JP2001342516A - Highly clean steel and production method - Google Patents

Highly clean steel and production method

Info

Publication number
JP2001342516A
JP2001342516A JP2000167088A JP2000167088A JP2001342516A JP 2001342516 A JP2001342516 A JP 2001342516A JP 2000167088 A JP2000167088 A JP 2000167088A JP 2000167088 A JP2000167088 A JP 2000167088A JP 2001342516 A JP2001342516 A JP 2001342516A
Authority
JP
Japan
Prior art keywords
steel
molten steel
less
time
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000167088A
Other languages
Japanese (ja)
Inventor
Kazuya Kodama
和哉 児玉
Tomomi Mori
知巳 森
Kiyoshi Kawakami
潔 川上
Shuhei Kitano
修平 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2000167088A priority Critical patent/JP2001342516A/en
Priority to US10/297,313 priority patent/US7396378B2/en
Priority to GB0509771A priority patent/GB2410503B/en
Priority to GB0509772A priority patent/GB2410253B/en
Priority to FR0107305A priority patent/FR2809745B1/en
Priority to DE10196303.3T priority patent/DE10196303B3/en
Priority to GB0228813A priority patent/GB2381537B/en
Priority to CNB018107303A priority patent/CN1210413C/en
Priority to PCT/JP2001/004742 priority patent/WO2001094648A2/en
Priority to GB0500783A priority patent/GB2406580B/en
Priority to GB0509770A priority patent/GB2410252B/en
Priority to FR0112653A priority patent/FR2812661B1/en
Priority to FR0112655A priority patent/FR2812662B1/en
Priority to FR0112652A priority patent/FR2812660B1/en
Priority to FR0112657A priority patent/FR2812663B1/en
Publication of JP2001342516A publication Critical patent/JP2001342516A/en
Priority to SE0203586A priority patent/SE527469C2/en
Priority to SE0502558A priority patent/SE529629C2/en
Priority to US11/894,737 priority patent/US20080025865A1/en
Priority to US12/136,096 priority patent/US20080257106A1/en
Priority to US13/572,759 priority patent/US20120304820A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly clean steel which can meet a requested characteristic for harsh environment in using machine parts, without using a high-cost remelting method. SOLUTION: A method for producing a highly clean steel includes producing an ingot, after pouring a molten steel melted in an arc melting furnace or a converter into a ladle, refining it in the ladle for a short time of 60 minutes or less, and degassing it for a long time of 25 minutes or more, particularly degassing for a long time setting the reflux amount of the molten steel eight times or more of the all molten steel with a reflux type of vacuum degassing device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、疲労強度、疲労寿
命や静粛性が求められる機械部品用鋼、特に転がり軸受
用鋼、等速ジョイント用鋼、ギア用鋼、トロイダル型無
段変速装置用鋼、冷間鍛造用機械構造用鋼、工具鋼、ば
ね鋼等として使用される高清浄度鋼ならびにその製造方
法に関する。
The present invention relates to steel for machine parts requiring fatigue strength, fatigue life and quietness, particularly steel for rolling bearings, steel for constant velocity joints, steel for gears, and for toroidal type continuously variable transmissions. The present invention relates to high cleanliness steel used as steel, steel for machine structural use for cold forging, tool steel, spring steel and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】疲労強度、疲労寿命が求められる機械部
品に使用される鋼は、清浄度の高い(鋼中の非金属介在
物量の少ない)鋼であることが重要である。これらの高
清浄度鋼の製造プロセスは、アーク溶解炉又は転炉に
よる溶鋼の酸化精錬、取鍋精錬炉(LF)による還元
精錬、環流式真空脱ガス装置(RH)による環流真空
脱ガス(RH処理)、連続鋳造又は一般造塊による鋼
塊の鋳造、鋼塊の圧鍛による加工及び熱処理による製
品鋼材の工程で製造されるのが一般的である。このプロ
セスにおいて、はスクラップをアークで加熱溶解しま
たは溶銑を転炉に入れ酸化精錬を行い取鍋精錬炉に移注
する。移注時の温度はその鋼の融点よりも概ね30℃以
上100℃未満までの高温度に設定する。は移注した
取鍋精錬炉でAl、Mn、Si等の脱酸剤合金を投入し
て脱酸および脱硫剤による脱硫の還元精錬を行い合金成
分の調整をする。一般には処理時間は長いほど効果が有
るとされ60分を超す長時間であり、処理温度も一般に
融点よりも50℃高い温度で処理する。のRH処理は
環流真空脱ガス槽で環流しながら真空脱ガスして脱酸
素、脱水素を行い、この場合溶湯の環流量は全溶湯の5
〜6倍程度で行われる。はRH処理した溶湯をタンデ
ィシュに移注して連続鋳造してブルーム、ビレット、ス
ラブなどに鋳造するか、または取鍋から溶湯を直接鋼塊
鋳型に注いで鋼塊に鋳造する。はブルーム、ビレッ
ト、スラブなどあるいは鋼塊を、圧延または鍛造して熱
処理して鋼材とし出荷する。
2. Description of the Related Art It is important that steel used for machine parts requiring fatigue strength and fatigue life has high cleanliness (the amount of nonmetallic inclusions in the steel is small). The manufacturing processes of these high cleanliness steels include oxidizing refining of molten steel by an arc melting furnace or a converter, reduction refining by a ladle refining furnace (LF), and recirculating vacuum degassing (RH) by a recirculating vacuum degasser (RH). Processing), casting of a steel ingot by continuous casting or general ingot-forming, processing of a steel ingot by forging, and a process of a product steel material by heat treatment. In this process, scrap is heated and melted by an arc, or hot metal is put into a converter, oxidized and refined, and transferred to a ladle refining furnace. The temperature at the time of transfer is set to a high temperature of about 30 ° C. or more and less than 100 ° C. than the melting point of the steel. In a transferred ladle refining furnace, a deoxidizing alloy such as Al, Mn, and Si is charged, and reductive refining of deoxidation and desulfurization by a desulfurizing agent is performed to adjust alloy components. Generally, the longer the processing time, the longer the effect is considered to be more effective, and the processing time is generally longer than 60 minutes, and the processing temperature is generally 50 ° C. higher than the melting point. In the RH treatment, degassing is performed by vacuum degassing while circulating in a circulating vacuum degassing tank to perform deoxygenation and dehydrogenation.
About 6 times. The RH-treated molten metal is transferred to a tundish and continuously cast and cast into a bloom, billet, slab, or the like, or the molten metal is poured directly from a ladle into a steel ingot mold and cast into a steel ingot. , Rolls or forges blooms, billets, slabs, or ingots and heat-treats them as steel.

【0003】また、特に清浄度の高い鋼が要求される場
合は、上記工程の後、鋳造された鋼塊を原材料として、
真空再溶解法あるいはエレクトロスラグ再溶解法で製造
されている。
[0003] In addition, when steel with a particularly high degree of cleanliness is required, a steel ingot cast after the above process is used as a raw material.
It is manufactured by a vacuum remelting method or an electroslag remelting method.

【0004】[0004]

【発明が解決しようとする課題】ところで、近年の機械
部品使用環境の過酷化により、鋼材に対する要求特性は
ますます厳しくなり、より清浄度の高い鋼材が求められ
ている。このような要求に対しては、通常上記の〜
の製造工程による生産では対応が困難となっている。ま
たこのような要求に応えるため、前述の真空再溶解法あ
るいはエレクトロスラグ再溶解法による鋼材が生産され
ているが、製造コストが極端に上昇するという問題があ
る。
By the way, in recent years, the harsh environment in which mechanical parts are used, the required characteristics of steel materials have become more severe, and steel materials with higher cleanliness have been demanded. For such a request, usually the above ~
It is difficult to cope with the production by the above manufacturing process. Further, in order to meet such demands, steel materials are produced by the above-described vacuum remelting method or electroslag remelting method, but there is a problem that the production cost is extremely increased.

【0005】本発明は上記のような状況に鑑みてなされ
たものであり、極端なコスト上昇を回避するため、再溶
解法によることなく、清浄度の高い鋼材を提供すること
を目的とする。
[0005] The present invention has been made in view of the above situation, and an object of the present invention is to provide a highly clean steel material without using a remelting method in order to avoid an extreme increase in cost.

【0006】[0006]

【課題を解決するための手段】上記目的に対し、発明者
らは高清浄度鋼の製造工程に関して鋭意検討を重ねた結
果、以下の工程により、清浄度の大幅向上が可能である
ことを見いだしたものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies on the manufacturing process of high cleanliness steel for the above purpose, and as a result, have found that the following processes can greatly improve cleanliness. It is a thing.

【0007】そこで上記の課題を解決するための本発明
の手段について以下に説明する。従来アーク溶解炉又は
転炉等の精錬炉を有する工程では、アーク溶解炉又は転
炉等はもっぱら溶解及び酸化精錬が主体であり、還元期
(脱酸)は取鍋精錬炉にて行われているが、請求項1の
発明では、アーク溶解炉または転炉にて製造された溶鋼
を取鍋に移注して精錬し、次いで環流式真空脱ガスを行
った後、鋳造して鋳塊を製造する鋼の製造工程におい
て、取鍋における精錬を60分以下、望ましくは45分
以下、さらに望ましくは45分以下25分以上とし、こ
れに続く脱ガスにおいて、通常は環流式真空脱ガス装置
で溶鋼の環流量を全溶鋼の5倍以上として25分未満で
行われているが、本発明では環流式真空脱ガス装置で溶
鋼の環流量を全溶鋼の8倍以上、望ましくは10倍以
上、さらに望ましくは15倍以上として脱ガスを25分
以上行うことを特徴とする高清浄度鋼の製造方法であ
る。
The means of the present invention for solving the above-mentioned problems will be described below. Conventionally, in a process having a refining furnace such as an arc melting furnace or a converter, the arc melting furnace or the converter is mainly used for melting and oxidizing refining, and the reduction period (deoxidation) is performed in a ladle refining furnace. However, in the invention of claim 1, molten steel produced in an arc melting furnace or a converter is transferred to a ladle for refining, followed by reflux vacuum degassing, and then casting to form an ingot. In the production process of the steel to be produced, the refining in the ladle is 60 minutes or less, preferably 45 minutes or less, more preferably 45 minutes or less and 25 minutes or more, and in the subsequent degassing, usually using a reflux vacuum degassing apparatus. It is performed in less than 25 minutes with the annular flow rate of the molten steel being 5 times or more of the total molten steel, but in the present invention, the annular flow rate of the molten steel is 8 times or more, preferably 10 times or more of the total molten steel in the reflux vacuum degassing apparatus. More desirably 15 times or more and degassing for 25 minutes A process for producing a high cleanliness steel which is characterized in that on.

【0008】請求項2の発明では、溶鋼を取鍋精錬炉に
移注する際に、溶鋼の融点より100℃以上、望ましく
は120℃以上、さらに望ましくは150℃以上の高い
温度で移注することを特徴とする請求項1の手段におけ
る高清浄度鋼の製造方法である。
According to the second aspect of the present invention, when the molten steel is transferred to the ladle refining furnace, it is transferred at a temperature higher than the melting point of the molten steel by 100 ° C. or more, preferably 120 ° C. or more, more preferably 150 ° C. or more. A method for producing high cleanliness steel according to claim 1, characterized in that:

【0009】請求項3の発明では、請求項1または2記
載の手段における製造方法により製造の高清浄度鋼であ
る。
According to a third aspect of the present invention, there is provided a high-cleanliness steel manufactured by the method according to the first or second aspect.

【0010】請求項4の発明では、鋼中の含有酸素量は
10ppm以下、望ましくは鋼成分のC含有量がC<
0.6質量%では8ppm以下、特に望ましくはC≧
0.6質量%では6ppm以下であることを特徴とする
請求項3の手段における高清浄度鋼である。
According to the invention of claim 4, the oxygen content in the steel is 10 ppm or less, and preferably, the C content of the steel component is C <C.
At 0.6% by mass, 8 ppm or less, particularly preferably C ≧
The high cleanliness steel according to the means of claim 3, wherein the content is 6 ppm or less at 0.6% by mass.

【0011】請求項5の発明では、鋼材を酸溶解して検
出される20μm以上である酸化物系介在物、例えばA
23の含有率が50%以上である酸化物系介在物、が
鋼材100gあたり40個以下、望ましくは30個以
下、さらに望ましくは20個以下であることを特徴とす
る請求項3記載の高清浄度鋼である。
According to the fifth aspect of the present invention, an oxide inclusion having a size of 20 μm or more, which is detected by dissolving a steel material in an acid, for example, A
The oxide-based inclusion having a l 2 O 3 content of 50% or more is 40 or less, preferably 30 or less, and more preferably 20 or less per 100 g of steel material. High cleanliness steel.

【0012】請求項6の発明では、例えば試験条件とし
て鋼材表面100mm2中の最大介在物径の測定を30
箇所において行い、極値統計により算出される3000
0mm2における最大介在物径の予測値が60μm以
下、望ましくは40μm以下、さらに望ましくは25μ
m以下であることを特徴とする請求項3記載の高清浄度
鋼である。
In the invention of claim 6, for example, the measurement of the maximum inclusion diameter in a steel material surface of 100 mm 2 is performed as a test condition by 30 minutes.
3000 performed at locations and calculated by extreme value statistics
The predicted value of the maximum inclusion diameter at 0 mm 2 is 60 μm or less, preferably 40 μm or less, more preferably 25 μm or less.
m or less, and the high cleanliness steel according to claim 3.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を以下に説明
する。請求項1に係る高清浄度鋼の製造方法は次の〜
の工程からなる。
Embodiments of the present invention will be described below. The method for producing high cleanliness steel according to claim 1 is as follows.
Process.

【0014】アーク溶解炉または転炉により溶鋼を酸
化精錬し、予定の成分、温度とした後、取鍋精錬炉に移
注する。 取鍋精錬炉に移注した溶鋼を取鍋精錬にて還元精錬お
よび成分調整を行う。このとき、取鍋精錬炉において、
取鍋底部から1.5〜5.0N.l/min/tで撹拌
ガスを吹いて強制撹拌しながら通常60分より長い方が
効果が高いとされる取鍋精錬炉での精錬時間を、60分
以下、望ましくは45分以下、さらに望ましくは25分
以上、45分以下とする。 還元精錬およぴ成分調整をしたの溶鋼を環流式真空
脱ガス装置により環流させて脱ガスを行うとともに、成
分の最終調整を行う。このとき、通常は25分未満とさ
れる脱ガスで、かつ、環流量が全溶鋼の5倍程度で十分
とされている環流式真空脱ガス装置における溶鋼の環流
量を、本発明では全溶鋼の8倍以上、望ましくは10倍
以上、より望ましくは15倍以上とし、脱ガスをより長
時間の25分以上として行う。このおよびの工程が
本発明の最も重要な工程で、の加熱を行いながら精錬
を行う取鍋精錬の時間を必要最小限とし、の加熱を行
わない脱ガス工程で、特に環流式真空脱ガスは溶鋼内に
ノズル浸漬させ溶鋼のみを環流させるため、溶鋼上面の
スラグは充分沈静化されている。このためスラグから溶
鋼への酸化物の巻き込みは、取鍋製麺炉の還元期工程よ
り少ない。かかる設備で酸化物系介在物の浮上分離時間
を十分確保することで、取鍋精錬炉内側の耐火物あるい
はスラグからの汚染による、含有酸素量の上昇を防止す
るとともに、30μm程度以上の大型介在物の生成を防
止することで、清浄度の高い鋼を製造することが可能と
なる。 成分の最終調整をしたの溶鋼を鋳造にて鋳塊とす
る。 鋳塊に圧鍛を加えて製品形状とした後、必要な熱処理
を加えて製品鋼材とする。
[0014] The molten steel is oxidized and refined by an arc melting furnace or a converter to obtain a predetermined component and temperature, and then transferred to a ladle refining furnace. Reduction smelting and component adjustment of molten steel transferred to a ladle refining furnace are performed by ladle refining. At this time, in the ladle refining furnace,
1.5 to 5.0 N. from the ladle bottom. The refining time in a ladle refining furnace, which is generally considered to be more effective when the stirring gas is blown at 1 / min / t and the forced stirring is performed for longer than 60 minutes, is 60 minutes or less, preferably 45 minutes or less, and more preferably. Is 25 minutes or more and 45 minutes or less. The molten steel after the refining and refining and the component adjustment are recirculated by a recirculating vacuum degassing device to perform degassing, and the components are finally adjusted. At this time, the ring flow rate of the molten steel in the recirculating vacuum degassing apparatus, which is generally less than 25 minutes in degassing and has a circulation rate of about 5 times that of the total molten steel, is defined as the total molten steel in the present invention. And 8 times or more, preferably 10 times or more, more preferably 15 times or more, and degassing is performed for a longer time of 25 minutes or more. This step is the most important step of the present invention, and the time required for ladle refining, in which refining is performed while heating is minimized, is a degassing step in which heating is not performed. The slag on the upper surface of the molten steel is sufficiently calmed down because the nozzle is immersed in the molten steel and only the molten steel is refluxed. For this reason, the entrapment of the oxide from the slag into the molten steel is less than in the reduction stage process of the ladle-making noodle furnace. With this equipment, sufficient flotation time for oxide-based inclusions is ensured to prevent an increase in the oxygen content due to contamination from the refractory or slag inside the ladle refining furnace and to prevent large inclusions of about 30 μm or more. Preventing the generation of products makes it possible to produce steel with a high degree of cleanliness. The molten steel whose components have been finally adjusted is cast into an ingot. After the ingot is pressed and forged into a product shape, necessary heat treatment is applied to produce a product steel material.

【0015】請求項2に係る高清浄度鋼の製造方法は、
上記〜の製造工程のうち、の取鍋精錬炉へ移注す
る際に、通常は溶鋼の移注温度を溶鋼の融点より50℃
程度高くするが、本発明では溶鋼の融点より100℃以
上、望ましくは120℃以上、さらに望ましくは150
℃以上高くするものである。これは取鍋精錬炉の周囲に
付着した地金を十分に溶鋼に溶解させること及びスラグ
もまた十分に浮上させて、取鍋精錬中に地金及びスラグ
が剥がれ落ち、精錬の進んだ溶鋼に混入し、含有酸素量
が上昇するのを防止する目的である。
According to a second aspect of the present invention, there is provided a method for producing high cleanliness steel.
When transferring to a ladle refining furnace in the above manufacturing processes, the transfer temperature of the molten steel is usually set to 50 ° C. from the melting point of the molten steel.
However, in the present invention, the melting point of the molten steel is 100 ° C. or more, preferably 120 ° C. or more, more preferably 150 ° C. or more.
It should be higher than ℃. This is to sufficiently dissolve the metal that has adhered to the surroundings of the ladle refining furnace into the molten steel, and also to sufficiently raise the slag, so that the metal and slag are peeled off during the ladle refining, and The purpose is to prevent mixing and increase in the oxygen content.

【0016】請求項3に係る鋼は、上記の請求項1また
は2に記載の手段によって製造したことを特徴とする高
清浄鋼である。
According to a third aspect of the present invention, there is provided a highly clean steel manufactured by the means described in the first or second aspect.

【0017】請求項4に係る鋼は、請求項3の高清浄度
鋼のうち、含有酸素量は10ppm以下、望ましくは鋼
成分のC含有量がC<0.6質量%では8ppm以下、
特に望ましくはC≧0.6質量%では6ppm以下であ
ることを特徴とする、特に転がり疲労寿命に優れた高清
浄度鋼である。含有酸素量の低減により、転がり疲労寿
命が向上することは一般に知られているが、本発明の方
法で製造した鋼のうち、含有酸素量10ppm以下、望
ましくは鋼成分のC含有量がC<0.6質量%では8p
pm以下、特に望ましくはC≧0.6質量%では6pp
m以下である高清浄度鋼は、特に優れた転がり疲労寿命
が安定して得られる。
The steel according to claim 4 is the high cleanliness steel according to claim 3, wherein the oxygen content is 10 ppm or less, preferably 8 ppm or less when the C content of the steel component is C <0.6% by mass,
Particularly desirable is a high cleanliness steel characterized by being 6 ppm or less when C ≧ 0.6 mass%, and particularly excellent in rolling fatigue life. It is generally known that the rolling fatigue life is improved by reducing the oxygen content, but among the steels manufactured by the method of the present invention, the oxygen content is 10 ppm or less, and preferably, the C content of the steel component is C <C. 8p at 0.6% by mass
pm or less, particularly preferably 6 pp at C ≧ 0.6% by mass.
m or less, a particularly excellent rolling fatigue life can be stably obtained.

【0018】請求項5に係る鋼は、請求項3の高清浄度
鋼のうち鋼材を酸溶解して検出される20μm以上の大
きさである酸化物系介在物、例えばAl23の含有率が
50%以上である酸化物系介在物が、鋼材100gあた
り40個以下、望ましくは30個以下、さらに望ましく
は20個以下であることを特徴とする転がり疲労寿命、
疲労強度に優れた高清浄度鋼である。この鋼材の評価方
法は含有酸素量、所定体積中の最大介在物径の両方を反
映したものである。そして、疲労強度、疲労寿命、静粛
性に対しては、酸素含有量が同等の鋼においては、ある
程度大きな酸化物系介在物が有害で、特に20μm以上
の大きさの酸化物系介在物が有害である。そこで、本発
明の方法で製造した鋼のうち、鋼材を酸溶解して検出さ
れる20μm以上の大きさである、例えばAl23の含
有率が50%以上である、酸化物系介在物が鋼材100
gあたり40個以下、望ましくは30個以下、特に望ま
しくは20個以下である鋼は、優れた転がり疲労寿命と
疲労強度を兼備し、さらに静粛性に優れた高清浄度鋼で
ある。
According to a fifth aspect of the present invention, there is provided a steel containing an oxide-based inclusion having a size of 20 μm or more, such as Al 2 O 3 , which is detected by dissolving a steel material with an acid among the high cleanliness steels of the third aspect . A rolling fatigue life, in which the number of oxide-based inclusions having a ratio of 50% or more is 40 or less, preferably 30 or less, more preferably 20 or less per 100 g of steel material;
High cleanliness steel with excellent fatigue strength. This method of evaluating a steel material reflects both the oxygen content and the maximum inclusion diameter in a predetermined volume. In addition, with respect to fatigue strength, fatigue life, and quietness, in steels having the same oxygen content, oxide inclusions having a certain size are harmful, and especially oxide inclusions having a size of 20 μm or more are harmful. It is. Therefore, among the steels manufactured by the method of the present invention, oxide-based inclusions having a size of 20 μm or more detected by dissolving a steel material in an acid, for example, having an Al 2 O 3 content of 50% or more, Is steel material 100
A steel having 40 or less, preferably 30 or less, and particularly preferably 20 or less per g is a high cleanliness steel having both excellent rolling fatigue life and fatigue strength and excellent silence.

【0019】請求項6に係る鋼は、請求項3の高清浄度
鋼のうち、鋼材断面100mm2中の最大介在物径の測
定を30箇所において行い、極値統計により算出される
30000mm2における最大介在物径の予測値が60
μm以下、望ましくは40μm以下、より望ましくは2
5μm以下であることを特徴とする、特に回転曲げ疲労
強度、繰返し応力による疲労に強い高清浄度鋼である。
繰返し応力に対する強度あるいは疲労限度は所定体積中
の最大介在物径に大きく依存することは知られており、
本出願人の出願に係る特開平11−194121号公報
に開示するところであるが、代表的試験例として鋼材断
面100mm2中の最大介在物径の測定を30箇所にお
いて行い、極値統計により算出される30000mm2
における最大介在物径の予測値が60μm以下、望まし
くは40μm以下、より望ましくは25μm以下である
高清浄度鋼は、特に優れた疲労強度が安定して得られ
る。なお、含有酸素量10ppm以下、望ましくは鋼成
分のC含有量がC<0.6質量%では8ppm以下、特
に望ましくはC≧0.6質量%では6ppm以下で、か
つ、最大介在物径の予測値が60μm以下、望ましくは
40μm以下、より望ましくは25μm以下である、本
発明により製造される鋼は優れた転がり疲労寿命と疲労
強度を兼備した高清浄度鋼である。ところで酸溶解は非
常に時間、手間のかかる作業である、鋼材を溶かすこと
なく、ある程度の面積を顕微鏡観察し、統計的に介在物
径の最大値を予測できるこの方法は簡便であり、また、
特に引張圧縮の繰り返し応力による疲労では、破壊の危
険性のある部位に存在する介在物の最大径が、強度決定
の大きな因子であることが知られており、これを統計的
に予測できる本方法は有利である。
In the steel according to the sixth aspect, among the high cleanliness steels according to the third aspect, the maximum inclusion diameter in a steel material cross section of 100 mm 2 is measured at 30 locations, and the maximum inclusion diameter at 30,000 mm 2 calculated by extreme value statistics is obtained. The predicted value of the maximum inclusion diameter is 60
μm or less, preferably 40 μm or less, more preferably 2 μm or less.
It is a high cleanliness steel that is particularly resistant to fatigue due to rotational bending fatigue strength and cyclic stress, which is characterized by being 5 μm or less.
It is known that the strength or fatigue limit for repeated stress largely depends on the maximum inclusion diameter in a given volume.
As disclosed in Japanese Patent Application Laid-Open No. H11-194121 filed by the present applicant, as a representative test example, measurement of the maximum inclusion diameter in a steel material cross section of 100 mm 2 was performed at 30 locations, and the maximum inclusion diameter was calculated by extreme value statistics. 30000mm 2
The high cleanliness steel having a predicted maximum inclusion diameter of 60 μm or less, desirably 40 μm or less, and more desirably 25 μm or less, in particular, can stably obtain particularly excellent fatigue strength. The oxygen content is 10 ppm or less, desirably 8 ppm or less when the C content of the steel component is C <0.6 mass%, particularly desirably 6 ppm or less when C ≧ 0.6 mass%, and the maximum inclusion diameter. The steel produced according to the present invention, having a predicted value of 60 μm or less, preferably 40 μm or less, more preferably 25 μm or less, is a high cleanliness steel having both excellent rolling fatigue life and fatigue strength. By the way, acid dissolution is a very time-consuming and laborious operation.This method is capable of observing a certain area under a microscope without dissolving the steel material and statistically predicting the maximum value of the diameter of inclusions.
In particular, it is known that the maximum diameter of inclusions present at a site where there is a risk of fracture is a major factor in determining the strength of fatigue caused by repeated stress of tension and compression, and this method can statistically predict this. Is advantageous.

【0020】[0020]

【実施例】アーク溶解炉にて酸化精錬して溶製した溶鋼
を取鍋精錬炉に移注し、取鍋精錬炉にて60分間以下の
短時間の取鍋精錬し、次いで脱ガスを25分以上、特に
環流式真空脱ガス装置にて環流量を全溶鋼の8倍以上と
して脱ガスを行った後、鋳造による鋳塊製造工程にて製
造されたJIS SUJ2鋼、SCM435の10チャ
ージの製品中に含有される酸素量、極値統計による最大
介在物径予測値、スラスト型転がり寿命試験によるL10
寿命を調査した。最大介在物径予測値はφ65鍛伸材か
ら試験片を切り出し、100mm2の観察を30個行
い、極値統計により30000mm2中の最大介在物径
を予測した。スラスト型転がり寿命試験は浸炭焼入焼戻
しを行ったφ60×φ20×8.3Tの試験片を使用
し、最大ヘルツ応力Pmax:4900MPaの条件で試験を
行い、L10寿命を算出した。
EXAMPLE A molten steel oxidized and refined in an arc melting furnace was transferred to a ladle refining furnace, and the ladle was refined in a ladle refining furnace for a short time of 60 minutes or less. After degassing with a recirculation type vacuum degassing device at a circulation flow rate of at least 8 times that of the total molten steel, a 10-charge product of JIS SUJ2 steel and SCM435 manufactured in the ingot manufacturing process by casting Amount of oxygen contained in steel, maximum inclusion diameter predicted value based on extreme value statistics, L 10 based on thrust type rolling life test
The service life was investigated. The maximum inclusion size predicted value Test pieces were cut out from φ65 forged material, carried out for 30 pieces of observation 100 mm 2, predicted maximum inclusion size in 30,000 mm 2 by extremes statistics. Thrust-type rolling fatigue life test using a test piece of φ60 × φ20 × 8.3T subjected to carburizing quenching and tempering, the maximum Hertzian stress Pmax: were tested with 4900MPa conditions was calculated L 10 life.

【0021】表1にSUJ2鋼の10チャージの請求項
1の実施例であるアーク溶解炉または転炉による酸化精
錬に続いて、取鍋精錬炉に移注して精錬時間を60分以
下として取鍋精錬し、次いで環流式真空脱ガス装置によ
り25分以上の脱ガス(本明細書では「短時間LF長時
間RHまたはLF短RH長」という。)を行った、短時
間LF長時間RHの操業例を示す。
In Table 1, following the oxidizing refining by the arc melting furnace or the converter which is the embodiment of claim 1 with 10 charges of SUJ2 steel, it is transferred to a ladle refining furnace to reduce the refining time to 60 minutes or less. Pot refining, followed by degassing (referred to as "short LF long RH or LF short RH length" in this specification) for 25 minutes or more by a reflux type vacuum degassing apparatus. An operation example is shown.

【0022】[0022]

【表1】 [Table 1]

【0023】表2にSCM435鋼の10チャージの請
求項1の実施例であるアーク溶解炉または転炉による酸
化精錬に続いて、取鍋精錬炉に移注して精錬時間を60
分以下として取鍋精錬し、次いで環流式真空脱ガス装置
により25分以上の脱ガスを行った、短時間LF長時間
RHの操業例を示す。
In Table 2, following the oxidation refining by the arc melting furnace or the converter according to the first embodiment of the present invention in which the SCM435 steel is charged 10 times, the SCM435 steel is transferred to a ladle refining furnace to have a refining time of 60.
The following is an example of a short-time LF long-time RH operation in which ladle refining is performed in a fraction of a minute or less, and then degassing is performed for 25 minutes or more by a reflux type vacuum degassing apparatus.

【0024】[0024]

【表2】 [Table 2]

【0025】表3にSUJ2鋼の10チャージの請求項
2の実施例であるアーク溶解炉または転炉による酸化精
錬に続いて、取鍋精錬炉に移注する際に、出鋼する溶鋼
の温度を溶鋼の融点より100℃以上の高温で出鋼(本
明細書では「高温出鋼」という。)し、取鍋精錬炉に移
注して精錬時間を60分以下として取鍋精錬し、次いで
環流式真空脱ガス装置により25分以上の脱ガスを行っ
た、短時間LF長時間RH+高温出鋼の操業例を示す。
Table 3 shows the temperature of the molten steel to be tapped when it is transferred to a ladle refining furnace following the oxidation refining by an arc melting furnace or a converter, which is an embodiment of claim 2, with 10 charges of SUJ2 steel. At a high temperature of 100 ° C. or more from the melting point of molten steel (hereinafter referred to as “high-temperature tapping”), transferred to a ladle refining furnace, refining time is 60 minutes or less, and ladle refining is performed. An operation example of short-time LF long-time RH + high-temperature tapping in which degassing is performed for 25 minutes or more by a reflux-type vacuum degasser is shown.

【0026】[0026]

【表3】 [Table 3]

【0027】表4にSCM435鋼の10チャージの請
求項2の実施例であるアーク溶解炉または転炉による酸
化精錬に続いて、取鍋精錬炉に移注する際に、出鋼する
溶鋼の温度を溶鋼の融点より100℃以上の高温で出鋼
し、取鍋精錬炉に移注して精錬時間を60分以下として
取鍋精錬し、次いで環流式真空脱ガス装置により25分
以上の脱ガスを行った、短時間LF長時間RH+高温出
鋼の操業例を示す。
Table 4 shows that the temperature of the molten steel to be tapped at the time of transfer to the ladle refining furnace following the oxidizing refining by the arc melting furnace or the converter according to the embodiment of claim 2 in which the SCM435 steel is charged 10 times. At a high temperature of 100 ° C or more from the melting point of the molten steel, transferred to a ladle refining furnace to refine the ladle with a refining time of 60 minutes or less, and then degassed by a reflux vacuum degassing device for 25 minutes or more. The operation example of the short-time LF long-time RH + high-temperature tapping in which the heat treatment was performed is shown.

【0028】[0028]

【表4】 [Table 4]

【0029】本発明と対比する従来例のSUJ2の操業
例を表5に、従来例のSCM435の操業例を表6に示
す。
Table 5 shows an example of operation of the conventional SUJ2 in comparison with the present invention, and Table 6 shows an example of operation of the conventional SCM435.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】これらの表1〜表4に見られるとおり、本
発明によるアーク溶解炉又は転炉にて製造された溶鋼
を、取鍋精錬炉に移注してほぼ60分以下の短時間の取
鍋精錬を行い、さらに溶鋼を環流式真空脱ガス装置に環
流させてRH回転量(即ち、環流量の全溶鋼量に対する
倍数)を大きくして25分以上の長時間の脱ガスを行う
短時間LF長時間RH処理を行ったもの、さらにこの短
時間LF長時間RH処理に組み合わせて出鋼温度を通常
操業より高温である融点+100℃以上の高温出鋼とし
たものは、鋼種のSUJ2、SCM435共に、製品含
有酸素量も少なく、かつ、介在物20μm以上の個数も
大幅に少なくなる。そして清浄度を示す良否では、表1
から表4に示すとおり、本発明の実施例では、○の良
い、或いは◎の非常に良いであり、これらは共に優れた
高清浄度鋼である。これに比して従来例では、表5およ
び表6に示すとおり、全て×の良くない、であり、清浄
度鋼といえないものである。
As can be seen from Tables 1 to 4, the molten steel produced in the arc melting furnace or the converter according to the present invention is transferred to a ladle refining furnace, and a short time of about 60 minutes or less is obtained. Pot refining is performed, and the molten steel is further circulated to the recirculating vacuum degassing apparatus to increase the RH rotation amount (that is, a multiple of the circulating flow rate to the total molten steel amount) to perform a long-term degassing of 25 minutes or more. The LF long-time RH treatment, and the combination of the short-time LF long-time RH treatment and the high tapping temperature of the melting point + 100 ° C. or higher, which is higher than the normal operation, are the steel types SUJ2 and SCM435. In both cases, the amount of oxygen contained in the product is small, and the number of inclusions of 20 μm or more is significantly reduced. Table 1 shows the quality of cleanliness.
As shown in Table 4, in Examples of the present invention, ○ is excellent or ◎ is very good, and both are excellent high cleanliness steels. On the other hand, in the conventional example, as shown in Tables 5 and 6, all of them are not good, and cannot be said to be cleanliness steel.

【0033】以上において、アーク溶解炉又は転炉にて
酸化精錬した溶鋼は各チャージにおいて、(溶鋼の取鍋
精錬炉への移注温度)−(溶鋼の融点)=TSHとすると
き、酸素量、最大介在物径予測値はともにTSHを大きく
することで低減され、清浄度が向上する。また、各チャ
ージにおいて、取鍋精錬炉における精錬時間と酸素量、
最大介在物径予測値の関係では、精錬時間が60分以下
で、例えば25分程度に短時間であれば酸素量、最大介
在物径予測値は十分低下するが、精錬時間が長くなると
最大介在物径予測値については、むしろ大きくなってく
る。すなわち、時間が経過すると、取鍋精錬炉の耐火物
の溶損が大きくなり、かつ大気との接触による酸化等で
スラグ系の平衡が崩れ、溶存酸素のミニマムレベルを外
れるからと思われる。さらに、環流式真空脱ガス装置に
おける全溶鋼量に対する環流量と、酸素量、最大介在物
径予測値の関係では、環流量は多いほど、すなわち脱ガ
スが長時間であるほど、高清浄度化の効果が高く、15
倍以上でほぼ飽和する。
In the above, the molten steel oxidized and refined in the arc melting furnace or the converter is charged with oxygen in each charge when (transfer temperature of molten steel to ladle refining furnace) − (melting point of molten steel) = T SH Both the quantity and the maximum inclusion diameter predicted value are reduced by increasing T SH , and the cleanliness is improved. In addition, in each charge, the refining time and oxygen amount in the ladle refining furnace,
According to the relationship between the maximum inclusion diameter predicted value, the refining time is 60 minutes or less, for example, a short time of about 25 minutes, the oxygen content and the maximum inclusion diameter predicted value are sufficiently reduced. The predicted diameter is rather large. That is, it is considered that the erosion of the refractory of the ladle refining furnace increases with time, and the slag system loses its equilibrium due to oxidation and the like due to contact with the atmosphere, and the dissolved oxygen deviates from the minimum level. Furthermore, in the relationship between the annular flow rate with respect to the total molten steel amount, the oxygen amount, and the maximum inclusion diameter predicted value in the reflux type vacuum degassing apparatus, the higher the annular flow rate, that is, the longer the degassing time, the higher the cleanliness. The effect is high, 15
Almost saturated at more than twice.

【0034】そして、含有酸素量、最大介在物径予測値
を小さくすることで、L10寿命が向上することが確認さ
れた。このことから、含有酸素量、最大介在物径予測値
を低減することが可能となる本発明方法により製造され
た鋼は、転がり疲労寿命などの疲労強度に優れているこ
とが明らかとなった。
[0034] Then, oxygen content, reducing the maximum inclusion size estimated value, it was confirmed that the L 10 life is improved. From this, it was clarified that the steel produced by the method of the present invention, which can reduce the oxygen content and the maximum inclusion diameter predicted value, has excellent fatigue strength such as rolling fatigue life.

【0035】図1は、SUJ2鋼の溶鋼の処理におい
て、アーク溶解炉または転炉により溶鋼を酸化精錬した
溶鋼を取鍋精錬炉に移注して短時間の取鍋精錬した後
に、環流式真空脱ガスを長時間行う本発明の方法と、ア
ーク溶解炉または転炉により溶鋼を酸化精錬した溶鋼を
取鍋精錬炉に移注して長時間の取鍋精錬した後に、環流
式真空脱ガスを短時間行う従来例の方法の場合のそれぞ
れ10チャージ例の製品中の含有酸素量を示す。なお、
図1、図3、図5においてA1は請求項1の発明である
短時間LF長時間RHを行うものを示し、A2は請求項
2の発明である高温出鋼および短時間LF長時間RHを
行うものを示し、従は従来例によるものを示す。
FIG. 1 shows that, in the processing of molten steel of SUJ2 steel, a molten steel obtained by oxidizing and refining molten steel by an arc melting furnace or a converter is transferred to a ladle refining furnace, and then ladle refining is performed for a short time. The method of the present invention in which degassing is carried out for a long time, and the molten steel obtained by oxidizing and refining molten steel by an arc melting furnace or a converter is transferred to a ladle refining furnace to perform ladle refining for a long time. The oxygen content in the product of each of the 10 charge examples in the case of the conventional method which is performed for a short time is shown. In addition,
In FIGS. 1, 3 and 5, A 1 indicates the short-time LF long-time RH according to the first aspect of the invention, and A 2 indicates the high-temperature tapping and the short-time LF long-time according to the second aspect of the invention. An example in which RH is performed is shown, and an example in which RH is performed is shown in the related art.

【0036】図2は、SCM435鋼の溶鋼の処理にお
いて、アーク溶解炉または転炉により溶鋼を酸化精錬し
た溶鋼を取鍋精錬炉に移注して長時間の取鍋精錬した後
に、環流式真空脱ガスを短時間行う従来例の方法の場合
のそれぞれ10チャージ例の製品中の含有酸素量を示
す。なお、図1、図3、図5においてA1は請求項1の
発明である短時間LF長時間RHを行うものを示し、A
2は請求項2の発明である高温出鋼および短時間LF長
時間RHを行うものを示し、従は従来例によるものを示
す。
FIG. 2 shows that, in the treatment of molten steel of SCM435 steel, the molten steel obtained by oxidizing and refining the molten steel by an arc melting furnace or a converter is transferred to a ladle refining furnace, and the ladle is refined for a long time. The oxygen content in the product of each of 10 charge examples in the case of the conventional method in which degassing is performed for a short time is shown. In FIGS. 1, 3 and 5, A 1 indicates the short-time LF long-time RH according to the first aspect of the present invention.
2 shows what said hot tapping and short LF RH long an invention of claim 2, slave indicates the due prior art.

【0037】図3は、SUJ2鋼の溶鋼の処理におい
て、本発明の請求項1または2による方法と、長時間L
Fと短時間RHを行う従来例の方法の場合のそれぞれ1
0チャージ例の製品中の極値統計による最大予測介在物
径を示す。
FIG. 3 shows a method according to claim 1 or 2 of the present invention for the treatment of molten steel of SUJ2 steel, and the method for a long time.
F and 1 in the case of the conventional method of performing short-time RH, respectively.
The maximum predicted inclusion diameter according to extreme value statistics in the product of the 0 charge example is shown.

【0038】図4は、SCM435鋼の溶鋼の処理にお
いて、本発明の請求項1または2による方法と、長時間
LFと短時間RHを行う従来例の方法の場合のそれぞれ
10チャージ例の製品中の極値統計による最大予測介在
物径を示す。
FIG. 4 is a graph showing the results of the method according to the first and second aspects of the present invention and the conventional method of performing long-time LF and short-time RH in the treatment of molten steel of SCM435 steel. 2 shows the maximum predicted inclusion diameter according to the extreme value statistics of FIG.

【0039】図5は、SUJ2鋼の溶鋼の処理におい
て、本発明の請求項1または2による方法と、長時間L
Fと短時間RHを行う従来例の方法の場合のそれぞれ1
0チャージ例の製品のスラスト型転がり寿命試験による
10寿命を示す。
FIG. 5 shows a method according to claim 1 or 2 of the present invention for the treatment of molten steel of SUJ2 steel,
F and 1 in the case of the conventional method of performing short-time RH, respectively.
0 indicating the L 10 life by thrust-type rolling fatigue life test of a product charge examples.

【0040】図6は、SCM435鋼の溶鋼の処理にお
いて、本発明の請求項1または2による方法と、長時間
LFと短時間RHを行う従来例の方法の場合のそれぞれ
10チャージ例の製品のスラスト型転がり寿命試験によ
るL10寿命を示す。
FIG. 6 shows the results of the method according to claim 1 or 2 of the present invention and the conventional method of performing long-time LF and short-time RH in the treatment of molten steel of SCM435 steel. shows the L 10 life by thrust-type rolling fatigue life test.

【0041】以上の結果、SUJ2鋼、SCM435鋼
共に、アーク溶解炉または転炉により溶鋼を酸化精錬
し、溶鋼を取鍋精錬炉に移注して短時間の取鍋精錬を行
った後、さらに環流式真空脱ガス装置に環流させて長時
間の脱ガスを行う方法により、製品含有酸素量、最大介
在物径予測値とも大幅に低減され、本発明方法により清
浄度が大きく向上し、スラスト型転がり寿命試験による
10寿命も大幅に改善されていることが確認された。さ
らに、請求項1の発明である短時間LF長時間RHによ
るものから、順次に請求項2の発明である高温出鋼+短
時間LF長時間RHによるものと、それぞれの処理方法
を加重すると製品含有酸素量、最大介在物径予測値スラ
スト型転がり寿命試験によるL10寿命ともに、大幅に改
善されることが判る。
As a result, for both SUJ2 steel and SCM435 steel, the molten steel was oxidized and refined by an arc melting furnace or a converter, and the molten steel was transferred to a ladle refining furnace to perform ladle refining for a short time. By the method of performing degassing for a long time by circulating in the reflux type vacuum degassing apparatus, both the oxygen content in the product and the predicted value of the maximum inclusion diameter are greatly reduced, and the cleanliness is greatly improved by the method of the present invention. that it is L 10 life significantly improved by the rolling life test was confirmed. Furthermore, when the respective processing methods are sequentially weighted from the short-time LF long-time RH according to the first aspect to the high-temperature tapping + short-time LF-long duration RH according to the second aspect, oxygen content, the L 10 life both by the maximum inclusion size estimated value thrust type rolling life test, it is found to be greatly improved.

【0042】[0042]

【発明の効果】以上に説明したとおり、本発明の実施に
より、コストの非常に高い再溶解法を用いることなく、
清浄度の非常に高い鋼材を大量に提供することが可能と
なり、疲労強度、疲労寿命や静粛性が求められる機械部
品用鋼、特に転がり軸受用鋼、等速ジョイント用鋼、ギ
ア用鋼、トロイダル型無段変速装置用鋼、冷間鍛造用機
械構造用鋼、工具鋼、ばね鋼等として使用される高清浄
度鋼ならびにその製造方法が提供できるなど、従来にな
い優れた効果を奏する。
As described above, the practice of the present invention enables the use of a very expensive re-dissolving method without using a re-dissolving method.
It is possible to provide a large quantity of steel materials with extremely high cleanliness, and steel for machine parts that require fatigue strength, fatigue life and quietness, especially rolling bearing steel, constant velocity joint steel, gear steel, toroidal High cleanliness steel used as a mold continuously variable transmission steel, cold forging mechanical structure steel, tool steel, spring steel, and the like, and a method for producing the same can be provided, and the present invention has an unprecedented superior effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SUJ2鋼の溶鋼の処理において、短時間LF
処理と長時間RH処理を行う本発明の方法と、長時間L
F処理と短時間RH処理の従来例の方法の場合のそれぞ
れ10チャージ例の製品中の含有酸素量を示す。
FIG. 1 shows a short time LF in the processing of molten steel of SUJ2 steel.
Process and RH process for a long time,
The oxygen content in the product of each of the 10 charge examples in the case of the conventional method of the F treatment and the short-time RH treatment is shown.

【図2】SCM435鋼の溶鋼の処理において、短時間
LF処理と長時間RH処理を行う本発明の方法と、長時
間LF処理と短時間RH処理の従来例の方法の場合のそ
れぞれ10チャージ例の製品中の含有酸素量を示す。
FIG. 2 shows a 10-charge example of a method of the present invention in which a short-time LF treatment and a long-time RH treatment are performed and a conventional method of a long-time LF treatment and a short-time RH treatment in the treatment of molten steel of SCM435 steel. 2 shows the oxygen content in the product.

【図3】SUJ2鋼の溶鋼の処理において、短時間LF
処理と長時間RH処理を行う本発明の方法と、長時間L
F処理と短時間RH処理の従来例の方法の場合のそれぞ
れ10チャージ例の製品中の極値統計による最大予測介
在物径を示す。
FIG. 3 shows a short time LF in the processing of molten steel of SUJ2 steel.
Process and RH process for a long time,
The maximum predicted inclusion diameter based on extreme value statistics in products of 10 charge examples in the case of the conventional method of the F treatment and the short-time RH treatment is shown.

【図4】SCM435鋼の溶鋼の処理において、短時間
LF処理と長時間RH処理を行う本発明の方法と、長時
間LF処理と短時間RH処理の従来例の方法の場合のそ
れぞれ10チャージ例の製品中の極値統計による最大予
測介在物径を示す。
FIG. 4 shows 10 charging examples of the method of the present invention in which short-time LF processing and long-time RH processing are performed and the conventional method of long-time LF processing and short-time RH processing in the processing of molten steel of SCM435 steel, respectively. 2 shows the maximum predicted inclusion diameter by extreme value statistics in the product of Example 1.

【図5】SUJ2鋼の溶鋼の処理において、短時間LF
処理と長時間RH処理を行う本発明の方法と、長時間L
F処理と短時間RH処理の従来例の方法の場合のそれぞ
れ10チャージ例の製品のスラスト型転がり寿命試験に
よるL10寿命を示す。
FIG. 5 shows a short time LF in the processing of molten steel of SUJ2 steel.
Process and RH process for a long time,
Shows the L 10 life by thrust-type rolling life test product each 10 charge examples of the conventional example of the method of F processing and short RH treatment.

【図6】SCM435鋼の溶鋼の処理において、短時間
LF処理と長時間RH処理を行う本発明の方法と、長時
間LF処理と短時間RH処理の従来例の方法の場合のそ
れぞれ10チャージ例の製品のスラスト型転がり寿命試
験によるL10寿命を示す。
FIG. 6 shows a 10-charge example of the method of the present invention in which a short-time LF process and a long-time RH process are performed and a conventional method of a long-time LF process and a short-time RH process in the treatment of molten steel of SCM435 steel. shows the L 10 life by thrust-type rolling life test products.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 潔 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 北野 修平 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 Fターム(参考) 4K013 AA07 BA08 BA14 CC02 CE01 CF12 CF13 DA03 DA05 DA12 DA13 FA01 FA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoshi Kawakami 3007 character, Nakajima character, Shima, Ward, Himeji City, Hyogo Prefecture Inside (72) Inventor Shuhei Kitano 3007 character, Nakashima character, Shima, Ward, Himeji City, Hyogo Prefecture Sanyo F-term (reference) in Special Steel Co., Ltd. 4K013 AA07 BA08 BA14 CC02 CE01 CF12 CF13 DA03 DA05 DA12 DA13 FA01 FA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アーク溶解炉または転炉にて製造された
溶鋼を取鍋精錬炉に移注して精錬し、次いで環流式真空
脱ガスを行った後、鋳造して鋳塊を製造する鋼の製造工
程において、取鍋精錬炉における精錬を60分以下と
し、環流式真空脱ガス装置による溶鋼の環流量を全溶鋼
の8倍以上として脱ガスを25分以上行うことを特徴と
する高清浄度鋼の製造方法。
1. A steel for producing an ingot by transferring molten steel produced in an arc melting furnace or a converter into a ladle refining furnace for refining, followed by reflux vacuum degassing, and then casting. In the manufacturing process, the refining in the ladle refining furnace is performed for 60 minutes or less, and the degassing is performed for 25 minutes or more by setting the ring flow rate of the molten steel by the recirculating vacuum degassing device to 8 times or more of the total molten steel. Degree steel manufacturing method.
【請求項2】 溶鋼を取鍋精錬炉に移注する際に、移注
する溶鋼の温度を溶鋼の融点より100℃以上高い温度
で移注することを特徴とする請求項1記載の高清浄度鋼
の製造方法。
2. The high cleanliness according to claim 1, wherein when transferring the molten steel to the ladle refining furnace, the temperature of the molten steel to be transferred is higher than the melting point of the molten steel by 100 ° C. or more. Degree steel manufacturing method.
【請求項3】 請求項1又は2に記載の製造方法により
製造の高清浄度鋼。
3. A high-cleanliness steel produced by the production method according to claim 1.
【請求項4】 鋼中の含有酸素量は10ppm以下であ
ることを特徴とする請求項3記載の高清浄度鋼。
4. The high cleanliness steel according to claim 3, wherein the oxygen content in the steel is 10 ppm or less.
【請求項5】 鋼材を酸溶解して検出される20μm以
上の大きさである酸化物系介在物が鋼材100gあたり
40個以下であることを特徴とする請求項3記載の高清
浄度鋼。
5. The high cleanliness steel according to claim 3, wherein the number of oxide-based inclusions having a size of 20 μm or more and detected by dissolving the steel in an acid is 40 or less per 100 g of the steel.
【請求項6】 極値統計により算出される30000m
2における最大介在物径の予測値が60μm以下であ
ることを特徴とする請求項3記載の高清浄度鋼。
6. 30,000 m calculated by extreme value statistics
4. The high cleanliness steel according to claim 3, wherein the predicted value of the maximum inclusion diameter at m 2 is 60 μm or less.
JP2000167088A 2000-06-05 2000-06-05 Highly clean steel and production method Pending JP2001342516A (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP2000167088A JP2001342516A (en) 2000-06-05 2000-06-05 Highly clean steel and production method
GB0500783A GB2406580B (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
GB0509771A GB2410503B (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
GB0509772A GB2410253B (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
FR0107305A FR2809745B1 (en) 2000-06-05 2001-06-05 HIGH-CLEAN STEEL AND PROCESS FOR PRODUCING THE SAME
DE10196303.3T DE10196303B3 (en) 2000-06-05 2001-06-05 Process for producing a high purity steel
GB0228813A GB2381537B (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
CNB018107303A CN1210413C (en) 2000-06-05 2001-06-05 High cleanliness steel and process for producing the same
PCT/JP2001/004742 WO2001094648A2 (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
US10/297,313 US7396378B2 (en) 2000-06-05 2001-06-05 Process for producing a high cleanliness steel
GB0509770A GB2410252B (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
FR0112655A FR2812662B1 (en) 2000-06-05 2001-10-02 HIGH-CLEAN STEEL AND PROCESS FOR PRODUCING THE SAME
FR0112653A FR2812661B1 (en) 2000-06-05 2001-10-02 HIGH-CLEAN STEEL AND PROCESS FOR PRODUCING THE SAME
FR0112652A FR2812660B1 (en) 2000-06-05 2001-10-02 HIGH-CLEAN STEEL AND PROCESS FOR PRODUCING THE SAME
FR0112657A FR2812663B1 (en) 2000-06-05 2001-10-02 HIGH-CLEAN STEEL AND PROCESS FOR PRODUCING THE SAME
SE0203586A SE527469C2 (en) 2000-06-05 2002-12-04 Process for making a high-purity steel
SE0502558A SE529629C2 (en) 2000-06-05 2005-11-23 Process for making a high-purity steel
US11/894,737 US20080025865A1 (en) 2000-06-05 2007-08-21 Process for producing a high-cleanliness steel
US12/136,096 US20080257106A1 (en) 2000-06-05 2008-06-10 Process for Producing a High-Cleanliness Steel
US13/572,759 US20120304820A1 (en) 2000-06-05 2012-08-13 Process for Producing a High-Cleanliness Steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167088A JP2001342516A (en) 2000-06-05 2000-06-05 Highly clean steel and production method

Publications (1)

Publication Number Publication Date
JP2001342516A true JP2001342516A (en) 2001-12-14

Family

ID=18670296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167088A Pending JP2001342516A (en) 2000-06-05 2000-06-05 Highly clean steel and production method

Country Status (1)

Country Link
JP (1) JP2001342516A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200027A (en) * 2005-01-24 2006-08-03 Nippon Steel Corp High-carbon chromium steel for bearing and production method therefor
JP2006317192A (en) * 2005-05-10 2006-11-24 Sanyo Special Steel Co Ltd Reliability evaluating method of steel
JP2007332398A (en) * 2006-06-12 2007-12-27 Kobe Steel Ltd Method for producing high cleanliness steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200027A (en) * 2005-01-24 2006-08-03 Nippon Steel Corp High-carbon chromium steel for bearing and production method therefor
JP4630075B2 (en) * 2005-01-24 2011-02-09 新日本製鐵株式会社 High carbon chromium bearing steel and manufacturing method thereof
JP2006317192A (en) * 2005-05-10 2006-11-24 Sanyo Special Steel Co Ltd Reliability evaluating method of steel
US7971484B2 (en) 2005-05-10 2011-07-05 Sanyo Special Steel Co., Ltd. Method for evaluating reliability of steel and high-reliability steel obtained by the same
JP2007332398A (en) * 2006-06-12 2007-12-27 Kobe Steel Ltd Method for producing high cleanliness steel

Similar Documents

Publication Publication Date Title
US20080025865A1 (en) Process for producing a high-cleanliness steel
JP5266686B2 (en) Bearing steel and its manufacturing method
JP5803824B2 (en) Method of melting carburized bearing steel
TW200700566A (en) Method and facility for manufacturing a light construction steel having a high manganese content
JP2001342512A (en) Highly clean steel and production method
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP2006206967A (en) Method for continuously casting free-cutting steel for machine structure
JP2013537586A (en) High carbon chromium bearing steel and manufacturing method thereof
JP5035137B2 (en) Bearing steel and manufacturing method thereof
CN115011871A (en) Preparation method of Cu-containing ultralow-titanium bearing steel
JP4562244B2 (en) Manufacturing method of high cleanliness steel
JP2001342516A (en) Highly clean steel and production method
JP4207820B2 (en) How to use vacuum degassing equipment
JP2001342514A (en) Highly clean steel and production method
JP2001342515A (en) Highly clean steel and production method
JP2009287056A (en) Method for manufacturing machine-parts excellent in rolling fatigue life
CN115029626A (en) 42CrMo4M steel for shield machine bearing
JP5403946B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
GB2410503A (en) High-cleanliness steel and process for producing the same
JPH03254339A (en) Manufacture of raw material for bearing having excellent service life to rolling fatigue
JP3416858B2 (en) Stainless steel manufacturing method
JP2009127112A (en) Manufacturing method of high carbon chromium bearing steel
JP2010163681A (en) Method of producing steel for high-strength steel wire excellent in fatigue characteristic
JP2003183722A (en) Method for smelting high cleanliness steel
JP5241185B2 (en) Steel manufacturing method with excellent rolling fatigue life

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910