JP4653629B2 - Method for producing Ti-containing chromium-containing molten steel - Google Patents

Method for producing Ti-containing chromium-containing molten steel Download PDF

Info

Publication number
JP4653629B2
JP4653629B2 JP2005311341A JP2005311341A JP4653629B2 JP 4653629 B2 JP4653629 B2 JP 4653629B2 JP 2005311341 A JP2005311341 A JP 2005311341A JP 2005311341 A JP2005311341 A JP 2005311341A JP 4653629 B2 JP4653629 B2 JP 4653629B2
Authority
JP
Japan
Prior art keywords
molten steel
mass
slag
chromium
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005311341A
Other languages
Japanese (ja)
Other versions
JP2007119818A (en
Inventor
憲二 大西
勝彦 加藤
祐司 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005311341A priority Critical patent/JP4653629B2/en
Publication of JP2007119818A publication Critical patent/JP2007119818A/en
Application granted granted Critical
Publication of JP4653629B2 publication Critical patent/JP4653629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、等軸晶の割合を高めた鋼片を安定的に製造可能なTi含有含クロム溶鋼の製造方法に関する。 The present invention relates to a method for producing a Ti-containing chromium-containing molten steel capable of stably producing a steel slab having an increased ratio of equiaxed crystals.

従来、転炉を用いて含クロム溶鋼を溶製する方法として、例えば、脱Si、脱S、及び脱Pの予備処理を施した溶銑を転炉に装入し、この溶銑にクロム源を添加して上吹きランスから酸素を吹酸し、炭素濃度が0.1質量%以上0.7質量%以下になるまで脱炭精錬を行い、その後二次精錬を行う方法が採用されている。そして、この方法により製造した含クロム溶鋼から、連続鋳造により鋼片を製造している。なお、この鋼片中の等軸晶率が高いほど、例えば、製品板の加工性の向上及び表面性状の改善を図ることができる。
そこで、代表的な鋳造組織微細化技術として、以下の方法が開示されている。
例えば、特許文献1には、C:0.015質量%以下、Si:0.01〜1.0質量%、Mn:1.0質量%以下、P:0.04質量%以下、S:0.02質量%以下、Cr:16〜32質量%、Ti:0.003〜0.3質量%、Al:0.001〜0.15質量%、N:0.003〜0.015質量%、O:0.001〜0.006質量%、残部Fe及び不可避的不純物で構成される鋼中に、大きさが0.3〜5μmのAl系介在物とTi系介在物の複合介在物を分散させ、その鋼片の等軸晶組織部の粒径を3mm以下、等軸晶率を40%以上にするフェライト系ステンレス鋼の製造方法が開示されている。
また、特許文献2には、Al:0.002〜0.02質量%、Mg:0.0005質量%未満を含有し、かつ溶鋼の凝固温度と鋳込温度、溶鋼中のTi量、N量、及びCr量に基づいて定まる温度が規定式を満足する条件で、溶鋼を連続鋳造する方法が開示されている。
そして、特許文献3には、Cr:9〜30質量%、MgO−Al23系介在物を核にもつ複合型TiNを鋳片中に含有するフェライト系ステンレス鋼を溶製するに際し、TiとNの濃度積が0.0007〜0.004になり、かつ溶鋼中の酸素活量aoの常用対数log(ao)が、−5.0〜−3.0になるように成分調整を行い、その後に鋳造を行う方法が開示されている。
Conventionally, as a method of melting chromium-containing molten steel using a converter, for example, hot metal that has been subjected to pre-treatment of de-Si, de-S, and de-P is charged into the converter, and a chromium source is added to the hot metal Then, oxygen is blown out from the top blowing lance, decarburization refining is performed until the carbon concentration becomes 0.1 mass% or more and 0.7 mass% or less, and then secondary refining is employed. And the steel piece is manufactured by continuous casting from the chromium-containing molten steel manufactured by this method. In addition, as the equiaxed crystal ratio in the steel slab is higher, for example, the workability of the product plate and the surface property can be improved.
Therefore, the following method is disclosed as a typical cast structure refinement technique.
For example, in Patent Document 1, C: 0.015 mass% or less, Si: 0.01 to 1.0 mass%, Mn: 1.0 mass% or less, P: 0.04 mass% or less, S: 0 0.02 mass% or less, Cr: 16-32 mass%, Ti: 0.003-0.3 mass%, Al: 0.001-0.15 mass%, N: 0.003-0.015 mass%, O: A composite inclusion of Al inclusions and Ti inclusions having a size of 0.3 to 5 µm is dispersed in steel composed of 0.001 to 0.006 mass%, the balance Fe and inevitable impurities. And a method for producing a ferritic stainless steel in which the grain size of the equiaxed crystal structure portion of the steel piece is 3 mm or less and the equiaxed crystal ratio is 40% or more is disclosed.
Patent Document 2 contains Al: 0.002 to 0.02 mass%, Mg: less than 0.0005 mass%, and solidification temperature and casting temperature of molten steel, Ti amount in molten steel, N amount And a method of continuously casting molten steel under the condition that the temperature determined based on the Cr content satisfies the prescribed formula.
Then, Patent Document 3, Cr: 9 to 30 wt%, upon which smelted ferritic stainless steel containing composite TiN with MgO-Al 2 O 3 inclusions in the nucleus in the slab, Ti Ingredient adjustment so that the concentration product of N and N is 0.0007 to 0.004, and the common logarithm log (a o ) of the oxygen activity a o in the molten steel is −5.0 to −3.0. A method of performing casting and then casting is disclosed.

特開平11−323502号公報Japanese Patent Laid-Open No. 11-323502 特開2002−30395号公報JP 2002-30395 A 特開2004−43838号公報JP 2004-43838 A

しかしながら、前記従来の方法では未だ解決すべき以下のような問題があった。
特許文献1及び特許文献2の方法は、溶鋼中の各成分範囲について規定しているものの、溶鋼中の介在物の生成過程に関しては規定されていない。このため、鋼片の微細結晶組織である等軸晶の割合も、安定的に高位に維持することが難しいという問題があった。
また、特許文献3の方法では、溶鋼の成分調整段階で、少なくとも1回以上、酸素センサーを用いた溶鋼中の酸素活量測定を行うことが必要であり、直接的に合金添加量を算出することが困難であるため、予め予測された範囲内でしか脱酸剤を含む成分調整を行うことができず問題があった。また、酸素センサーを使用するためランニングコストがかかり不経済であった。
However, the conventional method still has the following problems to be solved.
Although the method of patent document 1 and patent document 2 is prescribed | regulated about each component range in molten steel, it is not prescribed | regulated regarding the production | generation process of the inclusion in molten steel. For this reason, there is a problem that it is difficult to stably maintain the equiaxed crystal ratio, which is the fine crystal structure of the steel slab, at a high level.
Moreover, in the method of patent document 3, it is necessary to perform the oxygen activity measurement in the molten steel using an oxygen sensor at least once or more at the component adjustment stage of the molten steel, and the alloy addition amount is directly calculated. This makes it difficult to adjust the component containing the deoxidizer only within the range predicted in advance. In addition, since an oxygen sensor is used, running costs are high, which is uneconomical.

本発明はかかる事情に鑑みてなされたもので、等軸晶の割合を簡便な方法で安定的に高位に維持でき、例えば、製品板の加工性の向上及び表面性状の改善を図ることが可能なTi含有含クロム溶鋼の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and the ratio of equiaxed crystals can be stably maintained at a high level by a simple method. For example, it is possible to improve the workability of the product plate and the surface properties. An object of the present invention is to provide a method for producing a Ti-containing chromium-containing molten steel.

前記目的に沿う本発明に係るTi含有含クロム溶鋼の製造方法は、予備処理を施した溶銑にクロム源を添加し、吹酸処理して粗溶鋼を溶製する一次精錬を行った後、該粗溶鋼が含有する成分の調整をして溶鋼を製造する二次精錬を行う含クロム溶鋼の製造方法において、
前記二次精錬の際に、仕上脱炭処理後の前記溶鋼を覆うスラグの組成を、スラグ塩基度(CaO(質量%)/SiO (質量%)):2.2以上3.2以下、Al:20質量%以上30質量%以下、MgO:12質量%以上22質量%以下、Cr:1.0質量%以下にそれぞれ制御した後、該溶鋼にTi源を添加する。
本発明に係るTi含有含クロム溶鋼の製造方法において、前記Ti源は、純Ti屑及びTi−Fe系合金のいずれか1又は2であることが好ましい。
The method for producing a Ti-containing chromium-containing molten steel according to the present invention in accordance with the above object comprises adding a chromium source to the hot metal that has been subjected to pretreatment, performing a primary refining process in which a molten molten steel is produced by blowing acid treatment, In the method for producing chromium-containing molten steel, which performs secondary refining to produce molten steel by adjusting the components contained in the crude molten steel,
In the secondary refining, the composition of the slag covering the molten steel after the finish decarburization treatment is defined as slag basicity (CaO (mass%) / SiO 2 (mass%)) : 2.2 or more and 3.2 or less, After controlling to Al 2 O 3 : 20 mass% or more and 30 mass% or less, MgO: 12 mass% or more and 22 mass% or less, Cr 2 O 3 : 1.0 mass% or less, respectively, Ti source is added to the molten steel .
In the method for producing a Ti-containing chromium-containing molten steel according to the present invention, the Ti source is preferably either one or two of pure Ti scrap and a Ti—Fe based alloy.

請求項1及び2記載のTi含有含クロム溶鋼の製造方法は、スラグのCaO/SiO2を規定しているので、溶鋼の脱酸を十分にでき、溶鋼中へのMgO−Al23−TiO2系低融点介在物の微細分散が可能になる。
また、スラグのAl23濃度を規定しているので、環境に有害なフッ素を含有する蛍石を使用することなく、スラグの滓化性を確保し、溶鋼中へのMgO−Al23−TiO2系低融点介在物の微細分散が可能になる。
そして、スラグのMgO濃度を規定しているので、MgO−Al23−TiO2系低融点介在物の生成に必要なMg源を確保できると共に、スラグの滓化性を良好にし、溶鋼中へのMgO−Al23−TiO2系低融点介在物の微細分散が可能になる。
更に、スラグの組成制御を行った後、溶鋼にTi源を添加するので、溶鋼の脱酸を十分に行うことができ、溶鋼中にMgO−Al23−TiO2系低融点介在物を生成できる。
このように、粗溶鋼から製造する溶鋼中に、MgO−Al23−TiO2系低融点介在物を微細に分散させることで、溶鋼を凝固させて鋼片を製造する過程において、上記した低融点介在物をAlによって改質した微細なスピネル系介在物(MgAl24)を多数晶出できる。そして、この多数で微細なスピネル系介在物を核としてTiNを晶出させ、更にこのTiNを核としてδFeを凝固させることで、簡便な方法で高い等軸晶率を得ることができ、例えば、製品板での加工性の向上及び表面性状の改善が図れる。
The process according to claim 1 and 2 Ti-containing chromium-containing molten steel according Because defines a CaO / SiO 2 of the slag, can deoxidation of molten steel sufficiently, MgO-Al 2 O 3 into the molten steel - Fine dispersion of TiO 2 -based low melting point inclusions becomes possible.
Moreover, since the Al 2 O 3 concentration of the slag is regulated, the slag hatchability can be secured without using fluorite containing fluorine harmful to the environment, and MgO—Al 2 O into the molten steel can be secured. Fine dispersion of 3- TiO 2 -based low melting point inclusions becomes possible.
And since the MgO concentration of the slag is regulated, it is possible to secure the Mg source necessary for the generation of the MgO—Al 2 O 3 —TiO 2 -based low melting point inclusions and improve the slag hatchability, It is possible to finely disperse MgO—Al 2 O 3 —TiO 2 -based low melting point inclusions in the material.
Furthermore, since the Ti source is added to the molten steel after the composition control of the slag, the molten steel can be sufficiently deoxidized, and MgO—Al 2 O 3 —TiO 2 -based low melting point inclusions are contained in the molten steel. Can be generated.
As described above, in the process of producing the steel slab by solidifying the molten steel by finely dispersing the MgO—Al 2 O 3 —TiO 2 -based low melting point inclusion in the molten steel produced from the crude molten steel. A large number of fine spinel inclusions (MgAl 2 O 4 ) obtained by modifying low melting point inclusions with Al can be crystallized. Then, TiN is crystallized by using a large number of fine spinel inclusions as nuclei, and δFe is solidified by using TiN as a nucleus, whereby a high equiaxed crystal ratio can be obtained by a simple method. It is possible to improve the workability and surface properties of the product plate.

特に、請求項2記載のTi含有含クロム溶鋼の製造方法は、Ti源として純Ti屑を使用する場合、安価なTi源を使用でき経済的である。また、Ti源としてTi−Fe系合金を使用する場合についても、Ti−Fe系合金は純Tiまで精製しないため、純Tiを使用する場合と比較して経済的である。 In particular, the method for producing a Ti-containing chromium-containing molten steel according to claim 2 is economical when a pure Ti scrap is used as the Ti source, and an inexpensive Ti source can be used. Further, when using a Ti—Fe based alloy as a Ti source, the Ti—Fe based alloy is not refined to pure Ti, so that it is more economical than using pure Ti.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係るTi含有含クロム溶鋼の製造方法の説明図、図2はCaO/SiO2と等軸晶率との関係を示す説明図、図3はAl23濃度と等軸晶率との関係を示す説明図、図4はMgO濃度と等軸晶率との関係を示す説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory diagram of a method for producing a Ti-containing chromium-containing molten steel according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the relationship between CaO / SiO 2 and the equiaxed crystal ratio, and FIG. FIG. 4 is an explanatory diagram showing the relationship between the Al 2 O 3 concentration and the equiaxed crystal ratio, and FIG. 4 is an explanatory diagram showing the relationship between the MgO concentration and the equiaxed crystal ratio.

本発明の一実施の形態に係るTi含有含クロム溶鋼の製造方法は、予備処理を施した溶銑にクロム源を添加し、吹酸処理して含クロム粗溶鋼(以下、単に粗溶鋼ともいう)を溶製する一次精錬を行った後、この粗溶鋼が含有する成分の調整をして溶鋼を製造する二次精錬を行う方法であり、二次精錬の際に、仕上脱炭処理後の溶鋼を覆うスラグの組成を調整した後、この溶鋼にTi源を添加してTi含有含クロム溶鋼(以下、単に溶鋼ともいう)を溶製する方法である。以下、詳しく説明する。 The method for producing Ti-containing chromium-containing molten steel according to one embodiment of the present invention includes adding a chromium source to the hot metal that has been subjected to pretreatment, and performing blown acid treatment (hereinafter also simply referred to as crude molten steel). This is a method of performing secondary refining to produce molten steel by adjusting the components contained in this crude molten steel after the primary refining to melt the molten steel, and in the secondary refining, the molten steel after the finish decarburization treatment After adjusting the composition of the slag covering the steel, a Ti source is added to the molten steel to produce a Ti-containing chromium-containing molten steel (hereinafter also simply referred to as molten steel). This will be described in detail below.

図1に示すように、高炉溶銑を使用したTi含有含クロム溶鋼の溶製は、溶銑予備処理工程で不純元素であるSi、P、及びSの大部分を予め除去し、製造した溶銑を転炉工程で転炉に装入する。この転炉工程では、上吹のみ、底吹のみ、又は上吹と底吹とを組み合わせ、溶銑に吹酸することにより、溶銑中の炭素を除去する粗脱炭処理を行うと共に、例えば、含クロム溶湯、Fe−Cr合金、又はクロム鉱石のクロム源を溶銑に添加することにより、含クロム粗溶鋼(例えば、炭素濃度:0.1質量%以上0.7質量%以下程度)を製造する。 As shown in FIG. 1, in the manufacture of Ti-containing chromium-containing molten steel using blast furnace hot metal, most of the impure elements Si, P, and S are removed in advance in the hot metal preliminary treatment step, and the produced hot metal is converted. The converter is charged in the furnace process. In this converter process, only top blowing, only bottom blowing, or combination of top blowing and bottom blowing is used to perform rough decarburization treatment to remove carbon in the hot metal by blowing acid into the hot metal. A chromium-containing crude molten steel (for example, carbon concentration: about 0.1 mass% or more and about 0.7 mass% or less) is produced by adding a chromium source of molten chromium, an Fe—Cr alloy, or chromium ore to the hot metal.

この含クロム粗溶鋼からTi含有含クロム溶鋼を製造する場合、大気雰囲気下で含クロム粗溶鋼に吹酸を行っても、クロム酸化を招いて目標レベルまで炭素量を低減できない。そこで、含クロム粗溶鋼を取鍋に移し、引き続き行う二次精錬工程において、例えば、真空下(減圧下)で上吹きランスにより含クロム粗溶鋼の吹酸脱炭(仕上脱炭処理)を行い、目標C量(例えば、炭素濃度が0.001質量%以上0.08質量%以下程度)となるまで脱炭して、溶鋼とする。 When producing Ti-containing chromium-containing molten steel from this chromium-containing crude molten steel, even if blown acid is applied to the chromium-containing crude molten steel in the atmosphere, chromium oxidation is caused and the carbon content cannot be reduced to the target level. Therefore, in the secondary refining process, the chromium-containing crude molten steel is transferred to a ladle and, for example, blown acid decarburization (finish decarburization treatment) of the chromium-containing crude molten steel is performed with an upper blowing lance under vacuum (under reduced pressure). And decarburizing until the target C amount (for example, the carbon concentration is about 0.001 mass% or more and 0.08 mass% or less) to obtain molten steel.

そして、取鍋耐火物の保護のために必要なCaO源と、脱酸剤であるSi源とをそれぞれ添加して、含クロム溶鋼の脱酸処理を行った後、所定のスラグ組成に制御するためMgO源を添加する。これにより、溶鋼の脱酸を十分に行った後、例えば、MgO源の添加から2分以上20分以下程度の時間が経過した後、含クロム溶鋼へのTi源添加とその温度調整を行う。
このように、脱炭精錬が行われ、しかもMgO−Al23−TiO2系低融点介在物(以下、単に低融点介在物ともいう)を微細分散させたTi含有含クロム溶鋼を、連続鋳造工程で冷却し凝固させる。これにより、低融点介在物をAlによって改質させたスピネル系介在物(MgAl24)を晶出させ、これを核としてTiNを晶出させ、更にこのTiNを核としてδFeを凝固させて鋼片を製造する。
And after adding the CaO source required for protection of a ladle refractory and the Si source which is a deoxidizer, and performing the deoxidation treatment of the chromium-containing molten steel, it is controlled to a predetermined slag composition. Therefore, an MgO source is added. Thus, after sufficient deoxidation of the molten steel, for example, after a time of about 2 minutes to 20 minutes has elapsed since the addition of the MgO source, the Ti source is added to the chromium-containing molten steel and its temperature is adjusted.
In this way, decarburization refining was performed, and Ti-containing chromium-containing molten steel in which MgO—Al 2 O 3 —TiO 2 -based low melting point inclusions (hereinafter also simply referred to as low melting point inclusions) were finely dispersed was continuously produced. Cool and solidify in the casting process. As a result, spinel inclusions (MgAl 2 O 4 ) obtained by modifying low melting point inclusions with Al were crystallized, and TiN was crystallized using this as a nucleus, and δFe was solidified using TiN as a nucleus. Manufacture billets.

この二次精錬工程において制御する所定のスラグ組成とは、スラグ塩基度(CaO/SiO2):2.2以上3.2以下、Al23:20質量%以上30質量%以下、MgO:12質量%以上22質量%以下、Cr23:1.0質量%以下である。
このスラグ組成の制御に際しては、予め前記した脱酸処理等を行っているため、MgO源の添加のみにより、上記した組成のスラグを形成できるが、必要に応じて、例えば、アルミナフレークの添加によりAl23の調整を行ってもよい。
なお、取鍋耐火物の保護のために必要なCaO源の調整は、例えば生石灰の添加により行い、脱酸剤であるSi源の調整は、例えば昇熱又は還元で用いるFe−Si合金又は軟珪石の添加により行い、MgO源の調整は、例えば、MgO粉の添加により行う。
The predetermined slag composition to be controlled in this secondary refining process is slag basicity (CaO / SiO 2 ): 2.2 or more and 3.2 or less, Al 2 O 3 : 20% by mass or more and 30% by mass or less, MgO: 12 wt% to 22 wt% or less, Cr 2 O 3: 1.0 wt% or less.
In controlling the slag composition, since the deoxidation treatment described above is performed in advance, the slag having the above-described composition can be formed only by adding the MgO source, but if necessary, for example, by adding alumina flakes. adjustment of al 2 O 3 may be performed.
The adjustment of the CaO source necessary for the protection of the ladle refractory is performed, for example, by adding quick lime, and the adjustment of the Si source, which is a deoxidizer, is performed by, for example, Fe-Si alloy or softening used for heating or reduction. The addition of silica stone is performed, and the MgO source is adjusted, for example, by adding MgO powder.

ここで、スラグ塩基度を、前記した範囲に調整する理由について、図2を参照しながら説明する。
この図2は、取鍋内の150トンの溶鋼上に8トンのスラグを配置してTi含有含クロム溶鋼を製造し、これを連続鋳造して鋼片を製造した場合のスラグ塩基度(C/S)と鋼片中の等軸晶率との関係を示している。ここで、スラグのAl23濃度は26質量%、MgO濃度は15質量%、溶鋼温度はクロム含有量により異なり、(凝固開始温度)+(10〜100)℃にするとよい。
なお、図2に示す2本の線は、各スラグ塩基度における等軸晶率のばらつきの上限値と下限値を示している。また、等軸晶率は、製造した鋼片の結晶組織中に占める等軸晶の割合を示している(以下、同じ)。
Here, the reason for adjusting the slag basicity to the above-described range will be described with reference to FIG.
FIG. 2 shows the basicity of slag (C) when 8 tons of slag is placed on 150 tons of molten steel in a ladle to produce Ti-containing chromium-containing molten steel, and this is continuously cast to produce a steel slab. / S) and the equiaxed crystal ratio in the steel slab. Here, the Al 2 O 3 concentration of the slag is 26% by mass, the MgO concentration is 15% by mass, the molten steel temperature varies depending on the chromium content, and is preferably (solidification start temperature) + (10 to 100) ° C.
Note that the two lines shown in FIG. 2 indicate the upper limit value and the lower limit value of the variation in equiaxed crystal ratio in each slag basicity. The equiaxed crystal ratio indicates the ratio of equiaxed crystals in the crystal structure of the manufactured steel slab (hereinafter the same).

スラグ塩基度が2.2未満の場合、溶鋼の脱酸を十分に行うことができないため、MgO−Al23−TiO2系低融点介在物を形成するために必要なMg源及びAl源が不足し、低融点介在物の組成が制御できない。これにより、低融点介在物の微細分散が阻害されるため、図2に示すように、製造した鋼片の等軸晶率が急激に低下すると共に、取鍋又はその他溶鋼に接する耐火物の保護効果が薄れ、耐火物寿命の低下によるコストの悪化を招く。
一方、スラグ塩基度が3.2を超える場合、スラグの滓化性の悪化に伴って低融点介在物の微細分散が阻害され、図2に示すように、鋼片の等軸晶率が低下し始める。また、含クロムスラグ生成量の増加により発生スラグ処理負荷が増大したり、更にはスラグ生成量の増大に伴う溶出MgOの増大により耐火物損耗に繋がる問題が生じる。
以上のことから、スラグ塩基度を2.2以上3.2以下としたが、下限値を2.5とすることが好ましく、上限値を3.0とすることが好ましい。
When the slag basicity is less than 2.2, the molten steel cannot be sufficiently deoxidized, so the Mg source and the Al source necessary for forming the MgO—Al 2 O 3 —TiO 2 -based low melting point inclusions Is insufficient, and the composition of the low melting point inclusion cannot be controlled. As a result, the fine dispersion of the low melting point inclusion is hindered, and as shown in FIG. 2, the equiaxed crystal ratio of the manufactured steel piece rapidly decreases, and the refractory that contacts the ladle or other molten steel is protected. The effect is diminished, and the cost of the refractory life is reduced.
On the other hand, when the slag basicity exceeds 3.2, the fine dispersion of the low melting point inclusions is hindered with the deterioration of the slag hatchability, and the equiaxed crystal ratio of the steel slab decreases as shown in FIG. Begin to. Moreover, the generated slag processing load increases due to an increase in the amount of chromium-containing slag generated, and further, there arises a problem that leads to refractory wear due to an increase in eluted MgO accompanying an increase in the amount of slag generation.
From the above, the slag basicity is set to 2.2 or more and 3.2 or less, but the lower limit is preferably 2.5, and the upper limit is preferably 3.0.

次に、スラグのAl23濃度を、前記した範囲に調整する理由について、図3を参照しながら説明する。
この図3は、取鍋内の150トンの溶鋼上に8トンのスラグを配置してTi含有含クロム溶鋼を製造し、これを連続鋳造して鋼片を製造した場合のAl23濃度と鋼片中の等軸晶率との関係を示している。ここで、スラグの塩基度は2.6、MgO濃度は15質量%、溶鋼温度は前記した図2の条件と同じである。
なお、図3に示す2本の線は、各Al23濃度における等軸晶率のばらつきの上限値と下限値を示している。
Next, the reason why the Al 2 O 3 concentration of the slag is adjusted to the above range will be described with reference to FIG.
This FIG. 3 shows the concentration of Al 2 O 3 when Ti-containing chromium-containing molten steel is produced by placing 8 tons of slag on 150 tons of molten steel in a ladle and continuously casting this to produce a steel slab. And the equiaxed crystal ratio in the steel slab. Here, the basicity of the slag is 2.6, the MgO concentration is 15% by mass, and the molten steel temperature is the same as the above-described conditions of FIG.
Note that the two lines shown in FIG. 3 indicate the upper limit value and the lower limit value of the variation in equiaxed crystal ratio at each Al 2 O 3 concentration.

Al23濃度が20質量%未満の場合、スラグの滓化性が悪化して、目的とするMgO−Al23−TiO2系低融点介在物の微細分散が阻害されるため、図3に示すように、製造した鋼片の等軸晶率が急激に低下する。このため、等軸晶率を向上させるには、環境に有害なフッ素を含有する蛍石の使用を余儀なくされる。
一方、Al23濃度が30質量%を超える場合、低融点介在物の性状が変化し、図3に示すように、製造した鋼片の等軸晶率が急激に低下すると共に、スラグの飽和MgO量が増加し、耐火物中のMgOの溶出を招くため、取鍋又はその他溶鋼に接する耐火物の保護効果が薄れ、耐火物寿命の低下又はAl23源添加のためにコスト悪化を招く。
以上のことから、スラグのAl23濃度を20質量%以上30質量%以下としたが、下限値を25質量%とすることが好ましい。
When the Al 2 O 3 concentration is less than 20% by mass, the slag hatchability deteriorates, and fine dispersion of the target MgO—Al 2 O 3 —TiO 2 -based low melting point inclusion is inhibited. As shown in FIG. 3, the equiaxed crystal ratio of the manufactured steel slab decreases rapidly. For this reason, in order to improve the equiaxed crystal ratio, it is necessary to use fluorite containing fluorine harmful to the environment.
On the other hand, when the Al 2 O 3 concentration exceeds 30 mass%, the properties of the low melting point inclusions change, and as shown in FIG. The amount of saturated MgO increases, leading to elution of MgO in the refractory, so the protective effect of the refractory in contact with the ladle or other molten steel is diminished, and the cost deteriorates due to a decrease in the refractory life or the addition of Al 2 O 3 Invite.
From the above, the Al 2 O 3 concentration of the slag is set to 20% by mass or more and 30% by mass or less, but the lower limit is preferably 25% by mass.

スラグのMgO濃度を、前記した範囲に調整する理由について、図4を参照しながら説明する。
この図4は、取鍋内の150トンの溶鋼上に8トンのスラグを配置してTi含有含クロム溶鋼を製造し、これを連続鋳造して鋼片を製造した場合のMgO濃度と鋼片中の等軸晶率との関係を示している。ここで、スラグの塩基度は2.6、Al23濃度は26質量%、溶鋼温度は前記した図2、図3の条件と同じである。
なお、図4に示す2本の線は、各MgO濃度における等軸晶率のばらつきの上限値と下限値を示している。
The reason why the MgO concentration of the slag is adjusted to the above range will be described with reference to FIG.
FIG. 4 shows the MgO concentration and steel slab when a Ti-containing chromium-containing molten steel is produced by placing 8 tons of slag on a 150-ton molten steel in a ladle and continuously casting this to produce a steel slab. The relationship with the equiaxed crystal ratio is shown. Here, the basicity of the slag is 2.6, the Al 2 O 3 concentration is 26% by mass, and the molten steel temperature is the same as the conditions shown in FIGS.
Note that the two lines shown in FIG. 4 indicate the upper limit value and the lower limit value of the variation in equiaxed crystal ratio at each MgO concentration.

MgO濃度が12質量%未満の場合、MgO−Al23−TiO2系低融点介在物を生成するためのMg源が不足するため、低融点介在物の微細分散がされず、図4に示すように、製造した鋼片の等軸晶率が急激に低下する。
一方、MgO濃度が22質量%を超える場合、融点の急激な上昇に伴いスラグの滓化性が悪化して、MgO−Al23−TiO2系低融点介在物の微細分散を阻害し、図4に示すように、製造した鋼片の等軸晶率が低下し始める。
以上のことから、スラグのMgO濃度を12質量%以上22質量%以下としたが、下限値を15質量%とすることが好ましく、上限値を20質量%とすることが好ましい。
When the MgO concentration is less than 12% by mass, the Mg source for producing the MgO—Al 2 O 3 —TiO 2 -based low melting point inclusion is insufficient, so that the low melting point inclusion is not finely dispersed. As shown, the equiaxed crystal ratio of the manufactured steel slab decreases rapidly.
On the other hand, when the MgO concentration exceeds 22% by mass, the hatchability of the slag deteriorates with a rapid rise in the melting point, and the fine dispersion of the MgO—Al 2 O 3 —TiO 2 -based low melting point inclusion is inhibited, As shown in FIG. 4, the equiaxed crystal ratio of the manufactured steel slab begins to decrease.
From the above, the MgO concentration of the slag is set to 12% by mass or more and 22% by mass or less, but the lower limit is preferably 15% by mass, and the upper limit is preferably 20% by mass.

また、スラグ中のCr23濃度が1.0質量%を超える場合、溶鋼を十分に脱酸することができず、MgO−Al23−TiO2系低融点介在物の微細分散を阻害する。なお、Cr23濃度の下限値について規定していないのは、Cr23濃度が1.0質量%以下であれば、MgO−Al23−TiO2系低融点介在物の微細分散に影響がないためである。
更に、Ti源の添加を上記したスラグ組成の制御前に行った場合、脱酸が十分になされておらず、MgO−Al23−TiO2系低融点介在物を生成するためのMg源及びAl源が不足するため、TiO2が主体となって低融点介在物の微細分散を阻害する。
なお、溶鋼に添加するTi源としては、純Ti屑及びTi−Fe系合金のいずれか1又は2を使用する。このTi源の添加量は、製造する製品中のTi濃度(例えば、0.10質量%以上0.25質量%以下程度)に応じて決まる。
In addition, when the Cr 2 O 3 concentration in the slag exceeds 1.0% by mass, the molten steel cannot be sufficiently deoxidized, and the fine dispersion of the MgO—Al 2 O 3 —TiO 2 -based low melting point inclusions is reduced. Inhibit. Incidentally, does not define the lower limit of the Cr 2 O 3 concentration, if Cr 2 O 3 concentration of 1.0 wt% or less, the fine of MgO-Al 2 O 3 -TiO 2 based low-melting inclusions This is because the dispersion is not affected.
Furthermore, when the addition of the Ti source is performed before the control of the slag composition described above, the deoxidation is not sufficiently performed, and the Mg source for generating the MgO—Al 2 O 3 —TiO 2 low melting point inclusions In addition, since the Al source is insufficient, TiO 2 is mainly used to inhibit fine dispersion of the low melting point inclusions.
In addition, as Ti source added to molten steel, any 1 or 2 of a pure Ti scrap and a Ti-Fe-type alloy is used. The addition amount of this Ti source is determined according to the Ti concentration (for example, about 0.10 mass% or more and 0.25 mass% or less) in the manufactured product.

次に、本発明の作用効果を確認するために行った実施例について説明する。
一次精錬工程において、予備処理を施した溶銑を転炉で処理して粗溶鋼を製造し、この粗溶鋼を取鍋に150トン移した。そして、二次精錬工程において、この粗溶鋼に仕上脱炭処理、CaO添加、Si還元処理、スラグの組成調整、Ti源添加、及び溶鋼の温度調整(例えば、1600℃程度)を行って、Ti含有含クロム溶鋼を製造した。
この溶鋼を、連続鋳造によって凝固処理して鋼片を製造し、その等軸晶率を調査した。なお、鋼片の目標等軸晶率は80%以上である。この結果を表1及び表2にそれぞれ示す。
Next, examples carried out for confirming the effects of the present invention will be described.
In the primary refining process, the hot metal that had been pretreated was treated in a converter to produce a crude molten steel, and the crude molten steel was transferred to a ladle at 150 tons. In the secondary refining process, finish decarburization treatment, CaO addition, Si reduction treatment, slag composition adjustment, Ti source addition, and temperature adjustment of the molten steel (for example, about 1600 ° C.) A chromium-containing molten steel was produced.
The molten steel was solidified by continuous casting to produce a steel piece, and the equiaxed crystal ratio was investigated. The target equiaxed crystal ratio of the steel slab is 80% or more. The results are shown in Table 1 and Table 2, respectively.

Figure 0004653629
Figure 0004653629

Figure 0004653629
Figure 0004653629

表1は実施例を示し、表2は比較例を示している。
なお、表1中の実施例1〜5は、溶鋼を覆うスラグの組成を、スラグ塩基度(CaO/SiO2:C/S):2.2以上3.2以下、Al23:20質量%以上30質量%以下、MgO:12質量%以上22質量%以下、Cr23:1.0質量%以下にそれぞれ制御した後、製造する溶鋼のTi濃度が0.15質量%になるように、Ti源である純Ti屑を添加した結果である。中でも実施例2〜4は、スラグ塩基度、Al23、及びMgOを、特に好ましい条件(スラグ塩基度:2.5以上3.0以下、Al23:25質量%以上30質量%以下、MgO:15質量%以上20質量%以下)にそれぞれ制御した結果である。
Table 1 shows examples and Table 2 shows comparative examples.
In Examples 1 to 5 in Table 1, the composition of the slag covering the molten steel is defined as slag basicity (CaO / SiO 2 : C / S): 2.2 or more and 3.2 or less, Al 2 O 3 : 20 After controlling to mass% or more and 30 mass% or less, MgO: 12 mass% or more and 22 mass% or less, and Cr 2 O 3 : 1.0 mass% or less, the Ti concentration of the molten steel to be manufactured becomes 0.15 mass%. Thus, it is the result of adding pure Ti scrap which is a Ti source. Among these, in Examples 2 to 4, slag basicity, Al 2 O 3 , and MgO are used under particularly preferable conditions (slag basicity: 2.5 to 3.0, Al 2 O 3 : 25 mass% to 30 mass%. Hereinafter, the results are respectively controlled to MgO: 15% by mass or more and 20% by mass or less.

一方、表2中の比較例6、7は、スラグ塩基度が上記した範囲外の結果である。また、比較例8〜10は、スラグのAl23濃度が上記した範囲外のものであり、中でも比較例10は、スラグ塩基度も上記した範囲の下限値を下回った結果である。そして、比較例11、12は、スラグのMgO濃度が上記した範囲外の結果であり、比較例14は、スラグのCr23濃度が上記した範囲を超えた結果である。なお、比較例13は、スラグ塩基度、Al23、MgO、及びCr23が、前記した範囲を満足しているが、純Ti屑の添加時期(タイミング)が、スラグの組成制御前の結果である。 On the other hand, Comparative Examples 6 and 7 in Table 2 are results in which the slag basicity is outside the above-described range. In Comparative Examples 8 to 10, the slag Al 2 O 3 concentration is outside the above-described range, and in Comparative Example 10, the slag basicity is also a result of lowering the lower limit of the above-described range. In Comparative Examples 11 and 12, the MgO concentration of the slag is outside the above range, and in Comparative Example 14, the Cr 2 O 3 concentration of the slag exceeds the above range. In Comparative Example 13, slag basicity, Al 2 O 3 , MgO, and Cr 2 O 3 satisfy the above-mentioned ranges, but the addition timing (timing) of pure Ti scrap is controlled by the composition of slag. It is the previous result.

実施例1〜5から明らかなように、スラグ組成及び純Ti屑の添加時期を規定することで、製造した鋼片の等軸晶率が80%以上となり、目標値を達成できた。また、スラグの滓化性、即ちスラグの流動性も良好(例えば、スラグ上への添加物がスラグ中へ入り込み易い)であり、しかも取鍋耐火物のスラグライン、即ちスラグ存在領域に顕著な凹みも確認されなかった。
特に、スラグ塩基度、Al23、及びMgOを特に好ましい条件に規定した実施例2〜4については、鋼片の等軸晶が98%以上となった。
As is clear from Examples 1 to 5, by defining the slag composition and the addition timing of pure Ti scrap, the equiaxed crystal ratio of the manufactured steel slab was 80% or more, and the target value was achieved. In addition, the slag hatching property, that is, the slag fluidity is good (for example, the additive on the slag is easy to enter into the slag), and it is prominent in the slag line of the ladle refractory, that is, the slag existence region. No dent was confirmed.
In particular, in Examples 2 to 4 in which slag basicity, Al 2 O 3 , and MgO were defined as particularly preferable conditions, the equiaxed crystal of the steel slab became 98% or more.

一方、比較例6は、スラグ塩基度が低い(2.1)ため、MgO−Al23−TiO2系低融点介在物の微細分散が阻害され、等軸晶率が目標値を達成できなかった。また、耐火物に顕著な凹みが発生した。
また、比較例7は、スラグ塩基度が高い(3.3)ため、低融点介在物の微細分散が阻害され、等軸晶率が目標値を達成できず、しかもスラグの滓化性も悪化した。また、耐火物に顕著な凹みが発生した。
比較例8は、スラグのAl23濃度が低い(19質量%)ため、スラグの滓化性が悪化し、低融点介在物の微細分散が阻害され、等軸晶率が目標値を達成できなかった。
比較例9は、スラグのAl23濃度が高い(33質量%)ため、等軸晶率が目標値を達成できず、しかも耐火物に顕著な凹みが発生した。
On the other hand, in Comparative Example 6, since the slag basicity is low (2.1), fine dispersion of the MgO—Al 2 O 3 —TiO 2 -based low melting point inclusion is inhibited, and the equiaxed crystal ratio can achieve the target value. There wasn't. Moreover, the remarkable dent generate | occur | produced in the refractory.
Further, in Comparative Example 7, since the slag basicity is high (3.3), the fine dispersion of the low melting point inclusion is inhibited, the equiaxed crystal ratio cannot achieve the target value, and the slag hatching property is also deteriorated. did. Moreover, the remarkable dent generate | occur | produced in the refractory.
In Comparative Example 8, since the Al 2 O 3 concentration of slag is low (19% by mass), the hatchability of slag deteriorates, the fine dispersion of low melting point inclusions is inhibited, and the equiaxed crystal ratio reaches the target value. could not.
In Comparative Example 9, since the Al 2 O 3 concentration of the slag was high (33% by mass), the equiaxed crystal ratio could not achieve the target value, and a remarkable dent was generated in the refractory.

比較例10は、スラグのAl23濃度が低く(7質量%)、しかもスラグ塩基度が低い(1.1)ため、スラグの滓化性が悪化し、低融点介在物の微細分散が阻害され、等軸晶率が目標値を達成できなかった。また、耐火物に顕著な凹みが発生した。
比較例11は、スラグのMgO濃度が低い(11質量%)ため、低融点介在物を生成するためのMg源が不足し、低融点介在物の微細分散が阻害され、等軸晶率が目標値を達成できなかった。
比較例12は、スラグのMgO濃度が高い(23質量%)ため、スラグの滓化性が悪化し、低融点介在物の微細分散が阻害され、等軸晶率が目標値を達成できなかった。
In Comparative Example 10, since the slag Al 2 O 3 concentration is low (7% by mass) and the slag basicity is low (1.1), the slag hatchability deteriorates and the low-melting inclusions are finely dispersed. The equiaxed crystal ratio could not achieve the target value. Moreover, the remarkable dent generate | occur | produced in the refractory.
In Comparative Example 11, since the MgO concentration of the slag is low (11% by mass), the Mg source for generating the low melting point inclusion is insufficient, the fine dispersion of the low melting point inclusion is inhibited, and the equiaxed crystal ratio is the target. The value could not be achieved.
In Comparative Example 12, since the MgO concentration of slag was high (23% by mass), the slag hatchability deteriorated, the fine dispersion of low melting point inclusions was inhibited, and the equiaxed crystal ratio could not achieve the target value. .

比較例13は、純Ti屑の添加時期が、スラグの組成制御前であるため、粗溶鋼の脱酸が十分になされておらず、その結果、低融点介在物の微細分散が阻害され、等軸晶率が目標値を達成できなかった。
比較例14は、スラグのCr23濃度が高い(1.2質量%)ため、粗溶鋼を十分に脱酸できず、低融点介在物の微細分散が阻害され、等軸晶率が目標値を達成できなかった。
以上のことから、従来のように、酸素センサーによる酸素活量測定を行うことなく、等軸晶の割合を安定的に高位に維持した鋼片を製造するためのTi含有含クロム溶鋼を製造できることを確認できた。
In Comparative Example 13, since the addition timing of pure Ti scrap is before the composition control of slag, deoxidation of the crude molten steel is not sufficiently performed, and as a result, the fine dispersion of low melting point inclusions is hindered, etc. The axial crystal ratio could not achieve the target value.
In Comparative Example 14, since the Cr 2 O 3 concentration of slag is high (1.2% by mass), the coarse molten steel cannot be sufficiently deoxidized, the fine dispersion of low melting point inclusions is inhibited, and the equiaxed crystal ratio is the target. The value could not be achieved.
From the above, it is possible to manufacture a Ti-containing chromium-containing molten steel for producing a steel slab in which the proportion of equiaxed crystals is stably maintained at a high level without performing oxygen activity measurement with an oxygen sensor as in the past. Was confirmed.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明のTi含有含クロム溶鋼の製造方法を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the manufacturing method of the Ti-containing chromium-containing molten steel of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

本発明の一実施の形態に係るTi含有含クロム溶鋼の製造方法の説明図である。It is explanatory drawing of the manufacturing method of Ti containing chromium containing molten steel which concerns on one embodiment of this invention. CaO/SiO2と等軸晶率との関係を示す説明図である。It is an explanatory diagram showing a relationship between the equiaxed Akiraritsu the CaO / SiO 2. Al23濃度と等軸晶率との関係を示す説明図である。It is an explanatory view showing the relationship between the concentration of Al 2 O 3 and equiaxed Akiraritsu. MgO濃度と等軸晶率との関係を示す説明図である。It is explanatory drawing which shows the relationship between MgO density | concentration and an equiaxed crystal ratio.

Claims (2)

予備処理を施した溶銑にクロム源を添加し、吹酸処理して粗溶鋼を溶製する一次精錬を行った後、該粗溶鋼が含有する成分の調整をして溶鋼を製造する二次精錬を行う含クロム溶鋼の製造方法において、
前記二次精錬の際に、仕上脱炭処理後の前記溶鋼を覆うスラグの組成を、スラグ塩基度(CaO(質量%)/SiO (質量%)):2.2以上3.2以下、Al:20質量%以上30質量%以下、MgO:12質量%以上22質量%以下、Cr:1.0質量%以下にそれぞれ制御した後、該溶鋼にTi源を添加することを特徴とするTi含有含クロム溶鋼の製造方法。
The secondary refining is performed by adding the chromium source to the hot metal that has been pre-treated and performing the primary refining to produce the molten steel by blowing acid treatment and adjusting the components contained in the molten molten steel. In the method for producing chromium-containing molten steel,
In the secondary refining, the composition of the slag covering the molten steel after the finish decarburization treatment is defined as slag basicity (CaO (mass%) / SiO 2 (mass%)) : 2.2 or more and 3.2 or less, After controlling to Al 2 O 3 : 20 mass% or more and 30 mass% or less, MgO: 12 mass% or more and 22 mass% or less, Cr 2 O 3 : 1.0 mass% or less, respectively, Ti source is added to the molten steel A method for producing a Ti-containing chromium-containing molten steel characterized by the above.
請求項1記載のTi含有含クロム溶鋼の製造方法において、前記Ti源は、純Ti屑及びTi−Fe系合金のいずれか1又は2であることを特徴とするTi含有含クロム溶鋼の製造方法。 The method for producing a Ti-containing chromium-containing molten steel according to claim 1, wherein the Ti source is one or two of pure Ti scrap and Ti-Fe alloy. .
JP2005311341A 2005-10-26 2005-10-26 Method for producing Ti-containing chromium-containing molten steel Active JP4653629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311341A JP4653629B2 (en) 2005-10-26 2005-10-26 Method for producing Ti-containing chromium-containing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311341A JP4653629B2 (en) 2005-10-26 2005-10-26 Method for producing Ti-containing chromium-containing molten steel

Publications (2)

Publication Number Publication Date
JP2007119818A JP2007119818A (en) 2007-05-17
JP4653629B2 true JP4653629B2 (en) 2011-03-16

Family

ID=38143963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311341A Active JP4653629B2 (en) 2005-10-26 2005-10-26 Method for producing Ti-containing chromium-containing molten steel

Country Status (1)

Country Link
JP (1) JP4653629B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5199543B2 (en) * 2006-03-01 2013-05-15 日新製鋼株式会社 Method for melting aluminum killed steel
CN102465229B (en) * 2010-11-13 2013-08-28 山西太钢不锈钢股份有限公司 Ferro-titanium alloying method for titaniferous stainless steel
JP6443206B2 (en) * 2015-04-27 2018-12-26 新日鐵住金株式会社 Stainless steel slab manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020046A (en) * 1999-07-07 2001-01-23 Sumitomo Metal Ind Ltd Ferritic stainless steel excellent in workability and toughness, ferritic stainless steel ingot and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020046A (en) * 1999-07-07 2001-01-23 Sumitomo Metal Ind Ltd Ferritic stainless steel excellent in workability and toughness, ferritic stainless steel ingot and production thereof

Also Published As

Publication number Publication date
JP2007119818A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
EP3443130B1 (en) Gray cast iron inoculant
JPH09263820A (en) Production of cluster-free aluminum killed steel
CN108893682B (en) Die steel billet and preparation method thereof
CN113215476A (en) Method for producing industrial pure iron
KR100941841B1 (en) A method of manufacturing austenite stainless steel
CN109868415B (en) Smelting method of low-sulfur low-boron pipeline steel
CN113278762B (en) Ca alloying method in high-aluminum calcium sulfur composite free-cutting steel
JP4653629B2 (en) Method for producing Ti-containing chromium-containing molten steel
WO2016027765A1 (en) Method for controlling ti concentration in steel, and method for producing silicon-deoxidized steel
KR100844794B1 (en) A method for refining with high purity of austenitic stainless steel
JP4648820B2 (en) Method for producing extremely low sulfur chromium-containing molten steel
JP3499349B2 (en) Fe-Ni alloy cold rolled sheet excellent in surface properties and method for producing the same
CN109778073B (en) Free-cutting steel for automobile synchronizer and preparation method thereof
JP2001026811A (en) Si ALLOY IRON USED FOR REFINING OF STAINLESS STEEL AND METHOD FOR REFINING STAINLESS STEEL
JP3416858B2 (en) Stainless steel manufacturing method
KR101786931B1 (en) Method for refining of molten stainless steel
JP2008266706A (en) Method for continuously casting ferritic stainless steel slab
JP3825570B2 (en) Austenitic stainless steel slab excellent in workability and method for producing the same
US2715064A (en) Method of producing silicon steel
JP3626445B2 (en) Fe-Ni alloy for low thermal expansion and high rigidity shadow mask excellent in surface property and etching processability and method for producing the same
JP3836249B2 (en) Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel
JP4274203B2 (en) Method for producing V-containing steel
CN114107600B (en) Smelting method of 27SiMn steel containing nucleating agent
JP2007063581A (en) Method for refining molten chromium-containing steel
EP3802899B1 (en) Silicon based alloy, method for the production thereof and use of such alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R151 Written notification of patent or utility model registration

Ref document number: 4653629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350