JPH09241810A - Austenitic stainless steel for high temperature equipment with welded structure - Google Patents

Austenitic stainless steel for high temperature equipment with welded structure

Info

Publication number
JPH09241810A
JPH09241810A JP5140496A JP5140496A JPH09241810A JP H09241810 A JPH09241810 A JP H09241810A JP 5140496 A JP5140496 A JP 5140496A JP 5140496 A JP5140496 A JP 5140496A JP H09241810 A JPH09241810 A JP H09241810A
Authority
JP
Japan
Prior art keywords
less
stainless steel
high temperature
steel
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5140496A
Other languages
Japanese (ja)
Inventor
Minoru Suwa
稔 諏訪
Hideto Kimura
秀途 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5140496A priority Critical patent/JPH09241810A/en
Publication of JPH09241810A publication Critical patent/JPH09241810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an austenitic stainless steel for high temp. equipment with welded structure, excellent in oxidation resistance at 800-1000 deg.C, stability of structure for a long time, weldability, and high temp. strength. SOLUTION: This austenitic stainless steel has a composition consisting of, by weight, <=0.12% C, <=1.0% Si, <=5.0% Mn, <=0.04% P, <=0.03% S, 14-22% Cr, 10-25% Ni, 1.0-3.5% Al, <=0.02 N, 0.001-0.010% Ca, 0-0.05% (including 0%) Mg, 0-0.07% (including 0%), in total, of Y, La, and Ce, one or >=2 kinds among 0.05-0.5% Ti, 0.1-1.0% V, 0.1-1.0% Nb, and 0.1-1.0% Zr, and the balance Fe with inevitable impurities and satisfying inequalities α=(1.5Si+Cr+3Al)-(0.5Mn+Ni+30C+30N)<9 and MCI=C/2-12×(Zr/91+Nb/93+Ti/48+V/68)<=0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、火力発電用ボイラに
おける非冷却部材等に代表される耐高温酸化性、耐熱
性、組織安定性、高温強度が要求される溶接構造高温機
器用オーステナイト系ステンレス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic stainless steel for welded high-temperature equipment, which is required to have high-temperature oxidation resistance, heat resistance, microstructure stability, and high-temperature strength, which are typified by uncooled members in thermal power generation boilers. Regarding steel.

【0002】[0002]

【従来の技術】近年高温プラント技術の進歩に伴い、新
形式の複合発電プラント、すなわち石炭ガス化複合プラ
ント、PFBC(Pressurised Fluidized Bed Combustion、
即ち、加圧流動床燃焼)発電システム、トッピングサイ
クル等が提案され、試験プラントの運転も行われてい
る。これらの新形式プラントにおいては、従来形式のボ
イラと異なり蒸気管以外にも高温に曝される非冷却部材
の範囲が大幅に拡大され、最高1000℃程度で使用可
能な非冷却部材用の耐熱鋼も新たに求められている。
2. Description of the Related Art With the progress of high temperature plant technology in recent years, a new type of combined cycle power plant, namely coal gasification combined plant, PFBC (Pressurised Fluidized Bed Combustion,
That is, a pressurized fluidized bed combustion) power generation system, a topping cycle, etc. have been proposed, and a test plant is being operated. In these new-type plants, unlike conventional boilers, the range of non-cooling members exposed to high temperatures is greatly expanded in addition to steam pipes, and heat-resistant steel for non-cooling members that can be used at a maximum of about 1000 ° C. Is also newly demanded.

【0003】従来、高温部材用としては高温強度を主眼
とした鋼種開発がさかんに行われ、18Cr−8Ni系
ステンレス鋼がチューブ材として多用されている。その
主流はJIS SUS304H(18Cr−10Ni−
C)であり、更に、これにTiを加えたJIS SUS
321Hなどがあり、基本的には長期の安定性があると
されている18−8系ステンレス鋼で対応が可能であっ
た。
[0003] Conventionally, for high temperature members, steel grades have been intensively developed with a focus on high temperature strength, and 18Cr-8Ni type stainless steel is often used as a tube material. The mainstream is JIS SUS304H (18Cr-10Ni-
C), and JIS SUS with Ti added to it.
321H, etc., and basically, it was possible to use 18-8 series stainless steel which is said to have long-term stability.

【0004】[0004]

【発明が解決しようとする課題】しかし、新形式プラン
トにおける非冷却部等の部位は、使用温度が高く、使用
できる鋼種がほとんど見あたらない。このような用途に
対して上述の18−8系ステンレス鋼を適用しようとす
る場合には、特開昭53-63210号公報などに開示されてい
るように、耐高温酸化性を改善する元素であるAl,S
iを含有させたCr−Ni系ステンレス鋼を適用するこ
とも考えられる。しかし、こうした鋼種は、一定の構造
強度が必要なプラント内構造部材としては、長時間相安
定性の維持、溶接性という点において配慮が十分とはい
えない。
However, in the parts such as the non-cooling part in the new type plant, the operating temperature is high, and almost no usable steel type is found. When the above-mentioned 18-8 type stainless steel is applied to such an application, as disclosed in JP-A-53-63210, it is an element that improves the high temperature oxidation resistance. Al, S
It is also conceivable to apply Cr-Ni-based stainless steel containing i. However, such steel grades cannot be said to be sufficient in terms of maintaining long-term phase stability and weldability as a structural member in a plant requiring a certain structural strength.

【0005】また、特開平6-271992号公報には耐酸化性
が考慮された高Al含有鋼が開示されている。しかし、
ここに開示されている鋼は耐酸化性は考慮されているも
のの、長時間相安定性の維持、溶接性、高温強度という
点において配慮が十分とはいえない。
Further, Japanese Unexamined Patent Publication (Kokai) No. 6-271992 discloses a high Al content steel in consideration of oxidation resistance. But,
Although the steel disclosed herein considers oxidation resistance, it cannot be said that consideration is sufficient in terms of maintaining long-term phase stability, weldability, and high-temperature strength.

【0006】一方、現在かかる目的のために用いられよ
うとしているJIS SUS310Sに代表される高価
な25Cr−20Ni系のオーステナイト系ステンレス
耐熱鋼は、800〜900℃における200〜700時
間の使用で容易にシグマ相を析出し、定期点検時にハン
マリングしただけでひび割れを生じることが危惧されて
いる。また、溶接時の高温割れ感受性が高いことも問題
である。
On the other hand, the expensive 25Cr-20Ni austenitic stainless heat-resisting steel represented by JIS SUS310S, which is about to be used for this purpose, is easily used at 800 to 900 ° C. for 200 to 700 hours. It is feared that the sigma phase will precipitate and cracking will occur just by hammering during the periodic inspection. Another problem is the high sensitivity to hot cracking during welding.

【0007】したがって、耐高温酸化性、長時間相安定
性、溶接性、高温強度という4点を同時に満足する合金
設計指針の確立が強く望まれている。本発明はかかる事
情に鑑みてなされたものであって、800℃〜1000
℃での耐酸化性と長時間の組織安定性、溶接性および高
温強度に優れた溶接構造高温機器用オーステナイト系ス
テンレス鋼を提供することを目的とする。
Therefore, it is strongly desired to establish an alloy design guideline that simultaneously satisfies the four points of high temperature oxidation resistance, long-term phase stability, weldability, and high temperature strength. The present invention has been made in view of such circumstances, and is 800 ° C to 1000 ° C.
An object of the present invention is to provide an austenitic stainless steel for welded high-temperature equipment, which is excellent in oxidation resistance at ℃, structural stability for a long time, weldability and high-temperature strength.

【0008】[0008]

【課題を解決するための手段】発明者らは、この課題を
解決すべく、まず耐高温酸化性を向上させる元素として
安価なAl,Siを選定し、800℃〜1000℃で長
時間加熱を受けた場合の相安定性について、脆いシグマ
相析出に及ぼす影響を調査した。一般にオーステナイト
系ステンレス鋼の圧延時のデルタフェライト抑制、ある
いはデルタフェライト量については、例えばde Long が
1960年にMetal Progressにおいて提唱したような、
Cr当量、Ni当量の概念が用い得ることを見いだし
た。ただし、シグマ相析出量の予測等には上記式をその
まま用いることはできなかった。すなわち、Cr−Ni
系ステンレス鋼においては、図1に示す状態図上におい
ては、シグマ相の析出領域はデルタフェライトの析出領
域よりも広い。従って、デルタフェライトの析出を抑制
するためにNiを添加するが,シグマ相の析出を抑制す
るためには,デルタフェライトの析出抑制に添加するよ
りも多量に高価なNiを添加しなければならないことが
実験的に明らかになった。
In order to solve this problem, the inventors first select inexpensive Al and Si as elements for improving the high temperature oxidation resistance, and heat at 800 ° C. to 1000 ° C. for a long time. The effect of the phase stability on receiving the brittle sigma phase precipitation was investigated. Generally, for the suppression of delta ferrite during rolling of austenitic stainless steel, or the amount of delta ferrite, for example, as proposed by de Long in 1960 in Metal Progress,
It has been found that the concepts of Cr equivalent and Ni equivalent can be used. However, the above equation could not be used as it is for predicting the amount of sigma phase precipitation. That is, Cr-Ni
In the system stainless steel, the precipitation region of the sigma phase is wider than the precipitation region of delta ferrite on the state diagram shown in FIG. Therefore, Ni is added in order to suppress the precipitation of delta ferrite, but in order to suppress the precipitation of the sigma phase, it is necessary to add more expensive Ni than is added to suppress the precipitation of delta ferrite. Was empirically revealed.

【0009】また、Si添加系について実験を行ったと
ころ、図1の状態図におけるシグマ相の析出領域は、S
i無添加のCr−Ni系ステンレス鋼に比べ拡大するこ
とが明らかになった。ところが、Alを含有する系にお
いては、Alのシグマ相生成能がデルタフェライト生成
能に比べて小さいことから、図1の状態図上ではシグマ
相析出領域はAl無添加系に比べ縮小し、デルタフェラ
イト析出領域とほぼ等しくなることを新たに見い出し
た。
Further, when an experiment was conducted on a Si-added system, the sigma phase precipitation region in the state diagram of FIG.
It was clarified that it expands as compared with Cr-Ni-based stainless steel containing no i. However, in the system containing Al, the sigma phase forming ability of Al is smaller than the delta ferrite forming ability. Therefore, the sigma phase precipitation region in the phase diagram of FIG. It was newly found that it is almost equal to the ferrite precipitation area.

【0010】すなわち、耐酸化性向上元素としてAlを
添加した場合、下記(1)式が成り立つ成分範囲におい
て、圧延時のデルタフェライトの析出と800℃〜10
00℃で長時間加熱を受けた場合のシグマ相の析出の両
方を抑制できることを見出した。
That is, when Al is added as an element for improving oxidation resistance, precipitation of delta ferrite during rolling and 800 ° C. to 10 ° C. within the range of components in which the following formula (1) is satisfied:
It has been found that both precipitation of sigma phase when heated at 00 ° C. for a long time can be suppressed.

【0011】 α=(1.5Si+Cr+3 Al)−(0.5Mn+Ni+30C+30N)<9 …(1) なお、圧延時のデルタフェライトの析出抑制により、圧
延時の耳割れを防止でき、歩留り向上にもつながる。
Α = (1.5Si + Cr + 3Al) − (0.5Mn + Ni + 30C + 30N) <9 (1) By suppressing the precipitation of delta ferrite during rolling, ear cracks during rolling can be prevented and the yield can be improved.

【0012】次に、溶接性については、高温割れ感受性
を抑制する手段を種々検討した。一般にオーステナイト
系ステンレス鋼の高温割れ感受性は、凝固時に数%のデ
ルタフェライトを存在させることにより低下させること
ができる。しかし、耐酸化性を高めるために、Cr量を
増加させるとシグマ相が析出しやすくなる。その結果,
シグマ相析出を抑制するためにオーステナイト相の安定
性をデルタフェライトに対して過剰に高めなけばなら
ず、凝固時に完全オーステナイト凝固となってしまい、
高温割れ感受性を高めてしまう。また、Si量を増加さ
せた場合は、さらにシグマ相析出抑制のためにNi当量
を増加させなければならず、高温割れ感受性を高めてし
まう。
Next, regarding the weldability, various means for suppressing the hot crack susceptibility were examined. Generally, the hot cracking susceptibility of austenitic stainless steel can be reduced by the presence of several% of delta ferrite during solidification. However, if the amount of Cr is increased in order to increase the oxidation resistance, the sigma phase is likely to precipitate. as a result,
In order to suppress sigma phase precipitation, the stability of the austenite phase must be increased excessively with respect to delta ferrite, resulting in complete austenite solidification during solidification,
It increases the sensitivity to hot cracking. Further, when the Si amount is increased, the Ni equivalent must be further increased in order to further suppress the sigma phase precipitation, and the hot cracking susceptibility is increased.

【0013】ところが、Alは、デルタフェライト生成
能に対してシグマ相生成能が低いため、シグマ相析出抑
制のためにデルタフェライトに対するオーステナイト相
の安定性を過剰に高める必要がない。すなわち、Alを
含有する系においては、シグマ相の析出を十分抑制でき
るだけNi当量を高めてオーステナイト相を安定化して
も、溶接部の凝固時においてはデルタフェライトが存在
し、溶接部の高温割れ感受性を極めて低く抑制できるこ
とが判明した。
However, since Al has a low sigma phase forming ability with respect to delta ferrite forming ability, it is not necessary to excessively increase the stability of the austenite phase with respect to delta ferrite in order to suppress sigma phase precipitation. That is, in the system containing Al, even if the Ni equivalent is increased to stabilize the austenite phase as much as possible to sufficiently suppress the precipitation of the sigma phase, delta ferrite is present during the solidification of the weld, and the hot crack sensitivity of the weld is high. It has been found that can be suppressed to an extremely low level.

【0014】最後に、高温強度については、強化因子と
して固溶強化、窒化物析出強化、炭化物析出強化、Cu
−リッチ相析出強化、金属間化合物析出強化等について
多くの実験室溶解を行って検討した結果、炭化物析出強
化が、クリープ破断強化、長時間靭性、クリープ延性の
何れの観点からも最も優れていることが判明したため、
これについてさらに集中的に検討を重ね、炭化物生成元
素については、析出し得るM236 型鉄/クロム炭化
物、MC型Zr、Nb、Ti、V炭化物の割合が
(2′)式を満足すること、すなわちZr、Nb、T
i、Vを(2)式の範囲で添加することが、最も有効に
クリープ破断強度を向上させ得ることを明らかにした。
Finally, regarding high temperature strength, solid solution strengthening, nitride precipitation strengthening, carbide precipitation strengthening, Cu
-As a result of conducting a number of laboratory melting tests on rich phase precipitation strengthening, intermetallic compound precipitation strengthening, etc., carbide precipitation strengthening is the best from the viewpoints of creep rupture strengthening, long-term toughness and creep ductility. It turned out that
With respect to the carbide-forming element, the ratios of M 23 C 6 type iron / chromium carbide, MC type Zr, Nb, Ti, and V carbide that can be precipitated satisfy the formula (2 ′). That is, Zr, Nb, T
It was clarified that the addition of i and V in the range of the formula (2) can most effectively improve the creep rupture strength.

【0015】 (CasMC)/(CasM236 +CasMC)≧0.5 …(2′) MCI=C/2 −12×(Zr/91+Nb/93+Ti/48+V/68)≦0 …(2) 本発明はこのような知見に基づいてなされたものであっ
て、第1の発明は、重量%で、C:0.12%以下、S
i:1.0%以下、Mn:5.0%以下、P:0.04
%以下、S:0.03%以下、Cr:14%〜22%、
Ni:10%〜25%、Al:1.0%〜3.5%、
N:0.02%以下、Ca:0.001%〜0.010
%、さらにTi:0.05%〜0.5%、V:0.1%
〜1.0%、Nb:0.1%〜1.0%、Zr:0.1
%〜1.0%の1種または2種以上を含有し、残部がF
eおよび不可避不純物からなり、かつ以下の(1)式お
よび(2)式を満たすことを特徴とする溶接構造高温機
器用オーステナイト系ステンレス鋼を提供するものであ
る。
(CasMC) / (CasM 23 C 6 + CasMC) ≧ 0.5 (2 ′) MCI = C / 2 −12 × (Zr / 91 + Nb / 93 + Ti / 48 + V / 68) ≦ 0 (2) The first invention is based on such knowledge, and the first invention is, in% by weight, C: 0.12% or less, S
i: 1.0% or less, Mn: 5.0% or less, P: 0.04
% Or less, S: 0.03% or less, Cr: 14% to 22%,
Ni: 10% to 25%, Al: 1.0% to 3.5%,
N: 0.02% or less, Ca: 0.001% to 0.010
%, Further Ti: 0.05% to 0.5%, V: 0.1%
~ 1.0%, Nb: 0.1% to 1.0%, Zr: 0.1
% To 1.0% of 1 type or 2 types or more, and the balance is F
The present invention provides an austenitic stainless steel for welded high-temperature equipment, characterized by comprising e and unavoidable impurities and satisfying the following expressions (1) and (2).

【0016】 α=(1.5Si+Cr+3 Al)−(0.5Mn+Ni+30C+30N)<9 …(1) MCI=C/2 −12×(Zr/91+Nb/93+Ti/48+V/68)≦0 …(2) 第2の発明は、第1の発明にさらにB:0.001%〜
0.01%を含有する溶接構造高温機器用オーステナイ
ト系ステンレス鋼である。なお、本発明ステンレス鋼
は、Mg0.05%以下、Y、La、Ceを合計含有量
として0.07%以下含有してもよい。
Α = (1.5Si + Cr + 3Al) − (0.5Mn + Ni + 30C + 30N) <9 (1) MCI = C / 2 −12 × (Zr / 91 + Nb / 93 + Ti / 48 + V / 68) ≦ 0 (2) Second invention Is based on the first invention, further B: 0.001% to
It is an austenitic stainless steel for welded high temperature equipment containing 0.01%. The stainless steel of the present invention may contain 0.05% or less of Mg and 0.07% or less of Y, La, and Ce as a total content.

【0017】[0017]

【発明の実施の形態】以下、本発明に係るステンレス鋼
において各成分を含有させた理由およびその範囲を限定
した理由を述べる。 C:Cは本発明鋼の母相の高温強さを与え、相安定性に
有効な元素であるが、0.12%を超えて含有すると、
結晶粒内を縦断する形で粗大な炭化物が析出するので、
その含有量を0.12%以下とした。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons why each component is contained in the stainless steel according to the present invention and the range thereof is limited will be described below. C: C is an element that gives the high temperature strength of the parent phase of the steel of the present invention and is effective for phase stability, but when it is contained in excess of 0.12%,
Since coarse carbide precipitates in the form of longitudinally cutting through the crystal grains,
The content was 0.12% or less.

【0018】Si:Siは脱酸に有効な元素であるため
1.0%以下を含んでもよいが、1.0%を超えて含有
すると、シグマ相の生成能が大きく相安定性を維持する
のが困難となるため、さらに溶接時の高温割れ感受性を
高めるため、その含有量を1.0%以下とした。
Si: Si is an element effective for deoxidation, so it may be contained in an amount of 1.0% or less. However, if it is contained in an amount of more than 1.0%, the sigma phase forming ability is large and phase stability is maintained. Therefore, the content thereof is set to 1.0% or less in order to further increase the hot crack sensitivity during welding.

【0019】Mn:Mnは相安定性に有効な元素である
ため5.0%以下であればよいが、5.0%を超えて含
有すると耐高温腐食性に有害となるので、含有量を5.
0%以下とした。
Mn: Mn is an element effective for phase stability, so it may be 5.0% or less. However, if it is contained in excess of 5.0%, it becomes harmful to the high temperature corrosion resistance. 5.
0% or less.

【0020】P:Pは粒界偏析して圧延時の延性を害す
る元素であって、その含有量は少ないほど良い。そこ
で、圧延時における延性の低下による割れを防止するた
め、その含有量を0.04%以下とした。
P: P is an element that segregates at grain boundaries and impairs ductility during rolling. The smaller the content, the better. Therefore, in order to prevent cracking due to a decrease in ductility during rolling, its content is set to 0.04% or less.

【0021】S:SもPと同様に、粒界偏析して圧延時
の延性を害する元素である。その含有量は少ないほど良
い。そこで、圧延時における延性の低下による割れを防
止するため、その含有量を0.03%以下とした。
S: S, like P, is an element that segregates at the grain boundaries and impairs ductility during rolling. The smaller the content, the better. Therefore, in order to prevent cracking due to a decrease in ductility during rolling, its content is set to 0.03% or less.

【0022】Cr:Crは高温での耐酸化性を与える基
本元素として重要である。その含有量が14%未満の場
合は、耐高温酸化性に有効なAlを含有しても800℃
〜1000℃において耐高温酸化性の大幅な向上を得る
ことができない。一方、22%を超えて含有するとオー
ステナイト相の安定性を維持するために、高価なNiを
多量に必要とし経済性を損なうようになり、しかも耐高
温酸化性向上に対する寄与が小さくなる。したがって、
Cr含有量を14〜22%とした。
Cr: Cr is important as a basic element that imparts oxidation resistance at high temperatures. If its content is less than 14%, it is 800 ° C even if it contains Al effective for high temperature oxidation resistance.
At ˜1000 ° C., it is not possible to obtain a significant improvement in high temperature oxidation resistance. On the other hand, if the content exceeds 22%, a large amount of expensive Ni is required to maintain the stability of the austenite phase, which impairs the economical efficiency, and also contributes little to the improvement in high temperature oxidation resistance. Therefore,
The Cr content was 14 to 22%.

【0023】Ni:Niは、安定なオーステナイト組織
を得るために必須な元素である。その含有量は、他の含
有元素、特にCrとAlとの関係から10%以上を必要
とする。一方、Niの含有量が25%を超えると、オー
ステナイト安定化の効果が小さくなり、Ni量を増加し
てもCr等の耐高温酸化性を向上する元素を大きく増や
すことができなくなる。また、Ni量を過剰に多くする
と、フェライト相に対するオーステナイト相の安定性が
過剰に高くなり、溶接時の高温割れ感受性を高めてしま
う。これらのため、Ni含有量を10〜25%とした。
Ni: Ni is an essential element for obtaining a stable austenite structure. The content thereof needs to be 10% or more in view of the relationship between other contained elements, particularly Cr and Al. On the other hand, if the Ni content exceeds 25%, the effect of stabilizing the austenite becomes small, and even if the Ni content is increased, it is impossible to greatly increase the elements such as Cr that improve the high temperature oxidation resistance. Further, if the amount of Ni is excessively increased, the stability of the austenite phase with respect to the ferrite phase becomes excessively high, and the susceptibility to hot cracking during welding is increased. Therefore, the Ni content is set to 10 to 25%.

【0024】Al:Alは単独では、酸化環境中でAl
23 という非常に緻密な酸化物被膜を形成し、Cr酸
化物存在下ではその中に複合酸化物として含まれて、酸
化物の緻密性を高める。かかる場合の表面保護性は非常
に高く、優れた耐高温酸化性を与える元素である。しか
し、この耐高温酸化性の向上はAl量が1.0%未満の
場合は、ある程度の効果があるものの、大幅な効果はみ
とめられない。ところが、Al量が1.0%以上になる
と、耐高温酸化性は大幅に向上する。しかし、Alを
3.5%を超えて含有すると相安定性を維持するのが困
難となる。このためAlの含有量を1.0〜3.5%と
した。
Al: Al alone is Al in an oxidizing environment.
It forms a very dense oxide film of 2 O 3 , and is contained as a complex oxide in the presence of Cr oxide to enhance the denseness of the oxide. In such a case, the surface protection property is very high, and it is an element that gives excellent high temperature oxidation resistance. However, if the Al content is less than 1.0%, this improvement in high-temperature oxidation resistance has some effect, but a significant effect cannot be observed. However, when the Al content is 1.0% or more, the high temperature oxidation resistance is significantly improved. However, if Al exceeds 3.5%, it becomes difficult to maintain phase stability. Therefore, the content of Al is set to 1.0 to 3.5%.

【0025】N:NはCと同様に、本発明鋼の母相の高
温強さを与え、相安定性に有効な元素であるため、0.
02%以下を含んでもよいが、0.02%を超えて含有
すると窒化物を形成し、靭性に有害であることから、N
の含有量を0.02%以下とした。
N: N, like C, gives the high temperature strength of the parent phase of the steel of the present invention and is an element effective for phase stability.
Although it may be contained in an amount of not more than 02%, if it is contained in an amount of more than 0.02%, it forms a nitride and is harmful to toughness.
Content of 0.02% or less.

【0026】Ca:Caは微量添加することにより熱間
加工性を改善する元素として有効であるが、0.001
%未満ではその効果が十分でなく、0.010%を超え
ると清浄性を損ない熱間加工性が低下するため、Ca含
有量を0.001%〜0.010%以下とした。
Ca: Ca is effective as an element for improving hot workability by adding a trace amount, but 0.001
If it is less than 1.0%, the effect is not sufficient, and if it exceeds 0.010%, the cleanability is impaired and the hot workability is deteriorated, so the Ca content was made 0.001% to 0.010% or less.

【0027】Ti、V、Nb、Zr:Ti、V、Nb、
Zrは、炭化物として微細に分散析出し、もって高温強
度の改善に寄与するが、それぞれ0.01%以下ではそ
の効果が十分ではない。また、過剰に添加すると、溶体
化熱処理後に未固溶のTi、V、Nb、Zrの炭化物の
量が増加し高温強度を害するようになり、さらに溶接性
も低下させることになるので、これらの含有量をTiが
0.05〜0.5%、Vが0.1〜1.0%、Nbが
0.1〜1.0%、Zrが0.1〜1.0%とし、必要
に応じてこれらの1種または2種以上含有させることと
した。
Ti, V, Nb, Zr: Ti, V, Nb,
Zr finely disperses and precipitates as a carbide, and contributes to the improvement of high temperature strength. However, if the content is 0.01% or less, the effect is not sufficient. Also, if added excessively, the amount of undissolved Ti, V, Nb, and Zr carbides after solution heat treatment increases, which impairs high-temperature strength, and further reduces weldability. Ti is 0.05 to 0.5%, V is 0.1 to 1.0%, Nb is 0.1 to 1.0%, and Zr is 0.1 to 1.0%. Accordingly, one or more of these are included.

【0028】B:Bは、粒界を強化し高温強度特性を改
善するのに有効な元素であるが、0.001%未満では
効果が得られないため0.001%以上の添加が必要で
ある。ただし、過剰に添加すると溶接性を劣化させるの
で、その含有量を0.03%以下とした。
B: B is an element effective for strengthening grain boundaries and improving high temperature strength properties, but if less than 0.001%, no effect is obtained, so 0.001% or more is required. is there. However, excessive addition deteriorates the weldability, so the content was made 0.03% or less.

【0029】本発明では、さらにMg及び/又はY、L
a、Ceを添加してもよい。 Mg:Mgは微量添加することにより熱間加工性を改善
する元素として有効であるが、0.05%を超えると熱
間加工性を低下させるため、その含有量を0.05%以
下とした。
In the present invention, Mg and / or Y, L are further added.
You may add a and Ce. Mg: Mg is effective as an element for improving hot workability by adding a trace amount, but if it exceeds 0.05%, the hot workability is deteriorated, so the content is made 0.05% or less. .

【0030】Y、La、Ce:希土類元素であるY、L
a、CeはAl23 酸化被膜中に溶け込んで、その高
温酸化に対する一般的耐性を高めるので、これらのうち
1種以上を含有してもよい。これらが合計で0.07%
を超えて含有すると熱間加工性を害するので、これら含
有量を合計量で0.07%以下とした。
Y, La, Ce: Y, L which are rare earth elements
Since a and Ce dissolve in the Al 2 O 3 oxide film to increase the general resistance to high temperature oxidation, one or more of these may be contained. These are 0.07% in total
If it is contained in excess of 1.0, the hot workability is impaired, so the total content is made 0.07% or less.

【0031】次に、αの限定理由について説明する。耐
シグマ脆性、熱間加工性、溶接性に影響を及ぼすオース
テナイト相とシグマ相またはフェライト相との相対的な
安定性を決定する主な因子は、Cr当量とNi当量の関
係である。これらはそれぞれ以下のような式で示され
る。
Next, the reason for limiting α will be described. The main factor that determines the relative stability of the austenite phase and the sigma or ferrite phase that affects sigma brittleness resistance, hot workability, and weldability is the relationship between the Cr equivalent and the Ni equivalent. Each of these is expressed by the following equations.

【0032】Cr当量=1.5Si+Cr+3Al Ni当量=0.5Mn+Ni+30C+30N 本発明者らはこれらCr当量およびNi当量を用いた下
記の(1)式が成り立つときに、800℃〜1000℃
での長時間使用後も脆いシグマ相の析出がほとんど無い
こと、すなわち、長時間使用しても良好な靭性が保たれ
ることを見出した。また、同時に(1)式が成り立つと
き、圧延後のフェライト相の存在がなくオーステナイト
単相組織であり、鋼板端部の割れもほとんど無いことを
見出した。鋼板端部の割れは歩留まりを低下させるため
経済的に好ましくない。したがって、以下の(1)式を
満足することが要件となる。
Cr Equivalent = 1.5 Si + Cr + 3Al Ni Equivalent = 0.5 Mn + Ni + 30C + 30N When the following formula (1) using these Cr equivalent and Ni equivalent is satisfied, the present invention is 800 ° C. to 1000 ° C.
It has been found that there is almost no precipitation of brittle sigma phase even after long-term use in, that is, good toughness is maintained even after long-term use. Further, at the same time, it was found that when the formula (1) is satisfied, there is no ferrite phase after rolling, the structure is an austenite single-phase structure, and there is almost no cracking at the edges of the steel sheet. Cracking at the edge of the steel plate is not economically preferable because it lowers the yield. Therefore, it is necessary to satisfy the following expression (1).

【0033】 α=(1.5Si+Cr+3 Al)−(0.5Mn+Ni+30C+30N)<9 …(1) なお、溶接性の観点からは、フェライト相に対するオー
ステナイト相の安定性を過剰に高めると、高温割れ感受
性を高めてしまうことになるため、(1)式の左辺の値
はできるだけ大きくなるような成分系とすることが好ま
しい。
Α = (1.5Si + Cr + 3Al) − (0.5Mn + Ni + 30C + 30N) <9 (1) From the viewpoint of weldability, if the stability of the austenite phase with respect to the ferrite phase is excessively increased, the hot cracking susceptibility is increased. Therefore, it is preferable to use a component system in which the value on the left side of Expression (1) is as large as possible.

【0034】最後に、MCIの限定理由について説明す
る。炭化物生成元素については、析出し得るM236
鉄/クロム炭化物、MC型Zr、Nb、Ti、V炭化物
の割合が(2′)式を満足すること、すなわちZr、N
b、Ti、Vを(2)式の範囲で添加することが、最も
有効にクリープ破断強度を向上させ得る。したがって、
以下の(2)式を満足することが要件となる。 (CasMC)/(CasM236 +CasMC)≧0.5 …(2′) MCI=C/2 −12×(Zr/91+Nb/93+Ti/48+V/68)≦0 …(2)
Finally, the reason for limiting the MCI will be described. Regarding the carbide-forming element, the ratio of M 23 C 6 type iron / chromium carbide, MC type Zr, Nb, Ti, and V carbide that can be precipitated satisfies the formula (2 ′), that is, Zr, N
The addition of b, Ti and V within the range of the formula (2) can most effectively improve the creep rupture strength. Therefore,
The requirement is to satisfy the following expression (2). (CasMC) / (CasM 23 C 6 + CasMC) ≧ 0.5 (2 ′) MCI = C / 2 −12 × (Zr / 91 + Nb / 93 + Ti / 48 + V / 68) ≦ 0 (2)

【0035】[0035]

【実施例】次に本発明の実施例について説明する。表1
と表2に本実施例で用いた鋼の化学組成を示す。表1の
No.1からNo.11は上記第1発明の組成範囲を満
足する発明鋼であり、またNo.12からNo.15は
上記第2発明の成分範囲を満足する発明鋼である。一
方、表2のNo.16からNo.32は比較鋼である。
両表中には、(1)式で定義されるαの値、および
(2)式で定義されるMCIの値も併せて示した。
Next, an embodiment of the present invention will be described. Table 1
Table 2 shows the chemical composition of the steel used in this example. No. 1 in Table 1. No. 1 to No. No. 11 is an invention steel satisfying the composition range of the first invention, and No. 11 12 to No. 12 No. 15 is an invention steel satisfying the composition range of the second invention. On the other hand, No. No. 16 to No. 32 is a comparative steel.
In both tables, the value of α defined by the equation (1) and the value of MCI defined by the equation (2) are also shown.

【0036】これらの成分を、電気炉溶解、鋳造、熱間
圧延によって12mm厚さに製造し、1100℃溶体化
処理した後に、下記の各試験に供した。まず、900℃
での酸化試験を行った結果を表3と表4に示す。酸化試
験は、20mm×30mm×5mmの腐食試験片を用
い、ムライト管を内管とする環状炉で加熱した。湿度調
整システムにより露点を30℃に加湿・調整した空気中
で240時間均熱後、側壁を水冷した冷却室に移動させ
て室温まで冷却した。昇温速度、降温速度の実測値は、
それぞれ約130℃/min、150℃/minであっ
た。耐酸化性は、試験終了後の試験片を5%KMnO4
+18%NaOH水溶液と10%クエン酸2アンモニウ
ム水溶液で脱スケールした後、重量測定し、試験前の重
量に対する酸化減量で評価した。繰返し数(n数)は各
鋼種で3とし、平均値で評価した。個々の試験片間のば
らつきはおおむね10〜50%以内であった。
These components were produced by melting in an electric furnace, casting, and hot rolling to a thickness of 12 mm, subjected to solution treatment at 1100 ° C., and then subjected to the following tests. First, 900 ° C
The results of the oxidation test in Table 3 are shown in Tables 3 and 4. In the oxidation test, a 20 mm × 30 mm × 5 mm corrosion test piece was used and heated in an annular furnace having a mullite tube as an inner tube. After soaking in air whose dew point was humidified and adjusted to 30 ° C. by a humidity control system for 240 hours, the side wall was moved to a water-cooled cooling chamber and cooled to room temperature. Measured values of temperature rising rate and temperature falling rate are
It was about 130 ° C./min and 150 ° C./min, respectively. Oxidation resistance is 5% KMnO 4
After descaling with a + 18% NaOH aqueous solution and a 10% diammonium citrate aqueous solution, the weight was measured and evaluated by the weight loss due to oxidation with respect to the weight before the test. The number of repetitions (n number) was 3 for each steel type, and the average value was evaluated. The variation between individual test pieces was generally within 10 to 50%.

【0037】これらの表からわかるように、No.1か
らNo.15の発明鋼は、比較鋼No.16として実験
した汎用の18Cr−8Ni系ステンレス鋼(SUS3
04H)に比べ1/7以下の腐食減量であり、良好な耐
酸化性を示すことが確認された。これは、一定量以上の
AlとCr量を含有することにより、酸化被膜の緻密性
が増し、かつ酸化被膜が安定になり、内部保護性が向上
するためと考えられる。
As can be seen from these tables, No. No. 1 to No. The invention steel of No. 15 is comparative steel No. General-purpose 18Cr-8Ni-based stainless steel (SUS3
It was confirmed that the corrosion weight loss was 1/7 or less as compared with 04H), and that good oxidation resistance was exhibited. It is considered that the inclusion of a certain amount or more of Al and Cr increases the denseness of the oxide film, stabilizes the oxide film, and improves the internal protection.

【0038】これに対して、比較鋼No.16、No.
17はAl量の不足により、十分な耐高温酸化性が得ら
れていない。次に、高温での使用時に問題となる特性と
して、組織安定性が重要であるので、組織安定性を把握
するために、850℃において400時間時効し、JI
S4号シャルピー衝撃試験片による0℃におけるシャル
ピー衝撃試験の吸収エネルギーを測定した。その値を表
3および表4に併記する。
On the other hand, Comparative Steel No. 16, No.
No. 17 does not have sufficient high temperature oxidation resistance due to lack of Al content. Next, since the tissue stability is important as a problematic property at the time of use at high temperature, in order to grasp the tissue stability, aging at 850 ° C. for 400 hours was performed.
The absorbed energy of the Charpy impact test at 0 ° C. by the S4 Charpy impact test piece was measured. The values are also shown in Table 3 and Table 4.

【0039】発明鋼は0℃における吸収エネルギーが3
0J以上と良好で炭窒化物、シグマ相等の金属間化合物
等の生成に起因するような靭性低下は認められなかっ
た。これに対して、比較鋼No.18はαの値が9以上
となっているため、長時間の熱処理によりシグマ相が析
出し靭性の劣化が認められた。
The invention steel has an absorbed energy of 3 at 0 ° C.
It was as good as 0 J or more, and no reduction in toughness due to the formation of carbonitrides, intermetallic compounds such as sigma phase was observed. On the other hand, comparative steel No. Since 18 had an α value of 9 or more, deterioration of toughness was observed due to precipitation of sigma phase due to long-term heat treatment.

【0040】次に、圧延時の熱間加工性について評価し
た。ここでは、圧延後の板材の耳割れの有無によって加
工性評価を行った。その結果も表3および表4に併記す
る。本発明鋼では1200℃加熱し、仕上温度を900
℃とした圧延工程において、耳割れは発生せず、良好な
圧延結果が得られた。
Next, the hot workability during rolling was evaluated. Here, the workability was evaluated by the presence or absence of edge cracks in the rolled plate material. The results are also shown in Tables 3 and 4. The steel of the present invention is heated at 1200 ° C. and the finishing temperature is 900
In the rolling process in which the temperature was set to ℃, no edge cracking occurred and good rolling results were obtained.

【0041】一方、(1)式のαの値が9以上の比較鋼
No.28では板端面に耳割れを生じた。また、Ca量
が適量でない比較鋼No.31と、Mg量が適量でない
比較鋼No.32においても板端面に耳割れを生じた。
On the other hand, the comparative steel Nos. In which the value of α in the equation (1) is 9 or more. In No. 28, an edge crack occurred on the plate end surface. In addition, the comparative steel Nos. In which the amount of Ca is not appropriate. 31 and comparative steel No. 3 in which the amount of Mg is not appropriate. Also in No. 32, the edge of the plate was cracked.

【0042】次に、高温強度であるが、クリープ破断試
験を900℃で行い、10,000hまでの破断試験結
果より、100,000h破断強度を外挿して求めた。
その値を表3および表4に併記する。
Next, regarding the high-temperature strength, a creep rupture test was performed at 900 ° C., and the rupture strength of 100,000 h was extrapolated from the results of the rupture test up to 10,000 h.
The values are also shown in Table 3 and Table 4.

【0043】本発明鋼は、比較鋼No.16として実験
した汎用の18Cr−8Ni鋼ステンレス鋼を上回るク
リープ破断強度を示した。一方、比較鋼No.16、N
o.19、No.20、No.21、No.22はT
i、V、Nb、Zr量の不足により、また比較鋼No.
27、No.28、No.29は(2)式のMCIの値
が0を超えているためクリープ破断強度が18Cr−8
Ni鋼ステンレス鋼と同程度であった。また、比較鋼N
o.18はシグマ相が析出したため、比較鋼No.2
3、No.24、No.25、No.26、No.3
0、No.31、No.32はそれぞれTi、V、N
b、Zr、B、Ca、Mg量が過剰であったため、著し
い破断延性の低下、クリープ破断強度の不足が生じ、1
00,000h破断強度外挿値が求められなかった。
The steels of the present invention are comparative steel Nos. It exhibited creep rupture strength superior to that of the general-purpose 18Cr-8Ni steel stainless steel tested as 16. On the other hand, the comparative steel No. 16, N
o. 19, no. 20, no. 21, no. 22 is T
Due to lack of i, V, Nb, and Zr amounts, comparative steel No.
27, no. 28, no. No. 29 has a creep rupture strength of 18Cr-8 because the MCI value of the formula (2) exceeds 0.
It was about the same as Ni steel and stainless steel. Also, comparative steel N
o. Comparative Steel No. 18 has a sigma phase precipitated. Two
3, No. 24, no. 25, no. 26, no. 3
0, No. 31, No. 32 is Ti, V, N respectively
Since the amounts of b, Zr, B, Ca, and Mg were excessive, the ductility at break was remarkably reduced and the creep rupture strength was insufficient.
The extrapolated value of the breaking strength at 0,000 h could not be obtained.

【0044】最後に、構造部材として使用する場合に問
題となる重要な特性である溶接時の高温割れ感受性を評
価した。この溶接時の高温割れ感受性はバレストレイン
試験により評価を行った。試験は、ノンフィラーTIG
で入熱18kJ/cmの溶接を模擬しながら、試験片に
1.0%の曲げ歪を与え、冷却後に合計割れ長さを測定
することにより行った。
Finally, the hot cracking susceptibility during welding, which is an important characteristic which becomes a problem when used as a structural member, was evaluated. The susceptibility to hot cracking during welding was evaluated by the Balestrain test. The test is non-filler TIG
While simulating a welding with a heat input of 18 kJ / cm, a bending strain of 1.0% was applied to the test piece, and the total crack length was measured after cooling.

【0045】その結果、本発明鋼では試験後に割れの発
生は認められなかった。これに対して、比較鋼No.1
9、No.20、No.21、No.22、No.30
はそれぞれTi、V、Nb、Zr、B量が過剰であった
ため、溶接後に割れの発生が認められた。
As a result, in the steel of the present invention, no crack was found after the test. On the other hand, comparative steel No. 1
9, No. 20, no. 21, no. 22, no. 30
Since the Ti, V, Nb, Zr, and B contents were excessive, respectively, cracking was observed after welding.

【0046】以上の実施例から明らかなように、本発明
の成分設定によれば、高温での耐酸化性能の向上を図る
ことができ、また高温使用時の組織安定性に優れるため
靭性の劣化がなく、かつ圧延製造時の熱間加工性も優
れ、さらに高温強度が高く、しかも溶接時の高温割れ感
受性が高くないため溶接性に優れた、耐熱性ステンレス
鋼を得ることができることが確認された。
As is clear from the above examples, according to the composition setting of the present invention, the oxidation resistance performance at high temperature can be improved, and the toughness is deteriorated because of excellent structure stability at high temperature use. It is confirmed that it is possible to obtain a heat-resistant stainless steel that is excellent in weldability because it has no weldability, excellent hot workability during rolling manufacturing, high strength at high temperature, and high susceptibility to hot cracking during welding. It was

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【発明の効果】本発明によれば、800℃〜1000℃
という非冷却部などの新形式発電プラントに特徴的な使
用条件に耐え得る耐熱性オーステナイト系ステンレス鋼
が提供される。しかも従来の汎用性ステンレス鋼である
18Cr−8Ni系ステンレス鋼より大幅に優れた耐酸
化性を有し、長期の使用に対して良好な組織安定性を示
し信頼性が高く、高温強度が高く、溶接構造用としては
高温割れ感受性が低く作業性の良好な部材の製造に役立
つものである。
According to the present invention, 800 ° C to 1000 ° C
A heat-resistant austenitic stainless steel that can withstand the usage conditions characteristic of a new type power plant such as an uncooled part is provided. Moreover, it has much better oxidation resistance than the conventional general-purpose stainless steel, 18Cr-8Ni series stainless steel, shows good structural stability for long-term use, has high reliability, high temperature strength, and As a welded structure, it is useful for manufacturing members having low workability and good workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al無添加の従来のCr−Ni系ステンレス鋼
と、本発明のAl含有Cr−Ni系ステンレス鋼の、C
r当量Ni当量2元系状態図上のシグマ相析出領域の相
違を示した図。
FIG. 1 is a graph showing the C of a conventional Cr-Ni-based stainless steel containing no Al and an Al-containing Cr-Ni-based stainless steel of the present invention.
The figure which showed the difference of sigma phase precipitation area | region on r equivalent Ni equivalent binary system phase diagram.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.12%以下、Si:
1.0%以下、Mn:5.0%以下、P:0.04%以
下、S:0.03%以下、Cr:14%〜22%、N
i:10%〜25%、Al:1.0%〜3.5%、N:
0.02%以下、Ca:0.001%〜0.010%、
さらにTi:0.05%〜0.5%、V:0.1%〜
1.0%、Nb:0.1%〜1.0%、Zr:0.1%
〜1.0%の1種または2種以上を含有し、残部がFe
および不可避不純物からなり、かつ以下の(1)式およ
び(2)式を満たすことを特徴とする溶接構造高温機器
用オーステナイト系ステンレス鋼。 α=(1.5Si+Cr+3 Al)−(0.5Mn+Ni+30C+30N)<9 …(1) MCI=C/2 −12×(Zr/91+Nb/93+Ti/48+V/68)≦0 …(2)
1. By weight%, C: 0.12% or less, Si:
1.0% or less, Mn: 5.0% or less, P: 0.04% or less, S: 0.03% or less, Cr: 14% to 22%, N
i: 10% to 25%, Al: 1.0% to 3.5%, N:
0.02% or less, Ca: 0.001% to 0.010%,
Further, Ti: 0.05% to 0.5%, V: 0.1% to
1.0%, Nb: 0.1% to 1.0%, Zr: 0.1%
~ 1.0% of 1 type or 2 types or more, with the balance being Fe
And an austenitic stainless steel for welded high-temperature equipment, characterized by comprising unavoidable impurities and satisfying the following expressions (1) and (2). α = (1.5Si + Cr + 3Al) − (0.5Mn + Ni + 30C + 30N) <9 (1) MCI = C / 2 −12 × (Zr / 91 + Nb / 93 + Ti / 48 + V / 68) ≦ 0 (2)
【請求項2】 重量%で、C:0.12%以下、Si:
1.0%以下、Mn:5.0%以下、P:0.04%以
下、S:0.03%以下、Cr:14%〜22%、N
i:10%〜25%、Al:1.0%〜3.5%、N:
0.02%以下、Ca:0.001%〜0.010%、
さらにTi:0.05%〜0.5%、V:0.1%〜
1.0%、Nb:0.1%〜1.0%、Zr:0.1%
〜1.0%の1種または2種以上を含有し、かつB:
0.001%〜0.01%を含有し、残部がFeおよび
不可避不純物からなり、かつ以下の(1)式および
(2)式を満たすことを特徴とする溶接構造高温機器用
オーステナイト系ステンレス鋼。 α=(1.5Si+Cr+3 Al)−(0.5Mn+Ni+30C+30N)<9 …(1) MCI=C/2 −12×(Zr/91+Nb/93+Ti/48+V/68)≦0 …(2)
2. By weight%, C: 0.12% or less, Si:
1.0% or less, Mn: 5.0% or less, P: 0.04% or less, S: 0.03% or less, Cr: 14% to 22%, N
i: 10% to 25%, Al: 1.0% to 3.5%, N:
0.02% or less, Ca: 0.001% to 0.010%,
Further, Ti: 0.05% to 0.5%, V: 0.1% to
1.0%, Nb: 0.1% to 1.0%, Zr: 0.1%
To 1.0% of one or more, and B:
Austenitic stainless steel for welded high temperature equipment, containing 0.001% to 0.01%, the balance consisting of Fe and unavoidable impurities, and satisfying the following formulas (1) and (2) . α = (1.5Si + Cr + 3Al) − (0.5Mn + Ni + 30C + 30N) <9 (1) MCI = C / 2 −12 × (Zr / 91 + Nb / 93 + Ti / 48 + V / 68) ≦ 0 (2)
JP5140496A 1996-03-08 1996-03-08 Austenitic stainless steel for high temperature equipment with welded structure Pending JPH09241810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5140496A JPH09241810A (en) 1996-03-08 1996-03-08 Austenitic stainless steel for high temperature equipment with welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5140496A JPH09241810A (en) 1996-03-08 1996-03-08 Austenitic stainless steel for high temperature equipment with welded structure

Publications (1)

Publication Number Publication Date
JPH09241810A true JPH09241810A (en) 1997-09-16

Family

ID=12886008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5140496A Pending JPH09241810A (en) 1996-03-08 1996-03-08 Austenitic stainless steel for high temperature equipment with welded structure

Country Status (1)

Country Link
JP (1) JPH09241810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086141A1 (en) * 2007-01-04 2008-07-17 Ut-Battelle, Llc Oxidation resistant high creep strength austenitic stainless steel
DE102007029400A1 (en) * 2007-06-26 2009-01-02 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium-silicon alloy
SE2130152A1 (en) * 2021-06-01 2022-12-02 Sandvik Materials Tech Emea Ab Alumina forming austenite-ferrite stainless steel alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086141A1 (en) * 2007-01-04 2008-07-17 Ut-Battelle, Llc Oxidation resistant high creep strength austenitic stainless steel
DE102007029400A1 (en) * 2007-06-26 2009-01-02 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium-silicon alloy
DE102007029400B4 (en) * 2007-06-26 2014-05-15 Outokumpu Vdm Gmbh Iron-nickel-chromium-silicon alloy
SE2130152A1 (en) * 2021-06-01 2022-12-02 Sandvik Materials Tech Emea Ab Alumina forming austenite-ferrite stainless steel alloy
WO2022255927A1 (en) * 2021-06-01 2022-12-08 Alleima Emea Ab Alumina forming austenite-ferrite stainless steel alloy
SE545439C2 (en) * 2021-06-01 2023-09-12 Sandvik Materials Tech Emea Ab Alumina forming austenite-ferrite stainless steel alloy

Similar Documents

Publication Publication Date Title
KR100676659B1 (en) Heat-resistant ferritic stainless steel and method for production thereof
JP5152387B2 (en) Ferritic stainless steel with excellent heat resistance and workability
WO2009119630A1 (en) Nickel-based alloy
JP5012243B2 (en) Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
JPH0885849A (en) High chromium ferritic heat resistant steel
JP2002241900A (en) Austenitic stainless steel having excellent sulfuric acid corrosion resistance and workability
JP3745567B2 (en) Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JPH09324246A (en) Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance
JP4377869B2 (en) Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same
JP2908228B2 (en) Ferritic steel welding material with excellent resistance to hot cracking
JPH08337850A (en) Austenitic stainless steel for welding structural high temperature apparatus
JPH09241810A (en) Austenitic stainless steel for high temperature equipment with welded structure
WO1994021836A1 (en) Ferritic stainless steel excellent in oxidation resistance
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger
JPH04173939A (en) Ferritic stainless steel excellent in high temperature strength and toughness
JP3591486B2 (en) High Cr ferritic heat resistant steel
JPH0885850A (en) High chromium ferritic heat resistant steel
JP3527640B2 (en) Weld metal for high Cr ferritic heat resistant steel
JP3298365B2 (en) Austenitic stainless steel for high-temperature welding equipment
JP2000001755A (en) Austenitic stainless steel excellent in sulfuric acid dew point corrosion resistance and its production
JP3149687B2 (en) Stainless steel with excellent oxidation resistance
JPH04224657A (en) Ferritic stainless steel excellent in strength at high temperature and toughness in weld heat-affected zone
JPS60162757A (en) Austenitic stainless steel having high corrosion resistance at high temperature
JPH06136488A (en) Ferritic stainless steel excellent in workability, high temperature salt damage resistance, and high temperature strength