JPH08337850A - Austenitic stainless steel for welding structural high temperature apparatus - Google Patents

Austenitic stainless steel for welding structural high temperature apparatus

Info

Publication number
JPH08337850A
JPH08337850A JP14466095A JP14466095A JPH08337850A JP H08337850 A JPH08337850 A JP H08337850A JP 14466095 A JP14466095 A JP 14466095A JP 14466095 A JP14466095 A JP 14466095A JP H08337850 A JPH08337850 A JP H08337850A
Authority
JP
Japan
Prior art keywords
less
stainless steel
steel
austenitic stainless
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14466095A
Other languages
Japanese (ja)
Inventor
Minoru Suwa
稔 諏訪
Hideto Kimura
秀途 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14466095A priority Critical patent/JPH08337850A/en
Publication of JPH08337850A publication Critical patent/JPH08337850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To impart oxidation resistance at a high temp., structural stability for a long time and weldability to a steel by specifying value expressed by αin a Cr-Ni austenitic stainless steel having a specified compsn. contg. Al. CONSTITUTION: The compsn. of an austenitic stainless steel for welding structural high temp. apparatus is composed of the one contg., by weight, <=0.12% C, <=1.0% Si, <=5.0% Mn, <=0.04% P, <=0.03% S, 14 to 22% Cr, 10 to 25% Ni, 1.0 to 3.5% Al, <=0.02% N, 0.001 to 0.010% Ca, 0 to 0.05% Mg, Y, La and Ce by 0 to 0.07% in total, and the balance Fe with inevitable impurities, and also, the conditions of α=(1.5Si+Cr+3Al)-(0.5Mn+Ni+30C+30N)<9 are satisfied. Thus, the heat resistant austenitic stainless steel capable of withstanding using conditions characteristic of new type power plants such as nonpressure withstanding and noncooling parts at 800 to 900 deg.C can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火力発電用ボイラにお
ける非耐圧・非冷却部材等に代表される組織安定性が要
求される溶接構造高温機器部材用の耐熱オーステナイト
系ステンレス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant austenitic stainless steel for a welded high-temperature equipment member requiring structural stability represented by a non-pressure resistant non-cooling member in a thermal power generation boiler.

【0002】[0002]

【従来の技術】近年高温プラント技術の進歩に伴い、新
形式の複合発電プラント、すなわち石炭ガス化複合プラ
ント、PFBC(Pressurised Fluid
ized Bed Combustion、即ち、加圧
流動床燃焼)発電システム、トッピングサイクル等が提
案され、試験プラントの運転も行われている。これらの
新形式プラントにおいては、従来形式のボイラと異なり
蒸気管以外にも高温に曝される非冷却部材の範囲が大幅
に拡大され、最高900℃程度で使用可能な非冷却部材
用の耐熱鋼も新たに求められている。
2. Description of the Related Art With the progress of high temperature plant technology in recent years, a new type of combined cycle power plant, namely, coal gasification combined plant, PFBC (Pressurized Fluid)
An sized bed combustion (pressurized fluidized bed combustion) power generation system, a topping cycle, etc. have been proposed, and a test plant is also being operated. In these new type plants, unlike conventional type boilers, the range of non-cooling members exposed to high temperatures other than steam pipes has been greatly expanded, and heat-resistant steel for non-cooling members that can be used at a maximum of about 900 ° C Is also newly demanded.

【0003】従来、高温部材用としては高温強度を主眼
とした鋼種開発がさかんに行われ、18Cr−8Ni系
ステンレス鋼がチューブ材として多用されている。その
主流はJIS SUS304H(18Cr−10Ni−
C)であり、更に、これにTiを加えたJIS SUS
321Hなどがあり、基本的には長期の安定性があると
されている18−8系で対応が可能であった。
[0003] Conventionally, for high temperature members, steel grades have been intensively developed with a focus on high temperature strength, and 18Cr-8Ni type stainless steel is often used as a tube material. The mainstream is JIS SUS304H (18Cr-10Ni-
C), and JIS SUS with Ti added to it.
321H and the like, and basically it was possible to cope with the 18-8 system, which is said to have long-term stability.

【0004】[0004]

【発明が解決しようとする課題】しかし、一般に新形式
プラントにおける非冷却部等の部位は、使用温度が高
く、圧力容器中に格納される非耐圧部材として設計され
ている場合でも使用できる鋼種がほとんど見あたらな
い。
However, in general, the parts such as the non-cooling part in a new-type plant have a high operating temperature, and there are steel types that can be used even when they are designed as non-pressure resistant members to be stored in a pressure vessel. I can hardly find it.

【0005】このような用途に対して18−8系を適用
しようとする場合には、特開昭53−63210号公報
などに開示されているように、耐高温酸化性を改善する
元素であるAl、Siを含有させたCr−Ni系ステン
レス鋼を適用することも考えられる。しかし、こうした
鋼種は、一定の構造強度が必要なプラント内構造部材と
しては、長時間相安定性の維持、溶接性という点におい
て配慮が十分とはいえない。
When the 18-8 system is applied to such applications, it is an element which improves high temperature oxidation resistance, as disclosed in JP-A-53-63210. It is also conceivable to apply Cr-Ni type stainless steel containing Al and Si. However, such steel grades cannot be said to be sufficient in terms of maintaining long-term phase stability and weldability as a structural member in a plant requiring a certain structural strength.

【0006】また、特開平6−271992号公報には
耐酸化性が考慮された高Al含有鋼が開示されている。
しかし、ここに開示されている鋼は耐酸化性は考慮され
ているものの、長時間相安定性の維持、溶接性という点
において配慮が十分とはいえない。
Further, Japanese Unexamined Patent Publication No. 6-271992 discloses a high Al content steel in consideration of oxidation resistance.
However, although the steel disclosed herein takes into consideration the oxidation resistance, it cannot be said that consideration is sufficient in terms of maintaining long-term phase stability and weldability.

【0007】一方、現在かかる目的のために用いられよ
うとしているJIS SUS310Sに代表される高価
な25Cr−20Ni系のオーステナイト系ステンレス
耐熱鋼は、800〜900℃における200〜700時
間の使用で容易にシグマ相を析出し、定期点検時にハン
マリングしただけでひび割れを生じることが危惧されて
いる。また、溶接時の高温割れ感受性が高いことも問題
である。
On the other hand, the expensive 25Cr-20Ni austenitic stainless heat-resisting steel represented by JIS SUS310S, which is about to be used for the above purpose, can be easily used at 800 to 900 ° C. for 200 to 700 hours. It is feared that the sigma phase will precipitate and cracking will occur just by hammering during the periodic inspection. Another problem is the high sensitivity to hot cracking during welding.

【0008】したがって、現在の高温用技術において
は、このような耐高温酸化性、長時間相安定性、溶接性
という3点を同時に満足する合金設計指針の確立が強く
望まれている。
Therefore, in the current high temperature technology, it is strongly desired to establish an alloy design guideline that simultaneously satisfies the three points of high temperature oxidation resistance, long-term phase stability and weldability.

【0009】本発明はかかる事情に鑑みてなされたもの
であって、800℃〜900℃での耐酸化性と長時間の
組織安定性、及び溶接性に優れた溶接構造高温機器用オ
ーステナイト系ステンレス鋼を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and is an austenitic stainless steel for welding high temperature equipment excellent in oxidation resistance at 800 ° C. to 900 ° C., long-term microstructure stability, and weldability. Intended to provide steel.

【0010】[0010]

【課題を解決するための手段】発明者らは、まず耐高温
酸化性を向上させる元素として安価なAl、Siを選定
し、800℃〜900℃で長時間加熱を受けた場合の相
安定性について、脆いシグマ相析出に及ぼす影響を調査
した。一般にオーステナイト系ステンレス鋼の圧延時の
デルタフェライト抑制、あるいはデルタフェライト量に
ついては、例えばde Longが1960年にMet
al Progressにおいて提唱したような、Cr
当量、Ni当量の概念が用い得ることを見出した。ただ
し、シグマ相析出量の予測等には上記式をそのまま用い
ることはできなかった。すなわち、Cr−Ni系ステン
レス鋼においては、図1に示す状態図上においては、シ
グマ相の析出領域はデルタフェライトの析出領域よりも
広い、換言すれば、シグマ相の析出を抑制するためには
デルタフェライトの析出を抑制するよりも多量に高価な
Niを添加しなければならないことが実験的に明らかに
なった。
Means for Solving the Problems The inventors first selected inexpensive Al and Si as elements for improving high temperature oxidation resistance, and phase stability when subjected to heating at 800 ° C. to 900 ° C. for a long time. Was investigated for its influence on brittle sigma phase precipitation. In general, regarding the suppression of delta ferrite during rolling of austenitic stainless steel, or the amount of delta ferrite, de Long reported in 1960, Met.
Cr, as proposed in al Progress
It has been found that the concept of equivalent weight, Ni equivalent weight can be used. However, the above equation could not be used as it is for predicting the amount of sigma phase precipitation. That is, in the Cr-Ni-based stainless steel, in the state diagram shown in FIG. 1, the precipitation region of the sigma phase is wider than the precipitation region of the delta ferrite. In other words, in order to suppress the precipitation of the sigma phase, It has been empirically revealed that a large amount of expensive Ni must be added to suppress the precipitation of delta ferrite.

【0011】また、Si添加系について実験を行ったと
ころ、図1の状態図におけるシグマ相の析出領域は、S
i無添加のCr−Ni系ステンレス鋼に比べ拡大するこ
とが明らかになった。ところが、Alを含有する系にお
いては、Alのシグマ相生成能がデルタフェライト生成
能に比べて小さいことから、図1の状態図上ではシグマ
相析出領域はAl無添加系に比べ縮小し、デルタフェラ
イト析出領域とほぼ等しくなることを新たに見い出し
た。
Further, when an experiment was conducted on a Si-added system, it was found that the sigma phase precipitation region in the state diagram of FIG.
It was clarified that it expands as compared with Cr-Ni-based stainless steel containing no i. However, in the system containing Al, the sigma phase forming ability of Al is smaller than the delta ferrite forming ability. Therefore, the sigma phase precipitation region in the phase diagram of FIG. It was newly found that it is almost equal to the ferrite precipitation area.

【0012】すなわち、耐酸化性向上元素としてAlを
添加した場合、下記(1)式が成り立つ成分範囲におい
て、圧延時のデルタフェライトの析出と800℃〜90
0℃で長時間加熱を受けた場合のシグマ相の析出の両方
を抑制できることを見出した。
That is, when Al is added as an oxidation resistance improving element, precipitation of delta ferrite during rolling and 800 ° C. to 90 ° C. within the range of components in which the following formula (1) is satisfied.
It has been found that both precipitation of sigma phase when heated for a long time at 0 ° C. can be suppressed.

【0013】 α=(1.5Si+Cr+3Al)−(0.5 Mn+Ni+30C+30N)<9 …(1) なお、圧延時のデルタフェライトの析出抑制により、圧
延時の耳割れを防止でき、歩留り向上にもつながる。
Α = (1.5Si + Cr + 3Al) − (0.5Mn + Ni + 30C + 30N) <9 (1) By suppressing the precipitation of delta ferrite during rolling, ear cracks during rolling can be prevented and the yield can be improved.

【0014】次に、溶接性については、高温割れ感受性
を抑制する手段を種々検討した。一般にオーステナイト
系ステンレス鋼の高温割れ感受性は、凝固時に数%のデ
ルタフェライトを存在させることにより低下させること
ができる。しかし、耐酸化性を高めるために、Cr量を
増加させるとシグマ相析出を抑制するために、オーステ
ナイト相の安定性をデルタフェライトに対して過剰に高
めなければならず、凝固時に完全にオーステナイト凝固
となってしまい、高温割れ感受性を高めてしまう。ま
た、Si量を増加させた場合は、さらにシグマ相析出抑
制のためにNi当量を増加させなければならず、高温割
れ感受性を高めてしまう。
Next, regarding weldability, various means for suppressing hot cracking susceptibility were examined. Generally, the hot cracking susceptibility of austenitic stainless steel can be reduced by the presence of several% of delta ferrite during solidification. However, the stability of the austenite phase must be increased excessively with respect to the delta ferrite in order to suppress the sigma phase precipitation when the Cr content is increased in order to increase the oxidation resistance, and the austenite solidification is completely completed during solidification. And increase the sensitivity to hot cracking. Further, when the Si amount is increased, the Ni equivalent must be further increased in order to further suppress the sigma phase precipitation, and the hot cracking susceptibility is increased.

【0015】ところが、Alは、デルタフェライト生成
能に対してシグマ相生成能が低いため、シグマ相析出抑
制のためにデルタフェライトに対するオーステナイト相
の安定性を過剰に高める必要がない。すなわち、Alを
含有する系においては、シグマ相の析出を十分抑制でき
るだけNi当量を高めてオーステナイト相を安定化して
も、溶接部の凝固時においてはデルタフェライトが存在
し、溶接部の高温割れ感受性を極めて低く抑制できるこ
とが判明した。
However, since Al has a low sigma phase forming ability with respect to delta ferrite forming ability, it is not necessary to excessively increase the stability of the austenite phase with respect to delta ferrite in order to suppress sigma phase precipitation. That is, in the system containing Al, even if the Ni equivalent is increased to stabilize the austenite phase as much as possible to sufficiently suppress the precipitation of the sigma phase, delta ferrite is present during the solidification of the weld, and the hot crack sensitivity of the weld is high. It has been found that can be suppressed to an extremely low level.

【0016】本発明はこのような知見に基づいてなされ
たものであって、第1に、重量%で、C:0.12%以
下、 Si:1.0%以下、Mn:5.0%以下、
P:0.04%以下、S:0.03%以下、 C
r:14%〜22%、Ni:10%〜25%、 Al:
1.0%〜3.5%、N:0.02%以下、 Ca:
0.001%〜0.010%、Mg:0%〜0.05%
(無添加の場合も含む)、Y、La、Ceを合計含有量
として0〜0.07%(無添加の場合も含む)を含有
し、残部がFeおよび不可避不純物からなり、かつ以下
の(1)式を満たすことを特徴とする溶接構造高温機器
用オーステナイト系ステンレス鋼を提供するものであ
る。
The present invention has been made on the basis of such findings. Firstly, in% by weight, C: 0.12% or less, Si: 1.0% or less, Mn: 5.0%. Less than,
P: 0.04% or less, S: 0.03% or less, C
r: 14% to 22%, Ni: 10% to 25%, Al:
1.0% to 3.5%, N: 0.02% or less, Ca:
0.001% to 0.010%, Mg: 0% to 0.05%
(Including the case of no addition), Y, La, and Ce as a total content of 0 to 0.07% (including the case of no addition), the balance consisting of Fe and inevitable impurities, and The present invention provides an austenitic stainless steel for welded high temperature equipment, characterized by satisfying the formula (1).

【0017】 α=(1.5Si+Cr+3Al)−(0.5 Mn+Ni+30C+30N)<9 …(1) 第2に、重量%で、C:0.12%以下、 Si:
1.0%以下、Mn:5.0%以下、 P:0.04
%以下、S:0.03%以下、 Cr:14%〜22
%、Ni:10%〜25%、 Al:1.0%〜3.5
%、N:0.02%以下、 Ca:0.001%〜
0.010%、Mg:0%〜0.05%(無添加の場合
も含む)、Y、La、Ceを合計含有量として0〜0.
07%(無添加の場合も含む)を含有し、さらに、T
i:0.01%〜0.5%、V:0.01%〜1.0
%、Nb:0.01%〜1.0%の1種または2種以
上、B:0%〜0.03%(無添加の場合も含む)、お
よびZr:0%〜0.3%(無添加の場合も含む)を含
有し、残部がFeおよび不可避不純物からなり、かつ以
下の(1)式を満たすことを特徴とする溶接構造高温機
器用オーステナイト系ステンレス鋼を提供するものであ
る。 α=(1.5Si+Cr+3Al)−(0.5 Mn+Ni+30C+30N)<9 …(1)
Α = (1.5Si + Cr + 3Al) − (0.5Mn + Ni + 30C + 30N) <9 (1) Secondly, in weight%, C: 0.12% or less, Si:
1.0% or less, Mn: 5.0% or less, P: 0.04
% Or less, S: 0.03% or less, Cr: 14% to 22
%, Ni: 10% to 25%, Al: 1.0% to 3.5
%, N: 0.02% or less, Ca: 0.001% to
0.010%, Mg: 0% to 0.05% (including the case of no addition), Y, La, and Ce as a total content of 0 to 0.
07% (including the case of no addition),
i: 0.01% to 0.5%, V: 0.01% to 1.0
%, Nb: 1% or more of 0.01% to 1.0%, B: 0% to 0.03% (including the case of no addition), and Zr: 0% to 0.3% ( The present invention provides an austenitic stainless steel for welded high-temperature equipment, characterized in that it contains (including the case of no addition), the balance consists of Fe and unavoidable impurities, and satisfies the following formula (1). α = (1.5Si + Cr + 3Al)-(0.5Mn + Ni + 30C + 30N) <9 (1)

【0018】[0018]

【作用】以下、本発明に係るステンレス鋼において各成
分を含有させた理由およびその範囲を限定した理由を述
べる。 C: Cは本発明鋼の母相の高温強さを与え、相安定性
に有効な元素であるが、0.12%を超えて含有する
と、結晶粒内を縦断する形で粗大な炭化物が析出するの
で、その含有量を0.12%以下とした。
The reason why each component is contained in the stainless steel according to the present invention and the range thereof is limited will be described below. C: C gives the high temperature strength of the parent phase of the steel of the present invention, and is an element effective for phase stability. However, when it is contained in excess of 0.12%, coarse carbides are formed in the form of longitudinal cuts within the crystal grains. Since it precipitates, its content was set to 0.12% or less.

【0019】Si: Siは脱酸に有効な元素であるた
め1.0%以下を含んでもよいが、1.0%を超えて含
有すると、シグマ相の生成能が大きく相安定性を維持す
るのが困難となるため、さらに溶接時の高温割れ感受性
を高めるため、その含有量を1.0%以下とした。
Si: Si is an element effective for deoxidation, so Si may be contained in an amount of 1.0% or less, but if it is contained in excess of 1.0%, the sigma phase forming ability is large and the phase stability is maintained. Therefore, the content thereof is set to 1.0% or less in order to further increase the hot crack sensitivity during welding.

【0020】Mn: Mnは相安定性に有効な元素であ
るため5.0%以下であればよいが、5.0%を超えて
含有すると耐高温腐食性に有害となるので、含有量を
5.0%以下とした。
Mn: Since Mn is an element effective for phase stability, it may be 5.0% or less, but if it is contained in excess of 5.0%, it becomes harmful to the high temperature corrosion resistance. It was set to 5.0% or less.

【0021】P: Pは粒界偏析して圧延時の延性を害
する元素であって、その含有量は少ないほど良い。そこ
で、圧延時における延性の低下による割れを防止するた
め、その含有量を0.04%以下とした。
P: P is an element that segregates at grain boundaries and impairs ductility during rolling, and the smaller the content, the better. Therefore, in order to prevent cracking due to a decrease in ductility during rolling, its content is set to 0.04% or less.

【0022】S: SもP同様に、粒界偏析して圧延時
の延性を害する元素である。その含有量は少ないほど良
い。そこで、圧延時における延性の低下による割れを防
止するため、その含有量を0.03%以下とした。
S: S, like P, is an element that segregates at the grain boundaries and impairs ductility during rolling. The smaller the content, the better. Therefore, in order to prevent cracking due to a decrease in ductility during rolling, its content is set to 0.03% or less.

【0023】Cr: Crは高温での耐酸化性を与える
基本元素として重要である。その含有量が14%未満の
場合は、耐高温酸化性に有効なAlを含有しても800
℃〜900℃において耐高温酸化性の大幅な向上を得る
ことができない。一方、22%を超えて含有するとオー
ステナイト相の安定性を維持するために、高価なNiを
多量に必要とし経済性を損なうようになり、しかも耐高
温酸化性向上に対する寄与が小さくなる。したがって、
Cr含有量を14〜22%とした。
Cr: Cr is important as a basic element that imparts oxidation resistance at high temperatures. If its content is less than 14%, it is 800 even if it contains Al effective for high temperature oxidation resistance.
It is not possible to obtain a significant improvement in high temperature oxidation resistance in the range of ℃ to 900 ℃. On the other hand, if the content exceeds 22%, a large amount of expensive Ni is required to maintain the stability of the austenite phase, which impairs the economical efficiency, and also contributes little to the improvement in high temperature oxidation resistance. Therefore,
The Cr content was 14 to 22%.

【0024】Ni: Niは、安定なオーステナイト組
織を得るために必須な元素である。その含有量は、他の
含有元素、特にCrとAlとの関係から10%以上を必
要とする。一方、Niの含有量が25%を超えると、オ
ーステナイト安定化の効果が小さくなり、Ni量を増加
してもCr等の耐高温酸化性を向上する元素を大きく増
やすことができなくなる。また、Ni量を過剰に多くす
ると、フェライト相に対するオーステナト相の安定性が
過剰に高くなり、溶接時の高温割れ感受性を高めてしま
う。これらのため、Ni含有量を10〜25%とした。
Ni: Ni is an essential element for obtaining a stable austenite structure. The content thereof needs to be 10% or more in view of the relationship between other contained elements, particularly Cr and Al. On the other hand, if the Ni content exceeds 25%, the effect of stabilizing the austenite becomes small, and even if the Ni content is increased, it is impossible to greatly increase the elements such as Cr that improve the high temperature oxidation resistance. Further, if the amount of Ni is excessively increased, the stability of the austenato phase with respect to the ferrite phase becomes excessively high, and the hot cracking susceptibility at the time of welding is increased. Therefore, the Ni content is set to 10 to 25%.

【0025】Al: Alは単独では、酸化環境中でA
23 という非常に緻密な酸化物被膜を形成し、Cr
酸化物存在下ではその中に複合酸化物として含まれて、
酸化物の緻密性を高める。かかる場合の表面保護性は非
常に高く、優れた耐高温酸化性を与える元素である。し
かし、この耐高温酸化性の向上はAl量が1.0%未満
の場合は、ある程度の効果があるものの、大幅な効果は
みとめられない。ところが、Al量が1.0%以上にな
ると、耐高温酸化性は大幅に向上する。しかし、Alを
3.5%を超えて含有すると相安定性を維持するのが困
難となる。このためAlの含有量を1.0〜3.5%と
した。
Al: Al alone forms A in an oxidizing environment.
l 2 O 3 forms a very dense oxide film,
In the presence of oxide, it is contained as a complex oxide in it,
Improves oxide compactness. In such a case, the surface protection property is very high, and it is an element that gives excellent high temperature oxidation resistance. However, if the Al content is less than 1.0%, this improvement in high-temperature oxidation resistance has some effect, but a significant effect cannot be observed. However, when the Al content is 1.0% or more, the high temperature oxidation resistance is significantly improved. However, if Al exceeds 3.5%, it becomes difficult to maintain phase stability. Therefore, the content of Al is set to 1.0 to 3.5%.

【0026】N: NはCと同様に、本発明鋼の母相の
高温強さを与え、相安定性に有効な元素であるため、
0.02%以下を含んでもよいが、0.02%を超えて
含有すると窒化物を形成し、靭性に有害であることか
ら、Nの含有量を0.02%以下とした。
N: Similar to C, N gives the high temperature strength of the parent phase of the steel of the present invention and is an element effective for phase stability.
The content of N may be 0.02% or less, but if it exceeds 0.02%, a nitride is formed and it is harmful to the toughness, so the content of N is set to 0.02% or less.

【0027】Ca: Caは微量添加することにより熱
間加工性を改善する元素として有効であるが、0.00
1%未満ではその効果が十分でなく、0.010%を超
えると清浄性を損ない熱間加工性が低下するため、Ca
含有量を0.001〜0.010%とした。
Ca: Ca is effective as an element for improving hot workability by adding a trace amount, but 0.00
If it is less than 1%, the effect is not sufficient, and if it exceeds 0.010%, the cleanability is impaired and the hot workability is deteriorated, so Ca
The content was set to 0.001 to 0.010%.

【0028】Mg: Mgは微量添加することにより熱
間加工性を改善する元素として有効であるが、0.05
%を超えると熱間加工性を低下させるため、その含有量
を0.05%以下とした。また、Caと同様の効果を有
するため、無添加の場合も含むことにした。
Mg: Mg is effective as an element for improving hot workability by adding a trace amount, but 0.05
%, The hot workability deteriorates, so the content was made 0.05% or less. Moreover, since it has the same effect as Ca, it is decided to include the case of no addition.

【0029】Y、La、Ce: 希土類元素であるY、
La、CeはAl23 酸化被膜中に溶け込んで、その
高温酸化に対する一般的耐性を高めるので、これらのう
ち一種以上を含有してもよい。これらが合計で0.07
%を超えて含有すると熱間加工性を害するので、これら
含有量を合計量で0.07%以下とした。また、これら
は必要に応じて添加されるものであるから、無添加の場
合も含むことにした。
Y, La, Ce: Y which is a rare earth element,
La and Ce dissolve in the Al 2 O 3 oxide film and increase the general resistance to high temperature oxidation, so one or more of these may be contained. These are 0.07 in total
%, The hot workability is impaired, so the total content is made 0.07% or less. Moreover, since these are added as needed, it is decided to include the case of no addition.

【0030】Ti、V、Nb: Ti、V、Nbは、炭
窒化物として微細に分散析出し、もって高温強度の改善
に寄与するが、それぞれ0.01%以下ではその効果が
十分ではない。また、過剰に添加すると、溶体化熱処理
後に未固溶のTi、V、Nbの炭窒化物の量が増加し高
温強度を害するようになり、さらに溶接性も低下させる
ことになるので、これらの含有量をTiが0.01〜
0.5%以下、Vが0.01〜1.0%以下、Nbが
0.01〜1.0%以下とし、必要に応じてこれらの1
種または2種以上含有させることとした。
Ti, V, Nb: Ti, V, Nb finely disperse and precipitate as carbonitrides and contribute to the improvement of high temperature strength. However, if each of them is 0.01% or less, the effect is not sufficient. Further, if added excessively, the amount of undissolved carbonitrides of Ti, V, and Nb after solution heat treatment increases, which impairs high-temperature strength, and further deteriorates weldability. The content of Ti is 0.01 to
0.5% or less, V is 0.01 to 1.0% or less, and Nb is 0.01 to 1.0% or less.
Seed or two or more kinds are included.

【0031】B、Zr: B、Zrは、粒界を強化し高
温強度特性を改善するのに有効な元素であるが、過剰に
添加すると溶接性を劣化させるので、Bは0.03%以
下、Zrは0.30%以下とした。また、これらは必要
に応じて添加されるものであるから、無添加の場合も含
むことにした。
B, Zr: B and Zr are effective elements for strengthening grain boundaries and improving high temperature strength characteristics, but if added in excess, the weldability deteriorates, so B is 0.03% or less. , Zr was 0.30% or less. Moreover, since these are added as needed, it is decided to include the case of no addition.

【0032】次に、αの限定理由について説明する。耐
シグマ脆性、熱間加工性、溶接性に影響を及ぼすオース
テナイト相とシグマ相またはフェライト相との相対的な
安定性を決定する主な因子は、Cr当量とNi当量の関
係である。これらはそれぞれ以下のような式で示され
る。
Next, the reason for limiting α will be described. The main factor that determines the relative stability of the austenite phase and the sigma or ferrite phase that affects sigma brittleness resistance, hot workability, and weldability is the relationship between the Cr equivalent and the Ni equivalent. Each of these is expressed by the following equations.

【0033】Cr当量=1.5Si+Cr+3Al Ni当量=0.5Mn+Ni+30C+30N 本発明者らはこれらCr当量およびNi当量を用いた下
記の(1)式が成り立つときに、800℃〜900℃で
の長時間使用後も脆いシグマ相の析出がほとんど無いこ
と、すなわち、長時間使用しても良好な靭性が保たれる
ことを見出した。また、同時に(1)式が成り立つと
き、圧延後のフェライト相の存在がなくオーステナイト
単相組織であり、鋼板端部の割れもほとんど無いことを
見出した。鋼板端部の割れは歩留りを低下させるため経
済的に好ましくない。したがって、以下の(1)式を満
足することを要件とした。
Cr equivalent = 1.5 Si + Cr + 3Al Ni equivalent = 0.5 Mn + Ni + 30C + 30N When the following formula (1) using these Cr equivalent and Ni equivalent is satisfied, the present inventors use it for a long time at 800 ° C. to 900 ° C. It was found that even after that, there was almost no precipitation of brittle sigma phase, that is, good toughness was maintained even after long-term use. Further, at the same time, it was found that when the formula (1) is satisfied, there is no ferrite phase after rolling, the structure is an austenite single-phase structure, and there is almost no cracking at the edges of the steel sheet. Cracking at the edges of the steel plate reduces the yield and is not economically preferable. Therefore, the requirement is to satisfy the following expression (1).

【0034】 α=(1.5Si+Cr+3Al)−(0.5 Mn+Ni+30C+30N)<9 …(1) なお、溶接性の観点からは、フェライト相に対するオー
ステナイト相の安定性を過剰に高めると、高温割れ感受
性を高めてしまうことになるため、(1)式の左辺の値
はできるだけ大きくなるような成分系とすることが好ま
しい。
Α = (1.5Si + Cr + 3Al) − (0.5Mn + Ni + 30C + 30N) <9 (1) From the viewpoint of weldability, if the stability of the austenite phase with respect to the ferrite phase is excessively increased, the hot cracking susceptibility will be increased. Therefore, it is preferable to use a component system in which the value on the left side of Expression (1) is as large as possible.

【0035】なお、上記のように規定される本発明のオ
ーステナイト系ステンレス鋼は、溶鋼に所定の成分を所
定量、単体または母合金の形で含有させることにより製
造される。
The austenitic stainless steel of the present invention defined as described above is manufactured by containing a predetermined amount of predetermined components in molten steel in the form of a simple substance or a master alloy.

【0036】[0036]

【実施例】次に本発明の実施例について説明する。表1
と表2に本実施例で用いた鋼の化学組成を示す。表1の
No.1からNo.15は上記第1発明の組成範囲を満
足する発明鋼であり、またNo.16からNo.25は
上記第2発明の成分範囲を満足する発明鋼である。一
方、表2のNo.26からNo.52は比較鋼である。
両表中には、(1)式で定義されるαの値も併せて示し
た。
EXAMPLES Next, examples of the present invention will be described. Table 1
Table 2 shows the chemical composition of the steel used in this example. No. of Table 1 1 to No. No. 15 is an invention steel satisfying the composition range of the first invention, and No. 15 16 to No. No. 25 is an invention steel satisfying the composition range of the second invention. On the other hand, No. 26 to No. 52 is a comparative steel.
In both tables, the value of α defined by the formula (1) is also shown.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】これらの鋼に対して、900℃での酸化試
験を行った結果を表3と表4に示す。酸化試験は、20
mm×30mm×5mmの腐食試験片を用い、ムライト
管を内管とする環状炉で加熱した。湿度調整システムに
より露点を30℃に加湿・調整した空気中で240時間
均熱後、側壁を水冷した冷却室に移動させて室温まで冷
却した。昇温速度、降温速度の実測値は、それぞれ約1
30℃/min、150℃/minであった。耐酸化性
は、試験終了後の試験片を5%KMnO4 +18%Na
OH水溶液と10%クエン酸2アンモニウム水溶液で脱
スケールした後、重量測定し、試験前の重量に対する酸
化減量で評価した。繰返し数(n数)は各鋼種で3と
し、平均値で評価した。個々の試験片間のばらつきはお
おむね10〜50%以内であった。
The results of an oxidation test at 900 ° C. for these steels are shown in Tables 3 and 4. The oxidation test is 20
A corrosion test piece of mm × 30 mm × 5 mm was used and heated in an annular furnace having a mullite tube as an inner tube. After soaking in air whose dew point was humidified and adjusted to 30 ° C. by a humidity control system for 240 hours, the side wall was moved to a water-cooled cooling chamber and cooled to room temperature. The measured values of the temperature rising rate and the temperature falling rate are about 1 each.
It was 30 ° C./min and 150 ° C./min. The oxidation resistance is 5% KMnO 4 + 18% Na for the test piece after the test.
After descaling with an OH aqueous solution and a 10% diammonium citrate aqueous solution, the weight was measured, and the weight loss before the test was evaluated by oxidation weight loss. The number of repetitions (n number) was 3 for each steel type, and the average value was evaluated. The variation between individual test pieces was generally within 10 to 50%.

【0040】これらの表からわかるように、No.1か
らNo.25の発明鋼は、比較鋼No.26として実験
した汎用の18Cr−8Ni系ステンレス鋼(SUS3
04H)に比べ1/5以下の腐食減量であり、良好な耐
酸化性を示すことが確認された。これは、一定量以上の
AlとCr量を含有することにより、酸化被膜の緻密性
が増し、かつ酸化被膜が安定になり、内部保護性が向上
するためと考えられる。
As can be seen from these tables, No. 1 to No. The invention steel No. 25 is comparative steel No. General-purpose 18Cr-8Ni stainless steel (SUS3
It was confirmed that the corrosion weight loss was ⅕ or less compared to that of (04H), and that good oxidation resistance was exhibited. It is considered that the inclusion of a certain amount or more of Al and Cr increases the denseness of the oxide film, stabilizes the oxide film, and improves the internal protection.

【0041】これに対し、比較鋼No.26、No.4
4、No.45はAl量の不足により、また比較鋼N
o.46はCr量の不足により、十分な耐高温酸化性が
得られていない。比較鋼No.47はMnを多量に含む
ことにより、耐高温酸化性が低下しており、結果として
大きな腐食減量を示している。
On the other hand, Comparative Steel No. 26, No. Four
4, no. No. 45 is a comparative steel N due to lack of Al amount
o. No. 46 does not have sufficient resistance to high temperature oxidation due to lack of Cr content. Comparative steel No. No. 47 contains a large amount of Mn, so that the high temperature oxidation resistance is lowered, and as a result, a large corrosion weight loss is exhibited.

【0042】次に、高温での使用時に問題となる特性と
して、組織安定性が重要であるので、組織安定性を把握
するために、850℃において400時間時効し、JI
S4号シャルピー衝撃試験片による0℃におけるシャル
ピー衝撃試験の吸収エネルギーを測定した。その値を表
3および表4に併記する。
Next, since the tissue stability is important as a characteristic that becomes a problem when used at high temperatures, in order to grasp the tissue stability, it is aged at 850 ° C. for 400 hours, and then subjected to JI.
The absorbed energy of the Charpy impact test at 0 ° C. by the S4 Charpy impact test piece was measured. The values are also shown in Table 3 and Table 4.

【0043】発明鋼は0℃における吸収エネルギーが3
0J以上と良好で炭窒化物、σ相等の金属間化合物等の
生成に起因するような靭性低下は認められなかった。こ
れに対して、比較鋼No.27はCr量が過剰のため、
比較鋼No.28とNo.29はSi量が過剰ため、比
較鋼No.33とNo.34はAl量が過剰のため、シ
グマ相が析出し靭性の低下が認められた。また、比較鋼
No.32はNi量が不足のため、シグマ相が析出し靭
性の低下が認められた。比較鋼No.38およびNo.
39はαの値が9以上となっているため、長時間の熱処
理によりシグマ相が析出し靭性の劣化が認められた。
The invention steel has an absorbed energy of 3 at 0 ° C.
It was as good as 0 J or more, and no reduction in toughness due to the formation of carbonitrides, intermetallic compounds such as σ phase, etc. was observed. On the other hand, comparative steel No. No. 27 has an excessive amount of Cr, so
Comparative steel No. 28 and No. Comparative steel No. 29 has an excessive amount of Si. 33 and No. 33. In No. 34, since the amount of Al was excessive, the sigma phase was precipitated and the toughness was decreased. In addition, comparative steel No. In No. 32, since the Ni content was insufficient, the sigma phase was precipitated and the toughness was decreased. Comparative steel No. 38 and No. 38.
Since the value of α of 39 is 9 or more, deterioration of toughness was observed due to precipitation of sigma phase by heat treatment for a long time.

【0044】比較鋼No.31は炭化物の過剰な析出に
より、また比較鋼No.35は窒化物の過剰な析出によ
り、靭性の低下が認められた。次に、圧延時の熱間加工
性について評価した。ここでは圧延後の板材の耳割れの
有無によって加工性評価を行った。その結果も表3およ
び表4に併記する。本発明鋼では1200℃加熱し、仕
上温度を900℃とした圧延工程において、耳割れは発
生せず、良好な圧延効果が得られた。
Comparative Steel No. No. 31 was caused by excessive precipitation of carbides, and the comparative steel No. In No. 35, the toughness was decreased due to excessive precipitation of nitride. Next, the hot workability during rolling was evaluated. Here, the workability was evaluated based on the presence or absence of edge cracks in the rolled plate material. The results are also shown in Tables 3 and 4. The steel of the present invention was heated at 1200 ° C., and in the rolling process in which the finishing temperature was 900 ° C., no edge crack was generated and a good rolling effect was obtained.

【0045】一方、Ca量が適量でない比較鋼No.3
6とNo.37、Mg量が適量でない比較鋼No.40
においては、板端面に耳割れを生じた。また、Y、L
a、Ceの合計量が適量でない比較鋼No.41とN
o.42とNo.43においても板端面に耳割れを生じ
た。(1)式のαの値が9以上の比較鋼No.38とN
o.39も板端面に耳割れを生じた。
On the other hand, Comparative Steel No. 6 in which the amount of Ca is not appropriate. Three
6 and No. 37, comparative steel No. 40
In the case of No. 2, an ear crack was formed on the plate end surface. Also, Y, L
Comparative steel No. in which the total amount of a and Ce is not appropriate. 41 and N
o. 42 and No. 42. Also in No. 43, the edge of the plate was cracked. Comparative steel No. in which the value of α in the formula (1) is 9 or more. 38 and N
o. No. 39 also had a crack in the edge of the plate.

【0046】最後に、構造部材として使用する場合に問
題となる重要な特性である溶接時の高温割れ感受性を評
価した。この溶接時の高温割れ感受性はバレストレイン
試験により評価を行った。試験は、ノンフィラーTIG
で入熱18kJ/cmの溶接を模擬しながら、試験片に
1.0%の曲げ歪を与え、冷却後に合計割れ長さを測定
することにより行った。
Finally, the hot cracking susceptibility at the time of welding, which is an important characteristic which becomes a problem when used as a structural member, was evaluated. The susceptibility to hot cracking during welding was evaluated by the Balestrain test. The test is non-filler TIG
While simulating a welding with a heat input of 18 kJ / cm, a bending strain of 1.0% was applied to the test piece, and the total crack length was measured after cooling.

【0047】その結果、本発明鋼では試験後に割れの発
生は認められなかった。これに対して、比較鋼No.2
8およびNo.29はSi量が過剰のため、比較鋼N
o.30はNi量が過剰のため、いずれもフェライト相
が不安定でオーステナイト相が過剰に安定になってお
り、溶接後に割れの発生が認められた。また、比較鋼N
o.48はTi量が過剰なため、比較鋼No.49はV
量が過剰なため、比較鋼No.50はNb量が過剰なた
め、比較鋼No.51はB量が過剰のため、比較鋼N
o.52はZr量が過剰のため、溶接後に割れが認めら
れた。
As a result, in the steel of the present invention, no crack was found after the test. On the other hand, comparative steel No. Two
8 and No. 29 is comparative steel N because the amount of Si is excessive.
o. In No. 30, since the Ni content was excessive, the ferrite phase was unstable and the austenite phase was excessively stable in all cases, and cracking was observed after welding. Also, comparative steel N
o. Comparative Steel No. 48 has an excessive Ti content. 49 is V
Comparative steel No. Comparative steel No. 50 has an excessive Nb content. No. 51 has an excessive B content, so comparative steel N
o. No. 52 had an excessive amount of Zr, so cracking was observed after welding.

【0048】以上の実施例および比較例から明らかなよ
うに、本発明の成分設定によれば、高温での耐酸化性能
の向上を図ることができ、また高温使用時の組織安定性
に優れるため靭性の劣化がなく、かつ圧延製造時の熱間
加工性も優れ、しかも溶接時の高温割れ感受性が高くな
いため溶接性に優れた、耐熱性ステンレス鋼を得ること
ができることが確認された。
As is clear from the above Examples and Comparative Examples, according to the component setting of the present invention, it is possible to improve the oxidation resistance performance at high temperature, and it is also excellent in the stability of the structure when used at high temperature. It was confirmed that it is possible to obtain a heat-resistant stainless steel that has no deterioration in toughness, has excellent hot workability during rolling manufacturing, and has high susceptibility to hot cracking during welding, and that also has excellent weldability.

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【発明の効果】本発明によれば、800℃〜900℃と
いう非耐圧・非冷却部などの新形式発電プラントに特徴
的な使用条件に耐え得る耐熱性オーステナイト系ステン
レス鋼が提供される。しかも従来の汎用性ステンレス鋼
である18Cr−8Ni系ステンレス鋼より大幅に優れ
た耐酸化性を有し、長期の使用に対して良好な組織安定
性を示し信頼性が高く、溶接構造用としては高温割れ感
受性が低く作業性の良好な部材の製造に役立つものであ
る。
According to the present invention, there is provided a heat resistant austenitic stainless steel capable of withstanding the use conditions of 800 ° C. to 900 ° C., which are characteristic of a new type power plant such as a non-breakdown pressure / uncooled part. Moreover, it has much better oxidation resistance than the conventional general-purpose stainless steel, 18Cr-8Ni series stainless steel, shows good structural stability for long-term use, and is highly reliable. It is useful for manufacturing a member having low hot cracking sensitivity and good workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al無添加の従来のCr−Ni系ステンレス鋼
と、本発明のAl含有Cr−Ni系ステンレス鋼の、C
r当量Ni当量2元系状態図上のシグマ相析出領域の相
違を示した図。
FIG. 1 is a graph showing the C of a conventional Cr-Ni-based stainless steel containing no Al and an Al-containing Cr-Ni-based stainless steel of the present invention.
The figure which showed the difference of sigma phase precipitation area | region on r equivalent Ni equivalent binary system phase diagram.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.12%以下、 S
i:1.0%以下、Mn:5.0%以下、 P:0.
04%以下、S:0.03%以下、 Cr:14%〜
22%、Ni:10%〜25%、 Al:1.0%〜
3.5%、N:0.02%以下、 Ca:0.001
%〜0.010%、Mg:0%〜0.05%(無添加の
場合も含む)、Y、La、Ceを合計含有量として0〜
0.07%(無添加の場合も含む)を含有し、残部がF
eおよび不可避不純物からなり、かつ以下の(1)式を
満たすことを特徴とする溶接構造高温機器用オーステナ
イト系ステンレス鋼。 α=(1.5Si+Cr+3Al)−(0.5 Mn+Ni+30C+30N)<9 …(1)
1. By weight%, C: 0.12% or less, S
i: 1.0% or less, Mn: 5.0% or less, P: 0.
04% or less, S: 0.03% or less, Cr: 14% to
22%, Ni: 10% to 25%, Al: 1.0% to
3.5%, N: 0.02% or less, Ca: 0.001
% -0.010%, Mg: 0% -0.05% (including the case of no addition), Y, La, Ce as a total content of 0-
Contains 0.07% (including the case of no addition), the balance is F
An austenitic stainless steel for welded high-temperature equipment, characterized by comprising e and unavoidable impurities and satisfying the following formula (1). α = (1.5Si + Cr + 3Al)-(0.5Mn + Ni + 30C + 30N) <9 (1)
【請求項2】 重量%で、C:0.12%以下、 S
i:1.0%以下、Mn:5.0%以下、 P:0.
04%以下、S:0.03%以下、 Cr:14%〜
22%、Ni:10%〜25%、 Al:1.0%〜
3.5%、N:0.02%以下、 Ca:0.001
%〜0.010%、Mg:0%〜0.05%(無添加の
場合も含む)、Y、La、Ceを合計含有量として0〜
0.07%(無添加の場合も含む)を含有し、 さらに、Ti:0.01%〜0.5%、V:0.01%
〜1.0%、Nb:0.01%〜1.0%の1種または
2種以上、B:0%〜0.03%(無添加の場合も含
む)、およびZr:0%〜0.3%(無添加の場合も含
む)を含有し、残部がFeおよび不可避不純物からな
り、かつ以下の(1)式を満たすことを特徴とする溶接
構造高温機器用オーステナイト系ステンレス鋼。 α=(1.5Si+Cr+3Al)−(0.5 Mn+Ni+30C+30N)<9 …(1)
2. C, 0.12% or less by weight%, S
i: 1.0% or less, Mn: 5.0% or less, P: 0.
04% or less, S: 0.03% or less, Cr: 14% to
22%, Ni: 10% to 25%, Al: 1.0% to
3.5%, N: 0.02% or less, Ca: 0.001
% -0.010%, Mg: 0% -0.05% (including the case of no addition), Y, La, Ce as a total content of 0-
0.07% (including the case of no addition), further, Ti: 0.01% to 0.5%, V: 0.01%
˜1.0%, Nb: 0.01% to 1.0%, one or more kinds, B: 0% to 0.03% (including the case of no addition), and Zr: 0% to 0%. Austenitic stainless steel for welded high-temperature equipment, containing 3% (including the case of no addition), the balance consisting of Fe and unavoidable impurities, and satisfying the following formula (1). α = (1.5Si + Cr + 3Al)-(0.5Mn + Ni + 30C + 30N) <9 (1)
JP14466095A 1995-06-12 1995-06-12 Austenitic stainless steel for welding structural high temperature apparatus Pending JPH08337850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14466095A JPH08337850A (en) 1995-06-12 1995-06-12 Austenitic stainless steel for welding structural high temperature apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14466095A JPH08337850A (en) 1995-06-12 1995-06-12 Austenitic stainless steel for welding structural high temperature apparatus

Publications (1)

Publication Number Publication Date
JPH08337850A true JPH08337850A (en) 1996-12-24

Family

ID=15367264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14466095A Pending JPH08337850A (en) 1995-06-12 1995-06-12 Austenitic stainless steel for welding structural high temperature apparatus

Country Status (1)

Country Link
JP (1) JPH08337850A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007029400A1 (en) * 2007-06-26 2009-01-02 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium-silicon alloy
WO2012153814A1 (en) 2011-05-11 2012-11-15 株式会社神戸製鋼所 Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance
WO2014204388A1 (en) * 2013-06-18 2014-12-24 Sandvik Intellectual Property Ab Filler for the welding of materials for high-temperature applications
EP2853339A3 (en) * 2013-09-30 2015-08-12 Liburdi Engineering Limited Welding material for welding of superalloys
EP3137253A4 (en) * 2014-04-28 2017-10-04 Liburdi Engineering Limited A ductile boron bearing nickel based welding material
JP2020168639A (en) * 2019-04-02 2020-10-15 日本製鉄株式会社 Welding joint and welding material used for manufacturing the welding joint

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007029400A1 (en) * 2007-06-26 2009-01-02 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium-silicon alloy
DE102007029400B4 (en) * 2007-06-26 2014-05-15 Outokumpu Vdm Gmbh Iron-nickel-chromium-silicon alloy
WO2012153814A1 (en) 2011-05-11 2012-11-15 株式会社神戸製鋼所 Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance
CN103517998A (en) * 2011-05-11 2014-01-15 株式会社神户制钢所 Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance
WO2014204388A1 (en) * 2013-06-18 2014-12-24 Sandvik Intellectual Property Ab Filler for the welding of materials for high-temperature applications
EP2853339A3 (en) * 2013-09-30 2015-08-12 Liburdi Engineering Limited Welding material for welding of superalloys
EP3137253A4 (en) * 2014-04-28 2017-10-04 Liburdi Engineering Limited A ductile boron bearing nickel based welding material
JP2020168639A (en) * 2019-04-02 2020-10-15 日本製鉄株式会社 Welding joint and welding material used for manufacturing the welding joint

Similar Documents

Publication Publication Date Title
KR100548217B1 (en) Austenitic stainless steel and its manufacturing method
JPH0621323B2 (en) High strength and high chrome steel with excellent corrosion resistance and oxidation resistance
JP2009299182A (en) Ferritic stainless steel
JPH0565762B2 (en)
WO2005042793A1 (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP5846076B2 (en) Austenitic heat-resistant alloy
JP2002241900A (en) Austenitic stainless steel having excellent sulfuric acid corrosion resistance and workability
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
JP3745567B2 (en) Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same
JP2002235154A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JPH08337850A (en) Austenitic stainless steel for welding structural high temperature apparatus
JPH09324246A (en) Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance
JPH0245696B2 (en) SEKITANNENSHOOFUKUMUPURANTOYOBOIRACHUUBU
JPH04173939A (en) Ferritic stainless steel excellent in high temperature strength and toughness
JP7492106B2 (en) Welding material for ferritic heat-resistant steel and manufacturing method for welded joint of ferritic heat-resistant steel
JP3298365B2 (en) Austenitic stainless steel for high-temperature welding equipment
JPH07204885A (en) Ferrite steel welding material having excellent high-temperature weld crack resistance
JPH09241810A (en) Austenitic stainless steel for high temperature equipment with welded structure
JPS6376854A (en) Heat resistant ferritic steel having superior strength at high temperature
JPH09324245A (en) Heat resistant austenitic stainless steel for welding structure
JP3591486B2 (en) High Cr ferritic heat resistant steel
JP3149687B2 (en) Stainless steel with excellent oxidation resistance
JP2000001755A (en) Austenitic stainless steel excellent in sulfuric acid dew point corrosion resistance and its production
JPH04224657A (en) Ferritic stainless steel excellent in strength at high temperature and toughness in weld heat-affected zone
JPH055891B2 (en)