JP7413600B1 - Fe-Ni alloy plate and its manufacturing method - Google Patents

Fe-Ni alloy plate and its manufacturing method Download PDF

Info

Publication number
JP7413600B1
JP7413600B1 JP2023150989A JP2023150989A JP7413600B1 JP 7413600 B1 JP7413600 B1 JP 7413600B1 JP 2023150989 A JP2023150989 A JP 2023150989A JP 2023150989 A JP2023150989 A JP 2023150989A JP 7413600 B1 JP7413600 B1 JP 7413600B1
Authority
JP
Japan
Prior art keywords
mass
content
alloy
less
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023150989A
Other languages
Japanese (ja)
Inventor
晴己 増山
室恒 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2023150989A priority Critical patent/JP7413600B1/en
Application granted granted Critical
Publication of JP7413600B1 publication Critical patent/JP7413600B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

【課題】本発明は、優れた初比透磁率と、良好な最大比透磁率及び飽和磁束密度を付与し得ると共に、歩留まりを抑えて製造可能なFe-Ni系合金及びその製造方法を提供する。【解決手段】質量%で、C:0.001~0.05%、Si:0.05~0.50%、Mn:0.25~1.00%、P:0.001~0.030%、S:0.0001~0.0050%、Ni:35.0~44.0%、Cr:0.01~0.50%、Mo:0.005~0.10%、Cu:0.01~2.00%、Al:0.0001~0.10%、Ti:0.050%以下、Co:0.01~2.00%、W:0.01~0.50%、N:0.001~0.05%、Sn:0.0001~0.05%、Mg:0.050%以下、Zr:0.0001~0.05%、Ca:0.0020%以下、O:0.0002~0.01%を含み、残部がFe及び不可避的不純物からなるFe-Ni系合金板。【選択図】図1[Problem] The present invention provides an Fe--Ni alloy that can provide excellent initial relative magnetic permeability, good maximum relative magnetic permeability, and saturation magnetic flux density, and that can be manufactured with reduced yield, and a method for manufacturing the same. . [Solution] In mass %, C: 0.001 to 0.05%, Si: 0.05 to 0.50%, Mn: 0.25 to 1.00%, P: 0.001 to 0.030 %, S: 0.0001 to 0.0050%, Ni: 35.0 to 44.0%, Cr: 0.01 to 0.50%, Mo: 0.005 to 0.10%, Cu: 0. 01 to 2.00%, Al: 0.0001 to 0.10%, Ti: 0.050% or less, Co: 0.01 to 2.00%, W: 0.01 to 0.50%, N: 0.001 to 0.05%, Sn: 0.0001 to 0.05%, Mg: 0.050% or less, Zr: 0.0001 to 0.05%, Ca: 0.0020% or less, O: 0 A Fe--Ni alloy plate containing .0002 to 0.01%, with the remainder consisting of Fe and unavoidable impurities. [Selection diagram] Figure 1

Description

本発明は、Fe-Ni系合金板及びその製造方法に関する。 The present invention relates to a Fe--Ni alloy plate and a method for manufacturing the same.

Fe-Ni系軟質磁性合金は、JIS C2531やIEC規格に規定されるように、Ni量によって、パーマロイC合金(Ni:72~83質量%)、パーマロイB合金(Ni:45~50質量%)、パーマロイD合金(Ni:35~40質量%)等に大別される。高グレードなパーマロイC合金は高い透磁率、低い保持力を有することから、磁気シールド材や磁気センサ材等の磁気部材に使用されている。しかしながら、パーマロイC合金はNiを多く含有し高価であることから、磁気部材の材料として、より安価なパーマロイB合金へ置き換えられている。また、パーマロイB合金は高い飽和磁束密度を有するため、時計のステータや磁気レンズのポールピース等にも活用されている。 Fe-Ni based soft magnetic alloys are permalloy C alloy (Ni: 72 to 83 mass%) and permalloy B alloy (Ni: 45 to 50 mass%) depending on the Ni content as specified in JIS C2531 and IEC standards. , Permalloy D alloy (Ni: 35-40% by mass), etc. High-grade Permalloy C alloy has high magnetic permeability and low coercive force, so it is used for magnetic members such as magnetic shield materials and magnetic sensor materials. However, since Permalloy C alloy contains a large amount of Ni and is expensive, it has been replaced by the cheaper Permalloy B alloy as a material for magnetic members. Furthermore, since Permalloy B alloy has a high saturation magnetic flux density, it is used in things such as stators of watches and pole pieces of magnetic lenses.

近年、自動車センサや磁気シールド材といった軟磁性材料への需要は増加している一方、Niの価格は上昇傾向にあり、パーマロイB合金をよりNi量が少なく安価なAlloy42やパーマロイD合金へ置き換える動きが進められている。しかしながら、Ni量の低下に伴い、各磁気特性や耐食性の低下が問題視されており、パーマロイB合金の特徴である高い飽和磁束密度の維持が切望されている。特に、自動車センサや磁気シールド材には、3,000以上の初比透磁率、30,000以上の最大比透磁率、及び1.4T以上の飽和磁束密度を有する軟磁性材料が好適に使用される。 In recent years, demand for soft magnetic materials such as automotive sensors and magnetic shielding materials has increased, while the price of Ni has been on the rise, leading to a movement to replace Permalloy B alloy with Alloy 42 and Permalloy D alloy, which have lower Ni content and are cheaper. is in progress. However, as the amount of Ni decreases, a decrease in magnetic properties and corrosion resistance is considered a problem, and there is a strong desire to maintain the high saturation magnetic flux density that is a characteristic of Permalloy B alloy. In particular, soft magnetic materials having an initial relative magnetic permeability of 3,000 or more, a maximum relative magnetic permeability of 30,000 or more, and a saturation magnetic flux density of 1.4T or more are preferably used for automobile sensors and magnetic shielding materials. Ru.

パーマロイ合金の磁気特性を改善する手法として、特許文献1には連続鋳造スラブに対し均質化熱処理を施し、偏析を軽減することで磁気特性を改善する方法が提案されている。しかしながら、特許文献1には飽和磁束密度について言及されていない。 As a method of improving the magnetic properties of a permalloy alloy, Patent Document 1 proposes a method of subjecting a continuously cast slab to homogenization heat treatment to reduce segregation and thereby improving the magnetic properties. However, Patent Document 1 does not mention saturation magnetic flux density.

また、特許文献2には、Fe-Ni系合金の被圧延材に対する磁気焼鈍の温度・時間及びFe-Ni系合金のA系(Mn-S系)介在物量を制限し、結晶粒の粒成長を促進させ、磁気特性を改善する方法が提案されている。しかしながら、この方法は、得られる軟磁性部品材料の保磁力、初比透磁率、最大比透磁率の改善を目的としており、飽和磁束密度については検討されていない。 In addition, Patent Document 2 discloses that the temperature and time of magnetic annealing for a rolled Fe-Ni alloy material and the amount of A-based (Mn-S-based) inclusions in the Fe-Ni based alloy are limited, and grain growth of crystal grains is improved. Methods have been proposed to promote this and improve magnetic properties. However, this method aims to improve the coercive force, initial relative permeability, and maximum relative permeability of the obtained soft magnetic component material, and does not consider the saturation magnetic flux density.

特開2002-173745号公報Japanese Patent Application Publication No. 2002-173745 特開2015-196838号公報Japanese Patent Application Publication No. 2015-196838

上記事情に鑑み、本発明は、優れた初比透磁率と、良好な最大比透磁率及び飽和磁束密度を付与し得ると共に、歩留まりを抑えて製造可能なFe-Ni系合金及びその製造方法を提供することを目的とする。 In view of the above circumstances, the present invention provides an Fe-Ni alloy that can provide excellent initial relative magnetic permeability, good maximum relative magnetic permeability, and saturation magnetic flux density, and that can be manufactured with a reduced yield, and a method for manufacturing the same. The purpose is to provide.

発明者らは、上記課題を解決するべく鋭意検討を重ねた結果、Fe-Ni系合金が有する合金組成を厳密に制御することにより、初比透磁率、最大比透磁率及び飽和磁束密度の磁気特性を改善することができ、さらには歩留まりを抑えて製造可能なFe-Ni系合金が得られることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the inventors have determined that by strictly controlling the alloy composition of the Fe-Ni alloy, the initial relative permeability, maximum relative permeability, and saturation magnetic flux density can be improved. It has been discovered that an Fe--Ni alloy can be obtained that has improved properties and can be manufactured with reduced yield, leading to the present invention.

本発明の要旨は、以下の通りである。
[1]炭素(C):0.001~0.05質量%、
ケイ素(Si):0.05~0.50質量%、
マンガン(Mn):0.25~1.00質量%、
リン(P):0.001~0.030質量%、
硫黄(S):0.0001~0.0050質量%、
ニッケル(Ni):35.0~44.0質量%、
クロム(Cr):0.01~0.50質量%、
モリブデン(Mo):0.005~0.10質量%、
銅(Cu):0.01~2.00質量%、
アルミニウム(Al):0.0001~0.10質量%、
チタン(Ti):0.050質量%以下、
コバルト(Co):0.01~2.00質量%、
タングステン(W):0.01~0.50質量%、
窒素(N):0.001~0.05質量%、
スズ(Sn):0.0001~0.05質量%、
マグネシウム(Mg):0.050質量%以下、
ジルコニウム(Zr):0.0001~0.05質量%、
カルシウム(Ca):0.0020質量%以下、
酸素(O):0.0002~0.01質量%を含み、
残部が鉄(Fe)及び不可避的不純物からなることを特徴とするFe-Ni系合金板。
[2]下記式(A)の関係式を満たすようにCu、Co及びWを含有する、[1]に記載のFe-Ni系合金板。
1.5≦20[Cu%]+20[Co%]+80[W%]<50.0 …(A)
(式(A)中、%は質量%を表す。)
[3]下記式(B)の関係式を満たすようにCu、Co、W、Cr、Mo、P及びSを含有する、上記[1]又は[2]に記載のFe-Ni系合金板。
10≦50([Cu%]+[Co%])+100[W%]+200[Cr%]+800[Mo%]-100[P%]-1000[S%] …(B)
(式(B)中、%は質量%を表す。)
[4]Fe-Ni系合金の原料を含む溶湯を、AOD炉又はVOD炉のいずれかの二次精錬容器にて酸化精錬を行う工程と、
酸化精錬後の溶湯中にAl及び/又はFeSi合金を投入して、溶湯中のAlの含有量が0.0001~0.10質量%、Siの含有量が0.05~0.50質量%、Sの含有量が0.0001~0.0050質量%、Oの含有量が0.0002~0.01質量%の範囲になるように脱酸及び脱硫処理をする工程と、
脱酸及び脱硫処理後の溶湯を連続鋳造してスラブを形成する工程と、
得られたスラブを熱間圧延、次いで冷間圧延を行う工程と、
を含むことを特徴とする、上記[1]~[3]のいずれか1つに記載のFe-Ni系合金板の製造方法。
The gist of the invention is as follows.
[1] Carbon (C): 0.001 to 0.05% by mass,
Silicon (Si): 0.05 to 0.50% by mass,
Manganese (Mn): 0.25 to 1.00% by mass,
Phosphorus (P): 0.001 to 0.030% by mass,
Sulfur (S): 0.0001 to 0.0050% by mass,
Nickel (Ni): 35.0 to 44.0% by mass,
Chromium (Cr): 0.01 to 0.50% by mass,
Molybdenum (Mo): 0.005 to 0.10% by mass,
Copper (Cu): 0.01 to 2.00% by mass,
Aluminum (Al): 0.0001 to 0.10% by mass,
Titanium (Ti): 0.050% by mass or less,
Cobalt (Co): 0.01 to 2.00% by mass,
Tungsten (W): 0.01 to 0.50% by mass,
Nitrogen (N): 0.001 to 0.05% by mass,
Tin (Sn): 0.0001 to 0.05% by mass,
Magnesium (Mg): 0.050% by mass or less,
Zirconium (Zr): 0.0001 to 0.05% by mass,
Calcium (Ca): 0.0020% by mass or less,
Oxygen (O): Contains 0.0002 to 0.01% by mass,
An Fe--Ni alloy plate characterized in that the remainder consists of iron (Fe) and inevitable impurities.
[2] The Fe--Ni alloy plate according to [1], which contains Cu, Co, and W so as to satisfy the relational expression (A) below.
1.5≦20[Cu%]+20[Co%]+80[W%]<50.0…(A)
(In formula (A), % represents mass %.)
[3] The Fe--Ni alloy plate according to [1] or [2] above, which contains Cu, Co, W, Cr, Mo, P, and S so as to satisfy the relational expression (B) below.
10≦50([Cu%]+[Co%])+100[W%]+200[Cr%]+800[Mo%]-100[P%]-1000[S%]...(B)
(In formula (B), % represents mass %.)
[4] A step of oxidizing and refining the molten metal containing the Fe-Ni alloy raw material in a secondary refining vessel of either an AOD furnace or a VOD furnace;
Al and/or FeSi alloy is introduced into the molten metal after oxidation refining, and the Al content in the molten metal is 0.0001 to 0.10% by mass and the Si content is 0.05 to 0.50% by mass. , a step of deoxidizing and desulfurizing so that the content of S is in the range of 0.0001 to 0.0050% by mass and the content of O is in the range of 0.0002 to 0.01% by mass;
a step of continuously casting the molten metal after deoxidation and desulfurization treatment to form a slab;
a step of hot rolling and then cold rolling the obtained slab;
The method for producing a Fe--Ni alloy plate according to any one of [1] to [3] above, comprising:

本発明によれば、Fe-Ni系合金が有する合金組成を厳密に制御することにより、優れた初比透磁率と、良好な最大比透磁率及び飽和磁束密度を付与し得ると共に、歩留まりを抑えて製造可能なFe-Ni系合金板及びその製造方法を提供することができる。 According to the present invention, by strictly controlling the alloy composition of the Fe-Ni alloy, it is possible to provide excellent initial relative magnetic permeability, good maximum relative magnetic permeability, and saturation magnetic flux density, and to suppress yield. It is possible to provide a Fe--Ni alloy plate that can be manufactured using the above methods, and a method for manufacturing the same.

磁気特性試験において、式(A)の値と、飽和磁束密度及び最大比透磁率との関係を示すグラフである。It is a graph showing the relationship between the value of formula (A), saturation magnetic flux density, and maximum relative magnetic permeability in a magnetic property test. 図1おいて式(A)の値が低い領域を拡大した図である。FIG. 2 is an enlarged view of a region in FIG. 1 where the value of formula (A) is low.

以下に本発明に係るFe-Ni系合金板及びその製造方法について説明する。本発明に係るFe-Ni系合金板は、炭素(C):0.001~0.05質量%、ケイ素(Si):0.05~0.50質量%、マンガン(Mn):0.25~1.00質量%、
リン(P):0.001~0.030質量%、硫黄(S):0.0001~0.0050質量%、ニッケル(Ni):35.0~44.0質量%、クロム(Cr):0.01~0.50質量%、モリブデン(Mo):0.005~0.10質量%、銅(Cu):0.01~2.00質量%、アルミニウム(Al):0.0001~0.10質量%、チタン(Ti):0.050質量%以下、コバルト(Co):0.01~2.00質量%、タングステン(W):0.01~0.50質量%、窒素(N):0.001~0.05質量%、スズ(Sn):0.0001~0.05質量%、マグネシウム(Mg):0.050質量%以下、ジルコニウム(Zr):0.0001~0.05質量%、カルシウム(Ca):0.0020質量%以下、酸素(O):0.0002~0.01質量%を含み、残部が鉄(Fe)及び不可避的不純物からなる。このように、Fe-Ni系合金が有する合金組成を厳密に制御することにより、優れた初比透磁率と、良好な最大比透磁率及び飽和磁束密度を付与し得ると共に、歩留まりを抑えて製造可能なFe-Ni系合金板を提供することができる。本発明に係るFe-Ni系合金板はこのような優れた磁気特性を付与し得るため、自動車センサや磁気シールド材、時計のステータ等の軟磁性材料としての使用に好適である。
The Fe--Ni alloy plate and the method for manufacturing the same according to the present invention will be explained below. The Fe-Ni alloy plate according to the present invention has carbon (C): 0.001 to 0.05% by mass, silicon (Si): 0.05 to 0.50% by mass, and manganese (Mn): 0.25%. ~1.00% by mass,
Phosphorus (P): 0.001 to 0.030% by mass, Sulfur (S): 0.0001 to 0.0050% by mass, Nickel (Ni): 35.0 to 44.0% by mass, Chromium (Cr): 0.01 to 0.50% by mass, molybdenum (Mo): 0.005 to 0.10% by mass, copper (Cu): 0.01 to 2.00% by mass, aluminum (Al): 0.0001 to 0 .10% by mass, titanium (Ti): 0.050% by mass or less, cobalt (Co): 0.01 to 2.00% by mass, tungsten (W): 0.01 to 0.50% by mass, nitrogen (N ): 0.001 to 0.05% by mass, tin (Sn): 0.0001 to 0.05% by mass, magnesium (Mg): 0.050% by mass or less, zirconium (Zr): 0.0001 to 0.05% by mass. 05% by mass, calcium (Ca): 0.0020% by mass or less, oxygen (O): 0.0002 to 0.01% by mass, and the remainder consists of iron (Fe) and inevitable impurities. In this way, by strictly controlling the alloy composition of the Fe-Ni alloy, it is possible to provide excellent initial relative magnetic permeability, good maximum relative magnetic permeability, and saturation magnetic flux density, and at the same time, it is possible to manufacture it with reduced yield. It is possible to provide a possible Fe--Ni alloy plate. Since the Fe-Ni alloy plate according to the present invention can provide such excellent magnetic properties, it is suitable for use as a soft magnetic material for automobile sensors, magnetic shielding materials, stators of watches, and the like.

また、本発明に係るFe-Ni系合金板は、上記の組成成分を満たすことに加え、下記で表される式(A)を満たすように、Fe-Ni系合金板が、Cu、Co及びWを含有することが好ましい。 In addition to satisfying the above compositional components, the Fe-Ni alloy plate according to the present invention also contains Cu, Co and It is preferable to contain W.

1.5≦20[Cu%]+20[Co%]+80[W%]<50.0 …(A)
(式(A)中、%は質量%を表す。)
1.5≦20[Cu%]+20[Co%]+80[W%]<50.0…(A)
(In formula (A), % represents mass %.)

上記式(A)は、Niと原子半径が近いCu、Coと、Niとイオン半径が近いWについて、Fe-Ni系合金の最大比透磁率及び飽和磁束密度に対するCu、Co及びWの添加量の影響を関係式として表したものである。図1は、以下の試験方法(磁気特性試験)によって測定された最大比透磁率及び飽和磁束密度と、上記式(A)の値との関係を表すグラフであり、図2は式(A)の値が5.0以下の領域における飽和磁束密度と式(A)の値との関係を表すグラフである。図1は、式(A)の値が50.0以上では最大比透磁率が30,000より低くなることを示し、図2は、式(A)の値が1.5未満の場合、飽和磁束密度が1.4Tより低くなることを示している。そのため、式(A)の値が1.5以上50.0未満の範囲内になるようにCu、Co及びWがFe-Ni系合金板に含まれることにより、優れた最大比透磁率と飽和磁束密度を付与し得るFe-Ni系合金板を得ることができる。 The above formula (A) is based on the amounts of Cu, Co, and W added to the maximum relative magnetic permeability and saturation magnetic flux density of the Fe-Ni alloy for Cu, Co, which has an atomic radius close to that of Ni, and W, which has an ionic radius close to Ni. The influence of is expressed as a relational expression. Figure 1 is a graph showing the relationship between the maximum relative magnetic permeability and saturation magnetic flux density measured by the following test method (magnetic property test) and the value of formula (A) above, and Figure 2 is a graph showing the relationship between the value of formula (A) 2 is a graph showing the relationship between the saturation magnetic flux density and the value of formula (A) in a region where the value of is 5.0 or less. Figure 1 shows that when the value of formula (A) is 50.0 or more, the maximum relative permeability becomes lower than 30,000, and Figure 2 shows that when the value of formula (A) is less than 1.5, the maximum relative permeability becomes saturated. This shows that the magnetic flux density becomes lower than 1.4T. Therefore, by including Cu, Co, and W in the Fe-Ni alloy plate so that the value of formula (A) is within the range of 1.5 or more and less than 50.0, excellent maximum relative magnetic permeability and saturation It is possible to obtain a Fe--Ni alloy plate that can impart magnetic flux density.

<磁気特性試験>
10kg容量の試験用高周波誘電炉で約39.3質量%のNiを基本成分として含むFe-Ni系合金を溶解した。この溶解に際し、以下の表1に示すように、各合金においてCu、Co及びWの添加量を種々に変化させた。溶解した合金は、その後鋳型に鋳込み鋼塊とした後、熱間鍛造し、厚さ10mmの鍛造板とした。その後、焼鈍、研磨による表層のスケール除去を行い、0.8mmの厚さまで冷間圧延を行った。この冷延板をJIS C2531に基づき、φ45mm×33mmのリング試験片に加工し、真空(≦5.0×10-3Pa)雰囲気中、1125℃の均熱で2.5時間の条件で磁気焼鈍した。その後、JIS C3202又はJIS C3215で規定されるエナメル銅線を1次、2次側共に50巻きし、最大比透磁率(μmax)及び飽和磁束密度(B800)を測定した。最大比透磁率は16A/mを反転磁場とし測定し、飽和磁束密度は磁場1600A/mの条件下で測定した。その結果を表2に示す。尚、表1中の各成分の数値は「質量%」を表す。
<Magnetic property test>
A Fe--Ni alloy containing about 39.3% by mass of Ni as a basic component was melted in a test high-frequency dielectric furnace with a capacity of 10 kg. During this melting, the amounts of Cu, Co, and W added to each alloy were varied as shown in Table 1 below. The melted alloy was then cast into a mold to form a steel ingot, which was then hot forged to form a forged plate with a thickness of 10 mm. Thereafter, scale was removed from the surface layer by annealing and polishing, and cold rolling was performed to a thickness of 0.8 mm. This cold-rolled plate was processed into a ring test piece of φ45 mm x 33 mm based on JIS C2531, and magnetically heated at 1125°C for 2.5 hours in a vacuum (≦5.0 x 10 -3 Pa) atmosphere. Annealed. Thereafter, an enamelled copper wire specified by JIS C3202 or JIS C3215 was wound 50 times on both the primary and secondary sides, and the maximum relative magnetic permeability (μ max ) and saturation magnetic flux density (B 800 ) were measured. The maximum relative magnetic permeability was measured with a reversal magnetic field of 16 A/m, and the saturation magnetic flux density was measured under a magnetic field of 1600 A/m. The results are shown in Table 2. In addition, the numerical value of each component in Table 1 represents "mass %."

Figure 0007413600000002
Figure 0007413600000002

Figure 0007413600000003
Figure 0007413600000003

このように、Cu、Co及びWは、優れた飽和磁束密度を得るために重要な元素であり、Cu、Co及びWの添加量の関係式としての式(A)の値が1.5以上であることにより、1.4T以上の飽和磁束密度を得ることができる。一方、式(A)の値が50.0以上の場合、最大比透磁率が30,000未満となってしまう。そのため、式(A)の値は、1.5以上50.0未満の範囲内であることが好ましく、1.5以上40.0以下の範囲内であることがより好ましく、1.5以上25.0以下の範囲内であることがさらに好ましい。 As described above, Cu, Co, and W are important elements for obtaining excellent saturation magnetic flux density, and the value of formula (A) as a relational expression between the amounts of Cu, Co, and W added is 1.5 or more. By doing so, a saturation magnetic flux density of 1.4T or more can be obtained. On the other hand, if the value of formula (A) is 50.0 or more, the maximum relative magnetic permeability will be less than 30,000. Therefore, the value of formula (A) is preferably in the range of 1.5 or more and less than 50.0, more preferably in the range of 1.5 or more and 40.0 or less, and 1.5 or more and less than 25 More preferably, it is within the range of .0 or less.

また、本発明に係るFe-Ni系合金板は、上記の組成成分を満たすことに加え、下記で表される式(B)を満たすように、Fe-Ni系合金板が、Cu、Co、W、Cr、Mo、P及びSを含有することが好ましい。 In addition to satisfying the above compositional components, the Fe-Ni alloy plate according to the present invention also contains Cu, Co, It is preferable to contain W, Cr, Mo, P and S.

10≦50([Cu%]+[Co%])+100[W%]+200[Cr%]+800[Mo%]-100[P%]-1000[S%] …(B)
(式(B)中、%は質量%を表す。)
10≦50([Cu%]+[Co%])+100[W%]+200[Cr%]+800[Mo%]-100[P%]-1000[S%]...(B)
(In formula (B), % represents mass %.)

Fe-Ni系軟磁性材料は温度や湿度等の変化により製造工程中に錆が発生する場合があり、錆に起因する磁気特性の劣化が懸念される。Cu、Co、W、Cr、Mo、P及びSは、耐発錆性に影響を及ぼす元素であり、本発明では、式(B)を満たすように、Fe-Ni系合金板が、Cu、Co、W、Cr、Mo、P及びSを含有することにより、優れた磁気特性の付与に加えて、耐発錆性を併せ持つFe-Ni系合金板を得ることができる。このように、Fe-Ni系合金板が耐発錆性を示すことにより、錆の除去などの余工程や錆の発生を防止する取り扱いを省くことが可能となり、その結果、作業性の低下、工程数増加による生産性の低下を防止することができる。式(B)の値は、10以上であることが好ましく、15以上であることがより好ましく、20以上であることがさらに好ましい。 Fe--Ni based soft magnetic materials may rust during the manufacturing process due to changes in temperature, humidity, etc., and there is concern that magnetic properties may deteriorate due to rust. Cu, Co, W, Cr, Mo, P, and S are elements that affect rust resistance, and in the present invention, the Fe-Ni alloy plate contains Cu, By containing Co, W, Cr, Mo, P, and S, it is possible to obtain a Fe-Ni alloy plate that not only provides excellent magnetic properties but also has rust resistance. As described above, the Fe-Ni alloy plate exhibits rust resistance, which makes it possible to eliminate extra steps such as removing rust and handling to prevent rust, resulting in decreased workability and It is possible to prevent a decrease in productivity due to an increase in the number of processes. The value of formula (B) is preferably 10 or more, more preferably 15 or more, and even more preferably 20 or more.

C:0.001~0.05質量%
Fe-Ni系合金板中に含まれるCは、合金の強度を維持するために必要な元素である。Cの含有量が0.001質量%未満ではその効果を十分に得られない。一方、Cの含有量が0.05質量%を超えると合金中に含まれるCrやTiと反応し炭化物を形成し、結晶粒の成長や磁壁の移動を阻み磁気特性が悪化してしまう。そのため、Cの含有量は0.001~0.05質量%であり、好ましくは0.001~0.01質量%であり、より好ましくは0.001~0.008質量%である。
C: 0.001 to 0.05% by mass
C contained in the Fe--Ni alloy plate is an element necessary to maintain the strength of the alloy. If the C content is less than 0.001% by mass, the effect cannot be sufficiently obtained. On the other hand, if the C content exceeds 0.05% by mass, it reacts with Cr and Ti contained in the alloy to form carbides, inhibiting the growth of crystal grains and movement of domain walls, resulting in deterioration of magnetic properties. Therefore, the content of C is 0.001 to 0.05% by mass, preferably 0.001 to 0.01% by mass, and more preferably 0.001 to 0.008% by mass.

Si:0.05~0.50質量%
Fe-Ni系合金板中に含まれるSiは、Fe-Ni系合金板を製造する際に行われる脱酸処理に有効な元素である。Siの含有量が0.05質量%未満ではその効果を十分に得られない。一方、Siの含有量が0.50質量%を超えると、Fe-Ni合金の規則格子が最適な状態ではなくなり、磁気特性を悪化させてしまう。そのため、Siの含有量は0.05~0.50質量%であり、好ましいSiの含有量の下限値は0.10質量%であり、好ましいSiの含有量の上限値は0.25質量%である。すなわち、Siの含有量は、好ましくは0.05~0.25質量%であり、より好ましくは0.10~0.25質量%である。
Si: 0.05 to 0.50% by mass
Si contained in the Fe--Ni alloy sheet is an effective element in the deoxidation treatment performed when manufacturing the Fe--Ni alloy sheet. If the Si content is less than 0.05% by mass, the effect cannot be sufficiently obtained. On the other hand, if the Si content exceeds 0.50% by mass, the ordered lattice of the Fe--Ni alloy will no longer be in an optimal state, resulting in deterioration of the magnetic properties. Therefore, the Si content is 0.05 to 0.50% by mass, the lower limit of the preferred Si content is 0.10% by mass, and the upper limit of the preferred Si content is 0.25% by mass. It is. That is, the Si content is preferably 0.05 to 0.25% by mass, more preferably 0.10 to 0.25% by mass.

Mn:0.25~1.00質量%
Fe-Ni系合金板中に含まれるMnは、熱間加工性を低下させるSと結合してMnSを形成し、Sによる熱間加工性の低下を抑え、また、MnSの形成に伴い、打抜き性を改善させるのに有効な元素である。Mnの含有量が0.25質量%未満ではその効果を十分に得られない。一方、Mnの含有量が1.00質量%を超えると、MnSが過剰に形成されて、結晶粒の成長や磁壁の移動を阻み磁気特性が悪化してしまう。そのため、Mnの含有量は0.25~1.00質量%であり、好ましくは0.25~0.60質量%であり、より好ましくは0.25~0.57質量%である。
Mn: 0.25 to 1.00% by mass
Mn contained in the Fe-Ni alloy sheet combines with S, which reduces hot workability, to form MnS, suppresses the reduction in hot workability caused by S, and also improves the punching process due to the formation of MnS. It is an effective element for improving sex. If the Mn content is less than 0.25% by mass, the effect cannot be sufficiently obtained. On the other hand, when the Mn content exceeds 1.00% by mass, MnS is formed excessively, inhibiting the growth of crystal grains and movement of domain walls, resulting in deterioration of magnetic properties. Therefore, the Mn content is 0.25 to 1.00% by mass, preferably 0.25 to 0.60% by mass, and more preferably 0.25 to 0.57% by mass.

P:0.001~0.030質量%
Fe-Ni系合金板中に含まれるPは、結晶粒界に偏析することによってSの結晶粒界への偏析を抑制し、MnSの分散析出を促進させ、打抜き性を改善させるのに有効な元素である。Pの含有量が0.001質量%未満ではその効果を十分に得られない。一方、0.030質量%を超えると、Pが結晶粒界に過剰に偏析し、熱間加工性を悪化させるだけでなく、耐発錆性を低下させる。そのため、Pの含有量は0.001~0.030質量%であり、好ましくは0.001~0.020質量%であり、より好ましくは0.001~0.019質量%である。
P: 0.001 to 0.030% by mass
P contained in the Fe-Ni alloy plate is effective in suppressing the segregation of S in the grain boundaries by segregating in the grain boundaries, promoting the dispersed precipitation of MnS, and improving the punching property. It is an element. If the P content is less than 0.001% by mass, the effect cannot be sufficiently obtained. On the other hand, if it exceeds 0.030% by mass, P segregates excessively at grain boundaries, which not only deteriorates hot workability but also reduces rust resistance. Therefore, the content of P is 0.001 to 0.030% by mass, preferably 0.001 to 0.020% by mass, and more preferably 0.001 to 0.019% by mass.

S:0.0001~0.0050質量%
Fe-Ni系合金板中に含まれるSは、MnやMgと結合してMnSやMgSを形成し、打抜き性を改善させるのに有効な元素である。Sの含有量が0.0001質量%未満ではその効果を十分に得られない。一方、Sの含有量が0.0050質量%を超えると、Sが粒界に偏析して低融点化合物を形成し、熱間加工性が著しく低下してしまうだけでなく、耐発錆性を低下させてしまう。そのため、Sの含有量は0.0001~0.0050質量%であり、好ましいSの含有量の下限値は0.0003質量%、より好ましくは0.0005質量%であり、好ましいSの含有量の上限値は0.0040質量%であり、より好ましくは0.0030質量%である。すなわち、Sの含有量は、好ましくは0.0003~0.0040質量%であり、より好ましくは0.0005~0.0030質量%である。
S: 0.0001 to 0.0050% by mass
S contained in the Fe--Ni alloy plate is an effective element for combining with Mn and Mg to form MnS and MgS and improving punching properties. If the S content is less than 0.0001% by mass, the effect cannot be sufficiently obtained. On the other hand, if the S content exceeds 0.0050% by mass, S will segregate at grain boundaries and form a low melting point compound, which will not only significantly reduce hot workability but also reduce rust resistance. It will lower it. Therefore, the S content is 0.0001 to 0.0050% by mass, and the lower limit of the preferred S content is 0.0003% by mass, more preferably 0.0005% by mass. The upper limit of is 0.0040% by mass, more preferably 0.0030% by mass. That is, the content of S is preferably 0.0003 to 0.0040% by mass, more preferably 0.0005 to 0.0030% by mass.

Ni:35.0~44.0質量%
Fe-Ni系合金板中に含まれるNiは、磁気特性を確保するために重要な元素である。Niの含有量が35.0質量%未満ではその効果を十分に得られない。一方、Niの含有量が44.0質量%を超えると熱間圧延時に圧延板の表面に傷がついたり、耳割れが発生し、歩留まりが低下してしまう。そのため、Niの含有量は35.0~44.0質量%であり、好ましいNiの含有量の下限値は35.7質量%、より好ましくは40.5質量%であり、好ましいNiの含有量の上限値は42.6質量%であり、より好ましくは41.5質量%である。すなわち、Niの含有量は、好ましくは35.7~42.6質量%であり、より好ましくは40.5~41.5質量%である。
Ni: 35.0 to 44.0% by mass
Ni contained in the Fe--Ni alloy plate is an important element for ensuring magnetic properties. If the Ni content is less than 35.0% by mass, the effect cannot be sufficiently obtained. On the other hand, if the Ni content exceeds 44.0% by mass, the surface of the rolled plate will be scratched or edge cracks will occur during hot rolling, resulting in a decrease in yield. Therefore, the Ni content is 35.0 to 44.0% by mass, and the lower limit of the preferred Ni content is 35.7% by mass, more preferably 40.5% by mass. The upper limit of is 42.6% by mass, more preferably 41.5% by mass. That is, the Ni content is preferably 35.7 to 42.6% by mass, more preferably 40.5 to 41.5% by mass.

Cr:0.01~0.50質量%
Fe-Ni系合金板中に含まれるCrは、耐発錆性を確保するために有効な元素である。Crの含有量が0.01質量%未満ではその効果を十分に得られない。一方、Crの含有量が0.50質量%を超えると、Fe-Ni系合金中に存在するCと結合してCr系炭化物を形成し、磁壁の移動を阻み磁気特性を悪化させてしまう。そのため、Crの含有量は0.01~0.50質量%であり、好ましいCrの含有量の下限値は0.02質量%、より好ましくは0.03質量%であり、好ましいCrの含有量の上限値は0.10質量%であり、より好ましくは0.08質量%である。すなわち、Crの含有量は、好ましくは0.02~0.10質量%であり、より好ましくは0.03~0.08質量%である。
Cr: 0.01 to 0.50% by mass
Cr contained in the Fe--Ni alloy plate is an effective element for ensuring rust resistance. If the Cr content is less than 0.01% by mass, the effect cannot be sufficiently obtained. On the other hand, if the Cr content exceeds 0.50% by mass, it combines with C present in the Fe--Ni alloy to form Cr-based carbides, which impede movement of domain walls and deteriorate magnetic properties. Therefore, the Cr content is 0.01 to 0.50% by mass, and the lower limit of the preferred Cr content is 0.02% by mass, more preferably 0.03% by mass. The upper limit of is 0.10% by mass, more preferably 0.08% by mass. That is, the Cr content is preferably 0.02 to 0.10% by mass, more preferably 0.03 to 0.08% by mass.

Mo:0.005~0.10質量%
Fe-Ni系合金板中に含まれるMoは、耐発錆性を確保するために有効な元素であると同時に、結晶磁気異方性や磁歪に影響する規則格子の生成条件を制御するために重要な元素である。Moの含有量が0.005質量%未満ではその効果を十分に得られない。一方、Moの含有量が0.10質量%を超えると飽和磁束密度を低下させてしまう。そのため、Moの含有量は0.005~0.10質量%であり、好ましいMoの含有量の下限値は0.01質量%であり、好ましいMoの含有量の上限値は0.05質量%である。すなわち、Moの含有量は、好ましくは0.01~0.05質量%である。
Mo: 0.005 to 0.10% by mass
Mo contained in the Fe-Ni alloy plate is an effective element for ensuring rust resistance, and at the same time it is an effective element for controlling the formation conditions of the ordered lattice that affects crystal magnetic anisotropy and magnetostriction. It is an important element. If the Mo content is less than 0.005% by mass, the effect cannot be sufficiently obtained. On the other hand, if the Mo content exceeds 0.10% by mass, the saturation magnetic flux density will be reduced. Therefore, the content of Mo is 0.005 to 0.10% by mass, the lower limit of the preferred content of Mo is 0.01% by mass, and the upper limit of the preferred content of Mo is 0.05% by mass. It is. That is, the content of Mo is preferably 0.01 to 0.05% by mass.

Cu:0.01~2.00質量%
Fe-Ni系合金板中に含まれるCuは、飽和磁束密度を確保すると同時に、耐発錆性を確保するために重要な元素である。Cuの含有量が0.01質量%未満では耐発錆性を十分に得られない。一方、Cuの含有量が2.00質量%を超えると、スリット加工又は打抜き加工時にバリやダレが発生し、製品形状の悪化を招く。そのため、Cuの含有量は0.01~2.00質量%であり、好ましくは0.01~0.50質量%であり、より好ましくは0.01~0.40質量%である。
Cu: 0.01 to 2.00% by mass
Cu contained in the Fe--Ni alloy plate is an important element for ensuring saturation magnetic flux density and rust resistance. If the Cu content is less than 0.01% by mass, sufficient rust resistance cannot be obtained. On the other hand, when the Cu content exceeds 2.00% by mass, burrs and sag occur during slitting or punching, leading to deterioration of the product shape. Therefore, the Cu content is 0.01 to 2.00% by mass, preferably 0.01 to 0.50% by mass, and more preferably 0.01 to 0.40% by mass.

Al:0.0001~0.10質量%
Fe-Ni系合金板中に含まれるAlは、Fe-Ni系合金板を製造する際に行われる脱酸処理に有効な元素である。Alの含有量が0.0001質量%未満ではその効果を十分に得られず、また、Fe-Ni系合金中のOの濃度を高めてしまうため、酸化物系介在物の個数が増加し、磁気特性を低下させてしまう。一方、Alの含有量が0.10質量%を超えると、スラグ中のMgOを還元する力が強くなり過ぎてしまい、Fe-Ni系合金中のMgの濃度が高まり、低融点の金属間化合物であるNiMgが生成し、熱間加工性を低下させてしまう。また、それと同時に、スラグ中のCaOを還元する力も強くなり過ぎてしまい、鋼中のCaの濃度が高まり、磁気特性が低下する。そのため、Alの含有量は0.0001~0.10質量%であり、好ましくは0.0001~0.050質量%であり、より好ましくは0.0001~0.045質量%である。
Al: 0.0001 to 0.10% by mass
Al contained in the Fe--Ni alloy sheet is an effective element in the deoxidation treatment performed when manufacturing the Fe--Ni alloy sheet. If the Al content is less than 0.0001% by mass, the effect cannot be sufficiently obtained, and the concentration of O in the Fe-Ni alloy increases, resulting in an increase in the number of oxide inclusions. This will deteriorate the magnetic properties. On the other hand, when the Al content exceeds 0.10% by mass, the power to reduce MgO in the slag becomes too strong, the concentration of Mg in the Fe-Ni alloy increases, and low melting point intermetallic compounds Ni 2 Mg is generated, which deteriorates hot workability. At the same time, the power to reduce CaO in the slag becomes too strong, increasing the concentration of Ca in the steel and deteriorating its magnetic properties. Therefore, the Al content is 0.0001 to 0.10% by mass, preferably 0.0001 to 0.050% by mass, and more preferably 0.0001 to 0.045% by mass.

Ti:0.050質量%以下
Fe-Ni系合金板中に含まれるTiは、Fe-Ni系合金中に存在するCやNと結合してTi系炭化物や窒化物を形成する。Tiの含有量が多すぎると、結晶粒の成長や磁壁の移動を阻み磁気特性を悪化させてしまう。一方、Tiは窒化物の形成により、打抜き性の改善に有効なMnSの核となり、析出を促進させる。そのため磁気特性と打抜き性のバランスを考慮し、Tiの含有量は0.050質量%以下であり、好ましいTiの含有量の下限値は0.001質量%であり、好ましいTiの含有量の上限値は0.020質量%である。すなわち、Tiの含有量は、好ましくは0.001~0.020質量%である。
Ti: 0.050% by mass or less Ti contained in the Fe--Ni alloy plate combines with C and N present in the Fe--Ni alloy to form Ti-based carbides and nitrides. If the Ti content is too high, it will inhibit the growth of crystal grains and the movement of domain walls, resulting in deterioration of magnetic properties. On the other hand, by forming nitrides, Ti becomes a nucleus of MnS, which is effective in improving punching properties, and promotes precipitation. Therefore, considering the balance between magnetic properties and punchability, the Ti content is 0.050% by mass or less, the lower limit of the preferred Ti content is 0.001% by mass, and the upper limit of the preferred Ti content is 0.001% by mass. The value is 0.020% by mass. That is, the Ti content is preferably 0.001 to 0.020% by mass.

Co:0.01~2.00質量%
Fe-Ni系合金板中に含まれるCoは、飽和磁束密度を確保すると同時に、耐発錆性を確保するために重要な元素である。Coの含有量が0.01質量%未満では耐発錆性を十分に得られない。一方、Coの含有量が2.00質量%を超えると、スリット加工又は打抜き加工時にバリやダレが発生し、製品形の悪化を招く。そのため、Coの含有量は0.01~2.00質量%であり、好ましくは0.01~1.00質量%であり、より好ましくは0.01~0.50質量%である。
Co: 0.01 to 2.00% by mass
Co contained in the Fe--Ni alloy plate is an important element for ensuring saturation magnetic flux density and rust resistance. If the Co content is less than 0.01% by mass, sufficient rust resistance cannot be obtained. On the other hand, if the Co content exceeds 2.00% by mass, burrs and sagging occur during slitting or punching, leading to deterioration of the product shape. Therefore, the Co content is 0.01 to 2.00% by mass, preferably 0.01 to 1.00% by mass, and more preferably 0.01 to 0.50% by mass.

W:0.01~0.50質量%
Fe-Ni系合金板中に含まれるWは、飽和磁束密度を確保すると同時に、耐発錆性を確保するために重要な元素である。Wの含有量が0.01質量%未満では耐発錆性を十分に得られない。一方、Wの含有量が0.50質量%を超えると、スリット加工又は打抜き加工時に反りが発生し、製品形の悪化を招く。そのため、Wの含有量は0.01~0.50質量%であり、好ましくは0.01~0.10質量%であり、より好ましくは0.01~0.05質量%である。
W: 0.01 to 0.50% by mass
W contained in the Fe--Ni alloy plate is an important element for ensuring saturation magnetic flux density and rust resistance. If the W content is less than 0.01% by mass, sufficient rust resistance cannot be obtained. On the other hand, if the W content exceeds 0.50% by mass, warping occurs during slitting or punching, leading to deterioration of the product shape. Therefore, the content of W is 0.01 to 0.50% by mass, preferably 0.01 to 0.10% by mass, and more preferably 0.01 to 0.05% by mass.

N:0.001~0.05質量%
Fe-Ni系合金板中に含まれるNは、Fe-Ni系合金の強度を確保するために必要な元素である。Nの含有量が0.001質量%未満ではその効果を十分に得られない。一方、Nの含有量が0.05質量%を超えると、Fe-Ni系合金中にTiが存在する場合、Tiと結合することで窒化物が形成され、結晶粒の成長や磁壁の移動を阻み磁気特性を悪化させてしまう。そのため、Nの含有量は0.001~0.05質量%であり、好ましいNiの含有量の上限値は0.01質量%であり、より好ましくは0.006質量%である。すなわち、Niの含有量は、好ましくは0.001~0.01質量%であり、より好ましくは0.001~0.006質量%である。
N: 0.001 to 0.05% by mass
N contained in the Fe-Ni alloy plate is an element necessary to ensure the strength of the Fe-Ni alloy. If the N content is less than 0.001% by mass, the effect cannot be sufficiently obtained. On the other hand, if the N content exceeds 0.05% by mass, if Ti is present in the Fe-Ni alloy, it will combine with Ti to form nitrides, which will inhibit the growth of crystal grains and the movement of domain walls. This results in deterioration of the magnetic properties. Therefore, the N content is 0.001 to 0.05% by mass, and the preferable upper limit of the Ni content is 0.01% by mass, more preferably 0.006% by mass. That is, the Ni content is preferably 0.001 to 0.01% by mass, more preferably 0.001 to 0.006% by mass.

Sn:0.0001~0.05質量%
Fe-Ni系合金板中に含まれるSnは、めっき性を確保するために必要な元素である。Snの含有量が0.0001質量%未満ではその効果を十分に得られない。一方、Snの含有量が0.05質量%を超えると熱間加工性を低下させてしまう。そのため、Snの含有量は0.0001~0.05質量%であり、好ましいSnの含有量の上限値は0.01質量%であり、より好ましくは0.005質量%である。すなわち、Snの含有量は、好ましくは0.0001~0.01質量%であり、より好ましくは0.0001~0.005質量%である。
Sn: 0.0001 to 0.05% by mass
Sn contained in the Fe--Ni alloy plate is an element necessary to ensure plating properties. If the Sn content is less than 0.0001% by mass, the effect cannot be sufficiently obtained. On the other hand, if the Sn content exceeds 0.05% by mass, hot workability will be reduced. Therefore, the Sn content is 0.0001 to 0.05% by mass, and the preferred upper limit of the Sn content is 0.01% by mass, more preferably 0.005% by mass. That is, the content of Sn is preferably 0.0001 to 0.01% by mass, more preferably 0.0001 to 0.005% by mass.

Mg:0.05質量%以下
Fe-Ni系合金板中に含まれるMgは、Fe-Ni系合金中に存在するSと結合してMgSを形成する。Mgの含有量が多すぎると、MgSが過剰に形成され、結晶粒の成長や磁壁の移動を阻み磁気特性を悪化させてしまう。しかしながら、Mgは製造都合上不可逆的に混入する。そのため、磁気特性の観点から、Mgの含有量は0.05質量%以下であり、好ましくは0.01質量%以下であり、より好ましくは0.005質量%以下である。
Mg: 0.05% by mass or less Mg contained in the Fe--Ni alloy plate combines with S present in the Fe--Ni alloy to form MgS. If the Mg content is too high, MgS will be formed excessively, inhibiting the growth of crystal grains and movement of domain walls, and deteriorating magnetic properties. However, Mg is irreversibly mixed in due to manufacturing convenience. Therefore, from the viewpoint of magnetic properties, the Mg content is 0.05% by mass or less, preferably 0.01% by mass or less, and more preferably 0.005% by mass or less.

Zr:0.0001~0.05質量%
Fe-Ni系合金板中に含まれるZrは、Fe-Ni系合金の強度を確保するために必要な元素である。Zrの含有量が0.0001質量%未満ではその効果を十分に得られない。一方、Zrの含有量が0.05質量%を超えると磁気特性を低下させてしまう。そのため、Zrの含有量は0.0001~0.05質量%であり、好ましくは0.0001~0.01質量%であり、より好ましくは0.0001~0.008質量%である。
Zr: 0.0001 to 0.05% by mass
Zr contained in the Fe-Ni alloy plate is an element necessary to ensure the strength of the Fe-Ni alloy. If the Zr content is less than 0.0001% by mass, the effect cannot be sufficiently obtained. On the other hand, if the Zr content exceeds 0.05% by mass, the magnetic properties will be deteriorated. Therefore, the content of Zr is 0.0001 to 0.05% by mass, preferably 0.0001 to 0.01% by mass, and more preferably 0.0001 to 0.008% by mass.

Ca:0.0020質量%以下
Fe-Ni系合金板中に含まれるCaは、Fe-Ni系合金中に存在するAlと結合してCa-Al酸化物系介在物を形成する。Caの含有量が多すぎると、Ca-Al酸化物系介在物が過剰に形成され、結晶粒の成長や磁壁の移動を阻み磁気特性を悪化させてしまう。一方、CaはSiO活量を抑制し、また、Oの含有量を制御して介在物量を低減するために重要な元素である。そのため、磁気特性の観点から、Caの含有量は0.0020質量%以下であり、好ましいCaの含有量の下限値は0.0001質量%であり、好ましいCaの含有量の上限値は0.0010質量%である。すなわち、Caの含有量は、好ましくは0.0001~0.0010質量%である。
Ca: 0.0020% by mass or less Ca contained in the Fe--Ni alloy plate combines with Al present in the Fe--Ni alloy to form Ca--Al oxide inclusions. If the Ca content is too high, excessive Ca--Al oxide inclusions will be formed, inhibiting the growth of crystal grains and movement of domain walls, and deteriorating magnetic properties. On the other hand, Ca is an important element for suppressing the SiO 2 activity and controlling the O content to reduce the amount of inclusions. Therefore, from the viewpoint of magnetic properties, the Ca content is 0.0020% by mass or less, the preferred lower limit of the Ca content is 0.0001% by mass, and the preferred upper limit of the Ca content is 0.0001% by mass. 0010% by mass. That is, the Ca content is preferably 0.0001 to 0.0010% by mass.

O:0.0002~0.01質量%
Fe-Ni系合金板中(溶湯中)に含まれるOの含有量が0.0002質量%未満では、スラグ中のCaOが還元されて溶湯中のCaの濃度が高まり、Ca-Al酸化物系介在物が過剰に形成され、結晶粒の成長や磁壁の移動を阻み磁気特性を悪化させてしまう。一方、Oの含有量が0.01質量%を超えると、他の元素と酸化物系介在物が形成され、磁壁の移動を阻み磁気特性を悪化させてしまう。そのため、Oの含有量は0.0002~0.01質量%であり、好ましいOの含有量の下限値は0.0005質量%であり、好ましいOの含有量の上限値は0.008質量%である。すなわち、Oの含有量は、好ましくは0.0005~0.008質量%である。
O: 0.0002 to 0.01% by mass
If the content of O contained in the Fe-Ni alloy plate (in the molten metal) is less than 0.0002% by mass, CaO in the slag will be reduced and the concentration of Ca in the molten metal will increase, causing Ca-Al oxide-based Inclusions are excessively formed and impede growth of crystal grains and movement of domain walls, resulting in deterioration of magnetic properties. On the other hand, when the content of O exceeds 0.01% by mass, oxide-based inclusions are formed with other elements, which impede movement of domain walls and deteriorate magnetic properties. Therefore, the content of O is 0.0002 to 0.01% by mass, the lower limit of the preferred content of O is 0.0005% by mass, and the upper limit of the preferred content of O is 0.008% by mass. It is. That is, the content of O is preferably 0.0005 to 0.008% by mass.

本発明に係るFe-Ni系合金板において、上記成分以外の残部はFe及び不可避的不純物であり、主成分としてFeが含有されている。 In the Fe-Ni alloy plate according to the present invention, the remainder other than the above components is Fe and unavoidable impurities, and Fe is contained as the main component.

Fe-Ni系合金板の厚さは、特に限定されるものではないが、0.05mm以上6.00mm以下であることが好ましく、0.08mm以上4.00mm以下であることがより好ましい。 The thickness of the Fe--Ni alloy plate is not particularly limited, but is preferably 0.05 mm or more and 6.00 mm or less, more preferably 0.08 mm or more and 4.00 mm or less.

次に、本発明に係るFe-Ni系合金板の製造方法について説明する。本発明に係るFe-Ni系合金板の製造方法は、(a)Fe-Ni系合金の原料を含む溶湯を、AOD炉又はVOD炉のいずれかの二次精錬容器にて酸化精錬を行う工程(以下、「工程(a)」ともいう)と、(b)酸化精錬後の溶湯中にAl及び/又はFeSi合金を投入して、溶湯中のAlの含有量が0.0001~0.10質量%、Siの含有量が0.05~0.50質量%、Sの含有量が0.0001~0.0050質量%、Oの含有量が0.0002~0.01質量%の範囲になるように脱酸及び脱硫処理をする工程(以下、「工程(b)」ともいう)と、(c)脱酸及び脱硫処理後の溶湯を連続鋳造してスラブを形成する工程(以下、「工程(c)」ともいう)と、(d)得られたスラブを熱間圧延、次いで冷間圧延を行う工程(以下、「工程(d)」ともいう)と、を含んでいる。 Next, a method for manufacturing an Fe--Ni alloy plate according to the present invention will be explained. The method for producing a Fe-Ni alloy plate according to the present invention includes (a) a step of oxidizing and refining a molten metal containing a raw material of an Fe-Ni alloy in a secondary refining vessel of either an AOD furnace or a VOD furnace; (hereinafter also referred to as "step (a)"), and (b) adding Al and/or FeSi alloy to the molten metal after oxidation refining, so that the Al content in the molten metal is 0.0001 to 0.10. mass%, Si content in the range of 0.05 to 0.50 mass%, S content in the range of 0.0001 to 0.0050 mass%, and O content in the range of 0.0002 to 0.01 mass%. (hereinafter also referred to as "step (b)"), and (c) a step of continuously casting the molten metal after the deoxidation and desulfurization treatment to form a slab (hereinafter referred to as "step (b)"). (d) hot rolling and then cold rolling the obtained slab (hereinafter also referred to as "step (d)").

工程(a)
工程(a)では、Fe-Ni系合金の原料を含む溶湯を、AOD(Argon Oxygen Decarburization)炉又はVOD(Vacuum Oxygen Decarburization)炉のいずれかの二次精錬容器を用いて酸化精錬が行われる。溶湯は、Fe-Ni系合金の原料を電気炉で溶解させることで得られる。原料として、例えば、鉄屑、ニッケル、フェロニッケル等を用いることができ、Fe-Ni系合金スラブ片、Fe-Ni系の屑等を用いてもよい。得られた溶湯をAOD炉又はVOD炉のいずれかの二次精錬容器を用いて脱炭することにより、脱炭後の酸化性スラグ、すなわち、FeO含有スラグであるFeO-CaO-SiO系スラグを排滓することが可能である。このスラグにはクロム酸化物、タングステン酸化物、チタン酸化物、リン酸化物も含有されており、これらの酸化物も、系外に排出することができる。これにより、得られるFe-Ni系合金板において、Crの含有量を上記範囲内に制御することができ、さらには、Wの含有量、Tiの含有量も上記範囲内に制御しやすくなり、その上、有害な不純物元素であるPの含有量を0.030質量%以下に低減できる。このように、二次精錬容器としてAOD炉又はVOD炉のいずれかを用いて酸化精錬を行うことにより、上述の酸化性スラグを系外に排出することが可能となる。尚、VOD炉は一旦除滓場に取鍋を移し、除滓機で排滓を行うため、溶湯温度が下がりやすいことから、AOD炉の利用がより有効である。
Process (a)
In step (a), oxidation refining is performed on the molten metal containing the Fe-Ni alloy raw material using a secondary refining vessel such as an AOD (Argon Oxygen Decarburization) furnace or a VOD (Vacuum Oxygen Decarburization) furnace. The molten metal is obtained by melting Fe--Ni alloy raw materials in an electric furnace. As the raw material, for example, iron scraps, nickel, ferronickel, etc. can be used, and Fe--Ni alloy slab pieces, Fe--Ni-based scraps, etc. may also be used. By decarburizing the obtained molten metal using a secondary refining vessel such as an AOD furnace or a VOD furnace, oxidizing slag after decarburization, that is, FeO-CaO-SiO 2- based slag, which is FeO-containing slag. It is possible to remove the slag. This slag also contains chromium oxide, tungsten oxide, titanium oxide, and phosphorus oxide, and these oxides can also be discharged from the system. As a result, in the obtained Fe-Ni alloy plate, the Cr content can be controlled within the above range, and furthermore, the W content and Ti content can also be easily controlled within the above range, Moreover, the content of P, which is a harmful impurity element, can be reduced to 0.030% by mass or less. In this way, by performing oxidation refining using either the AOD furnace or the VOD furnace as the secondary refining vessel, it becomes possible to discharge the above-mentioned oxidizing slag to the outside of the system. In addition, in the case of a VOD furnace, the ladle is first moved to a slag removal site and the sludge is removed by a slag removal machine, so the temperature of the molten metal tends to drop, so it is more effective to use an AOD furnace.

また、工程(a)によって、得られるFe-Ni系合金板が、上記式(A)を満たすように、Cu、Co及びWの含有量を適切に制御することができる。すなわち、上記式(A)の値を1.5以上50.0未満の範囲内に制御しやすくなり、好ましくは1.5以上40.0以下の範囲内に、より好ましくは1.5以上25.0以下の範囲内に抑えることが可能となる。 In addition, the contents of Cu, Co, and W can be appropriately controlled by step (a) so that the obtained Fe--Ni alloy plate satisfies the above formula (A). That is, the value of the above formula (A) can be easily controlled within the range of 1.5 or more and less than 50.0, preferably within the range of 1.5 or more and 40.0 or less, more preferably 1.5 or more and less than 25 It is possible to suppress the value within a range of .0 or less.

工程(b)
工程(b)では、酸化精錬後の溶湯中にAl及び/又はFeSi合金を投入して脱酸及び脱硫処理が施される。酸化精錬により、上述の酸化性スラグを排滓したとしても溶湯上には1トン程度の酸化性スラグが依然として残っている。そのため、残存する酸化性スラグ中のFeO濃度、溶湯中の酸素濃度を考慮して、それに見合う量のAl及び/又はFeSi合金を溶湯中に投入し、溶湯を脱酸及び脱硫させる。特に、溶湯中に含まれるAlの含有量が0.0001~0.1質量%の範囲内、Siの含有量が0.05~0.5質量%の範囲内に調製されるようにAl及びFeSi合金を投入することにより、最も好ましい形態で脱酸及び脱硫が進行し、得られるFe-Ni系合金板において、Oの含有量を0.0002~0.01質量%の範囲内、Sの含有量を0.0001~0.0050質量%の範囲内にそれぞれ制御できる他、その他の熱力学的に不安定な元素も上述の範囲内に制御できる。以下に、その理論を説明する。
Process (b)
In step (b), Al and/or FeSi alloy is introduced into the molten metal after oxidation refining to perform deoxidation and desulfurization treatment. Even if the above-mentioned oxidizing slag is removed by oxidation refining, about 1 ton of oxidizing slag still remains on the molten metal. Therefore, in consideration of the FeO concentration in the remaining oxidizing slag and the oxygen concentration in the molten metal, an amount of Al and/or FeSi alloy corresponding to the concentration is poured into the molten metal to deoxidize and desulfurize the molten metal. In particular, Al and Si are adjusted so that the content of Al contained in the molten metal is within the range of 0.0001 to 0.1% by mass, and the content of Si is within the range of 0.05 to 0.5% by mass. By adding the FeSi alloy, deoxidation and desulfurization proceed in the most preferable manner, and in the resulting Fe-Ni alloy plate, the content of O is within the range of 0.0002 to 0.01% by mass, and the content of S is In addition to controlling the content within the range of 0.0001 to 0.0050% by mass, other thermodynamically unstable elements can also be controlled within the above range. The theory will be explained below.

上述の工程(a)及び工程(b)を含む精錬過程では、得られるスラグが非常に重要な役割を果たす。形成させるスラグは特に限定されるものではないが、CaO-SiO-Al-MgO-F系スラグが形成されることが好ましい。このようなスラグに含まれるCaOは、石灰石を焼成してCOを解離しCaOとして得た生石灰を溶湯中に投入することにより形成でき、SiOはFeSi合金投入後の酸化により形成できる。スラグ中でCaOは特に重要な役割を果たし、スラグ中のCaO濃度は、40~70質量%に制御することが好ましい。MgOは、AOD炉又はVOD炉のいずれかの二次精錬容器の耐火物に、ドロマイト系煉瓦、マグネシア煉瓦、MgO-C系煉瓦等のマグネシア含有煉瓦を用い、スラグ中にMgOを溶損させることにより形成できる。また、このような煉瓦は高価であるために、煉瓦はできる限り寿命を延ばしてコストを抑えることが好ましく、MgO含有の廃煉瓦を使用してもよい。Fは溶湯中に蛍石を投入することで制御できる。Fは重要な成分であり、スラグの流動性を確保して、スラグ/溶湯間における下記の反応が進行し、Oの含有量を0.0002~0.01質量%の範囲内、Sの含有量を0.0001~0.0050質量%の範囲内、Caの含有量を0.0020質量%以下にそれぞれ制御できる。そのため、スラグ中のF濃度は1~10質量%に制御することが好ましい。尚、下記の各反応において、下線は溶湯に含まれる成分、括弧内はスラグに含まれる成分である。 In the refining process including the above steps (a) and (b), the obtained slag plays a very important role. Although the slag to be formed is not particularly limited, it is preferable to form a CaO--SiO 2 -Al 2 O 3 -MgO--F based slag. CaO contained in such slag can be formed by calcining limestone to dissociate CO 2 and pouring quicklime obtained as CaO into the molten metal, and SiO 2 can be formed by oxidation after feeding the FeSi alloy. CaO plays a particularly important role in the slag, and the CaO concentration in the slag is preferably controlled to 40 to 70% by mass. For MgO, use magnesia-containing bricks such as dolomite bricks, magnesia bricks, and MgO-C bricks as refractories in the secondary refining container of either the AOD furnace or the VOD furnace, and dissolve MgO in the slag. It can be formed by Further, since such bricks are expensive, it is preferable to extend the life of the bricks to reduce costs as much as possible, and waste bricks containing MgO may be used. F can be controlled by adding fluorite into the molten metal. F is an important component, ensuring the fluidity of the slag, allowing the following reaction between slag and molten metal to proceed, and keeping the O content within the range of 0.0002 to 0.01% by mass and the S content. The amount of Ca can be controlled within the range of 0.0001 to 0.0050% by mass, and the content of Ca can be controlled within the range of 0.0020% by mass or less. Therefore, it is preferable to control the F concentration in the slag to 1 to 10% by mass. In each reaction below, the underlined components are components contained in the molten metal, and the components in parentheses are components contained in the slag.

Si+2 → (SiO) (1)
2(CaO)+Si → (SiO)+2Ca (2)
Ca → (CaS) (3)
Si +2 O → (SiO 2 ) (1)
2 (CaO) + Si → (SiO 2 ) + 2 Ca (2)
Ca + S → (CaS) (3)

上記式(1)で表される反応を有効に右辺に向けて進行させて、Oの含有量を0.0002~0.01質量%の範囲内に制御するには、スラグ中のSiO活量を10-2~10-3に低く制御する必要がある。そのためには、上述した通りCaOが有効であり、生石灰を溶湯中に投入することでSiO活量を制御できる。さらに、上記式(2)で表される反応が右辺に向けて進行し、次いで、生成したCaが溶湯中のSと反応して上記式(3)で表される脱硫反応が起こると、Sの含有量を0.0001~0.005質量%の範囲内に制御できると共に、一旦溶湯中に移行したCaがSと反応することでCaが消費され、Caの含有量を0.0020質量%以下に制御することが可能である。 In order to effectively advance the reaction expressed by the above formula (1) toward the right side and control the O content within the range of 0.0002 to 0.01% by mass, it is necessary to increase the SiO 2 activity in the slag. It is necessary to control the amount as low as 10 −2 to 10 −3 . For this purpose, CaO is effective as described above, and the SiO 2 activity can be controlled by adding quicklime to the molten metal. Furthermore, the reaction expressed by the above formula (2) progresses toward the right side, and then the generated Ca reacts with S in the molten metal to cause the desulfurization reaction expressed by the above formula (3). The content of Ca can be controlled within the range of 0.0001 to 0.005% by mass, and Ca is consumed by reacting with S once transferred into the molten metal, reducing the Ca content to 0.0020% by mass. It is possible to control as follows.

また、下記式(4)で表されるように、脱酸にはAlを用いることも可能である。一般的に工業用FeSi合金中には1質量%程度のAlが不純物として含まれる。そのため、FeSi合金を溶湯中に投入することによりAlの含有量を0.0001~0.10質量%の範囲内に制御することが可能である。また、スラグ中のAlは溶湯中のSiとも反応し得るため、注意を要する。つまり、下記式(5)で表される反応が活発化すると本Alの含有量が0.10質量%を超えてしまう。下記式(5)で表される反応を制御するには、スラグ中のAl活量を10-2~10-3に低く制御すると、Al含有量を0.0001~0.10質量%の範囲内に制御しやすくなる。そのためには、上述したように、スラグ中のCaO濃度を制御して上記式(2)で表される反応を右辺に向けて進行させ、下記式(5)で表される反応を平衡状態にさせ、反応を安定化させることが好ましい。 Moreover, as represented by the following formula (4), it is also possible to use Al for deoxidation. Generally, industrial FeSi alloys contain about 1% by mass of Al as an impurity. Therefore, by introducing the FeSi alloy into the molten metal, it is possible to control the Al content within the range of 0.0001 to 0.10% by mass. Furthermore, since Al 2 O 3 in the slag can also react with Si in the molten metal, care must be taken. In other words, when the reaction represented by the following formula (5) becomes active, the content of the present Al exceeds 0.10% by mass. In order to control the reaction represented by the following formula (5), by controlling the Al 2 O 3 activity in the slag to a low value of 10 -2 to 10 -3 , the Al content can be reduced to 0.0001 to 0.10 mass. It becomes easier to control within the range of %. In order to do this, as mentioned above, the CaO concentration in the slag is controlled to allow the reaction expressed by the above equation (2) to proceed toward the right side, and the reaction expressed by the following equation (5) is brought to an equilibrium state. It is preferable to stabilize the reaction by

Al+3О → (Al) (4)
2(Al)+3Si → 3(SiO)+4Al (5)
2 Al +3 О → (Al 2 O 3 ) (4)
2(Al 2 O 3 )+3 Si → 3(SiO 2 )+4 Al (5)

Mgの含有量を0.050質量%以下に制御するためには、下記式(6)で表される反応を極力抑制する必要がある。この場合、スラグ中のMgOをできる限り低く抑えることが有効であるが、煉瓦の溶損、廃煉瓦の投入が必要なことに鑑み、スラグ中のMgO濃度は5~20質量%の範囲内に制御することが好ましい。また、Mgの濃度を抑制するには溶湯中のSi濃度を上記範囲内に制御し、且つスラグ中のCaO濃度を上記の範囲に制御することが好ましい。これにより、Mgの含有量を0.050質量%以下に制御することが可能となる。 In order to control the Mg content to 0.050% by mass or less, it is necessary to suppress the reaction represented by the following formula (6) as much as possible. In this case, it is effective to keep the MgO in the slag as low as possible, but in view of the melting of the bricks and the need to input waste bricks, the MgO concentration in the slag should be within the range of 5 to 20% by mass. Preferably controlled. Furthermore, in order to suppress the Mg concentration, it is preferable to control the Si concentration in the molten metal within the above range, and to control the CaO concentration in the slag within the above range. This makes it possible to control the Mg content to 0.050% by mass or less.

2(MgO)+Si → (SiO)+2Mg (6) 2 (MgO) + Si → (SiO 2 ) + 2 Mg (6)

Wは脱炭時にWOの酸化物が形成されて、その一部が揮発するのと同時に、下記式(7)の反応で表されるようにスラグ中にも移行する。取鍋精錬にてWの添加量を調製することでWの含有量を0.01~0.50質量%の範囲内に制御することができるが、スラグ中のCaO濃度、MgO濃度及びF濃度を上記範囲内にそれぞれ制御して、下記式(7)で表される反応を平衡状態にさせ、反応を安定化させることが好ましい。 During decarburization, WO 3 oxide is formed, and at the same time as a part of it volatilizes, it also migrates into the slag as represented by the reaction of formula (7) below. By adjusting the amount of W added in ladle refining, the W content can be controlled within the range of 0.01 to 0.50% by mass, but the CaO concentration, MgO concentration, and F concentration in the slag It is preferable to control each within the above range to bring the reaction represented by the following formula (7) into an equilibrium state and stabilize the reaction.

+3 → (WO) (7) W +3 O → (WO 3 ) (7)

Zrの含有量を0.0001~0.05質量%の範囲内に制御するために、Wと同様に取鍋精錬にてZrの添加量を調製することもできるが、下記式(8)で表されるようにZrは酸化しやすい元素である。そのため、スラグ中のCaO濃度、MgO濃度及びF濃度を上記範囲内にそれぞれ制御し、且つ、Oの含有量を0.0002~0.01質量%の範囲内に制御することにより、下記式(7)で表される反応の平衡関係を維持し、反応を安定化させることが好ましい。 In order to control the Zr content within the range of 0.0001 to 0.05% by mass, the amount of Zr added can be adjusted by ladle refining in the same way as W, but the amount of Zr added can be adjusted using the following formula (8). As shown, Zr is an element that is easily oxidized. Therefore, by controlling the CaO concentration, MgO concentration, and F concentration in the slag within the above ranges, and controlling the O content within the range of 0.0002 to 0.01% by mass, the following formula ( It is preferable to maintain the equilibrium relationship of the reaction represented by 7) and stabilize the reaction.

Zr+2 → (ZrO) (8) Zr +2 O → (ZrO 2 ) (8)

Tiの含有量を0.050質量%以下に制御するために、下記式(9)で表される反応を右辺に向けて有効に進行させる。ここでも、スラグ中のCaO濃度、MgO濃度及びF濃度を上記範囲内にそれぞれ制御し、スラグ中のTiO活量を低下させ、かつ、且つ、Oの含有量を0.0002~0.01質量%の範囲内に制御することにより、下記式(9)で表される反応を右辺に向けて有効に進行させることができ、最終的にTiの含有量を0.050質量%以下に制御することが可能となる。 In order to control the Ti content to 0.050% by mass or less, the reaction expressed by the following formula (9) is allowed to proceed effectively toward the right side. Here, too, the CaO concentration, MgO concentration, and F concentration in the slag are controlled within the above ranges to reduce the TiO 2 activity in the slag, and to reduce the O content to 0.0002 to 0.01. By controlling the Ti content within the range of mass %, the reaction expressed by the following formula (9) can be effectively progressed toward the right side, and the Ti content is finally controlled to 0.050 mass % or less. It becomes possible to do so.

Ti+2 → (TiO) (9) Ti +2 O → (TiO 2 ) (9)

Nの含有量を0.001~0.05質量%の範囲内に制御するために、下記式(10)で表される反応を右辺に向けて有効に進行させる。窒素は電気炉にて原料を溶解する際に大気から容易に混入してしまうが、AOD炉又はVOD炉を用いることで、脱炭時に下記式(10)の反応が右辺に向けて進行し、Nの含有量を上述の範囲内に制御することができる。つまり、酸素吹精の際に、下記式(11)及び式(12)で表される反応によりCOガスが生成される。こようにして生成したCOガスの気泡は溶湯中の溶存窒素を取り込み、COガス中に窒素ガスの形で移行させることができ、最終的に、CO気泡が炉外に排出されることによって窒素ガスを除去することができる。ただし、COガスを系外に除去したとしても、窒素の熱力学的平衡値は0.001質量%を下回らないため、Nの含有量を0.001~0.05質量%の範囲内に制御することが可能となる。 In order to control the N content within the range of 0.001 to 0.05% by mass, the reaction expressed by the following formula (10) is allowed to proceed effectively toward the right side. Nitrogen is easily mixed in from the atmosphere when melting raw materials in an electric furnace, but by using an AOD furnace or a VOD furnace, the reaction of the following formula (10) progresses toward the right side during decarburization. The N content can be controlled within the above range. That is, during oxygen blowing, CO gas is generated by the reactions expressed by the following formulas (11) and (12). The CO gas bubbles generated in this way can take in dissolved nitrogen in the molten metal and transfer it into the CO gas in the form of nitrogen gas.Finally, the CO bubbles are discharged outside the furnace and nitrogen is released. Gas can be removed. However, even if CO gas is removed from the system, the thermodynamic equilibrium value of nitrogen does not fall below 0.001% by mass, so the N content is controlled within the range of 0.001 to 0.05% by mass. It becomes possible to do so.

→ N[ガス] (10)
O2[ガス]+2Fe → 2FeO[酸素ガス気泡表面] (11)
FeO[酸素ガス気泡表面]+ → CO[ガス]+Fe[液体] (12)
2 N → N 2 [Gas] (10)
O2 [gas] + 2 Fe → 2FeO [oxygen gas bubble surface] (11)
FeO [oxygen gas bubble surface] + C → CO [gas] + Fe [liquid] (12)

工程(c)
工程(c)では、脱酸及び脱硫処理後の溶湯を連続鋳造してスラブを形成する。連続鋳造の条件は、特に限定されるものではないが、連続鋳造は縦型連続鋳造機で行うことができる。
Process (c)
In step (c), the deoxidized and desulfurized molten metal is continuously cast to form a slab. Although the conditions for continuous casting are not particularly limited, continuous casting can be performed using a vertical continuous casting machine.

工程(d)
工程(d)では、得られたスラブを熱間圧延、次いで冷間圧延する。スラブの熱間圧延工程を経て、熱帯を製造し、次いで、得られた熱帯に冷間圧延を施し、被冷間圧延板を作製する。熱間圧延及び冷間圧延の条件は、特に限定されるものではないが、熱間圧延はステッケル圧延機で、冷間圧延はゼンジミア型冷間圧延機で行うことができる。また、冷間圧延工程の前に、必要に応じて焼鈍、酸洗を行い、表面のスケールを除去してもよい。このようにして、本発明に係るFe-Ni系合金板を製造することができる。
Process (d)
In step (d), the obtained slab is hot rolled and then cold rolled. A slab is manufactured through a hot rolling process of the slab, and then the resulting slab is subjected to cold rolling to produce a cold-rolled plate. The conditions for hot rolling and cold rolling are not particularly limited, but hot rolling can be performed using a Steckel rolling mill, and cold rolling can be performed using a Sendzimir type cold rolling mill. Moreover, before the cold rolling process, annealing and pickling may be performed as necessary to remove scale on the surface. In this way, the Fe--Ni alloy plate according to the present invention can be manufactured.

冷間圧延して得られた被冷間圧延板に磁気焼鈍を行うことにより、Fe-Ni系合金に磁気特性が付与される。磁気焼鈍の条件は、特に限定されるものではなく、従来公知の方法により、適宜行うことができる。このような工程を経て、好ましくは初比透磁率(μi)が3,000以上、より好ましくは3,500以上、好ましくは最大比透磁率(μmax)が30,000以上、より好ましくは35,000以上、好ましくは飽和磁束密度(B800)が1.4T以上、より好ましくは1.45T以上の磁気特性を示すFe-Ni系合金板を実現できる。 Magnetic properties are imparted to the Fe--Ni alloy by magnetically annealing the cold-rolled sheet obtained by cold rolling. The conditions for magnetic annealing are not particularly limited, and can be performed as appropriate by conventionally known methods. Through such a process, the initial relative magnetic permeability (μ i ) is preferably 3,000 or more, more preferably 3,500 or more, and preferably the maximum relative magnetic permeability (μ max ) is 30,000 or more, more preferably It is possible to realize a Fe--Ni alloy plate exhibiting magnetic properties of 35,000 or more, preferably a saturation magnetic flux density (B 800 ) of 1.4T or more, more preferably 1.45T or more.

次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの実施例に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to these examples unless it exceeds the spirit thereof.

<実施例1~40、比較例1~10>
鉄屑、ニッケル、フェロニッケル等を含む原料60tを電気炉で溶解した。その後、AOD炉又はVOD炉で、脱炭、脱クロム、脱燐等の処理のために、酸化精錬を行った。ここで、AOD炉又はVOD炉の二次精錬容器の耐火物にドロマイト煉瓦、マグクロ煉瓦、マグネシア煉瓦、MgO-C系煉瓦をチャージ毎に、操業上の運転サイクルにしたがってライニングした。次いで、形成された酸化性スラグ、すなわち、FeO含有スラグであるFeO-CaO-SiO系スラグを排滓した。このスラグにはCr酸化物、W酸化物、Ti酸化物、燐酸化物も含有されており極力系外に排出した。その後、溶湯をAl及び/又はFeSi合金を用いて得られる溶湯中に含まれるAl、Si、S及びOの含有量を調製しながら脱酸及び脱硫した。この際に、CaO-SiO-Al-MgO-F系スラグを造滓した。すなわち、生石灰を溶湯中に投入してCaOを形成し、SiOはFeSi合金投入後の酸化により形成した。MgO源は、煉瓦溶損防止の目的も担うMgO含有の廃煉瓦を使用した。F源は蛍石を溶湯中に投入することで調製し、スラグの流動性を確保した。その後、溶鋼を取鍋に受けて、取鍋精錬にて温度を整えると同時に、合金組成を下記の表3、4に示される化学組成に調製すべく各種成分等を緻密に計算して添加した。尚、表5中のスラグ組成は、AOD又はVOD精錬終了時のスラグ組成を示す。
<Examples 1 to 40, Comparative Examples 1 to 10>
60 tons of raw materials including scrap iron, nickel, ferronickel, etc. were melted in an electric furnace. After that, oxidation refining was performed in an AOD furnace or a VOD furnace for treatments such as decarburization, dechromization, and dephosphorization. Here, the refractory of the secondary refining vessel of the AOD furnace or VOD furnace was lined with dolomite bricks, maguro bricks, magnesia bricks, and MgO-C bricks for each charge according to the operational cycle. Next, the formed oxidizing slag, that is, the FeO--CaO--SiO 2 -based slag, which is FeO-containing slag, was removed. This slag also contained Cr oxide, W oxide, Ti oxide, and phosphorus oxide, and was discharged from the system as much as possible. Thereafter, the molten metal was deoxidized and desulfurized while adjusting the contents of Al, Si, S, and O contained in the molten metal obtained using Al and/or FeSi alloy. At this time, CaO--SiO 2 -Al 2 O 3 -MgO--F based slag was produced. That is, CaO was formed by charging quicklime into the molten metal, and SiO 2 was formed by oxidation after charging the FeSi alloy. As the MgO source, waste bricks containing MgO, which also serve the purpose of preventing brick erosion and damage, were used. The F source was prepared by adding fluorite into the molten metal to ensure fluidity of the slag. After that, the molten steel was placed in a ladle, and the temperature was adjusted by ladle refining, and at the same time, various ingredients were carefully calculated and added in order to adjust the alloy composition to the chemical composition shown in Tables 3 and 4 below. . The slag composition in Table 5 indicates the slag composition at the end of AOD or VOD refining.

Figure 0007413600000004
Figure 0007413600000004

Figure 0007413600000005
Figure 0007413600000005

Figure 0007413600000006
Figure 0007413600000006

次いで、脱酸及び脱硫処理した溶湯を連続鋳造してスラブを形成し、さらに、得られたスラブについて熱間圧延、焼鈍・酸洗を行った。その後、冷間圧延を行い厚さ0.8mmのFe-Ni系合金板を製造した。 Next, the deoxidized and desulfurized molten metal was continuously cast to form a slab, and the obtained slab was further hot rolled, annealed, and pickled. Thereafter, cold rolling was performed to produce a Fe--Ni alloy plate with a thickness of 0.8 mm.

<磁気特性>
得られたFe-Ni系合金板をJIS C2531に基づき、φ45mm×33mmのリング試験片に加工し、真空(5.0×10-3Pa以下)雰囲気中、1125℃の均熱で2.5時間の条件で磁気焼鈍したのち、JIS C3202又はJIS C3215で規定されるエナメル銅線を1次、2次側共に50巻きし、初比透磁率(μi)、最大比透磁率(μmax)及び飽和磁束密度(B800)をそれぞれ測定した。初比透磁率及び最大比透磁率は16A/mを反転磁場とし測定を行い、初比透磁率は0.8A/mの値とした。また、飽和磁束密度は磁場1600A/mの条件下で測定を行った。測定結果をもとに磁気特性の総合評価を行い、以下に示す初比透磁率、最大比透磁率及び飽和磁束密度の基準のうち、3項目全てを満足する場合、磁気特性が優れている(○)と評価した。また、以下に示す初比透磁率、最大比透磁率及び飽和磁束密度の基準のうち、2項目のみ満足する場合、磁気特性が良好である(△)と評価し、1項目のみ満足する又は全て満足しない場合、磁気特性が劣っている(×)として評価した。その結果を表5に示す。
・初比透磁率:3,000以上
・最大比透磁率:30,000以上
・飽和磁束密度:1.4(T)以上
<Magnetic properties>
The obtained Fe-Ni alloy plate was processed into a ring test piece of φ45 mm x 33 mm based on JIS C2531, and soaked at 1125°C in a vacuum (5.0 x 10 -3 Pa or less) atmosphere to a temperature of 2.5 mm. After magnetic annealing under certain conditions, enamelled copper wire specified by JIS C3202 or JIS C3215 was wound 50 times on both the primary and secondary sides to obtain initial relative permeability (μ i ) and maximum relative permeability (μ max ). and saturation magnetic flux density (B 800 ) were measured. The initial relative magnetic permeability and the maximum relative magnetic permeability were measured using a reversal magnetic field of 16 A/m, and the initial relative magnetic permeability was set to a value of 0.8 A/m. Moreover, the saturation magnetic flux density was measured under the condition of a magnetic field of 1600 A/m. Comprehensive evaluation of magnetic properties is performed based on the measurement results, and if all three of the following criteria of initial relative magnetic permeability, maximum relative magnetic permeability, and saturation magnetic flux density are satisfied, the magnetic properties are excellent ( It was evaluated as ○). In addition, if only two of the following criteria for initial relative magnetic permeability, maximum relative magnetic permeability, and saturation magnetic flux density are satisfied, the magnetic properties are evaluated as good (△), and if only one item is satisfied or all of the items are satisfied. If not satisfied, the magnetic properties were evaluated as poor (×). The results are shown in Table 5.
・Initial relative magnetic permeability: 3,000 or more ・Maximum relative magnetic permeability: 30,000 or more ・Saturation magnetic flux density: 1.4 (T) or more

<耐発錆性>
耐発錆性を評価するため、上記で得た冷延板を40×50mmの試験片に切断後、その表面を400番の耐水研磨紙で湿式研磨を行い、発錆加速試験を行った。発錆加速試験は温度70℃、相対湿度100%の条件で行い、蒸留水200mlを入れた1000mlビーカー内で水に濡れないよう試験片を72時間水平に保持した。その後、発錆度合いをJIS G0595に基づきレーティングナンバー(RN)を用いて、以下の3段階で評価した。その結果を表5に示す。
・〇:RNが2.5より大きい
・△:RNが2.0以上2.5以下
・×:RNが2.0未満
<Rust resistance>
In order to evaluate rust resistance, the cold-rolled plate obtained above was cut into test pieces of 40 x 50 mm, and the surface thereof was wet-polished with No. 400 water-resistant abrasive paper to perform a rust acceleration test. The accelerated rusting test was conducted at a temperature of 70° C. and a relative humidity of 100%, and the test piece was held horizontally for 72 hours in a 1000 ml beaker containing 200 ml of distilled water so as not to get wet. Thereafter, the degree of rusting was evaluated in the following three stages using rating numbers (RN) based on JIS G0595. The results are shown in Table 5.
・○: RN is greater than 2.5 ・△: RN is 2.0 or more and 2.5 or less ・×: RN is less than 2.0

<総合評価>
上記試験の総合評価として、以下の4段階で評価した。その結果を表5に示す。
・◎:磁気特性及び耐発錆性の両方の評価が「○」
・〇:磁気特性の評価「〇」且つ耐発錆性の評価「△」
・△:磁気特性の評価「△」、又は磁気特性の評価「〇」且つ耐発錆性の評価「×」
・×:磁気特性の評価「×」、又は製品として歩留まりに劣る
<Comprehensive evaluation>
As a comprehensive evaluation of the above test, evaluation was made in the following four stages. The results are shown in Table 5.
・◎: Evaluation of both magnetic properties and rust resistance is "○"
・〇: Evaluation of magnetic properties “〇” and evaluation of rust resistance “△”
・△: Magnetic property evaluation “△” or magnetic property evaluation “〇” and rust resistance evaluation “×”
・×:Evaluation of magnetic properties is “×” or product yield is poor.

Figure 0007413600000007
Figure 0007413600000007

表3~6に示されるように、本発明に規定される化学組成の範囲を満たすFe-Ni系合金板を用いた実施例1~30では、磁気特性及び耐発錆性のいずれの評価も「○」であり、総合評価も「◎」であった。 As shown in Tables 3 to 6, in Examples 1 to 30 using Fe-Ni alloy plates satisfying the chemical composition range specified in the present invention, both magnetic properties and rust resistance were evaluated. The rating was "○", and the overall evaluation was also "◎".

実施例31~34では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たし、また、磁気特性の評価も「○」であったものの、耐発錆性の評価が「△」となってしまい、総合評価は「〇」であった。 In Examples 31 to 34, the obtained Fe-Ni alloy plates satisfied the chemical composition range specified in the present invention, and the magnetic properties were evaluated as "○", but the rust resistance was poor. The evaluation was "△", and the overall evaluation was "○".

実施例35では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たしているものの、式(A)の値が50.4であり、また、最大比透磁率が30,000未満であったため、磁気特性の評価は「△」であった。一方、耐発錆性の評価は「〇」であったため、総合評価は「△」であった。 In Example 35, although the obtained Fe-Ni alloy plate satisfies the chemical composition range specified in the present invention, the value of formula (A) is 50.4, and the maximum relative permeability is was less than 30,000, so the evaluation of the magnetic properties was "Δ". On the other hand, since the rust resistance evaluation was "○", the overall evaluation was "△".

実施例36では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たしているものの、式(A)の値が1.4であり、また、飽和磁束密度が1.4T未満であったため、磁気特性の評価は「△」であった。一方、耐発錆性の評価は「〇」であったため、総合評価は「△」であった。 In Example 36, although the obtained Fe-Ni alloy plate satisfies the chemical composition range specified in the present invention, the value of formula (A) is 1.4, and the saturation magnetic flux density is Since it was less than 1.4T, the evaluation of the magnetic properties was "△". On the other hand, since the rust resistance evaluation was "○", the overall evaluation was "△".

実施例37では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たしているものの、式(A)の値が1.3であり、また、飽和磁束密度が1.4T未満であったため、磁気特性の評価は「△」であった。一方、耐発錆性の評価は「〇」であったため、総合評価は「△」であった。 In Example 37, although the obtained Fe-Ni alloy plate satisfies the chemical composition range specified in the present invention, the value of formula (A) is 1.3, and the saturation magnetic flux density is Since it was less than 1.4T, the evaluation of the magnetic properties was "△". On the other hand, since the rust resistance evaluation was "○", the overall evaluation was "△".

実施例38では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たしているものの、式(A)の値が50.1であり、また、最大比透磁率が30,000未満であったため、磁気特性の評価は「△」であった。一方、耐発錆性の評価は「〇」であったため、総合評価は「△」であった。 In Example 38, although the obtained Fe-Ni alloy plate satisfies the chemical composition range specified in the present invention, the value of formula (A) is 50.1, and the maximum relative permeability is was less than 30,000, so the evaluation of the magnetic properties was "Δ". On the other hand, since the rust resistance evaluation was "○", the overall evaluation was "△".

実施例39では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たしているものの、式(B)の値が9であり、RNが2.0未満であったため、耐発錆性の評価は「×」であった。一方、磁気特性の評価も「○」であったため、総合評価は「△」であった。 In Example 39, although the obtained Fe-Ni alloy plate satisfied the chemical composition range specified in the present invention, the value of formula (B) was 9 and the RN was less than 2.0. Therefore, the evaluation of rust resistance was "x". On the other hand, since the evaluation of magnetic properties was also "○", the overall evaluation was "△".

実施例40では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たしているものの、式(A)の値が1.4であり、また、飽和磁束密度が1.4T未満であった。さらに、式(B)の値が0であり、RNが2.0未満であった。そのため、磁気特性の評価が「△」、耐発錆性の評価が「×」であったため、総合評価は「△」であった。 In Example 40, although the obtained Fe-Ni alloy plate satisfies the chemical composition range specified in the present invention, the value of formula (A) is 1.4, and the saturation magnetic flux density is It was less than 1.4T. Furthermore, the value of formula (B) was 0, and RN was less than 2.0. Therefore, the evaluation of magnetic properties was "△" and the evaluation of rust resistance was "x", so the overall evaluation was "△".

比較例1~3では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たしておらず、また、初比透磁率が3,000未満、最大比透磁率が30,000未満であったため、磁気特性の評価は「×」であった。さらに、製品としての歩留まりも悪く、このチャージのうち、1コイルは耳割れが酷かったために屑化処理となってしまった。そのため、総合評価は「×」であった。 In Comparative Examples 1 to 3, the obtained Fe-Ni alloy plates did not satisfy the chemical composition range specified in the present invention, and the initial relative magnetic permeability was less than 3,000 and the maximum relative magnetic permeability was less than 3,000. Since it was less than 30,000, the evaluation of the magnetic properties was "x". Furthermore, the yield rate as a product was poor, and one coil of this charge had severe cracking at the edges and had to be scrapped. Therefore, the overall evaluation was "x".

比較例4~5では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たしておらず、また、初比透磁率が3,000未満、飽和磁束密度が1.4T未満であったため、磁気特性の評価は「×」であった。さらに、式(B)の値も低く、RNが2.0未満であったため、耐発錆性の評価も「×」であり、総合評価は「×」であった。 In Comparative Examples 4 and 5, the obtained Fe-Ni alloy plates did not satisfy the chemical composition range specified in the present invention, and also had an initial relative permeability of less than 3,000 and a saturation magnetic flux density of 1. Since it was less than .4T, the evaluation of the magnetic properties was "x". Furthermore, since the value of formula (B) was low and RN was less than 2.0, the rust resistance evaluation was also "x", and the overall evaluation was "x".

比較例6では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たしておらず、また、飽和磁束密度が1.4T未満であったため、磁気特性の評価は「△」であった。さらに、式(B)の値7であり、RNが2.0未満であったため、耐発錆性の評価は「×」であった。一方、製品としての歩留まりが悪く、このチャージのうち、1コイルは耳割れが酷かったために屑化処理となってしまった。そのため、総合評価は「×」であった。 In Comparative Example 6, the obtained Fe-Ni alloy plate did not satisfy the chemical composition range specified in the present invention, and the saturation magnetic flux density was less than 1.4T, so the evaluation of magnetic properties was It was “△”. Furthermore, since the value of formula (B) was 7 and the RN was less than 2.0, the rust resistance was evaluated as "x". On the other hand, the yield rate as a product was poor, and one coil of this charge had severe cracking at the edges, so it was disposed of as scrap. Therefore, the overall evaluation was "x".

比較例7~9では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たしておらず、また、初比透磁率が3,000未満、飽和磁束密度が1.4T未満であったため、磁気特性の評価は「×」であった。さらに、式(B)の値も低く、RNが2.0未満であったため、耐発錆性の評価も「×」であり、総合評価は「×」であった。 In Comparative Examples 7 to 9, the obtained Fe-Ni alloy plates did not satisfy the chemical composition range specified in the present invention, and also had an initial relative permeability of less than 3,000 and a saturation magnetic flux density of 1. Since it was less than .4T, the evaluation of the magnetic properties was "x". Furthermore, since the value of formula (B) was low and RN was less than 2.0, the rust resistance evaluation was also "x", and the overall evaluation was "x".

比較例10では、得られたFe-Ni系合金板は本発明に規定される化学組成の範囲を満たしておらず、また、初比透磁率が3,000未満、最大比透磁率が30,000未満であったため、磁気特性の評価は「×」であった。さらに、製品としての歩留まりも悪く、このチャージのうち、2コイルは耳割れが酷かったために屑化処理となってしまった。そのため、総合評価は「×」であった。 In Comparative Example 10, the obtained Fe-Ni alloy plate did not satisfy the chemical composition range defined in the present invention, and had an initial relative permeability of less than 3,000, a maximum relative permeability of 30, Since it was less than 000, the evaluation of the magnetic properties was "x". Furthermore, the yield rate as a product was poor, and two of the coils of this charge had severe cracking at the edges, so they were disposed of as scrap. Therefore, the overall evaluation was "x".

本発明に係るFe-Ni系合金板は、優れた初比透磁率と、良好な最大比透磁率及び飽和磁束密度を付与し得ると共に、歩留まりを抑えて製造可能であるため、例えば、自動車センサや磁気シールド材、時計のステータ等の軟磁性材料として好適に適用できる。
The Fe-Ni alloy plate according to the present invention can provide excellent initial relative magnetic permeability, good maximum relative magnetic permeability and saturation magnetic flux density, and can be manufactured with a low yield, so it can be used, for example, for automobile sensors. It can be suitably applied as a soft magnetic material for magnetic shielding materials, watch stators, etc.

Claims (5)

炭素(C):0.001~0.05質量%、
ケイ素(Si):0.05~0.50質量%、
マンガン(Mn):0.25~1.00質量%、
リン(P):0.001~0.030質量%、
硫黄(S):0.0001~0.0050質量%、
ニッケル(Ni):35.0~44.0質量%、
クロム(Cr):0.01~0.50質量%、
モリブデン(Mo):0.005~0.10質量%、
銅(Cu):0.01~2.00質量%、
アルミニウム(Al):0.0001~0.10質量%、
チタン(Ti):0.050質量%以下、
コバルト(Co):0.01~2.00質量%、
タングステン(W):0.01~0.50質量%、
窒素(N):0.001~0.05質量%、
スズ(Sn):0.0001~0.05質量%、
マグネシウム(Mg):0.050質量%以下、
ジルコニウム(Zr):0.0001~0.05質量%、
カルシウム(Ca):0.0020質量%以下、
酸素(O):0.0002~0.01質量%を含み、
残部が鉄(Fe)及び不可避的不純物からなることを特徴とするFe-Ni系合金板。
Carbon (C): 0.001 to 0.05% by mass,
Silicon (Si): 0.05 to 0.50% by mass,
Manganese (Mn): 0.25 to 1.00% by mass,
Phosphorus (P): 0.001 to 0.030% by mass,
Sulfur (S): 0.0001 to 0.0050% by mass,
Nickel (Ni): 35.0 to 44.0% by mass,
Chromium (Cr): 0.01 to 0.50% by mass,
Molybdenum (Mo): 0.005 to 0.10% by mass,
Copper (Cu): 0.01 to 2.00% by mass,
Aluminum (Al): 0.0001 to 0.10% by mass,
Titanium (Ti): 0.050% by mass or less,
Cobalt (Co): 0.01 to 2.00% by mass,
Tungsten (W): 0.01 to 0.50% by mass,
Nitrogen (N): 0.001 to 0.05% by mass,
Tin (Sn): 0.0001 to 0.05% by mass,
Magnesium (Mg): 0.050% by mass or less,
Zirconium (Zr): 0.0001 to 0.05% by mass,
Calcium (Ca): 0.0020% by mass or less,
Oxygen (O): Contains 0.0002 to 0.01% by mass,
An Fe--Ni alloy plate characterized in that the remainder consists of iron (Fe) and inevitable impurities.
下記式(A)の関係式を満たすようにCu、Co及びWを含有する、請求項1に記載のFe-Ni系合金板。
1.5≦20[Cu%]+20[Co%]+80[W%]<50.0 …(A)
(式(A)中、%は質量%を表す。)
The Fe--Ni alloy plate according to claim 1, which contains Cu, Co, and W so as to satisfy the following relational expression (A).
1.5≦20[Cu%]+20[Co%]+80[W%]<50.0…(A)
(In formula (A), % represents mass %.)
下記式(B)の関係式を満たすようにCu、Co、W、Cr、Mo、P及びSを含有する、請求項1又は2に記載のFe-Ni系合金板。
10≦50([Cu%]+[Co%])+100[W%]+200[Cr%]+800[Mo%]-100[P%]-1000[S%] …(B)
(式(B)中、%は質量%を表す。)
The Fe-Ni alloy plate according to claim 1 or 2, which contains Cu, Co, W, Cr, Mo, P, and S so as to satisfy the following relational expression (B).
10≦50([Cu%]+[Co%])+100[W%]+200[Cr%]+800[Mo%]-100[P%]-1000[S%]...(B)
(In formula (B), % represents mass %.)
Fe-Ni系合金の原料を含む溶湯を、AOD炉又はVOD炉のいずれかの二次精錬容器にて酸化精錬を行う工程と、
酸化精錬後の溶湯中にAl及び/又はFeSi合金を投入して、溶湯中のAlの含有量が0.0001~0.10質量%、Siの含有量が0.05~0.50質量%、Sの含有量が0.0001~0.0050質量%、Oの含有量が0.0002~0.01質量%の範囲になるように脱酸及び脱硫処理をする工程と、
脱酸及び脱硫処理後の溶湯を連続鋳造してスラブを形成する工程と、
得られたスラブを熱間圧延、次いで冷間圧延する工程と、
を含むことを特徴とする、請求項1又は2に記載のFe-Ni系合金板の製造方法。
A step of oxidizing and refining the molten metal containing the Fe-Ni alloy raw material in a secondary refining vessel of either an AOD furnace or a VOD furnace;
Al and/or FeSi alloy is introduced into the molten metal after oxidation refining, and the Al content in the molten metal is 0.0001 to 0.10% by mass and the Si content is 0.05 to 0.50% by mass. , a step of deoxidizing and desulfurizing so that the content of S is in the range of 0.0001 to 0.0050% by mass and the content of O is in the range of 0.0002 to 0.01% by mass;
a step of continuously casting the molten metal after deoxidation and desulfurization treatment to form a slab;
Hot rolling and then cold rolling the obtained slab;
The method for producing a Fe--Ni alloy plate according to claim 1 or 2, comprising:
Fe-Ni系合金の原料を含む溶湯を、AOD炉又はVOD炉のいずれかの二次精錬容器にて酸化精錬を行う工程と、
酸化精錬後の溶湯中にAl及び/又はFeSi合金を投入して、溶湯中のAlの含有量が0.0001~0.10質量%、Siの含有量が0.05~0.50質量%、Sの含有量が0.0001~0.0050質量%、Oの含有量が0.0002~0.01質量%の範囲になるように脱酸及び脱硫処理をする工程と、
脱酸及び脱硫処理後の溶湯を連続鋳造してスラブを形成する工程と、
得られたスラブを熱間圧延、次いで冷間圧延する工程と、
を含むことを特徴とする、請求項3に記載のFe-Ni系合金板の製造方法。
A step of oxidizing and refining the molten metal containing the Fe-Ni alloy raw material in a secondary refining vessel of either an AOD furnace or a VOD furnace;
Al and/or FeSi alloy is introduced into the molten metal after oxidation refining, and the Al content in the molten metal is 0.0001 to 0.10% by mass and the Si content is 0.05 to 0.50% by mass. , a step of deoxidizing and desulfurizing so that the content of S is in the range of 0.0001 to 0.0050% by mass and the content of O is in the range of 0.0002 to 0.01% by mass;
a step of continuously casting the molten metal after deoxidation and desulfurization treatment to form a slab;
Hot rolling and then cold rolling the obtained slab;
The method for manufacturing an Fe--Ni alloy plate according to claim 3, comprising:
JP2023150989A 2023-09-19 2023-09-19 Fe-Ni alloy plate and its manufacturing method Active JP7413600B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023150989A JP7413600B1 (en) 2023-09-19 2023-09-19 Fe-Ni alloy plate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023150989A JP7413600B1 (en) 2023-09-19 2023-09-19 Fe-Ni alloy plate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP7413600B1 true JP7413600B1 (en) 2024-01-15

Family

ID=89534245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023150989A Active JP7413600B1 (en) 2023-09-19 2023-09-19 Fe-Ni alloy plate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7413600B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517205A (en) 2000-07-13 2004-06-10 インフイ・ユジヌ・プレシジオン Fe-Ni, Fe-Ni-Co or Fe-Ni-Co-Cu alloy strip with improved cuttability
JP2010534277A (en) 2007-03-30 2010-11-04 アルセロールミタル−ステンレス・アンド・ニツケル・アロイ Austenitic iron / nickel / chromium / copper alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517205A (en) 2000-07-13 2004-06-10 インフイ・ユジヌ・プレシジオン Fe-Ni, Fe-Ni-Co or Fe-Ni-Co-Cu alloy strip with improved cuttability
JP2010534277A (en) 2007-03-30 2010-11-04 アルセロールミタル−ステンレス・アンド・ニツケル・アロイ Austenitic iron / nickel / chromium / copper alloy

Similar Documents

Publication Publication Date Title
KR20230056709A (en) Production method of non-oriented silicon steel and non-oriented silicon steel
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JP6116286B2 (en) Ferritic stainless steel with less heat generation
CN114540711B (en) High-grade non-oriented electrical steel and preparation method thereof
JP3436857B2 (en) Thin steel sheet excellent in press formability with few defects and method for producing the same
JP7271261B2 (en) High-purity ferritic stainless steel and high-purity ferritic stainless steel slab
JP7413600B1 (en) Fe-Ni alloy plate and its manufacturing method
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JP4510787B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP4593313B2 (en) Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof
JPH07122090B2 (en) Method of melting directional silicon steel material
JP5797461B2 (en) Stainless steel and manufacturing method thereof
JP6989000B2 (en) Manufacturing method of slab slab, which is a material for non-oriented electrical steel sheets
JP2004204252A (en) Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR
WO2022138194A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
JP7047818B2 (en) Refining method of molten steel
WO2021145279A1 (en) Ferritic stainless steel
CN113136524B (en) Non-oriented electrical steel plate with excellent magnetic property and manufacturing method thereof
JP5215327B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP2004169150A (en) Ti-CONTAINING HIGH WORKABILITY FERRITIC CHROMIUM STEEL SHEET HAVING EXCELLENT RIDGING RESISTANCE, AND PRODUCTION METHOD THEREFOR
JPH10212555A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JP3247154B2 (en) Melting method of non-oriented electrical steel sheet with excellent magnetic properties
WO2024085002A1 (en) Fe-Cr-Ni-BASED ALLOY HAVING EXCELLENT SURFACE PROPERTIES, AND METHOD FOR MANUFACTURING SAME
JP2000001716A (en) Method for melting chromium-containing steel
JP2024103154A (en) stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230928

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231227

R150 Certificate of patent or registration of utility model

Ref document number: 7413600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150