JP3149687B2 - Stainless steel with excellent oxidation resistance - Google Patents

Stainless steel with excellent oxidation resistance

Info

Publication number
JP3149687B2
JP3149687B2 JP12989494A JP12989494A JP3149687B2 JP 3149687 B2 JP3149687 B2 JP 3149687B2 JP 12989494 A JP12989494 A JP 12989494A JP 12989494 A JP12989494 A JP 12989494A JP 3149687 B2 JP3149687 B2 JP 3149687B2
Authority
JP
Japan
Prior art keywords
less
oxidation resistance
steel
content
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12989494A
Other languages
Japanese (ja)
Other versions
JPH07316751A (en
Inventor
稔 諏訪
秀途 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP12989494A priority Critical patent/JP3149687B2/en
Publication of JPH07316751A publication Critical patent/JPH07316751A/en
Application granted granted Critical
Publication of JP3149687B2 publication Critical patent/JP3149687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、火力発電用ボイラに
おける非耐圧・非冷却部材等の耐繰返し酸化特性が要求
される非耐圧部材を構成する耐熱ステンレス鋼に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant stainless steel which constitutes a non-pressure-resistant member of a boiler for thermal power generation, such as a non-pressure-resistant and non-cooling member, which is required to have repeated oxidation resistance.

【0002】[0002]

【従来の技術】近年高温プラント技術の進歩に伴い、新
形式の複合発電プラント、すなわち石炭ガス化複合プラ
ント、PFBC(Pressurized Fluidized Bed Combusio
n 、即ち、加圧流動床燃焼)発電システム、トッピング
サイクル等が提案され、試験プラントの運転も行われて
いる。これらの新形式プラントにおいては、従来形式の
ボイラと異なり、蒸気加熱管以外にも高温に暴される非
冷却部材の範囲が大幅に拡大され、最高900 ℃程度で使
用可能な非冷却部材用の耐熱鋼も新たに求められてい
る。
2. Description of the Related Art In recent years, with the progress of high-temperature plant technology, a new type of combined cycle power plant, namely, a coal gasification combined plant, PFBC (Pressurized Fluidized Bed Combusio) has been developed.
n, that is, a pressurized fluidized bed combustion) power generation system, a topping cycle and the like have been proposed, and a test plant has been operated. In these new-type plants, unlike conventional boilers, the range of non-cooled components exposed to high temperatures besides steam heating tubes has been greatly expanded, and non-cooled components that can be used at up to about 900 ° C are used. There is also a new need for heat-resistant steel.

【0003】従来、高温部材としては高温強度を主眼と
した鋼種開発がさかんに行われ、18Cr−8 Ni系ステ
ンレス鋼がチューブ材として多用されている。その主流
はJIS SUS304H(18Cr−10Ni−C) であり、更に、こ
れにTiを加えたJIS SUS321H などがあり、基本的には
長期の組織安定性があるとされている18−8 系で対応可
能であった。
Hitherto, as a high-temperature member, steel types mainly focused on high-temperature strength have been actively developed, and 18Cr-8Ni-based stainless steel has been widely used as a tube material. The mainstream is JIS SUS304H (18Cr-10Ni-C), and there is also JIS SUS321H with Ti added to it. Basically, 18-8 series is considered to have long-term structural stability. It was possible.

【0004】[0004]

【発明が解決しようとする課題】しかし、一般に新形式
プラントにおける非冷却部等の部位は、使用温度が高
く、圧力容器中に格納される非耐圧部材として設計され
ている場合でも使用できる鋼種が殆ど見あたらない。18
−8系耐熱鋼で解決しようとするならば、特開昭53−63
210 号公報などに開示された耐高温酸化性を改善する元
素であるAl,Siを含有させたCr−Ni系ステンレ
ス鋼の適用も考えられる。しかし、こうした鋼種は、一
定の構造強度が必要なプラント内構造部材としては、繰
返し酸化特性への対策、長時間相安定性の維持という2
点において配慮が十分とはいえない。
However, in general, the parts such as the non-cooling part in a new type plant have a high working temperature and a steel type that can be used even when designed as a non-pressure-resistant member stored in a pressure vessel. I can hardly find it. 18
If the solution is to be solved with -8 series heat-resistant steel, see JP-A-53-63.
It is also conceivable to use a Cr-Ni stainless steel containing Al and Si, which are elements for improving high-temperature oxidation resistance disclosed in, for example, Japanese Patent Publication No. 210-210. However, such steel grades are required as structural members in a plant requiring a certain structural strength, such as measures against repeated oxidation characteristics and maintenance of long-term phase stability.
In this respect, consideration is not sufficient.

【0005】ここで、繰り返し酸化性とは、発電プラン
トのスタート・ストップによる熱サイクルを材料が繰り
返し受けた場合、800 〜900 ℃における高温酸化による
鋼材の減肉が促進される現象をいう。Al,Siを含有
させた従来のCr−Ni系ステンレス鋼には、この耐繰
り返し酸化性が劣るという問題がある。また、現在かか
る目的のために用いられようとしているJIS SUS310S に
代表される高価な25Cr−20Ni系のオーステナイトス
テンレス耐熱鋼は、800 〜900 ℃における200〜700 時
間の使用で容易にシグマ相を析出し、定期点検時にハン
マリングしただけでひび割れを生じることが危惧されて
いる。したがって、現在高温用材料技術においては、こ
のような耐繰返し酸化性と長時間の相安定性という2点
を同時に満足する合金設計指針の確立が強く望まれてい
る。
[0005] Here, the term "repetitive oxidizing property" refers to a phenomenon in which when a material is repeatedly subjected to a thermal cycle by starting and stopping a power plant, high-temperature oxidation at 800 to 900 ° C promotes a reduction in thickness of a steel material. The conventional Cr-Ni stainless steel containing Al and Si has a problem that the repetitive oxidation resistance is poor. In addition, the expensive 25Cr-20Ni-based austenitic stainless heat-resistant steel represented by JIS SUS310S, which is currently being used for this purpose, easily precipitates a sigma phase when used at 800 to 900 ° C for 200 to 700 hours. However, it is feared that cracking may occur when hammering is performed during periodic inspections. Therefore, at present, in the high-temperature material technology, it is strongly desired to establish an alloy design guideline that simultaneously satisfies the two points of such resistance to repeated oxidation and long-term phase stability.

【0006】[0006]

【課題を解決するための手段】発明者らは、実際のプラ
ント運転における材料寿命が、特に高温酸化で決定され
る場合には耐繰返し酸化特性を考慮することが必須との
考えから、経済性に優れる18Cr−8Ni系ステンレス
鋼を出発点として種々の合金を試作し、性能評価を繰返
したその結果、単純加熱時の場合と異なり、表面スケー
ル層の元素組成が耐繰返し酸化性に重要になるとの知見
を得た。すなわち、安価な耐酸化性向上元素としてはし
ばしば用いられるSiはむしろ有害で、一方Alの含有
量の増加、またはCrの増量が有効であることがわかっ
た。
Means for Solving the Problems The present inventors consider that it is essential to consider repetitive oxidation resistance when the material life in actual plant operation is determined by high-temperature oxidation. Various alloys were trial-produced starting from 18Cr-8Ni-based stainless steel, which is excellent in quality, and performance evaluation was repeated. As a result, unlike the case of simple heating, the elemental composition of the surface scale layer became important for repeated oxidation resistance. Was obtained. That is, it has been found that Si, which is often used as an inexpensive element for improving oxidation resistance, is rather harmful, while increasing the content of Al or increasing Cr is effective.

【0007】さらに、表面スケール層の状態を詳細に調
査した結果、このスケールはCr,Al,Si等の酸化
物であり、これらの元素がすべて同時含有されている場
合は、環境側がCrが、材料側、即ち母相側がAlもし
くはSiが富化した酸化物となっていることが判明し
た。従って、耐繰り返し酸化性に及ぼすこれらの元素の
効果の相違はスケールの組成がもたらすもので、特にス
ケールと母相との熱膨張との差によるものと推定され
る。
Further, as a result of a detailed investigation of the state of the surface scale layer, this scale is an oxide such as Cr, Al, or Si. When all these elements are simultaneously contained, Cr is present on the environmental side. It was found that the material side, that is, the mother phase side was an oxide enriched in Al or Si. Therefore, it is presumed that the difference in the effect of these elements on the repetitive oxidation resistance is caused by the composition of the scale, and particularly due to the difference in thermal expansion between the scale and the matrix.

【0008】例えば、SiO2 の室温から1000℃ま
での平均膨張率は0.5 ×10-6-1と低いが、Al2 3
の平均膨張率は8×10-6-1であり、通常のステンレス
鋼の値20×10-6-1に比較的近い。そのため、温度変化
時に母相と界面での熱応力に差が生じても、Al2 3
皮膜が剥離、脱落しにくいため内質保護性が維持される
というメカニズムが考えられる。
For example, the average expansion coefficient of SiO 2 from room temperature to 1000 ° C. is as low as 0.5 × 10 −6 K −1 , but the average expansion coefficient is Al 2 O 3.
Has an average expansion coefficient of 8 × 10 −6 K −1, which is relatively close to the value of 20 × 10 −6 K −1 of ordinary stainless steel. Therefore, even if a difference occurs in the thermal stress between the mother phase and the interface at the time of temperature change, the Al 2 O 3
A mechanism is conceivable in which the film is hardly peeled off and falls off, so that the property of protecting the inner material is maintained.

【0009】一方、長時間加熱を受けた場合の相安定性
については、主としてシグマ相等の脆い第二相の析出を
抑制する手段を種々検討した。一般にオーステナイト系
ステンレス鋼のデルタフェライト抑制、あるいはデルタ
フェライト量については、例えばde Long が1960年にMe
tal Progressにおいて提唱したような、Cr当量、Ni
当量の概念が用い得ることを見いだした。ただし、シグ
マ相析出量の予測等には上記式をそのまま転用すること
は出来なかったが、下記に示す(3)式の両辺が等しい
ときがシグマ相析出の臨界点であることを実験的に新た
に見いだした。 σ=3.6(1.5 Si+3 Al+Cr) −(0.5Mn+Ni+30C+30N) =70 −−−(3)
On the other hand, with respect to the phase stability when subjected to long-time heating, various means for mainly suppressing precipitation of a brittle second phase such as a sigma phase were examined. Generally, regarding the delta ferrite suppression or the amount of delta ferrite in austenitic stainless steel, for example, de Long
Cr equivalent, Ni as proposed in tal Progress
It has been found that the equivalent concept can be used. However, the above equation could not be diverted as it is for the prediction of the amount of sigma phase precipitation, but it was experimentally determined that the critical point of sigma phase precipitation is when both sides of the following equation (3) are equal. Newly found. σ = 3.6 (1.5Si + 3Al + Cr)-(0.5Mn + Ni + 30C + 30N) = 70- (3)

【0010】本発明は上述した観点に基づいてなされた
もので、経済性に優れ、長時間の組織安定性にまさる18
Cr−8Ni系のステンレス鋼をベースに、800〜900℃
での耐高温酸化性ならびに耐繰返し酸化性の優れた耐熱
鋼を提供することを目的とする。 (1)請求項1の発明は、下記の成分組成を含有する耐
繰返し酸化特性に優れたステンレス鋼(成分組成はwt
%である)である。 (a)主成分として、 C:0.12%以下、 Si:0.31〜1.0% Mn:2.0%以下、 P:0.04%以下 S:0.03%以下、 Al:0.33〜3.0%、 N:0.2%以下、 Ni:10〜33%、 Cr:14%〜28%を含有し、 残部がFeおよび不可避不純物からなり、 (b)前記成分組成が下記の(1)〜(3)式を満た
す。 R=Cr+2(Al+Si)≧20.2 −−(1) α=(1.5Si+3Al+Cr)−(0.5Mn+Ni+30C+30N)<9 −−(2) σ=3.6(1.5Si+3Al+Cr)−(0.5Mn+Ni+30C+30N)<70 −−(3)
The present invention has been made based on the above-mentioned viewpoints, and is excellent in economic efficiency and superior to long-term tissue stability.
800-900 ° C based on Cr-8Ni stainless steel
An object of the present invention is to provide a heat-resistant steel excellent in high-temperature oxidation resistance and repetitive oxidation resistance in steel. (1) The invention of claim 1 is a stainless steel having the following component composition and excellent in repeated oxidation resistance (component composition is wt.
%). (A) As main components, C: 0.12% or less, Si: 0.31 to 1.0% Mn: 2.0% or less, P: 0.04% or less S: 0.03% or less, Al: 0.33 to 3.0% , N: 0.2% or less, Ni : 10 to 33%, Cr: 14% to 28%, the balance being Fe and unavoidable impurities. (B) The component composition satisfies the following formulas (1) to (3). R = Cr + 2 (Al + Si) ≧ 20.2-(1) α = (1.5Si + 3Al + Cr)-(0.5Mn + Ni + 30C + 30N) <9- (2) σ = 3.6 (1.5Si + 3Al + Cr)-(0.5Mn + Ni + 30C + 30N) <70- (3)

【0011】(2)請求項2の発明は、請求項1の発明
の成分組成に、更に、Ce, Y,Laのうち一種以上を
合計含有量として0.07%以下を含有する耐繰り返し酸化
特性に優れたステンレス鋼である。
(2) The invention of claim 2 provides the component composition of the invention of claim 1 with a repetitive oxidation resistance characteristic in which at least one of Ce, Y, and La contains 0.07% or less in total. Excellent stainless steel.

【0012】[0012]

【作用】以下、本発明に係るステンレス鋼の含有元素の
含有理由及び含有範囲を限定した理由を述べる。Cは本
発明鋼の母相の高温強さを与え、相安定性に有効な元素
であるが、0.12%を超えて含有すると、結晶粒内を縦断
する形で粗大な炭化物が析出するので、その含有量は0.
12%以下とした。
The reasons for containing the elements contained in the stainless steel according to the present invention and the reasons for limiting the content range will be described below. C is an element which gives the high-temperature strength of the parent phase of the steel of the present invention and is effective for phase stability. However, if it is contained in excess of 0.12%, coarse carbides precipitate in the form of traversing the crystal grains. Its content is 0.
12% or less.

【0013】Siは脱酸に有効な元素であるため1.0 %
以下を含んでもよいが、1.0 %を超えて含有すると、表
面の酸化皮膜の母相側がSiリッチとなり、繰返し酸化
特性に有害となるので、含有量は1.0 %以下とした。
Since Si is an element effective for deoxidation, 1.0%
The following may be included, but if the content exceeds 1.0%, the mother phase side of the oxide film on the surface becomes Si-rich, which is harmful to repeated oxidation characteristics. Therefore, the content is set to 1.0% or less.

【0014】Mnは相安定性に有効な元素であるため2.
0 %以下を含んでよいが、2.0 %を超えて含有すると耐
高温酸化性に有害となるので、含有量は2.0 %以下とし
た。
Mn is an element effective for phase stability.
The content may be 0% or less, but if the content exceeds 2.0%, it is harmful to high-temperature oxidation resistance. Therefore, the content is set to 2.0% or less.

【0015】Pは粒界偏析して圧延時の延性を害する元
素であって、その含有量は少ないほど良い。そこで、圧
延時における延性の低下による割れを防止するため、そ
の含有量を0.04%以下とした。
P is an element that segregates at the grain boundaries and impairs the ductility during rolling. The smaller the content, the better. Therefore, in order to prevent cracking due to a decrease in ductility during rolling, the content is set to 0.04% or less.

【0016】SもPと同様、粒界偏析して圧延時の延性
を害する元素である。その含有量は少ないほど良い。そ
こで、圧延時における延性の低下による割れを防止する
ため、その含有量を0.03%以下とした。
S, like P, is an element that segregates at grain boundaries and impairs ductility during rolling. The smaller the content, the better. Therefore, in order to prevent cracks due to a decrease in ductility during rolling, the content is set to 0.03% or less.

【0017】NはCと同様、本発明鋼の母相の高温強さ
を与え、相安定性に有効な元素であるため、0.20%以下
を含んでもよいが、0.20%を超えて含有すると窒化物を
形成し、靱性に有害であることから、含有量は0.20%以
下とした。
N, like C, imparts the high-temperature strength of the parent phase of the steel of the present invention and is an element effective for phase stability. Therefore, N may contain up to 0.20% or less. A substance is formed and is harmful to the toughness, so the content is set to 0.20% or less.

【0018】Niは、安定なオーステナイト組織を得る
ために必須の元素である。含有量は、他の含有元素、特
にCrとAlとの関係から10%以上を必要とする。一
方、Niの含有量が33%を超えると、オーステナイト安
定化の効果が小さくなり、Ni量を増加してもCr等耐
高温酸化性を向上する元素の含有量を大きく増やすこと
ができなくなるため、含有量は10%以上、33%以下とし
た。
Ni is an essential element for obtaining a stable austenite structure. The content is required to be 10% or more in view of the relationship between other contained elements, particularly, Cr and Al. On the other hand, if the Ni content exceeds 33%, the effect of stabilizing austenite decreases, and even if the Ni content is increased, the content of elements that improve high-temperature oxidation resistance, such as Cr, cannot be greatly increased. The content was set to 10% or more and 33% or less.

【0019】Crは高温での耐酸化性を与える基本元素
として重要である。その含有量が14%未満の場合は、耐
高温酸化性に有効なAlを含有しても800 ℃〜900 ℃に
おいて十分な耐酸化性を得ることができない。一方、28
%を超えて含有するとオーステナイト相の安定性を維持
するために、高価なNiを多量に必要とし経済性を損な
うようになり、しかも耐高温酸化性向上に対する寄与が
小さくなるため、含有量は14%以上、28%以下とした。
[0019] Cr is important as a basic element that provides oxidation resistance at high temperatures. If the content is less than 14%, sufficient oxidation resistance cannot be obtained at 800 ° C. to 900 ° C. even if Al which is effective for high-temperature oxidation resistance is contained. Meanwhile, 28
If the content exceeds 0.1%, a large amount of expensive Ni is required to maintain the stability of the austenite phase, which impairs economic efficiency. In addition, the contribution to the improvement of high-temperature oxidation resistance is reduced, so that the content is 14%. % And 28% or less.

【0020】Alは単独では、酸化環境中でAl2 3
という非常に緻密な酸化物皮膜を形成し、Cr酸化物存
在下ではその中に複合酸化物として含まれて、酸化物の
緻密性を高める。かかる場合の表面保護性は非常に高い
ばかりでなく、繰返し熱応力に対しても剥離を起こしに
くく、優れた耐繰返し高温酸化性を与える元素である。
しかし、Alを3.0 %を超えて含有すると相安定性を維
持するのが困難となる。この知見からAlの含有量は3.
0 %以下とした。
Al alone, in an oxidizing environment, Al 2 O 3
A very dense oxide film is formed, and in the presence of Cr oxide, it is contained therein as a composite oxide to increase the denseness of the oxide. In such a case, the element is not only extremely high in surface protection but also hardly peels off even under repeated thermal stress, and gives excellent resistance to repeated high-temperature oxidation.
However, if the content of Al exceeds 3.0%, it becomes difficult to maintain the phase stability. From this finding, the content of Al is 3.
0% or less.

【0021】Ce,Y,La等の希土類元素はAl2
3 酸化皮膜中に溶け込んで、その高温酸化に対する一般
的耐性を高めるので、これらのうち一種以上を含有して
もよい。含有量は、0.07%を超えて含有すると熱間延性
を害するので、合計量で0.07%以下とした。
Rare earth elements such as Ce, Y and La are Al 2 O
(3) Since it dissolves in the oxide film and increases its general resistance to high-temperature oxidation, it may contain one or more of these. If the content exceeds 0.07%, hot ductility is impaired, so the total content is set to 0.07% or less.

【0022】耐高温酸化性:耐高温酸化性を決定する主
な因子は、Cr、Al、Siの合計の含有量である。耐
高温酸化性はこれらの元素の含有量よりなるR=Cr+
2(Al+Si)なる指標により表すことができ、800
℃〜900 ℃における耐酸化性はRが20.2未満では十分で
ないことを見いだした。すなわち、 R=Cr+2( Al+Si) ≧20.2 −−−(1) を満たすCr、Al、Siの含有が必要である。
High-temperature oxidation resistance: The main factor that determines high-temperature oxidation resistance is the total content of Cr, Al, and Si. The high temperature oxidation resistance is determined by the content of these elements R = Cr +
2 (Al + Si), and 800
It has been found that the oxidation resistance at temperatures between 900C and 900C is not sufficient when R is less than 20.2. That is, it is necessary to contain Cr, Al, and Si satisfying R = Cr + 2 (Al + Si) ≧ 20.2 (1).

【0023】熱間加工性及びオーステナイト相の安定
性:相安定性を決定する主な因子は、Cr当量とNi当
量である。 Cr当量=1.5 Si+3Al+Cr、 Ni当量=0.5 Mn+Ni+30C+30N と表すことができ、これらを用いた下記の(2)式が成
り立つとき、圧延後にフェライト相の存在がなくオース
テナイト単相組織であり、かつ鋼板側端部の割れもほと
んど無いことを見いだした。
Hot workability and austenite phase stability: The main factors determining phase stability are Cr equivalents and Ni equivalents. Cr equivalent = 1.5 Si + 3Al + Cr, Ni equivalent = 0.5 Mn + Ni + 30C + 30N. When the following formula (2) is satisfied using these, there is no austenitic single phase structure after rolling, and an austenitic single phase structure, and a steel sheet side edge We found that there was almost no crack in the part.

【0024】一方、これらの式が成り立たないときに
は、鋼板側端部に著しい割れが発生するか、さらには圧
延後にフェライト相の存在が認められた。鋼板側端部の
割れは歩留まりを低下させるため、経済的に好ましくな
い。圧延後に存在するフェライト相は、800 ℃〜900 ℃
での使用中に脆いσ相に変化し、靱性を著しく低下させ
る。従って、 α=(1.5Si+3 Al+Cr) −(0.5Mn+Ni+30C+30N) <9 −−−(2) を満足する成分系とする必要がある。
On the other hand, when these formulas did not hold, significant cracking occurred at the steel sheet side end, and the presence of a ferrite phase after rolling was recognized. Cracking at the steel sheet side end is not economically desirable because it lowers the yield. The ferrite phase that exists after rolling is 800 ° C to 900 ° C
Changes to a brittle σ phase during use in, and significantly reduces toughness. Therefore, it is necessary that the component system satisfy α = (1.5Si + 3Al + Cr)-(0.5Mn + Ni + 30C + 30N) <9- (2).

【0025】圧延後にフェライト相が存在せずオーステ
ナイト単相組織の場合でも800 ℃〜900 ℃での長時間使
用により脆いσ相が生成する場合がある。このσ相生成
も上記のCr当量とNi当量の関係により表すことがで
き、これらを用いて構成した下記の(3)式が成り立つ
ときに、長時間使用後もσ相が生成しないことを見いだ
した。すなわち、長時間使用後も良好な靱性が保たれ
る。従って、 σ=3.6(1.5 Si+3 Al+Cr) −(0.5Mn+Ni+30C+30N) <70 −−−(3) を満足する成分系とする必要がある。
Even when the ferrite phase does not exist and the austenitic single phase structure is obtained after rolling, a brittle σ phase may be formed by long-time use at 800 ° C. to 900 ° C. The formation of the σ phase can also be expressed by the above-described relationship between the Cr equivalent and the Ni equivalent. When the following equation (3) constituted using these holds, it is found that the σ phase is not generated even after long-time use. Was. That is, good toughness is maintained even after long-term use. Therefore, it is necessary to make the component system satisfying σ = 3.6 (1.5 Si + 3 Al + Cr) − (0.5 Mn + Ni + 30 C + 30 N) <70 (3)

【0026】この鋼は、溶鋼に所定の成分を所定量、単
体又は母合金の形で含有させることにより製造される。
This steel is manufactured by adding a predetermined amount of a predetermined component to a molten steel in the form of a simple substance or a master alloy.

【0027】[0027]

【実施例】次に本発明の実施例について説明する。表1
から表4に検討を行った鋼の化学成分を示す。表中、N
o.1からNo. 21は、Ce,Y,Laを含有していない
本発明の成分範囲を満足する発明鋼種であり、No. 31
からNo. 45は比較鋼種である。また、表中、No. 22
からNo. 29はCe,Y,Laを含有した本発明の成分
範囲を満足する発明鋼種であり、No. 46からNo. 57
は、その比較鋼である。表中には、(1)、(2)、
(3)式でそれぞれ定義される、R,α、σの値も併せ
て示した。
Next, an embodiment of the present invention will be described. Table 1
Table 4 shows the chemical compositions of the steels studied. In the table, N
o.1 to No. 21 are invention steel grades that do not contain Ce, Y, and La and satisfy the component range of the present invention.
No. 45 is a comparative steel grade. In the table, No. 22
No. 29 to No. 29 are invention steel grades containing Ce, Y and La and satisfying the component range of the present invention, and No. 46 to No. 57
Is the comparative steel. In the table, (1), (2),
The values of R, α, and σ, respectively defined by equation (3), are also shown.

【0028】 [0028]

【0029】 [0029]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】これらの鋼に対して、900 ℃での繰返し酸
化試験を行った結果を表5及び表6に示す。繰返し酸化
試験は、20mm×30mm×5mmの腐食試験片を用い、
ムライト管を内管とする環状炉で加熱した。湿度調整シ
ステムにより露点を30℃に加湿・調整した空気中で96時
間均熱後、側壁を水冷した冷却室に移動させて200 ℃以
下まで冷却し、これを1サイクルとして10サイクルの繰
返し加熱を行った。昇温速度、降温速度の実測値は、そ
れぞれ約130 ℃/min,150 ℃/minであった。耐
繰返し酸化性は、試験終了後の試験片をナイロンブラシ
で除塵した後、重量測定し、試験前の重量に対する酸化
減量で評価した。繰返し数(n数)は各鋼種で4とし、
平均値で評価した。個々の試験片間のばらつきはおおむ
ね20〜40%以内であった。
The results of repeated oxidation tests at 900 ° C. for these steels are shown in Tables 5 and 6. The repeated oxidation test uses a corrosion test piece of 20 mm x 30 mm x 5 mm,
It was heated in an annular furnace with a mullite tube as the inner tube. After soaking for 96 hours in air humidified and adjusted to a dew point of 30 ° C with a humidity control system, move the side wall to a water-cooled cooling room to cool it to 200 ° C or less, and repeat this for 10 cycles with this as one cycle. went. The actual measured values of the heating rate and the cooling rate were about 130 ° C./min and 150 ° C./min, respectively. The repetitive oxidation resistance was determined by removing weight of the test piece after the test with a nylon brush, measuring the weight, and evaluating the weight loss by oxidation with respect to the weight before the test. The number of repetitions (n number) is 4 for each steel type,
The average value was evaluated. Variations between individual specimens were generally within 20-40%.

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【表6】 [Table 6]

【0035】耐繰返し酸化特性は、表から判るように、
発明鋼はNo. 1からNo. 21の希土類元素を含有しない
本発明の場合、及びNo. 22からNo. 29の希土類元素
を含有する発明のいずれについても、比較鋼No. 30と
して検討した汎用の18Cr−8Ni系ステンレス鋼(SU
S304H)に比べ1/2以下の腐食減量であり、良好な特性
を示していた。これは、Crの増量により酸化皮膜が安
定になり、さらに酸化皮膜中にAl、希土類元素が含ま
れることにより酸化皮膜の緻密性が増し、酸素の拡散速
度が遅くなって内部保護性が向上するためと考えられ
る。
As can be seen from the table, the repetitive oxidation resistance is as follows:
The invention steels of the present invention not containing the rare earth elements No. 1 to No. 21 and the inventions containing the rare earth elements No. 22 to No. 29 were all used as comparative steel No. 30 18Cr-8Ni stainless steel (SU
The corrosion loss was less than 1/2 that of S304H), indicating good characteristics. This is because the oxide film is stabilized by increasing the amount of Cr, and the denseness of the oxide film is increased due to the inclusion of Al and rare earth elements in the oxide film, and the diffusion rate of oxygen is reduced to improve the internal protection. It is thought to be.

【0036】これに対し、比較鋼No. 32、No. 50、
No. 55においては、Siの含有量が高めであって、酸
化試験の初期に比較的小さい腐食減量を示すものの、2
〜3サイクル目から酸化皮膜剥離が生じはじめ、長期的
には大きな腐食減量を示すようになるのが特徴である。
比較鋼No. 33においては、Mnを多量に含むことによ
り、耐高温酸化性が低下しており、結果として大きな腐
食減量を示している。No. 41、No. 48、No. 54は
Cr+2(Al+Si)の値が20.2に達していないこと
により、また比較鋼No. 37、No. 57はCr+2(A
l+Si)の値は20.2に達しているもののCr量の不足
により、十分な耐高温酸化性が得られていない。
On the other hand, Comparative Steel No. 32, No. 50,
In No. 55, although the content of Si is high and shows relatively small corrosion weight loss at the beginning of the oxidation test,
It is characterized in that the oxide film starts to be peeled off from the third to the third cycle and shows a large corrosion weight loss in the long term.
In Comparative Steel No. 33, the high-temperature oxidation resistance was reduced by containing a large amount of Mn, and as a result, a large corrosion weight loss was exhibited. No. 41, No. 48 and No. 54 show that the value of Cr + 2 (Al + Si) did not reach 20.2, and Comparative Steel No. 37 and No. 57 showed that Cr + 2 (A
Although the value of (l + Si) has reached 20.2, sufficient high-temperature oxidation resistance has not been obtained due to a shortage of Cr.

【0037】次に、圧延時の熱間加工性であるが、圧延
後の板材の耳割れの有無によって加工性評価を行った結
果を表5及び表6に併せて示す。本発明鋼では1200℃加
熱し、仕上温度を900 ℃とした圧延工程において、耳割
れは発生せず、良好な圧延結果が得られた。一方、P
量、S量がそれぞれ多い比較鋼No. 34、No. 35、N
を多量に含有した比較鋼No. 39、希土類元素を過剰に
含有した比較鋼No. 47においては、板端面に著しい耳
割れを生じた。また、(2)式のα値が9以上の比較鋼
No. 40、No. 42、No. 43、No. 52、No. 53も
板端面に耳割れを生じた。
Next, regarding the hot workability during rolling, the results of workability evaluation based on the presence or absence of edge cracks in the rolled sheet material are shown in Tables 5 and 6. In the rolling step of heating the steel of the present invention at 1200 ° C. and setting the finishing temperature to 900 ° C., no edge cracks occurred and good rolling results were obtained. On the other hand, P
Steel No. 34, No. 35, N
In Comparative Steel No. 39 containing a large amount of, and Comparative Steel No. 47 containing an excessive amount of rare earth elements, remarkable edge cracks occurred on the plate end faces. Further, a comparative steel having an α value of 9 or more in equation (2)
No. 40, No. 42, No. 43, No. 52 and No. 53 also had edge cracks on the plate end faces.

【0038】最後に、高温での使用時に問題となる特性
として、組織安定性が重要である。そこでJIS による4
号シャルピー試験片を用い、850 ℃において1000時間時
効し、0℃におけるシャルピー吸収エネルギー測定値を
表5及び表6に併せて示す。発明鋼は0℃における吸収
エネルギーが30J以上と良好で、炭窒化物、金属間化合
物等の生成に起因するような靱性低下は認められない。
Lastly, tissue stability is important as a property that is problematic when used at high temperatures. Therefore JIS 4
Table 5 and Table 6 also show the measured values of the Charpy absorbed energy at 0 ° C using a No. Charpy test piece for aging at 850 ° C for 1000 hours. The invention steel has a good absorption energy at 0 ° C. of 30 J or more, and does not show a decrease in toughness due to the formation of carbonitrides, intermetallic compounds, and the like.

【0039】これに対して、比較鋼No. 31は炭化物の
過剰な析出による靱性劣化が認められた。比較鋼No. 3
6はNi量が不足のため、また比較鋼No. 38と比較鋼
No.49はそれぞれAl量とCr量が過剰のため、σ相
が析出し靱性の低下が認められた。比較鋼No. 40、N
o. 43、No. 44、No. 45、No. 46、No. 50、N
o. 51、No. 53、No. 58は、(3)式のσの値が7
0以上となっているため、長時間の熱処理によりσ値が
析出し靱性の劣化が認められた。比較鋼No. 56は(3)
式のσ値が70未満であるが、Ni量が33%を超えるよう
な多量の含有により得られた値であることからNiの効
果が十分でなく、オーステナイト相の安定性を維持する
ことができず、靱性が劣化している。
On the other hand, in the comparative steel No. 31, deterioration of toughness due to excessive precipitation of carbide was observed. Comparative steel No. 3
No. 6 is a comparative steel No. 38 and a comparative steel
In No. 49, since the Al content and the Cr content were excessive, respectively, a σ phase was precipitated and a decrease in toughness was recognized. Comparative steel No. 40, N
o. 43, No. 44, No. 45, No. 46, No. 50, N
o. 51, No. 53, and No. 58 show that the value of σ in equation (3) is 7
Since it was 0 or more, the σ value was precipitated by the heat treatment for a long time, and deterioration of toughness was recognized. Comparative steel No. 56 is (3)
Although the σ value of the equation is less than 70, the effect of Ni is not sufficient because the Ni content is a value obtained by including a large amount of more than 33%, and the stability of the austenite phase can be maintained. No, the toughness has deteriorated.

【0040】以上の実施例及び比較例から明らかなよう
に、発明鋼の成分設定によれば、高温での耐繰返し酸化
性能の向上が図れ、しかも高温使用時の組織安定性に優
れるため靱性の劣化がなく、かつ圧延製造時の熱間加工
性も優れた、耐熱性ステンレス鋼を得ることができる。
As is clear from the above Examples and Comparative Examples, according to the composition of the invention steel, the repetitive oxidation resistance at high temperatures can be improved, and the structure stability at the time of use at high temperatures is excellent, so that the toughness of the steels is high. A heat-resistant stainless steel having no deterioration and excellent hot workability during rolling production can be obtained.

【0041】[0041]

【発明の効果】本発明によれば、800 ℃〜900 ℃での非
耐圧・非冷却部などの新形式発電プラントに特徴的な使
用条件に耐え得る耐熱性ステンレス鋼を、歩留よく製造
することができる。しかも従来の汎用性ステンレス鋼で
ある18Cr−8Ni系ステンレスより大幅に優れた耐繰
返し酸化性を有するため、プラントの短周期の立ち上
げ、シャットダウンの繰返しによく耐え、長期の使用に
対して良好な組織安定性を示す信頼性の高い部材の製造
に役立つことができる。
According to the present invention, a heat-resistant stainless steel capable of withstanding the operating conditions characteristic of a new type power plant such as a non-pressure-resistant and non-cooled portion at 800 ° C. to 900 ° C. is produced with a good yield. be able to. In addition, since it has remarkably superior oxidation resistance to 18Cr-8Ni stainless steel, which is a conventional general-purpose stainless steel, it withstands repeated startup and shutdown of the plant in a short cycle, and is suitable for long-term use. This can help in producing a reliable member that exhibits tissue stability.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭49−102511(JP,A) 特開 昭59−182956(JP,A) 特開 昭62−202056(JP,A) 特開 昭62−164852(JP,A) 特開 平2−25545(JP,A) 特開 昭62−164854(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-49-102511 (JP, A) JP-A-59-182956 (JP, A) JP-A-62-202056 (JP, A) JP-A-62-202056 164852 (JP, A) JP-A-2-25545 (JP, A) JP-A-62-164854 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38 / 60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記の成分組成を含有する耐繰返し酸化
特性に優れたステンレス鋼(成分組成はwt%であ
る)。 (a)実質的に、 C:0.12%以下、 Si:0.31〜1.0% Mn:2.0%以下、 P:0.04%以下 S:0.03%以下、 Al:0.33〜3.0%、 N:0.2%以下、 Ni:10〜33%、 Cr:14%〜28%を含有し、 残部がFeおよび不可避不純物からなり、 (b)前記成分組成が下記の(1)〜(3)式を満た
す。 R=Cr+2(Al+Si)≧20.2 −−(1) α=(1.5Si+3Al+Cr)−(0.5Mn+Ni+30C+30N)<9 −−(2) σ=3.6(1.5Si+3Al+Cr)−(0.5Mn+Ni+30C+30N)<70 −−(3)
1. A stainless steel having the following component composition and excellent in repeated oxidation resistance (the component composition is wt%). (A) C: 0.12% or less, Si: 0.31 to 1.0% Mn: 2.0% or less, P: 0.04% or less S: 0.03% or less, Al: 0.33 to 3.0% , N: 0.2% or less, Ni : 10 to 33%, Cr: 14% to 28%, the balance being Fe and unavoidable impurities. (B) The component composition satisfies the following formulas (1) to (3). R = Cr + 2 (Al + Si) ≧ 20.2-(1) α = (1.5Si + 3Al + Cr)-(0.5Mn + Ni + 30C + 30N) <9- (2) σ = 3.6 (1.5Si + 3Al + Cr)-(0.5Mn + Ni + 30C + 30N) <70- (3)
【請求項2】 下記の成分組成を含有する耐繰返し酸化
特性に優れたステンレス鋼(成分組成はwt%であ
る)。 (a)実質的に、 C:0.12%以下、 Si:0.31〜1.0% Mn:2.0%以下、 P:0.04%以下 S:0.03%以下、 Al:0.33〜3.0%、 N:0.2%以下、 Ni:10〜33%、 Cr:14%〜28%を含有し、 Ce、Y、Laのうち1種以上を合計含有量として0.07
%以下を含有し、 残部がFeおよび不可避不純物とからなり、 (b)前記成分組成が下記の(1)〜(3)式を満た
す。 R=Cr+2(Al+Si)≧20.2 −−(1) α=(1.5Si+3Al+Cr)−(0.5Mn+Ni+30C+30N)<9 −−(2) σ=3.6(1.5Si+3Al+Cr)−(0.5Mn+Ni+30C+30N)<70 −−(3)
2. A stainless steel having the following component composition and excellent in repeated oxidation resistance (component composition is wt%). (A) C: 0.12% or less, Si: 0.31 to 1.0% Mn: 2.0% or less, P: 0.04% or less S: 0.03% or less, Al: 0.33 to 3.0% , N: 0.2% or less, Ni : 10 to 33%, Cr: 14% to 28%, and at least one of Ce, Y and La as a total content of 0.07
%, And the balance consists of Fe and inevitable impurities. (B) The component composition satisfies the following formulas (1) to (3). R = Cr + 2 (Al + Si) ≧ 20.2-(1) α = (1.5Si + 3Al + Cr)-(0.5Mn + Ni + 30C + 30N) <9- (2) σ = 3.6 (1.5Si + 3Al + Cr)-(0.5Mn + Ni + 30C + 30N) <70- (3)
JP12989494A 1994-05-20 1994-05-20 Stainless steel with excellent oxidation resistance Expired - Fee Related JP3149687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12989494A JP3149687B2 (en) 1994-05-20 1994-05-20 Stainless steel with excellent oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12989494A JP3149687B2 (en) 1994-05-20 1994-05-20 Stainless steel with excellent oxidation resistance

Publications (2)

Publication Number Publication Date
JPH07316751A JPH07316751A (en) 1995-12-05
JP3149687B2 true JP3149687B2 (en) 2001-03-26

Family

ID=15020998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12989494A Expired - Fee Related JP3149687B2 (en) 1994-05-20 1994-05-20 Stainless steel with excellent oxidation resistance

Country Status (1)

Country Link
JP (1) JP3149687B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299506B2 (en) * 2002-07-12 2009-07-22 日新製鋼株式会社 Austenitic stainless steel for equipment that exchanges heat at 500-1000 ° C
JP5797461B2 (en) * 2011-06-02 2015-10-21 日本冶金工業株式会社 Stainless steel and manufacturing method thereof
SG11201805206PA (en) 2016-01-05 2018-07-30 Nippon Steel & Sumitomo Metal Corp Austenitic heat resistant alloy and method for producing the same

Also Published As

Publication number Publication date
JPH07316751A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
JPS648695B2 (en)
JP5012243B2 (en) Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
JP3480061B2 (en) High Cr ferritic heat resistant steel
JP2013199663A (en) Austenitic stainless steel excellent in molten nitrate corrosion resistance, heat collection tube and heat accumulation system using molten nitrate as heat accumulation medium
JPWO2002063056A1 (en) Steel and air preheater with excellent sulfuric acid dew point corrosion resistance
JP2009197307A (en) Ferritic stainless steel excellent in high-temperature strength, water-vapor-oxidizing resistance, and workability
JP2002241900A (en) Austenitic stainless steel having excellent sulfuric acid corrosion resistance and workability
JP2009007601A (en) Ferritic stainless steel member for heat collection apparatus
JP7270444B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2002235154A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2002524658A (en) Improved high temperature corrosion resistant alloy
JP3149687B2 (en) Stainless steel with excellent oxidation resistance
JP5866628B2 (en) Ferritic stainless steel with excellent secondary workability and Cr evaporation resistance
JPH09324246A (en) Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance
CN1078628C (en) Austenitic stainless steel and use of steel
CN1093887C (en) Austenitic stainless steel with good oxidation resistance
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger
JP2004269986A (en) Stainless steel thin sheet
JP3298365B2 (en) Austenitic stainless steel for high-temperature welding equipment
JP3858456B2 (en) Austenitic stainless steel excellent in sulfuric acid dew point corrosion resistance and method for producing the same
JP3531228B2 (en) High Cr ferritic heat resistant steel
JPH06264169A (en) High-temperature resisting and corrosion resisting ni-cr alloy
JPH08337850A (en) Austenitic stainless steel for welding structural high temperature apparatus
JP3196587B2 (en) High Cr ferritic heat resistant steel
JP4256614B2 (en) High chromium-high nickel heat resistant alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees