JP5797461B2 - Stainless steel and manufacturing method thereof - Google Patents

Stainless steel and manufacturing method thereof Download PDF

Info

Publication number
JP5797461B2
JP5797461B2 JP2011123949A JP2011123949A JP5797461B2 JP 5797461 B2 JP5797461 B2 JP 5797461B2 JP 2011123949 A JP2011123949 A JP 2011123949A JP 2011123949 A JP2011123949 A JP 2011123949A JP 5797461 B2 JP5797461 B2 JP 5797461B2
Authority
JP
Japan
Prior art keywords
stainless steel
less
mass
hot
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011123949A
Other languages
Japanese (ja)
Other versions
JP2012251194A (en
Inventor
正則 御幸
正則 御幸
王 昆
昆 王
轟 秀和
秀和 轟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2011123949A priority Critical patent/JP5797461B2/en
Publication of JP2012251194A publication Critical patent/JP2012251194A/en
Application granted granted Critical
Publication of JP5797461B2 publication Critical patent/JP5797461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、Crの含有量を高めることで、Mo、Nb、Tiなどの成分を含まなくても耐食性、熱間加工性および強度を高めたステンレス鋼およびその製造方法に関する。   The present invention relates to a stainless steel and a method for producing the same, which have improved corrosion resistance, hot workability, and strength even when components such as Mo, Nb, and Ti are not included by increasing the Cr content.

一般に、ステンレス鋼の耐食性を高めるためには、Moを添加したり、Ti、NbなどのCと親和力の強い元素を添加したりすることが行われる。その代表的な鋼種として、SUS316L、N321、N347、N317が知られている。あるいは、特許文献1に開示されているように、Niの含有量を高めることでオーステナイトを安定化して対応している。その代表的な鋼種としてSUS836Lといったスーパーステンレス鋼が知られている。しかしながら、MoやNiは原料が高価であるとともに、価格の変動が大きい。Tiを添加すると、連続鋳造での浸漬ノズルが詰まるといった問題を起こすことがある。また、Nbは熱間加工性を低下させるため、熱間圧延工程で割れが発生するといった問題がある。   In general, in order to increase the corrosion resistance of stainless steel, Mo is added or an element having a strong affinity for C, such as Ti or Nb, is added. SUS316L, N321, N347, and N317 are known as typical steel types. Alternatively, as disclosed in Patent Document 1, austenite is stabilized by increasing the Ni content. Super stainless steel such as SUS836L is known as a typical steel type. However, Mo and Ni are expensive raw materials and have large price fluctuations. When Ti is added, there may be a problem that the immersion nozzle is clogged in continuous casting. Moreover, since Nb reduces hot workability, there exists a problem that a crack generate | occur | produces in a hot rolling process.

特開2004−149830JP2004-149830

上記のような問題に対して、比較的価格の変動が小さく、なおかつ安価であるCrの含有量を高めることで、耐食性を向上させることが可能である。しかしながら、Crの含有量を高くすると、δフェライト量が高くなり、熱間圧延中に、オーステナイトの粒界に存在するフェライトに沿って耳割れが発生することがある。さらに、熱間圧延工程の最終段階では、フェライト相がさらに脆化を引き起こし易いσ相に変化し、さらに熱間加工性が悪く熱延帯の破断といったトラブルを起こすこともある。このように、高Cr含有鋼は難加工性材料であり製造において薄板に加工することが容易ではない。   With respect to the above problems, it is possible to improve the corrosion resistance by increasing the content of Cr, which has a relatively small price fluctuation and is inexpensive. However, if the Cr content is increased, the amount of δ ferrite increases, and during hot rolling, ear cracks may occur along the ferrite present at the austenite grain boundaries. Furthermore, at the final stage of the hot rolling process, the ferrite phase changes to a σ phase that is more likely to cause embrittlement, and the hot workability is poor, and troubles such as fracture of the hot strip may occur. Thus, high Cr content steel is a difficult-to-work material and is not easy to process into a thin plate during manufacture.

したがって、本発明は、優れた耐食性を維持しながら熱間圧延時に割れや破断を起こさないように熱間加工性を保つとともに強度を高め、しかも安価な原料費で製造できるステンレス鋼とその製造方法を提供することを目的としている。   Accordingly, the present invention provides a stainless steel that can be manufactured at a low raw material cost while maintaining hot workability and maintaining strength so as not to cause cracking or breaking during hot rolling while maintaining excellent corrosion resistance, and a method for manufacturing the same. The purpose is to provide.

上記課題を解決するため、本発明者らは、高Cr含有ステンレス鋼について、耐食性、熱間加工性(σ析出挙動)ならびに強度について調査および研究を重ねた。まず、高周波溶解炉によって、種々の化学成分を持つ鋼塊を溶製し、これに熱間鍛造、冷間圧延および容体化処理を施して冷延板を作製し、特に熱間加工性の観点から製造性を評価した。また、超高温引張試験による熱間加工性の評価及び熱間鍛造・冷間圧延工程までの歩留まり率から製造性を評価した。   In order to solve the above-mentioned problems, the present inventors have investigated and studied the corrosion resistance, the hot workability (σ precipitation behavior) and the strength of the high Cr content stainless steel. First, a steel ingot with various chemical components is melted by a high-frequency melting furnace, and hot forging, cold rolling and solidification treatment are performed on this to produce a cold-rolled sheet, particularly from the viewpoint of hot workability From this, manufacturability was evaluated. In addition, the productivity was evaluated from the evaluation of hot workability by the ultra-high temperature tensile test and the yield rate until the hot forging / cold rolling process.

特に、22質量%以上のCrを添加したステンレス鋼について、Ni当量とCr当量のバランスを検討し、δフェライトが19体積%以下になるようにC、Si、Mn、Nで成分を調整した。一般にδフェライト量が高くなるにつれ熱間加工時に割れが発生し易く、δフェライトが15体積%以上になると熱間加工割れは顕著になり製造が困難となる。また、Crの含有量が26%以上になるとスラブや熱延板等の冷却過程でσ相などの金属間化合物が析出しやすくなって脆化し、割れが起こり易くなるため製造が困難となる。そこで、Ni当量が15%から22%、Cr当量が23%から32%の範囲において、δフェライトを19体積%以下にするように、C、Si、Mn、Nの成分で調整したインゴットまたはスラブを製作し、熱間加工性(σ析出挙動)、耐食性、強度について調査した。なお、鋼のδフェライト量は、フェライトメーターで測定することにより求めた。この測定結果によれば、上記のようなδフェライト量の範囲では、下記式が成り立つことが判った。なお、式中の化学記号は、当該化学成分の含有量(質量%)を示す。   In particular, for stainless steel to which Cr of 22 mass% or more was added, the balance between Ni equivalent and Cr equivalent was examined, and the components were adjusted with C, Si, Mn, and N so that δ ferrite was 19 volume% or less. In general, as the amount of δ ferrite increases, cracks are likely to occur during hot working. When δ ferrite exceeds 15% by volume, hot working cracks become prominent and manufacturing becomes difficult. On the other hand, when the Cr content is 26% or more, intermetallic compounds such as the σ phase are likely to precipitate during the cooling process of slabs and hot-rolled sheets and the like, resulting in embrittlement and easy cracking, making manufacturing difficult. Therefore, ingots or slabs adjusted with components of C, Si, Mn, and N so that δ ferrite is 19% by volume or less in the range of Ni equivalents from 15% to 22% and Cr equivalents from 23% to 32%. The hot workability (σ precipitation behavior), corrosion resistance, and strength were investigated. The amount of δ ferrite in the steel was determined by measuring with a ferrite meter. According to this measurement result, it was found that the following equation was established within the range of the amount of δ ferrite as described above. In addition, the chemical symbol in a formula shows content (mass%) of the said chemical component.

δフェライト(体積%)=2.8(1.5Si+Cr)−2.5(30C+30N+0.5Mn+Ni)−14.1   δ ferrite (volume%) = 2.8 (1.5Si + Cr) −2.5 (30C + 30N + 0.5Mn + Ni) −14.1

さらに、鋳込んだ鋼塊の冷却速度を変化させるとともに熱間圧延時の冷却履歴を変化させることにより製造性について検討したところ、冷却速度が遅いとδフェライトが15体積%以上の化学成分では、σ相の析出が見られることも判った。   Furthermore, the productivity was examined by changing the cooling rate of the cast ingot and changing the cooling history at the time of hot rolling. When the cooling rate is slow, in the chemical composition in which δ ferrite is 15% by volume or more, It was also found that sigma phase precipitation was observed.

以上の検討結果から、次の成分を持つ鋼であれば、本発明が目的とする優れた耐食性を有するステンレス鋼が、熱間加工時に割れることなく安定して得られ、強度も高くなることが明らかとなった。   From the above examination results, if the steel has the following components, the stainless steel having excellent corrosion resistance aimed by the present invention can be stably obtained without cracking during hot working, and the strength can be increased. It became clear.

本発明のステンレス鋼は上記知見に基づいてなされたもので、質量%で、C:0.02〜0.08%、Si:0.2〜1.0%、Mn:1.2〜2.0%、P:0.03%以下、S:0.005%以下、Ni:13〜15%、Cr:25.1〜30%、N:0.07〜0.20%を含有し、残部はFe及び不可避的不純物からなり、かつ下記数1および数2を満足することを特徴とする。 The stainless steel of the present invention has been made based on the above findings, and in mass%, C: 0.02 to 0.08%, Si: 0.2 to 1.0%, Mn: 1.2 to 2. 0% P: 0.03% or less, S: 0.005% or less, Ni: 13~15%, Cr: 25.1 ~30%, N: it contains 0.07 to 0.20%, the balance Consists of Fe and inevitable impurities, and satisfies the following formulas 1 and 2.

Figure 0005797461
Figure 0005797461

Figure 0005797461
Figure 0005797461

また、本発明のステンレス鋼の製造方法は、質量%で、C:0.02〜0.08%、Si:0.2〜1.0%、Mn:1.2〜2.0%、P:0.03%以下、S:0.005%以下、Ni:13〜15%、Cr:22〜30%、N:0.07〜0.20%を含有し、残部はFe及び不可避的不純物からなり、かつ下記数3および数4を満足するステンレス鋼の製造方法であって、電気炉で原料を溶解し、AOD法および/またはVOD法で精錬して、その溶鋼を連続鋳造にて鋳造してスラブを得て、そのスラブを熱間圧延して熱延板を得て、その後焼鈍酸洗し、冷間圧延して冷延板を得る工程を備え、前記連続鋳造にて得たスラブを冷却する際の冷却速度を、700℃に至るまで1℃/分以上の冷却速度とすることを特徴とする。この場合において、熱間圧延後に鋼が900℃から700℃まで冷却される温度域を10℃/分以上の冷却速度で冷却することを好ましい態様とする。

Figure 0005797461

Figure 0005797461
Moreover, the manufacturing method of the stainless steel of this invention is the mass%, C: 0.02-0.08%, Si: 0.2-1.0%, Mn: 1.2-2.0%, P : 0.03% or less, S: 0.005% or less, Ni: 13-15%, Cr: 22-30%, N: 0.07-0.20%, the balance is Fe and inevitable impurities A method for producing stainless steel that satisfies the following formulas 3 and 4, wherein the raw material is melted in an electric furnace, refined by the AOD method and / or the VOD method, and the molten steel is cast by continuous casting. The slab obtained by the continuous casting is provided with a step of obtaining a slab, hot-rolling the slab to obtain a hot-rolled sheet, then annealing pickling and cold-rolling to obtain a cold-rolled sheet The cooling rate at the time of cooling is set to a cooling rate of 1 ° C./min or more until reaching 700 ° C. In this case, it is preferable that the temperature range in which the steel is cooled from 900 ° C. to 700 ° C. after hot rolling is cooled at a cooling rate of 10 ° C./min or more.
Figure 0005797461

Figure 0005797461

以下、本発明のステンレス鋼の数値限定の根拠を本発明の作用とともに説明する。なお、以下の説明において「%」は「質量%」を意味する。   Hereinafter, the grounds for limiting the numerical values of the stainless steel of the present invention will be described together with the operation of the present invention. In the following description, “%” means “mass%”.

C:0.02〜0.08%
C含有量が低下すると、炭化物の生成が少なくなりステンレス鋼の加工性が向上するため、C含有量は0.08%以下とする。一方、Cはδフェライトの過剰な生成を抑制する元素であるため、0.02%以上必要である。したがって、Cの含有量は0.02〜0.08%とする。
C: 0.02 to 0.08%
When the C content decreases, the production of carbides decreases and the workability of stainless steel improves, so the C content is set to 0.08% or less. On the other hand, C is an element that suppresses excessive generation of δ ferrite, so 0.02% or more is necessary. Therefore, the C content is 0.02 to 0.08%.

Si:0.2〜1.0%
Siは脱酸に必要であるため、0.2%以上添加することが必要である。一方、Siは、σ相などの金属間化合物の析出を抑制する上で1.0%以下に低減させる必要がある。Siの含有量は0.2〜1.0%とする。
Si: 0.2 to 1.0%
Since Si is necessary for deoxidation, it is necessary to add 0.2% or more. On the other hand, Si needs to be reduced to 1.0% or less in order to suppress precipitation of intermetallic compounds such as σ phase. The Si content is 0.2 to 1.0%.

Mn:1.2〜2.0%
MnもSi同様に脱酸に必要であるとともにδフェライトの過剰な生成を抑制する効果があるため1.2%以上添加することが必要である。一方、Mnは、σ相などの金属間化合物の析出を抑制する上で2.0%以下に低減させる必要がある。よって、Mnの含有量は1.2〜2.0%とする。
Mn: 1.2 to 2.0%
Mn, like Si, is necessary for deoxidation and has the effect of suppressing excessive generation of δ ferrite, so it is necessary to add 1.2% or more. On the other hand, Mn needs to be reduced to 2.0% or less in order to suppress precipitation of intermetallic compounds such as σ phase. Therefore, the Mn content is set to 1.2 to 2.0%.

P:0.03%以下
Pは不純物として不可避的に混入する元素であり、結晶粒界に偏析しやすく、熱間加工性の観点から、少ないほうが望ましい。しかし、Pの含有量を極端に低減させることは原料コストや精錬等の製造コストの増加を招く。そこで、Pの含有量は0.03%以下とする。
P: 0.03% or less P is an element that is inevitably mixed as an impurity, is easily segregated at the grain boundary, and is preferably as small as possible from the viewpoint of hot workability. However, extremely reducing the P content causes an increase in raw material costs and manufacturing costs such as refining. Therefore, the P content is 0.03% or less.

S:0.005%以下
SはPと同様に不純物として不可避的に混入する元素であり、結晶粒界に偏析しやすく、熱間加工性の観点からは少ないほうが望ましい。よって、Sの含有量は0.005%以下とする。Sの含有量は、0.003%以下が好ましい。
S: 0.005% or less S is an element that is inevitably mixed as an impurity like P, and is easily segregated at the crystal grain boundary, and is preferably smaller from the viewpoint of hot workability. Therefore, the S content is 0.005% or less. The content of S is preferably 0.003% or less.

Ni:13〜15%
Niはσ相などの金属間化合物を抑制する上で有効な元素であり、その含有量が13%未満であると、σ相が析出し易くなり、δフェライトが過剰に生成されて、熱間加工性が低下する。一方、Ni含有量が15%を超えると、応力腐食割れの発生を助長する。よって、Niの含有量は、13〜15%とする。
Ni: 13-15%
Ni is an element effective in suppressing intermetallic compounds such as the σ phase. If the content is less than 13%, the σ phase is likely to precipitate, δ ferrite is excessively generated, Workability is reduced. On the other hand, when the Ni content exceeds 15%, the occurrence of stress corrosion cracking is promoted. Therefore, the Ni content is 13 to 15%.

Cr:22〜30%
Crは耐食性の向上に有効な元素であり本発明では最も重要かつ有効な元素である。しかしながら、30%を超えて含有すると、スラブ等の冷却過程でσ相などの金属間化合物が析出しやすく脆化し、割れが起こりやすくなる。そこで、Crの含有量は22〜30%とする。Crの含有量は、好ましくは23〜28%がよく、さらに好ましくは、24〜27%がよい。
Cr: 22-30%
Cr is an effective element for improving corrosion resistance, and is the most important and effective element in the present invention. However, if it exceeds 30%, intermetallic compounds such as σ phase are likely to precipitate during the cooling process of slabs, etc., and become brittle and cracks easily occur. Therefore, the Cr content is 22 to 30%. The content of Cr is preferably 23 to 28%, more preferably 24 to 27%.

N:0.07〜0.20%
NはCrと同様に耐食性を向上させるとともに、δフェライト生成を抑制する有効な元素であり、重要な元素である。さらに、鋼の強度を高めるためにも有効な元素である。しかしながら、Nを過剰に含有すると、熱間変形抵抗が上昇して熱間加工性を阻害する。また、Nの含有量が大きいと、後で説明するNi当量が増え、Cr当量とのバランスが崩れてしまう。よって、Nの含有量は0.07〜0.20%とする。Nの含有量は、好ましくは0.08〜0.17%がよい。
N: 0.07 to 0.20%
N, like Cr, is an effective element that improves corrosion resistance and suppresses the formation of δ ferrite, and is an important element. Furthermore, it is an effective element for increasing the strength of steel. However, when N is contained excessively, hot deformation resistance is increased and hot workability is hindered. On the other hand, if the N content is large, the Ni equivalent described later increases and the balance with the Cr equivalent is lost. Therefore, the N content is set to 0.07 to 0.20%. The content of N is preferably 0.08 to 0.17%.

Ni当量:15〜22
Ni当量は、Ni当量=Ni+30×C+0.5×Mn+30×Nにより求められるが、15未満であると、σ相が析出し易くなり脆化し割れ易くなる。一方、Ni当量が22を超えると、所望のδフェライトが得難くなる。
Ni equivalent: 15-22
The Ni equivalent is determined by Ni equivalent = Ni + 30 × C + 0.5 × Mn + 30 × N, but if it is less than 15, the σ phase is likely to precipitate, and it becomes brittle and easily cracked. On the other hand, if the Ni equivalent exceeds 22, the desired δ ferrite is difficult to obtain.

Cr当量:23〜32
Cr当量は、Cr当量=Cr+1.5×Siにより求められる。Cr当量が23未満であると、所望のδフェライト量を得難くなる。一方、Cr当量が32を超えると、σ相が析出し、脆化する。
Cr equivalent: 23-32
The Cr equivalent is determined by Cr equivalent = Cr + 1.5 × Si. When the Cr equivalent is less than 23, it is difficult to obtain a desired amount of δ ferrite. On the other hand, if the Cr equivalent exceeds 32, the σ phase precipitates and becomes brittle.

δフェライト量:19体積%以下
従来の合金を考えると、19体積%を超えるような高δフェライトを含有するステンレス鋼は、熱間加工性が劣化していると判断できる。この課題を克服するために、上記に説明した本発明の範囲にNi及びN添加量を制御することによって、δフェライトが19体積%以下に抑えられ、充分に加工が可能な熱間加工性を確保することができる。δフェライトは、好ましくは、5体積%以上含まれることが良い。その理由は、δフェライトが5体積%未満で低くなると、P、Sの偏析が強くなり、逆に熱間加工性を低下させるからである。
δ Ferrite Amount: 19% by Volume or Less Considering conventional alloys, it can be judged that the stainless steel containing high δ ferrite exceeding 19% by volume has deteriorated hot workability. In order to overcome this problem, by controlling the addition amount of Ni and N within the range of the present invention described above, δ ferrite can be suppressed to 19% by volume or less, and hot workability that can be sufficiently processed is achieved. Can be secured. The δ ferrite is preferably contained in an amount of 5% by volume or more. The reason is that when the δ ferrite is lower than 5% by volume, the segregation of P and S becomes strong, and conversely, the hot workability is lowered.

次に、本発明のステンレス鋼の製造方法を説明する。最も工業的に望ましいのは、60トンなど実機規模にて製造するのが効率的かつ経済的である。まず、鉄屑、ステンレス屑、フェロクロム、フェロニッケル、純ニッケル、メタリッククロムなどの原料を電気炉で溶解する。その後、AOD法および/またはVOD法において酸素を吹精し、脱炭精錬する。AOD法で用いる炉の煉瓦はマグクロあるいはドロマイトなどMgO含有耐火物が好ましい。VOD法で用いる取鍋は、マグクロあるいはドロマイトなどMgO含有耐火物が好ましい。AOD法の場合は希釈ガスにArおよび/または窒素を用いるのがよい。   Next, the manufacturing method of the stainless steel of this invention is demonstrated. The most industrially desirable is efficient and economical to manufacture on a real scale such as 60 tons. First, raw materials such as iron scrap, stainless steel scrap, ferrochrome, ferronickel, pure nickel, and metallic chromium are melted in an electric furnace. Thereafter, oxygen is blown and decarburized and refined in the AOD method and / or the VOD method. The furnace brick used in the AOD method is preferably a MgO-containing refractory such as magchrom or dolomite. The ladle used in the VOD method is preferably a MgO-containing refractory such as magchrom or dolomite. In the case of the AOD method, it is preferable to use Ar and / or nitrogen as the dilution gas.

また、AOD法においては、上から減圧用に炉内を排気可能な蓋を被せて、脱炭末期に減圧下において、Arガスを吹精しながら強撹拌し、スラグ中に形成したCr酸化物と溶鋼中のCを積極的に反応させて脱炭することもできる。脱炭後、FeSi合金および/またはAlを投入して、スラグ中のCr酸化物を還元する。その後、石灰石、蛍石を添加して、CaO−SiO−Al−MgO系スラグを形成して、脱酸、脱硫を行い、必要に応じて、窒素ガスを吹き込み、溶鋼中窒素濃度を、本願発明の範囲に制御する。 In the AOD method, a Cr oxide formed in the slag is covered with a lid capable of exhausting the inside of the furnace for depressurization from above and stirred vigorously while blowing Ar gas under depressurization at the end of decarburization. And C in the molten steel can be positively reacted to decarburize. After decarburization, FeSi alloy and / or Al is added to reduce Cr oxide in the slag. Thereafter, limestone and fluorite are added to form a CaO—SiO 2 —Al 2 O 3 —MgO-based slag, deoxidation and desulfurization are performed, and nitrogen gas is blown as necessary to increase the nitrogen concentration in the molten steel. Is controlled within the scope of the present invention.

Sの含有量を0.005%以下に制御するために、スラグにおける塩基度(CaO%/SiO%)は2〜6であることが望ましい。塩基度が2未満であると、スラグのS許容能力が足りないため、Sが0.005%を超えてしまい、熱間加工性が悪化する。塩基度が6を超えると滓化性に劣り、スラグの流動性を悪化させ、脱硫に不利になることで、Sが0.005%を超えてしまう。 In order to control the S content to 0.005% or less, the basicity (CaO% / SiO 2 %) in the slag is desirably 2 to 6. If the basicity is less than 2, the S permissible capacity of the slag is insufficient, so S exceeds 0.005%, and hot workability deteriorates. If the basicity exceeds 6, the hatchability is inferior, the fluidity of the slag is deteriorated and disadvantageous for desulfurization, so that S exceeds 0.005%.

スラグ中のMgOの含有量は3〜8%が望ましい。MgOの含有量が3%未満では、煉瓦の溶損が進行し、炉の寿命が短くなる。一方、MgOの含有量が8%を超えると、MgOが還元されて溶鋼中にMgが供給され、非金属介在物としてMgO・Alスピネルが生成され易くなる。このスピネル介在物はタンディッシュから連続鋳造の鋳型に注湯する浸漬ノズルの内壁に付着して堆積し、脱落すると、数百μm〜数mmのサイズの大型介在物としてスラブ中に捕捉される。この場合、鋼板の表面、あるいは鋼板内部に欠陥を発生させてしまう。よって、スラグ中のMgOの含有量は3〜8%が望ましい。 The content of MgO in the slag is desirably 3 to 8%. If the content of MgO is less than 3%, brick erosion progresses and the life of the furnace is shortened. On the other hand, when the content of MgO exceeds 8%, MgO is reduced, Mg is supplied into the molten steel, and MgO · Al 2 O 3 spinel is easily generated as nonmetallic inclusions. The spinel inclusions adhere to and accumulate on the inner wall of the immersion nozzle that pours from a tundish into a continuous casting mold. When the spinel inclusions fall off, the spinel inclusions are trapped in the slab as large inclusions having a size of several hundred μm to several mm. In this case, a defect is generated on the surface of the steel plate or inside the steel plate. Therefore, the content of MgO in the slag is desirably 3 to 8%.

上記のように精錬して化学成分を本発明の範囲に制御した溶鋼を、連続鋳造機で鋳造し、スラブを得る。連続鋳造スラブを冷却する際の冷却速度は、700℃に至るまで1℃/分以上とすることが望ましい。700℃に至るまで1℃/分未満の冷却速度で冷却すると、スラブ中でσ相が形成され脆化してしまうためである。さらに、得られたスラブを熱間圧延し、熱延板を製造する。熱間圧延においては、その熱延過程にて鋼が900から700℃まで冷却される温度域において10℃/分以上で冷却することが望ましい。900から700℃まで冷却される温度域において10℃/分未満の冷却速度で冷却すると、σ相が形成され脆化する。なお、高周波誘導炉を用いて、電解鉄、純クロム、純ニッケル、窒化フェロクロム、フェロシリコン、純マンガンなどの原料を溶解して、鋼塊を作製することもできる。   The molten steel, which is refined as described above and whose chemical components are controlled within the range of the present invention, is cast by a continuous casting machine to obtain a slab. The cooling rate at the time of cooling the continuously cast slab is desirably 1 ° C./min or more until 700 ° C. is reached. This is because when the cooling is performed at a cooling rate of less than 1 ° C./min up to 700 ° C., a σ phase is formed in the slab and becomes brittle. Furthermore, the obtained slab is hot-rolled to produce a hot-rolled sheet. In hot rolling, it is desirable to cool at 10 ° C./min or more in a temperature range where the steel is cooled from 900 to 700 ° C. during the hot rolling process. When cooled at a cooling rate of less than 10 ° C./min in the temperature range cooled from 900 to 700 ° C., a σ phase is formed and embrittled. Note that a steel ingot can be produced by melting raw materials such as electrolytic iron, pure chromium, pure nickel, ferrochromium nitride, ferrosilicon, and pure manganese using a high-frequency induction furnace.

本発明によれば、Mo、Ti、Nbなどの希少資源を使用せずにSi、Mn、Cr、Ni、Nの成分バランスを制御することで、耐食性、熱間加工性に優れ、かつ高強度のステンレス鋼が安価な原料費で提供される。   According to the present invention, by controlling the component balance of Si, Mn, Cr, Ni, N without using rare resources such as Mo, Ti, Nb, etc., it is excellent in corrosion resistance, hot workability, and high strength. Stainless steel is offered at a low raw material cost.

以下、実施例によってさらに本発明を詳細に説明する。まず、鉄屑、ステンレス屑、フェロクロム、フェロニッケル、純ニッケル、メタリッククロムなどの原料を、60トンの電気炉で溶解した。その後、VODにおいて、酸素を吹精し、脱炭精錬した。VODの取鍋には、マグクロ耐火物を張った。脱炭後、FeSi合金およびAlを投入して、スラグ中のCr酸化物を還元した。さらに、石灰石、蛍石を添加して、CaO−SiO−Al−MgO系スラグを形成して、脱酸、脱硫を行い、窒素ガスを吹き込み、溶鋼中窒素濃度を制御した。このようにして精錬した溶鋼を、縦型連続鋳造機にて鋳造し、表1に示す組成のスラブ(試料1〜23)を得た。 Hereinafter, the present invention will be described in more detail with reference to examples. First, raw materials such as iron scrap, stainless steel scrap, ferrochrome, ferronickel, pure nickel, and metallic chromium were melted in a 60-ton electric furnace. Thereafter, in the VOD, oxygen was blown and decarburized and refined. Mugkuro refractory was put on the ladle of VOD. After decarburization, FeSi alloy and Al were added to reduce Cr oxide in the slag. Furthermore, limestone and fluorite were added to form a CaO—SiO 2 —Al 2 O 3 —MgO slag, deoxidation and desulfurization were performed, nitrogen gas was blown, and the nitrogen concentration in the molten steel was controlled. The molten steel refined in this manner was cast with a vertical continuous casting machine to obtain slabs (samples 1 to 23) having the compositions shown in Table 1.

なお、表1に、下記数5および数6より算出した値を併記する。 In Table 1, the values calculated from the following formulas 5 and 6 are also shown.

Figure 0005797461
Figure 0005797461

Figure 0005797461
Figure 0005797461

Figure 0005797461
Figure 0005797461

各スラブに対して、熱間圧延と冷間圧延を行い、溶体化処理を施して、厚さ2.0mmの冷延板を製造した。そして、熱間鍛造・冷間圧延工程までの歩留まり率から製造性を評価した。歩留まり率は、85%以上を○とし、84〜70%を△、69%以下を×として評価した。また、各試料の強度をビッカース硬さを測定して評価した。硬さがHv200以上の場合を○、Hv180以上Hv200未満の場合を△、Hv180未満の場合を×として評価した。   Each slab was hot-rolled and cold-rolled and subjected to a solution treatment to produce a cold-rolled sheet having a thickness of 2.0 mm. And productivity was evaluated from the yield rate to a hot forging and cold rolling process. Yield rates were evaluated as 85% or more as ◯, 84 to 70% as Δ, and 69% or less as x. In addition, the strength of each sample was evaluated by measuring Vickers hardness. The case where the hardness was Hv200 or more was evaluated as ◯, the case where Hv180 or more and less than Hv200 was Δ, and the case where the hardness was less than Hv180 was evaluated as x.

耐食性は、ASTM G48 Method Cにより評価し、CPTが15℃以上の場合を○、15℃未満の場合を×とした。さらに、耐食性の指標としてPREを求めた。PREは、PRE=%Cr+16×%Nより求め、高耐食性であるSUS316Lが25であるため、25以上の試料は耐食性が良好であることが推察される。以上の評価結果を表2に示す。   Corrosion resistance was evaluated by ASTM G48 Method C, and the case where CPT was 15 ° C. or higher was evaluated as “◯” and the case where it was lower than 15 ° C. was evaluated as “X”. Furthermore, PRE was calculated | required as a parameter | index of corrosion resistance. PRE is obtained from PRE =% Cr + 16 ×% N. Since SUS316L having high corrosion resistance is 25, it is presumed that 25 or more samples have good corrosion resistance. The above evaluation results are shown in Table 2.

Figure 0005797461
Figure 0005797461

表1に示すとおり本発明の条件を満足するテンレス鋼では、高温割れが防止されて製造歩留まりが良好であるとともに、耐食性に優れることが確認された。一方、比較例では、耐食性、熱間加工性、強度のいずれかが発明鋼よりも劣った。   As shown in Table 1, it was confirmed that the tentress steel satisfying the conditions of the present invention was prevented from hot cracking and had good production yield and excellent corrosion resistance. On the other hand, in the comparative example, any of corrosion resistance, hot workability, and strength was inferior to that of the inventive steel.

試料No.3の製造工程中のVODでの精錬時に、スラグの塩基度(CaO質量%/SiO質量%)を1.5として精錬したところ、Sが0.009質量%と高くなった。また、試料No.5の製造工程中のVODでの精錬時に、スラグの塩基度を8として、精錬したところ、Sが0.011質量%と高くなった。これらのステンレス鋼では、スラブは製造できたが、圧延時に耳割れが大きく、製品にならなかった。以上の結果から、精錬におけるスラグの塩基度を2〜6とすることの優位性が確認された。 Sample No. During refining with VOD during the manufacturing process of No. 3, when the basicity of slag (CaO mass% / SiO 2 mass%) was refined to 1.5, S was as high as 0.009 mass%. Sample No. During refining at VOD during the production process of No. 5, S was refined with a basicity of slag of 8, and S was as high as 0.011% by mass. With these stainless steels, slabs could be produced, but the cracks were large during rolling and did not become products. From the above results, the superiority of setting the basicity of slag in refining to 2 to 6 was confirmed.

試料No.1のδフェライト量が17.3体積%と高い条件で製造したスラブ5本に対して冷却速度の与える影響について調査した。5本のスラブのうち1本では、スラブの温度が700℃に至るまで0.8℃/分で冷却し、それ以外は1.5〜3℃/分で冷却した。このような冷却速度の制御は、二次冷却帯の水量を変化させて行った。   Sample No. The effect of the cooling rate on five slabs manufactured under the condition that the amount of δ ferrite of 1 was as high as 17.3% by volume was investigated. One of the five slabs was cooled at 0.8 ° C./min until the slab temperature reached 700 ° C., and the others were cooled at 1.5 to 3 ° C./min. Such control of the cooling rate was performed by changing the amount of water in the secondary cooling zone.

さらに、熱間圧延の冷却条件も変化させて影響を調べた。以上の結果を表3に示す。試料No.1の熱間圧延過程において鋼が900℃から700℃まで冷却される温度域を、10℃/分以上で冷却したものと、7℃/分で冷却した板を評価した。スラブNo.1では、冷却速度が0.8℃/分という徐冷であったため、ミクロ組織観察の結果、鋼塊中にσ相が形成し、熱間圧延工程に進めるのは不可能と判断した。また、スラブNo.5では、鋼が900℃から700℃まで冷却される温度域を、7℃/分と徐冷させたため、σ相が形成されて脆化したことにより、熱延板に耳割れが発生し、製品歩留りが66%と低くなった。以上のことから、連続鋳造にて得たスラブを冷却する際の冷却速度を700℃に至るまで1℃/分以上の冷却速度とすること、および、熱間圧延後に鋼が900℃から700℃まで冷却される温度域を10℃/分以上の冷却速度で冷却することによる効果が確認された。   Furthermore, the cooling conditions for hot rolling were also changed to investigate the influence. The above results are shown in Table 3. Sample No. A steel plate cooled at 10 ° C./min or more and a plate cooled at 7 ° C./min in the temperature range in which the steel was cooled from 900 ° C. to 700 ° C. in the hot rolling process of 1 were evaluated. Slab No. In No. 1, since the cooling rate was slow cooling of 0.8 ° C./min, as a result of microstructural observation, it was determined that a σ phase was formed in the steel ingot and it was impossible to proceed to the hot rolling process. Also, slab no. In No. 5, since the temperature range in which the steel was cooled from 900 ° C. to 700 ° C. was gradually cooled to 7 ° C./min, the σ phase was formed and embrittled. Product yield was as low as 66%. From the above, the cooling rate when cooling the slab obtained by continuous casting is set to a cooling rate of 1 ° C./min or more until reaching 700 ° C., and the steel is heated from 900 ° C. to 700 ° C. after hot rolling. The effect by cooling the temperature range cooled to 10 degreeC / min or more at the cooling rate was confirmed.

Figure 0005797461
Figure 0005797461

Claims (7)

質量%で、C:0.02〜0.08%、Si:0.2〜1.0%、Mn:1.2〜2.0%、P:0.03%以下、S:0.005%以下、Ni:13〜15%、Cr:25.1〜30%、N:0.07〜0.20%を含有し、残部はFe及び不可避的不純物からなり、かつ下記数1および数2を満足することを特徴とするステンレス鋼。
Figure 0005797461
Figure 0005797461
In mass%, C: 0.02-0.08%, Si: 0.2-1.0%, Mn: 1.2-2.0%, P: 0.03% or less, S: 0.005 % or less, Ni: 13~15%, Cr: 25.1 ~30%, N: contains 0.07 to 0.20%, balance being Fe and unavoidable impurities, and the following equations 1 and 2 Stainless steel characterized by satisfying
Figure 0005797461
Figure 0005797461
前記δフェライトは5体積%以上であることを特徴とする請求項1に記載のステンレス鋼。 The stainless steel according to claim 1, wherein the δ ferrite is 5% by volume or more. 質量%で、C:0.02〜0.08%、Si:0.2〜1.0%、Mn:1.2〜2.0%、P:0.03%以下、S:0.005%以下、Ni:13〜15%、Cr:22〜30%、N:0.07〜0.20%を含有し、残部はFe及び不可避的不純物からなり、かつ下記数3および数4を満足するステンレス鋼の製造方法であって、電気炉で原料を溶解し、AOD法および/またはVOD法で精錬して、その溶鋼を連続鋳造にて鋳造してスラブを得て、そのスラブを熱間圧延して熱延板を得て、その後焼鈍酸洗し、冷間圧延して冷延板を得る工程を備え、前記連続鋳造にて得たスラブを冷却する際の冷却速度を、700℃に至るまで1℃/分以上の冷却速度とすることを特徴とするステンレス鋼の製造方法。

Figure 0005797461
Figure 0005797461
In mass%, C: 0.02-0.08%, Si: 0.2-1.0%, Mn: 1.2-2.0%, P: 0.03% or less, S: 0.005 %: Ni: 13 to 15%, Cr: 22 to 30%, N: 0.07 to 0.20%, the balance is composed of Fe and inevitable impurities, and satisfies the following formulas 3 and 4 A method for producing stainless steel, in which raw materials are melted in an electric furnace, refined by the AOD method and / or VOD method, and the molten steel is cast by continuous casting to obtain a slab. A hot-rolled sheet is obtained by rolling, followed by annealing pickling and cold-rolling to obtain a cold-rolled sheet. The cooling rate when cooling the slab obtained by the continuous casting is set to 700 ° C. The manufacturing method of stainless steel characterized by setting it as the cooling rate of 1 degree-C / min or more until it reaches.

Figure 0005797461
Figure 0005797461
前記δフェライトは5体積%以上であることを特徴とする請求項3に記載のステンレス鋼の製造方法。 The said delta ferrite is 5 volume% or more, The manufacturing method of the stainless steel of Claim 3 characterized by the above-mentioned. 前記熱間圧延後に鋼が900℃から700℃まで冷却される温度域を10℃/分以上の冷却速度で冷却することを特徴とする請求項3または4に記載のステンレス鋼の製造方法。 The method for producing stainless steel according to claim 3 or 4 , wherein a temperature range in which the steel is cooled from 900 ° C to 700 ° C after the hot rolling is cooled at a cooling rate of 10 ° C / min or more. 前記精錬におけるスラグの塩基度(CaO質量%/SiO質量%)を2〜6とすることを特徴とする請求項3〜5のいずれかに記載のステンレス鋼の製造方法。 Method for producing stainless steel according to any one of claims 3-5, characterized in that a 2-6 basicity of slag (CaO mass% / SiO 2 mass%) in the refining. 前記精錬におけるスラグ中のMgOの含有量を3〜8質量%とすることを特徴とする請求項3〜6のいずれかに記載のステンレス鋼の製造方法。 The method for producing stainless steel according to any one of claims 3 to 6, wherein the content of MgO in the slag in the refining is 3 to 8 mass%.
JP2011123949A 2011-06-02 2011-06-02 Stainless steel and manufacturing method thereof Active JP5797461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123949A JP5797461B2 (en) 2011-06-02 2011-06-02 Stainless steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123949A JP5797461B2 (en) 2011-06-02 2011-06-02 Stainless steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012251194A JP2012251194A (en) 2012-12-20
JP5797461B2 true JP5797461B2 (en) 2015-10-21

Family

ID=47524278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123949A Active JP5797461B2 (en) 2011-06-02 2011-06-02 Stainless steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5797461B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101779128B1 (en) * 2016-10-21 2017-09-19 한국과학기술원 Alumina-forming duplex stainless steels as accident resistant fuel cladding materials for light water reactors
WO2018074743A1 (en) * 2016-10-21 2018-04-26 한국과학기술원 High-strength fe-cr-ni-al multiplex stainless steel and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149687B2 (en) * 1994-05-20 2001-03-26 日本鋼管株式会社 Stainless steel with excellent oxidation resistance
JP4062188B2 (en) * 2003-06-27 2008-03-19 住友金属工業株式会社 Stainless steel for nuclear power and manufacturing method thereof
JP2007217775A (en) * 2006-02-20 2007-08-30 Nisshin Steel Co Ltd Stainless steel member having crevice structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101779128B1 (en) * 2016-10-21 2017-09-19 한국과학기술원 Alumina-forming duplex stainless steels as accident resistant fuel cladding materials for light water reactors
WO2018074743A1 (en) * 2016-10-21 2018-04-26 한국과학기술원 High-strength fe-cr-ni-al multiplex stainless steel and manufacturing method therefor
US11649517B2 (en) 2016-10-21 2023-05-16 Korea Advanced Institute Of Science And Technology High-strength Fe—Cr—Ni—Al multiplex stainless steel and manufacturing method therefor

Also Published As

Publication number Publication date
JP2012251194A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP5687624B2 (en) Stainless steel, cold-rolled strip made from this steel, and method for producing steel plate products from this steel
JP6115691B1 (en) Steel plate and enamel products
JP5950306B2 (en) Fe-Ni-Cr alloy superior in sulfuric acid corrosion resistance, intergranular corrosion resistance and surface properties, and method for producing the same
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JP2018031028A (en) Fe-Ni-Cr-Mo ALLOY AND METHOD FOR PRODUCING THE SAME
JP5616283B2 (en) Fe-Ni-Cr-Mo alloy and method for producing the same
JP5961296B2 (en) Method of overlaying stainless steel for welding
CN111304532B (en) Heat-resistant austenitic stainless steel and preparation method thereof
CN102933732A (en) Structural stainless steel sheet having excellent corrosion resistance at weld and method for manufacturing same
JP2012052224A (en) Steel material excelling in toughness of weld heat-affected zone
JP5797461B2 (en) Stainless steel and manufacturing method thereof
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JP2012172211A (en) METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
JP4593313B2 (en) Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof
JP2012172212A (en) Low nickel austenitic stainless steel and method for manufacturing hot-rolled steel sheet of the same
JP7009666B1 (en) Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance
JP2016196031A (en) Method for producing continuously cast slab
JP7029570B1 (en) Precipitation hardening martensitic stainless steel and its manufacturing method
JP7413600B1 (en) Fe-Ni alloy plate and its manufacturing method
JP5815291B2 (en) Stainless steel for welding
WO2022138194A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
JP5087965B2 (en) Extremely low carbon ferritic stainless steel and method for producing the same
JP5680451B2 (en) High thermal expansion Fe-Ni-Cr alloy for bimetal and method for melting the same
KR101049002B1 (en) Ferritic stainless steel with excellent workability and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150819

R150 Certificate of patent or registration of utility model

Ref document number: 5797461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250