JP3416858B2 - Stainless steel manufacturing method - Google Patents
Stainless steel manufacturing methodInfo
- Publication number
- JP3416858B2 JP3416858B2 JP24394594A JP24394594A JP3416858B2 JP 3416858 B2 JP3416858 B2 JP 3416858B2 JP 24394594 A JP24394594 A JP 24394594A JP 24394594 A JP24394594 A JP 24394594A JP 3416858 B2 JP3416858 B2 JP 3416858B2
- Authority
- JP
- Japan
- Prior art keywords
- inclusions
- slag
- stainless steel
- flaws
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、表面地疵発生率を低減
し、高品質の鏡面仕上鋼板を得るのに好適なステンレス
鋼素材の製造方法に関する。
【0002】
【従来の技術】高級ステンレス鋼板、特に装飾や反射鏡
などに使用される鏡面仕上げステンレス鋼(例えばJIS
SUS304相当鋼)板は、通常、AOD炉、VOD炉、転炉
に代表される製鋼炉で溶製し、連続鋳造で鋳片とし、鋳
片表面の手入れを行った後、熱間圧延、酸洗、冷間圧
延、さらに光輝焼鈍を経て最後にバフ研磨を行う工程で
製造される。
【0003】この種の鏡面仕上げステンレス鋼板におい
ては、最終工程でバフ研磨を行った後に極く軽微な地疵
が表面に現れ、これが欠陥として検出され易いため、製
品に要求される品質グレードは極めて高い。
【0004】この地疵の原因のひとつとして、製鋼段階
で生成する介在物の影響が挙げられる。例えば、鏡面仕
上げした製品の表面に数十μm以上の大型介在物が現れ
た場合、あるいは鋳片段階でそれ以下の大きさの介在物
であっても、圧延工程で伸展され 0.5〜数mmの線状に延
びた介在物群として製品表面に現れた場合、目視観察に
よって線状の大型地疵として検出される。
【0005】鏡面仕上げ用ステンレス鋼の製造段階にお
いて、大型介在物を生成させず、かつ圧延加工を加えて
も線状に伸びない介在物に制御することができる精錬お
よび鋳込み方法が望まれている。
【0006】特開昭58 130215号公報には、主として薄
板バネ材用スレンレス鋼の精錬において、耐疲労性を改
善するために非金属介在物の生成を抑制するとともに、
その形態を制御する脱酸方法が示されている。しかしこ
の発明では、鏡面性に影響を及ぼす表面地疵との関係に
おいて、脱酸剤としてのAlの使用可否およびAl含有量の
限界値は明らかではない。
【0007】特開平3 267312号公報および特開平4
99215 号公報には、精錬ないしは仕上工程のみを対象と
して溶鋼中のsol.Alを低値に維持する鏡面仕上用などの
ステンレス鋼の製造方法が示されている。しかし、溶鋼
が炉内にある時点のみを対象としてsol.Al値を制御する
方法で得られた鋼では、さらに高水準の鏡面性を達成す
ることは困難である。
【0008】
【発明が解決しようとする課題】本発明は上記の課題を
解決するためになされたものであり、本発明の目的は、
鏡面仕上げステンレス鋼の製品段階において、大型地疵
または線状地疵の発生率が少ない高品質の鏡面性を得る
ことができる素材鋼の製造方法を提供することにある。
【0009】
【課題を解決するための手段】本発明の要旨は、次の鏡
面仕上用ステンレス鋼の製造方法にある。
【0010】鏡面仕上用ステンレス鋼の製造工程におい
て、脱炭および還元工程から鋳込み工程に至るまで、Al
含有物質を無添加として鋼中のsol.Alを50ppm 以下に制
御し、かつ、還元工程においてSiの添加後から還元工程
終了に至るまでのスラグ組成を重量%で、下記条件に制
御することを特徴とする鏡面仕上用ステンレス鋼の製造
方法。
【0011】1.0 ≦(%CaO)/(%SiO2)≦1.5
(%Al2O3)≦10%
(%MgO)≦10%
上記の「Al含有物質」には金属Alも含む。「鏡面仕上用
ステンレス鋼」には、フェライト系およびオーステナイ
ト系の双方、2相系ステンレス鋼ならびに高Niなどのオ
ーステナイト合金を含むが、上記方法はオーステナイト
系に適用するのが望ましい。
【0012】本発明は、鏡面仕上ステンレス鋼における
大型地疵、または線状地疵の発生率を低減し、高品質の
製品を製造するために適した条件として、介在物組成を
決定する溶鋼の脱酸条件、特に還元精錬期の脱酸条件お
よびスラグ組成条件を制御することによって、品質上無
害な介在物に変化させることに特徴を有する。
【0013】具体的には、次の〜のとおりである。
【0014】大型地疵の原因となる大型 Al2O3クラス
ターの生成を抑制すべく、精錬工程から鋳込み工程に至
るまでの鋼中のsol.Al値の上限を定めた。
【0015】脱炭と還元の各工程における炉内はもと
より、取鍋内、タンディッシュ内および鋳型内において
も、Al含有物質は添加しない。Si合金などの不可避的に
Alを含む物質を添加せざるを得ない場合は、そのAl含有
量を或る値以下に管理する。
【0016】線状地疵の原因となる延性介在物の生成
(介在物の低融点化)を抑制すべく、還元精錬期のスラ
グ塩基度を低めにし、かつスラグ成分のうち、Al2O3 お
よびMgO の濃度の上限を定めた。
【0017】
【作用】ステンレス鋼の中でも高級な用途に適用される
鏡面仕上用ステンレス鋼は、その製品表面に非金属系介
在物が地疵として現出しやすいため、その溶製と鋳込み
には高い清浄化技術の導入が要求されている。
【0018】特に、製鋼段階で大型介在物(数十μm以
上のレベル)が生成した場合、製品段階で地疵となる
が、製鋼段階でそれ以下の大きさの介在物でも、熱延工
程で伸延され、冷延工程にて分断されないような延性介
在物が生成した場合、長さ 0.5〜数mmの目視で認められ
る線状地疵となって現出し、鏡面性が劣る製品となる。
【0019】鏡面仕上ステンレス鋼板において、上記の
ような線状地疵が発生しないようにするための製造条件
は、次の二つである。
【0020】脱炭工程から還元工程、さらに鋳込み工
程に至るまで、金属AlまたはAl合金などのAl含有物質、
Alを含有する連続鋳造用フラックスやパウダーを添加せ
ずに、鋼中のsol.Alを50ppm 以下に制御する必要があ
る。脱炭および還元工程で用いることができる装置は、
それぞれAOD炉、VOD炉などである。
【0021】還元工程においてSiの添加後から還元工
程終了に至るまでのスラグ条件を、
1.0 ≦(%CaO)/(%SiO2)≦1.5
とし、かつ、
(%Al2O3)≦10%
(%MgO)≦10%
に制御する必要がある。
【0022】まず、条件のAlについて説明する。
【0023】脱炭から還元に至る炉内溶製工程におい
て、例えば金属Alを添加した場合、たとえ還元終点にお
けるsol.Alが50ppm 以下であっても、鋼中においては大
きさが数十μmを超える大型 Al2O3クラスターが存在す
る。この理由は、Alを添加すれば、その添加時点におい
て、鋼中のAlが溶鋼全体に均一分散されるまでは、Alを
添加した場所の近傍ではsol.Al濃度が極めて高い状態に
あり、この高濃度sol.Alが大型 Al2O3クラスターを生成
させ、従って、Alの添加段階で大型 Al2O3クラスターが
生成し、それが溶鋼中で保持された場合については製品
段階で問題となる大型線状地疵の原因となるからであ
る。
【0024】脱酸剤として還元工程で添加されるSi源で
あるFe Si(フェロシリコン)または金属Siなどに含ま
れるAlも極力低いことが望ましい。これらのSi源中の不
純物Alによっても、上記の大型 Al2O3クラスターが生成
するからである。金属Si中のAlは通常0.5 Wt%以下で問
題ないが、Fe SiはAl含有量が1〜0.5 Wt%の低Al品を
選択して用いる。
【0025】さらに、取鍋内でAl含有物質を添加する
と、このAlも大型 Al2O3クラスターを生成させる要因と
なるので、取鍋内へのAl含有物質の添加は行わない。
【0026】鋳込み時についても、用いる連続鋳造用パ
ウダー中に発熱用Alが含まれている場合があり、この種
の発熱性パウダーの使用は避ける必要がある。パウダー
中のAlによっても同様に大型 Al2O3クラスターが生成す
るためである。
【0027】また、Alを添加しなくても、溶製工程にお
いて或る一時期でもスラグや耐火物中のAl2O3 が解離し
て50ppm を超えるsol.Alとして溶出するような反応があ
る場合(例えば、AOD炉、VOD炉などで未脱酸の溶
鋼にSi、Mnなど他の脱酸元素を添加した直後、局所的に
強脱酸雰囲気となった場合)についても、その段階で大
型 Al2O3クラスターが生成し、製品段階で望ましくない
大型地疵となる。
【0028】このような理由で、脱炭から鋳込みに至る
工程ではAl含有物質の添加は避ける必要があることはも
ちろん、添加しない場合であっても、全製造工程を通し
て鋼中のsol.Alは、必ず50ppm 以下に維持しなければな
らないのである。
【0029】図1に、鏡面仕上材用SUS304の製造工程
(電気炉〜AOD炉〜取鍋〜鋳型、溶鋼量80トン)にお
けるsol.Alの最大値とAl2O3 介在物起因によるコイルで
の地疵発生率との関係を示す。コイル厚さは1.5 mm、ス
ラグ組成は後述する本発明の範囲内の場合である。な
お、地疵発生率は下記式(1) で定義した。
【0030】
地疵発生率(%) =〔χ/(コイル長さ(m) /2)〕× 100・・・(1)
ここで、χはコイルを2m毎のコイル分子に区切った場
合に、介在物起因の地疵が1個以上存在するコイル分子
の数である。例えば、200 mのコイル(2m単位のコイ
ル分子は100 個)に、地疵が1個以上存在するコイル分
子が10分子あれば、地疵発生率は10%となる。
【0031】このように、製造工程におけるsol.Alの最
大値を50ppm に抑制することにより、大型のAl2O3 クラ
スター状介在物が生成する確率を低減し、Al2O3 介在物
起因の地疵発生率を低く抑えることが可能である。
【0032】なお、実生産プロセスにおいては、種々の
精錬状況の変動(例えば、溶鋼温度のチャージ毎の変
動、溶鋼中の成分偏析など)により、局所的にsol.Al濃
度の変動、偏析が大きいことが多い。そのため、より精
度高く、かつ安全サイドでsol.Al濃度を管理するとすれ
ば、鋼中のsol.Alは常に15ppm 以下にしておくのが望ま
しい。
【0033】次に、条件のスラグ組成について説明す
る。
【0034】溶製時におけるSi脱酸前の溶鋼中の介在物
はCr2O3 ・ MnO であるが、Si添加後にはスラグや耐火物
などからCa、Mg、Alなどが、Si源から微量のAlがそれぞ
れ溶出して、下記(2) に示すように時間経過とともに介
在物形態変化が起こる。
【0035】
Cr2O3・ MnO→ Cr-Mn-(Si)-(Ca)-(Mg)-(Al)-O
〔 Cr2O3・ MnO系非延性介在物〕
→ Si-Ca-Mg-Al-(Cr)-(Mn)-O ・・・・・・・・・・・・・(2)
〔延性介在物〕
なお、上記(2) 中の介在物組成の表記において、( )内
の元素は、介在物中のその元素の組成比が相対的に低い
ことを表す。例えば、Cr-Mn-(Si)-(Ca)-(Mg)-(Al)-O で
表される介在物は、主にCr2O3 とMnO を含有し、その他
に若干量のSiO2、 CaO 、 MgO 、 Al2O3 (例えば、重量%
で各々20%以下)を含有する介在物である。
【0036】Cr-Mn-(Si)-(Ca)-(Mg)-(Al)-O 系介在物
(Cr2O3 ・ MnO 系非延性介在物)が、素材鋼スラブ表面
に現出しても、これは融点の高い非延性介在物であるた
めに、鋳込み工程の後の圧延工程でも伸延されない。そ
のため、点状の地疵として観察されるものの、目立たな
いので問題とならない。
【0037】一方、介在物形態変化がさらに進んでSi-C
a-Mg-Al-(Cr)-(Mn)-O 系介在物となって素材鋼スラブ表
面に現出すれば、これは融点の比較的低い延性介在物で
あるために、圧延工程で伸延される。そのため、線状地
疵として観察されるので品質上問題となる。
【0038】例えば、図2(a) に示すように、Cr2O3 ・
MnO 系非延性介在物が製品表面に観察される場合、その
介在物は伸延されていないために、地疵としては多くの
場合、圧延方向に対して長さの短い問題のない地疵とな
る。一方、Si-Ca-Mg-Al-(Cr)-(Mn)-O 系延性介在物が製
品表面に観察される場合、図2(b) に例示するように伸
延されて目視でも目立つ大型線状地疵となる。
【0039】Si添加後の介在物の形態をCr2O3 ・ MnO 系
非延性介在物に止めるように制御する、言い替えれば、
この非延性介在物をSi-Ca-Mg-Al-(Cr)-(Mn)-O 系の延性
介在物にまで、その形態を変化させないようにするに
は、還元工程においてSiの添加後から還元工程終了に至
るまでのスラグ条件を、1.0 ≦(%CaO)/(%SiO2)≦1.5 と
し、かつ、(%Al2O3)≦10% 、(%MgO)≦10% に制御する必
要がある。
【0040】前記(2) に示される介在物形態の変化は、
溶鋼の脱酸力が強いほど速やかに進行する。また、〔S
i〕レベルが一定の場合には、(%CaO)/(%SiO2)で表した
スラグ塩基度が大きいほど、Siの脱酸力が強く働き、変
化反応がより進行することになる。
【0041】そこで、この介在物形態を制御するための
方法として、まずスラグ塩基度の制御に注目した。スラ
グ塩基度の制御により、スラグ中のSiO2の活量が制御で
きるので、溶鋼のSi脱酸力を変化させることが可能とな
る。よって、前記(2) で示される介在物形態変化の反応
速度を制御することができる。
【0042】図3に、スラグ塩基度を変化させたときの
介在物形態変化の例として、80トンAOD炉における還
元工程時の、スラグ塩基度と製品地疵部に存在する介在
物中のCr2O3 ・ MnO 系非延性介在物の比率との関係を示
す。図4に、スラグ塩基度と製品での線状地疵発生率と
の関係を示す。
【0043】図3および図4に示すように、スラグ塩基
度が1.5 以下の場合、地疵部に存在する介在物のほとん
どがCr2O3 ・ MnO 系非延性介在物であり、その地疵形状
はほとんど線状ではなく点状であるため、問題となるこ
とは少ない。一方、スラグ塩基度が1.5 を超える場合に
は、Cr2O3 ・ MnO 系非延性介在物中にCa、Mg、Si、Al
などの酸化物成分が増加し、そのため融点の低い延性介
在物となり、それが線状地疵となる。
【0044】スラグ塩基度が1.0 に満たない場合、耐火
物(マグクロ、マグドロ系)の溶損が激しくなる傾向に
なるため、操業上望ましくない。
【0045】以上の結果から、スラグ塩基度の適正範囲
は、1.0 ≦(%CaO)/(%SiO2)≦ 1.5とした。
【0046】さらに、スラグ成分の中で、スラグ塩基度
以外に重要な制御項目は、Si-Ca-Mg-Al-(Cr)-(Mn)-O 系
延性介在物への形態変化を促進するスラグ中のAl2O3 お
よびMgO の濃度である。これらのスラグ中濃度が高くな
りすぎると、溶出するAlおよびMgの量が増大しやすくな
る傾向になり、それら濃度の上限を限定する必要があ
る。
【0047】図5に、スラグ塩基度1.5 の場合におい
て、線状地疵発生率に及ぼすスラグ中のAl2O3 およびMg
O の影響を示す。ともにスラグ中の濃度が10%を超える
と、線状地疵発生率が増加し始める。よって、スラグ塩
基度に加え、スラグ組成の条件をAl2O3 ≦10%、MgO ≦
10%とした。スラグ中のAl2O3 およびMgO の濃度は低い
ほど望ましい。
【0048】本発明の製造方法は、フェライト系および
オーステナイト系の双方、2相系ステンレス鋼ならびに
高Niなどのオーステナイト合金に適用することができる
が、オーステナイト系に適用するのが望ましい。
【0049】
【実施例】
(本発明例)SUS304ステンレス鋼を溶製するにあたり、
80トンAOD炉で〔C〕を 1.5〜2%から0.04%または
0.05%まで脱炭を行った後、表1に示す溶鋼(脱炭後)
を得た。その後低AlのSiを添加すると同時に、同表に示
す種々の組成条件でスラグ(溶鋼トンあたりのスラグ量
は数10kg)を接触させることにより還元精錬を行い、同
表に示す溶鋼(還元後)を得た。
【0050】
【表1】
【0051】上記の還元溶鋼を用いて垂直型連続鋳造機
で幅1200mm、厚さ206mm のスラブを0.7〜0.8m/minの鋳
込み速度で鋳造した。この製造の間、溶鋼中には低Alの
Si以外のAl含有物質は全く添加しなかった。
【0052】このスラブを表面手入れした後1200℃に加
熱し、連続熱間圧延機で厚さ 3.6mmに圧延した(圧下比
約60)。この熱延板を酸洗し、連続冷間圧延機で厚さ
1.5mmに圧延し(圧下比約 2.4)、光輝焼鈍を行った後
テンパーミルで二次冷延し、厚さ1.5mm の薄鋼板を製造
した。
【0053】このようにして得られた鋼板をバフ研磨し
た後、前記式(1) を用いて地疵発生率を調査した。この
結果を表1に併せて示す。地疵発生率は、いずれの場合
も2%以下であり、極めて良好な結果となった。
【0054】(比較例)表2に示すように、スラグ条件
またはAl添加条件を本発明で定める範囲外とし、これら
を除いて本発明例と同様の条件で薄鋼板を製造し、地疵
発生率を調査した。これらの条件と結果を表2に示す。
【0055】
【表2】
【0056】実施No.4〜No.7では、いずれも地疵発生率
が2%以上に高くなった。実施No.8では、地疵発生率は
2%以下と低かったが、スラグ塩基度が低すぎるためA
OD炉の耐火物であるマグクロ煉瓦の溶損が多く、操業
上問題であった。
【0057】
【発明の効果】本発明方法によれば、地疵の少ない高品
質の鏡面性を有する製品を得るのに好適なステンレス鋼
素材を安定して製造することができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a stainless steel material suitable for reducing the incidence of surface flaws and obtaining a high-quality mirror-finished steel sheet. 2. Description of the Related Art High-grade stainless steel sheets, particularly mirror-finished stainless steel used for decoration and reflectors (for example, JIS)
SUS304 equivalent steel) plates are usually melted in steelmaking furnaces such as AOD furnaces, VOD furnaces and converters, cast into slabs by continuous casting, and the slab surface is cleaned, then hot-rolled, acidified. It is manufactured by a step of buffing after washing, cold rolling, and bright annealing. [0003] In this type of mirror-finished stainless steel sheet, extremely minor flaws appear on the surface after buffing in the final step, and these are easily detected as defects. high. [0004] One of the causes of this ground flaw is the effect of inclusions generated during the steelmaking stage. For example, if large inclusions of several tens of μm or more appear on the surface of the mirror-finished product, or even inclusions of a size smaller than that at the slab stage, they are extended in the rolling process to 0.5 to several mm. When it appears on the product surface as a group of linearly extending inclusions, it is detected as a large linear flaw by visual observation. There is a demand for a refining and casting method that does not generate large inclusions and can control the inclusions so that they do not extend linearly even when subjected to rolling in the manufacturing stage of the mirror finishing stainless steel. . [0006] Japanese Patent Application Laid-Open No. 58-130215 discloses that in the refining of stainless steel for thin plate spring material, the production of non-metallic inclusions is suppressed in order to improve the fatigue resistance.
A deacidification method to control its morphology is shown. However, in the present invention, it is not clear whether Al can be used as a deoxidizing agent and the limit value of the Al content in relation to surface flaws that affect the specularity. [0007] JP-A-3-267312 and JP-A-Hei-4
Japanese Patent No. 99215 discloses a method for producing stainless steel for mirror finishing, which maintains sol. Al in molten steel at a low value only for the refining or finishing process. However, it is difficult to achieve a higher level of specularity with steel obtained by controlling the sol.Al value only for a point in time when molten steel is in the furnace. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide:
It is an object of the present invention to provide a method for producing a raw steel capable of obtaining a high quality mirror surface with a small occurrence rate of large flaws or linear flaws in a mirror finished stainless steel product stage. The gist of the present invention resides in the following method for producing a mirror finishing stainless steel. [0010] In the manufacturing process of stainless steel for mirror finishing, from the decarburization and reduction process to the casting process, Al
It is required to control the sol.Al content in steel to 50 ppm or less with no added material and to control the slag composition from the addition of Si to the end of the reduction step in weight% under the following conditions. A method for producing stainless steel for mirror finishing. 1.0 ≦ (% CaO) / (% SiO 2 ) ≦ 1.5 (% Al 2 O 3 ) ≦ 10% (% MgO) ≦ 10% The above “Al-containing substance” includes metal Al. "Stainless steel for mirror finishing" includes both ferritic and austenitic duplex stainless steels and austenitic alloys such as high Ni, but the above method is preferably applied to austenitic stainless steels. The present invention is intended to reduce the incidence of large flaws or linear flaws in mirror-finished stainless steel, and to determine the composition of the molten steel as a condition suitable for producing high quality products. By controlling the deoxidizing conditions, in particular, the deoxidizing conditions and the slag composition conditions in the refining and refining period, it is characterized in that the inclusions are changed into harmless inclusions in terms of quality. More specifically, the following is described. In order to suppress the formation of large Al 2 O 3 clusters that cause large flaws, the upper limit of the sol. Al value in steel from the refining process to the casting process was determined. Al-containing substances are not added not only in the furnace in each of the decarburization and reduction steps, but also in the ladle, the tundish, and the mold. Inevitably Si alloys
If a substance containing Al must be added, the Al content is controlled to a certain value or less. In order to suppress the formation of ductile inclusions that cause linear ground defects (low melting point of inclusions), the slag basicity during the refining refining period is set low, and among the slag components, Al 2 O 3 And the upper limit of MgO concentration. [0017] Among the stainless steels, non-metallic inclusions, which are used for high-grade applications and are used for high-grade applications, are likely to appear as non-metallic inclusions on the product surface as ground flaws. Introduction of cleaning technology is required. In particular, when large inclusions (levels of several tens of μm or more) are formed in the steelmaking stage, they become flaws in the product stage. When ductile inclusions that are elongated and are not separated in the cold rolling step are formed, they appear as linear ground flaws having a length of 0.5 to several mm and are visually inferior, resulting in products with poor mirror finish. The following two manufacturing conditions are used to prevent the above-mentioned linear ground flaw from being generated in the mirror-finished stainless steel sheet. From the decarburization step to the reduction step and further to the casting step, an Al-containing substance such as metallic Al or an Al alloy,
It is necessary to control sol.Al in steel to 50 ppm or less without adding a flux or powder for continuous casting containing Al. Equipment that can be used in the decarburization and reduction steps
An AOD furnace, a VOD furnace, and the like, respectively. In the reduction step, slag conditions from the addition of Si to the end of the reduction step are set to 1.0 ≦ (% CaO) / (% SiO 2 ) ≦ 1.5, and (% Al 2 O 3 ) ≦ 10% (% MgO) ≦ 10% needs to be controlled. First, the condition Al will be described. In the in-furnace smelting process from decarburization to reduction, for example, when metal Al is added, even if the sol.Al at the reduction end point is 50 ppm or less, the size of the steel is several tens μm. Large Al 2 O 3 clusters exist. The reason for this is that if Al is added, the sol.Al concentration is extremely high near the place where Al is added until Al in the steel is uniformly dispersed throughout the molten steel at the time of addition, high concentration sol.Al is to produce a large Al 2 O 3 clusters, therefore, large Al 2 O 3 clusters generated by adding phase of Al, a problem in the product stage for the case where it is held in the molten steel This is because it causes a large linear ground flaw. It is desirable that Al contained in Fe Si (ferrosilicon) or metallic Si, which is a Si source added in the reduction step as a deoxidizing agent, is as low as possible. This is because the above-mentioned large Al 2 O 3 cluster is also generated by the impurity Al in these Si sources. Al in metal Si is usually 0.5 Wt% or less, but there is no problem. For FeSi, a low Al product having an Al content of 1 to 0.5 Wt% is selected and used. Further, when an Al-containing substance is added in the ladle, this Al also causes a large Al 2 O 3 cluster to be formed, so that the Al-containing substance is not added to the ladle. Also at the time of casting, the heat for continuous casting used may contain Al for heat generation, and it is necessary to avoid the use of this kind of heat generating powder. This is because large Al 2 O 3 clusters are similarly formed by Al in the powder. In addition, even when Al is not added, there is a reaction in the smelting process where Al 2 O 3 in the slag or refractory is dissociated and eluted as sol. (For example, when a strong deoxidizing atmosphere occurs immediately after adding other deoxidizing elements such as Si and Mn to undeoxidized molten steel in an AOD furnace, VOD furnace, etc.) 2 O 3 clusters are formed, resulting in undesirable large flaws at the product stage. For this reason, it is not only necessary to avoid the addition of Al-containing substances in the steps from decarburization to casting, and even if they are not added, the sol. Must be kept below 50 ppm. FIG. 1 shows the maximum value of sol.Al and the coil caused by Al 2 O 3 inclusions in the process of manufacturing SUS304 for mirror finish material (electric furnace-AOD furnace-ladle-mold, molten steel amount 80 tons). The relationship with the ground flaw occurrence rate is shown. The coil thickness is 1.5 mm, and the slag composition is within the scope of the present invention described later. In addition, the ground flaw occurrence rate was defined by the following equation (1). Ground flaw occurrence rate (%) = [χ / (coil length (m) / 2)] × 100 (1) Here, χ represents a case where the coil is divided into coil molecules every 2 m. And the number of coil molecules having one or more ground flaws caused by inclusions. For example, if a coil of 200 m (100 coil molecules in 2 m units) has 10 coil molecules having one or more ground flaws, the ground flaw occurrence rate is 10%. As described above, by suppressing the maximum value of sol. Al in the manufacturing process to 50 ppm, the probability of forming large Al 2 O 3 cluster-like inclusions is reduced, and the generation of Al 2 O 3 inclusions is reduced. It is possible to suppress the occurrence rate of ground flaws. In the actual production process, fluctuations in various smelting conditions (for example, fluctuations in the molten steel temperature for each charge, component segregation in the molten steel, etc.) cause large fluctuations and segregations in the sol.Al concentration locally. Often. Therefore, if the sol.Al concentration is controlled more accurately and on the safe side, it is desirable that the sol.Al in the steel is always 15 ppm or less. Next, the slag composition under the conditions will be described. The inclusions in the molten steel before the deoxidation of Si during melting are Cr 2 O 3 .MnO, but after the addition of Si, trace amounts of Ca, Mg, Al, etc. from the slag and refractory are removed from the Si source. Al elutes, and the inclusion morphology changes over time as shown in (2) below. Cr 2 O 3 .MnO → Cr-Mn- (Si)-(Ca)-(Mg)-(Al) -O [Cr 2 O 3 .MnO-based non-ductile inclusion] → Si-Ca-Mg -Al- (Cr)-(Mn) -O (2) (Ductile inclusions) In the notation of inclusion composition in (2) above, () The element in the symbol indicates that the composition ratio of the element in the inclusion is relatively low. For example, Cr-Mn- (Si) - (Ca) - (Mg) - (Al) inclusions represented by -O mainly Cr 2 O 3 and containing MnO, Other small amount of SiO 2 , CaO, MgO, Al 2 O 3 (eg, wt%
In each case 20% or less). Cr-Mn- (Si)-(Ca)-(Mg)-(Al) -O-based inclusions (Cr 2 O 3 .MnO-based non-ductile inclusions) appear on the surface of the material steel slab. However, since this is a non-ductile inclusion having a high melting point, it is not elongated even in the rolling step after the casting step. For this reason, although it is observed as a point-like flaw, it is not noticeable and does not pose a problem. On the other hand, the morphological change of inclusions has progressed further, and Si-C
If it appears as a-Mg-Al- (Cr)-(Mn) -O-based inclusions on the surface of the base steel slab, it is a ductile inclusion with a relatively low melting point. Is done. Therefore, since it is observed as a linear ground flaw, there is a problem in quality. For example, as shown in FIG. 2 (a), Cr 2 O 3 ·
When MnO-based non-ductile inclusions are observed on the product surface, the inclusions are not elongated, and in many cases, the flaws are short in length in the rolling direction and have no problem. . On the other hand, when the Si-Ca-Mg-Al- (Cr)-(Mn) -O-based ductile inclusions are observed on the product surface, as shown in FIG. It becomes a state ground flaw. Control is performed so that the form of inclusions after the addition of Si is limited to Cr 2 O 3 .MnO-based non-ductile inclusions, in other words,
In order to prevent this non-ductile inclusion from changing to the form of Si-Ca-Mg-Al- (Cr)-(Mn) -O-based ductile inclusion, it is necessary to add Si after the addition of Si in the reduction step. Slag conditions until the end of the reduction step are controlled to 1.0 ≦ (% CaO) / (% SiO 2 ) ≦ 1.5, and (% Al 2 O 3 ) ≦ 10%, (% MgO) ≦ 10% There is a need. The change of the inclusion form shown in the above (2) is as follows.
The stronger the deoxidizing power of the molten steel, the faster it progresses. Also, [S
i] When the level is constant, the larger the slag basicity expressed by (% CaO) / (% SiO 2 ), the stronger the deoxidizing power of Si acts, and the change reaction proceeds more. Therefore, as a method for controlling the form of inclusions, attention was first focused on the control of slag basicity. Since the activity of SiO 2 in the slag can be controlled by controlling the slag basicity, the Si deoxidizing power of the molten steel can be changed. Therefore, the reaction rate of the inclusion morphology change shown in the above (2) can be controlled. FIG. 3 shows an example of a change in inclusion morphology when the slag basicity is changed, as an example of the slag basicity and the Cr in the inclusions present in the product flaws during the reduction step in an 80 ton AOD furnace. The relationship with the ratio of 2 O 3 · MnO-based non-ductile inclusions is shown. FIG. 4 shows the relationship between the basicity of slag and the rate of occurrence of linear ground defects in products. As shown in FIGS. 3 and 4, when the slag basicity is 1.5 or less, most of the inclusions present at the flaws are Cr 2 O 3 .MnO-based non-ductile inclusions. Since the shape is not linear but point-like, there is little problem. On the other hand, when the slag basicity exceeds 1.5, Ca, Mg, Si, and Al are contained in the Cr 2 O 3 .MnO-based non-ductile inclusions.
Oxide components such as these increase, resulting in ductile inclusions having a low melting point, which become linear ground defects. If the slag basicity is less than 1.0, the refractory (magcro, magdro) tends to be severely melted, which is not desirable in operation. From the above results, the appropriate range of the slag basicity was 1.0 ≦ (% CaO) / (% SiO 2 ) ≦ 1.5. Further, among the slag components, an important control item other than the slag basicity promotes a morphological change to Si-Ca-Mg-Al- (Cr)-(Mn) -O-based ductile inclusions. This is the concentration of Al 2 O 3 and MgO in the slag. If the concentration in these slags is too high, the amount of eluted Al and Mg tends to increase, and it is necessary to limit the upper limits of these concentrations. FIG. 5 shows the effect of Al 2 O 3 and Mg in slag on the rate of occurrence of linear flaws when the slag basicity is 1.5.
Indicates the effect of O. In both cases, when the concentration in the slag exceeds 10%, the rate of occurrence of linear ground defects starts to increase. Therefore, in addition to the slag basicity, the conditions of the slag composition are set as Al 2 O 3 ≦ 10%, MgO ≦
10%. The lower the concentration of Al 2 O 3 and MgO in the slag, the better. The production method of the present invention can be applied to both ferritic and austenitic duplex stainless steels and austenitic alloys such as high Ni, but is preferably applied to austenitic alloys. EXAMPLES (Example of the Present Invention) In melting SUS304 stainless steel,
1.5 to 2% to 0.04% or [C] in 80 ton AOD furnace
After decarburization to 0.05%, molten steel shown in Table 1 (after decarburization)
Got. Then, at the same time as adding low Al Si, reduction smelting is performed by contacting slag (slag amount per tens of kg of molten steel is several tens of kg) under various composition conditions shown in the table, and molten steel shown in the table (after reduction) I got [Table 1] A slab having a width of 1200 mm and a thickness of 206 mm was cast at a casting speed of 0.7 to 0.8 m / min using the above-described reduced molten steel by a vertical continuous casting machine. During this production, low Al
No Al-containing materials other than Si were added. After slab surface treatment, the slab was heated to 1200 ° C. and rolled to a thickness of 3.6 mm by a continuous hot rolling mill (rolling ratio: about 60). This hot-rolled sheet is pickled, and the thickness is reduced by a continuous cold rolling mill.
The steel sheet was rolled to 1.5 mm (rolling ratio: about 2.4), bright annealed, and secondarily cold rolled by a temper mill to produce a thin steel sheet having a thickness of 1.5 mm. After the steel sheet thus obtained was buffed, the occurrence rate of flaws was investigated using the above equation (1). The results are shown in Table 1. The ground flaw occurrence rate was 2% or less in each case, and extremely good results were obtained. (Comparative Example) As shown in Table 2, a slag condition or an Al addition condition was out of the range defined by the present invention, and a thin steel sheet was manufactured under the same conditions as those of the present invention except for these conditions. The rates were investigated. Table 2 shows these conditions and results. [Table 2] In Examples No. 4 to No. 7, the occurrence rate of ground flaws was as high as 2% or more. In the execution No. 8, the flaw generation rate was as low as 2% or less, but the slag basicity was too low.
Magro bricks, which are refractories of OD furnaces, suffered a lot of erosion, which was a problem in operation. According to the method of the present invention, it is possible to stably produce a stainless steel material suitable for obtaining a high quality mirror-finished product with few ground flaws.
【図面の簡単な説明】
【図1】精錬工程における溶鋼中sol.Alの最大値とAl2O
3 介在物起因による地疵発生率との関係を示す図であ
る。
【図2】地疵部で観察される介在物の例を示す図であ
る。(a) は非延性であって微細なもの、(b) は延性であ
って望ましくない大型のものである。
【図3】スラグ塩基度と地疵部にCr2O3 ・ MnO 系非延性
介在物が存在する比率との関係を示す図である。
【図4】スラグ塩基度と線状地疵発生率との関係を示す
図である。
【図5】スラグ中(MgO) 、(Al2O3) 濃度と線状地疵発生
率との関係を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1: Maximum value of sol.Al in molten steel and Al 2 O in refining process
FIG. 3 is a diagram showing a relationship with a ground flaw occurrence rate caused by three inclusions. FIG. 2 is a diagram showing an example of inclusions observed at a flaw. (a) is non-ductile and fine, and (b) is ductile and undesirably large. FIG. 3 is a graph showing the relationship between slag basicity and the ratio of Cr 2 O 3 .MnO-based non-ductile inclusions at flaws. FIG. 4 is a diagram showing a relationship between slag basicity and a linear ground defect generation rate. FIG. 5 is a diagram showing the relationship between (MgO) and (Al 2 O 3 ) concentrations in slag and the rate of occurrence of linear flaws.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21C 7/00 C21C 7/06 C21C 7/068 C21C 7/076 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21C 7/00 C21C 7/06 C21C 7/068 C21C 7/076
Claims (1)
て、脱炭および還元工程から鋳込み工程に至るまで、Al
含有物質を無添加として鋼中のsol.Alを50ppm 以下に制
御し、かつ、還元工程においてSiの添加後から還元工程
終了に至るまでのスラグ組成を重量%で、下記条件に制
御することを特徴とする鏡面仕上用ステンレス鋼の製造
方法。 1.0≦(%CaO)/(%SiO2)≦1.5 (%Al2O3) ≦10% (%MgO) ≦10%(57) [Claims] [Claim 1] In the manufacturing process of stainless steel for mirror finishing, from the decarburization and reduction process to the casting process, Al
It is required to control the sol.Al content in steel to 50 ppm or less with no added material and to control the slag composition from the addition of Si to the end of the reduction step in weight% under the following conditions. A method for producing stainless steel for mirror finishing. 1.0 ≦ (% CaO) / (% SiO 2 ) ≦ 1.5 (% Al 2 O 3 ) ≦ 10% (% MgO) ≦ 10%
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24394594A JP3416858B2 (en) | 1994-10-07 | 1994-10-07 | Stainless steel manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24394594A JP3416858B2 (en) | 1994-10-07 | 1994-10-07 | Stainless steel manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08104915A JPH08104915A (en) | 1996-04-23 |
JP3416858B2 true JP3416858B2 (en) | 2003-06-16 |
Family
ID=17111380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24394594A Expired - Lifetime JP3416858B2 (en) | 1994-10-07 | 1994-10-07 | Stainless steel manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3416858B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220125344A (en) | 2020-02-27 | 2022-09-14 | 닛테츠 스테인레스 가부시키가이샤 | Stainless steel for metal foil, stainless steel foil and manufacturing method thereof |
KR20220126754A (en) | 2020-02-27 | 2022-09-16 | 닛테츠 스테인레스 가부시키가이샤 | Stainless steel with excellent mirror polishing properties and manufacturing method therefor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3879159B2 (en) * | 1997-01-09 | 2007-02-07 | 松下電器産業株式会社 | Manufacturing method of multilayer printed wiring board |
JP5853281B2 (en) * | 2011-03-25 | 2016-02-09 | 日新製鋼株式会社 | Austenitic stainless steel sheet with excellent surface gloss |
WO2013169851A2 (en) | 2012-05-09 | 2013-11-14 | Yknots Industries Llc | Device, method, and graphical user interface for facilitating user interaction with controls in a user interface |
-
1994
- 1994-10-07 JP JP24394594A patent/JP3416858B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220125344A (en) | 2020-02-27 | 2022-09-14 | 닛테츠 스테인레스 가부시키가이샤 | Stainless steel for metal foil, stainless steel foil and manufacturing method thereof |
KR20220126754A (en) | 2020-02-27 | 2022-09-16 | 닛테츠 스테인레스 가부시키가이샤 | Stainless steel with excellent mirror polishing properties and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JPH08104915A (en) | 1996-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200347488A1 (en) | Fe-Cr-Ni ALLOY AND METHOD FOR PRODUCTION THEREOF | |
JPH09263820A (en) | Production of cluster-free aluminum killed steel | |
CN115896637A (en) | Preparation method of super austenitic stainless steel hot-rolled coil | |
JP2023057398A (en) | Nickel alloy excellent in surface quality and production method thereof | |
CN113046616B (en) | Stainless steel excellent in surface properties and method for producing same | |
JP3416858B2 (en) | Stainless steel manufacturing method | |
CN110607483A (en) | Free-cutting stainless steel and smelting control method thereof | |
JPH10212514A (en) | Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance | |
JP2991796B2 (en) | Melting method of thin steel sheet by magnesium deoxidation | |
JP4653629B2 (en) | Method for producing Ti-containing chromium-containing molten steel | |
JP3825570B2 (en) | Austenitic stainless steel slab excellent in workability and method for producing the same | |
JP2007009235A (en) | Steel sheet with excellent workability, and its manufacturing method | |
CN116005062B (en) | High-strength high-corrosion-resistance austenitic stainless steel cold-rolled coil and preparation method thereof | |
KR100429158B1 (en) | Method for decarburizing austenite stainless steel | |
JP3953626B2 (en) | Ferritic stainless steel excellent in drawing workability and manufacturing method thereof | |
JP2004204252A (en) | Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR | |
JP7413600B1 (en) | Fe-Ni alloy plate and its manufacturing method | |
JPS6234801B2 (en) | ||
JP2004169150A (en) | Ti-CONTAINING HIGH WORKABILITY FERRITIC CHROMIUM STEEL SHEET HAVING EXCELLENT RIDGING RESISTANCE, AND PRODUCTION METHOD THEREFOR | |
JP2547139B2 (en) | Method for controlling composition of non-metallic inclusions in steel | |
JP2749695B2 (en) | Stainless steel scouring method | |
JP4207324B2 (en) | Austenitic stainless steel sheet and manufacturing method thereof | |
JPH0499215A (en) | Production of stainless steel for mirror-like finishing | |
JP2024057785A (en) | Martensitic Stainless Steel Sheet | |
JP5680451B2 (en) | High thermal expansion Fe-Ni-Cr alloy for bimetal and method for melting the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090411 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100411 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140411 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |