium content of bearing steel

Also Published As

Publication number Publication date
JP4630075B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4630075B2 (en) High carbon chromium bearing steel and manufacturing method thereof
EP2208799A1 (en) Steel for steel pipes excellent in sour resistance and process for manufacturing the same
JP5794397B2 (en) Case-hardened steel with excellent fatigue properties
JP5803824B2 (en) Method of melting carburized bearing steel
KR101022068B1 (en) Process for producing steel for high-carbon steel wire material with excellent drawability and fatigue characteristics
Chen et al. Effect of sulphur concentration on precipitation behaviors of MnS-containing inclusions in GCr15 bearing steels after LF refining
JP5794396B2 (en) Induction hardening steel with excellent fatigue properties
JP5845784B2 (en) Bearing material and manufacturing method of bearing material
CN112063916A (en) Preparation method of magnesium-based high-sulfur free-cutting steel
JP2009030145A (en) Bearing steel member, and method for producing the same
JP2019035124A (en) Stainless steel plate and method for refining the same
JP2018141221A (en) Production method of high cleanliness steel
CN116568833A (en) Ni-based alloy with excellent surface properties and method for producing same
JP5616283B2 (en) Fe-Ni-Cr-Mo alloy and method for producing the same
CN116806273A (en) Nickel alloy with excellent surface properties and method for producing same
JP2005264335A (en) Si killed steel having excellent fatigue strength and its production method
JP5333536B2 (en) High cleanliness bearing steel and its melting method
TWI589701B (en) Method for suppressing Ti concentration in steel and method for producing bismuth deoxidized steel
JP2009007591A (en) Low-carbon sulfur free-cutting steel
JP2002167647A (en) Si KILLED STEEL HAVING EXCELLENT FATIGUE STRENGTH AND ITS PRODUCTION METHOD
TW201425600A (en) Bearing steel material, and bearing part with excellent rolling fatigue characteristic
JP2007327122A (en) TREATMENT METHOD FOR MOLTEN IRON BY Nd AND Ca ADDITION
CN109778073B (en) Free-cutting steel for automobile synchronizer and preparation method thereof
CN115917014A (en) Method for manufacturing high-cleanliness steel
JP2007262435A (en) Method for manufacturing low carbon sulfur free cutting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4630075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees