JP5152387B2 - Ferritic stainless steel with excellent heat resistance and workability - Google Patents

Ferritic stainless steel with excellent heat resistance and workability Download PDF

Info

Publication number
JP5152387B2
JP5152387B2 JP2011221763A JP2011221763A JP5152387B2 JP 5152387 B2 JP5152387 B2 JP 5152387B2 JP 2011221763 A JP2011221763 A JP 2011221763A JP 2011221763 A JP2011221763 A JP 2011221763A JP 5152387 B2 JP5152387 B2 JP 5152387B2
Authority
JP
Japan
Prior art keywords
less
steel
content
rolled
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011221763A
Other languages
Japanese (ja)
Other versions
JP2012102397A (en
Inventor
徹之 中村
裕樹 太田
康 加藤
浩行 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011221763A priority Critical patent/JP5152387B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to KR1020137010304A priority patent/KR101581886B1/en
Priority to ES11832650T priority patent/ES2720733T3/en
Priority to PCT/JP2011/073980 priority patent/WO2012050226A1/en
Priority to CN201180049437.9A priority patent/CN103154294B/en
Priority to MX2013004053A priority patent/MX339281B/en
Priority to US13/876,093 priority patent/US20130183190A1/en
Priority to EP11832650.3A priority patent/EP2628814B1/en
Priority to MYPI2013001167A priority patent/MY165138A/en
Priority to TW100137265A priority patent/TWI472629B/en
Publication of JP2012102397A publication Critical patent/JP2012102397A/en
Application granted granted Critical
Publication of JP5152387B2 publication Critical patent/JP5152387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Description

本発明は、自動車やオートバイの排気管、触媒外筒材(コンバーターケースともいう)や火力発電プラントの排気ダクト等の高温環境下で使用される排気系部材に用いて好適な、高い耐熱性(熱疲労特性、耐酸化性、高温疲労特性)および加工性を兼ね備えるフェライト系ステンレス鋼に関する。   The present invention has high heat resistance (preferably used for exhaust system members used in high temperature environments such as exhaust pipes of automobiles and motorcycles, catalyst outer cylinder materials (also referred to as converter cases) and exhaust ducts of thermal power plants. The present invention relates to a ferritic stainless steel having both thermal fatigue properties, oxidation resistance, and high temperature fatigue properties) and workability.

自動車の排気系環境下で使用されるエキゾーストマニホールド、排気パイプ、コンバーターケース、マフラー等の排気系部材には、熱疲労特性や高温疲労特性、耐酸化性(以下、これらをまとめて「耐熱性」と呼ぶ。)に優れることが要求されている。エキゾーストマニホールド等はエンジンの始動・停止を繰り返すことにより加熱・冷却を受けるが、周辺部品との関係で拘束された状態であるため、素材自身の熱膨張や熱収縮が制限され熱歪が発生する。この熱歪に起因した疲労現象が熱疲労である。一方、エンジン始動中には加熱された状態で振動を受け続けることになる。この振動による歪の蓄積に起因した疲労現象が高温疲労である。前者は低サイクル疲労、後者は高サイクル疲労であり、全く異なった疲労現象である。   Exhaust manifolds, exhaust pipes, converter cases, mufflers and other exhaust system components used in automobile exhaust system environments have thermal fatigue characteristics, high temperature fatigue characteristics, and oxidation resistance (hereinafter collectively referred to as “heat resistance”). It is required to be excellent. Exhaust manifolds, etc. are heated and cooled by repeatedly starting and stopping the engine, but they are constrained in relation to surrounding parts, so the thermal expansion and contraction of the material itself is limited and thermal distortion occurs. . The fatigue phenomenon resulting from this thermal strain is thermal fatigue. On the other hand, while the engine is starting, it continues to receive vibration in a heated state. The fatigue phenomenon resulting from the accumulation of strain due to this vibration is high temperature fatigue. The former is low cycle fatigue and the latter is high cycle fatigue, which are completely different fatigue phenomena.

このような耐熱性が求められる用途には、現在、NbとSiを複合添加したCr含有鋼(例えば、JFE429EX 14Cr−0.9Si−0.4Nb鋼)のようなCr含有鋼が多く使用されている。しかし、エンジン性能の向上に伴って、排ガス温度が900℃を超えるような温度まで上昇してくると、Nb−Si複合添加鋼では、熱疲労特性が不十分となってきた。   In applications where such heat resistance is required, Cr-containing steels such as Cr-containing steels with a composite addition of Nb and Si (for example, JFE429EX 14Cr-0.9Si-0.4Nb steel) are currently widely used. Yes. However, when the exhaust gas temperature rises to a temperature exceeding 900 ° C. as the engine performance improves, the Nb—Si composite added steel has insufficient thermal fatigue characteristics.

この問題に対しては、NbとMoを添加して高温耐力を向上させたCr含有鋼や、JIS G4305に規定されるSUS444(19Cr−0.5Nb−2Mo)、Crの含有量を下げて、Nb,Mo,Wを添加したフェライト系ステンレス鋼等が開発されている(例えば、特許文献1参照)。しかしながら、昨今におけるMoやW等の希少金属原料の異常な高騰から、安価な原料を用いて同等の耐熱性を有する材料の開発が要求されるようになってきた。   For this problem, Cr-containing steel with improved high-temperature proof stress by adding Nb and Mo, SUS444 (19Cr-0.5Nb-2Mo) specified in JIS G4305, the content of Cr is lowered, Ferritic stainless steel to which Nb, Mo, W is added has been developed (for example, see Patent Document 1). However, due to the recent abnormal rise of rare metal raw materials such as Mo and W, development of materials having equivalent heat resistance using inexpensive raw materials has been required.

高価な元素であるMoやWを用いない耐熱性に優れた材料としては、例えば、特許文献2〜4に開示されているものが知られている。特許文献2には、10〜20mass%Cr鋼に、Nb:0.50mass%以下、Cu:0.8〜2.0mass%、V:0.03〜0.20mass%を添加した自動車排ガス流路部材用フェライト系ステンレス鋼が開示されている。特許文献3には、10〜20mass%Cr鋼に、Ti:0.05〜0.30mass%、Nb:0.10〜0.60mass%、Cu:0.8〜2.0mass%、B:0.0005〜0.02mass%を添加した熱疲労特性に優れたフェライト系ステンレス鋼が開示されている。特許文献4には、15〜25mass%Cr鋼に、Cu:1〜3mass%を添加した自動車排気系部品用フェライト系ステンレス鋼が開示されている。これらに開示された鋼はいずれも、Cuを添加することによって、熱疲労特性を向上させているのが特徴である。   As materials excellent in heat resistance without using expensive elements such as Mo and W, for example, those disclosed in Patent Documents 2 to 4 are known. Patent Document 2 discloses an automobile exhaust gas flow channel in which Nb: 0.50 mass% or less, Cu: 0.8-2.0 mass%, and V: 0.03-0.20 mass% are added to 10-20 mass% Cr steel. Ferritic stainless steel for members is disclosed. In Patent Document 3, 10-20 mass% Cr steel, Ti: 0.05-0.30 mass%, Nb: 0.10-0.60 mass%, Cu: 0.8-2.0 mass%, B: 0 Ferritic stainless steels having excellent thermal fatigue properties with addition of .0005 to 0.02 mass% are disclosed. Patent Document 4 discloses a ferritic stainless steel for automobile exhaust system parts in which Cu: 1 to 3 mass% is added to 15 to 25 mass% Cr steel. All of the steels disclosed therein are characterized in that the thermal fatigue properties are improved by adding Cu.

特開2004−018921号公報JP 2004-018921 A 国際公開2003/004714号パンフレットInternational Publication 2003/004714 Pamphlet 特開2006−117985号公報JP 2006-117985 A 特開2000−297355号公報JP 2000-297355 A

しかしながら、発明者らの研究によれば、上記特許文献2〜4に開示された技術のようにCuを添加した場合には、熱疲労特性は向上するものの、鋼自身の耐酸化性が却って低下し、総体的に見ると、耐熱性が劣化することが明らかとなってきた。   However, according to the researches of the inventors, when Cu is added as in the techniques disclosed in Patent Documents 2 to 4, the thermal fatigue characteristics are improved, but the oxidation resistance of the steel itself is decreased. On the whole, however, it has become clear that the heat resistance deteriorates.

また、自動車車体の軽量化に伴い、エンジンスペースにおいてエキゾーストマニホールドが占有できるスペースが小さくなっていることから、エキゾーストマニホールドには複雑な形状にも加工できることが求められるようになっている。   In addition, with the reduction in the weight of automobile bodies, the space that the exhaust manifold can occupy in the engine space has become smaller, so that the exhaust manifold is required to be processed into a complicated shape.

本発明はかかる事情に鑑みてなされたものであって、Cuによる耐酸化性の低下を防止しつつ、MoやW等の高価な元素を添加することなく、耐熱性(耐酸化性、熱疲労特性および高温疲労特性)および加工性がともに優れるフェライト系ステンレス鋼を提供することを目的とする。   The present invention has been made in view of such circumstances, and prevents heat resistance (oxidation resistance, thermal fatigue) without adding an expensive element such as Mo or W while preventing a decrease in oxidation resistance due to Cu. It is an object of the present invention to provide a ferritic stainless steel having excellent properties and high temperature fatigue properties) and workability.

なお、本発明でいう「耐熱性に優れる」とは、耐酸化性、熱疲労特性および高温疲労特性が、SUS444と同等以上であることをいう。具体的には、耐酸化性については950℃における耐酸化性がSUS444と同等以上であること、熱疲労特性については100−850℃間での繰り返しの熱疲労特性がSUS444と同等以上であること、高温疲労特性については850℃における高温疲労特性がSUS444と同等以上であることをいう。また、本発明でいう「加工性に優れる」とは、室温における三方向平均伸びが36%以上であることをいう。   In the present invention, “excellent in heat resistance” means that the oxidation resistance, thermal fatigue characteristics and high temperature fatigue characteristics are equal to or higher than those of SUS444. Specifically, the oxidation resistance at 950 ° C. is equivalent to or better than SUS444 for oxidation resistance, and the thermal fatigue characteristic between 100-850 ° C. is more than equivalent to SUS444 for thermal fatigue characteristics. The high temperature fatigue property means that the high temperature fatigue property at 850 ° C. is equal to or higher than that of SUS444. In the present invention, “excellent in workability” means that the average elongation in three directions at room temperature is 36% or more.

発明者らは、従来技術が抱えるCuによる耐酸化性の低下を防止し、MoやW等の高価な元素を添加することなく、耐酸化性と熱疲労特性を兼ね備えたフェライト系ステンレス鋼を開発すべく鋭意検討を重ねた。その結果、Nbを0.3〜0.65mass%、Cuを1.0〜2.5mass%の範囲でこれらを複合して含有させることによって、幅広い温度域で高い高温強度が得られ、熱疲労特性が改善されること、また、Cuを含有させることによる耐酸化性の低下は、適正量のAl(0.2〜1.0mass%)を含有させることにより防止し得ること、したがって、Nb,CuおよびAlを上記適正範囲に制御することによって初めて、MoやWを添加しなくても、SUS444と同等以上の耐熱性(熱疲労特性、耐酸化性)が得られることを見出した。また、実際にエキゾーストマニホールド等として使用した場合に想定されるような、水蒸気を含む環境下での耐酸化性を改善する手段について鋭意検討した結果、Si量を適正化(0.4〜1.0mass%)することにより、水蒸気雰囲気中における耐酸化性(以下、耐水蒸気酸化特性と呼ぶ)もSUS444と同等以上となることを見出した。   The inventors have developed a ferritic stainless steel that has both oxidation resistance and thermal fatigue characteristics without adding any expensive elements such as Mo and W, preventing the decrease in oxidation resistance due to Cu, which is the conventional technology. We studied as hard as possible. As a result, by combining Nb in the range of 0.3 to 0.65 mass% and Cu in the range of 1.0 to 2.5 mass%, high high-temperature strength can be obtained in a wide temperature range, and thermal fatigue can be obtained. It is possible to prevent the deterioration of the oxidation resistance due to the improvement of the characteristics and the inclusion of Cu by adding an appropriate amount of Al (0.2 to 1.0 mass%), and thus Nb, It was found for the first time by controlling Cu and Al within the proper range that heat resistance (thermal fatigue characteristics, oxidation resistance) equal to or higher than that of SUS444 can be obtained without adding Mo or W. Further, as a result of intensive investigations on means for improving oxidation resistance in an environment containing water vapor as expected when actually used as an exhaust manifold or the like, the amount of Si is optimized (0.4 to 1.. 0 mass%), it was found that the oxidation resistance in a steam atmosphere (hereinafter referred to as “steam oxidation resistance”) is also equal to or higher than that of SUS444.

また、エキゾーストマニホールドのような自動車排気系部材等では使用中の振動による疲労に対する特性も重要である。そこで、発明者らは高温疲労特性改善手段について鋭意検討し、Si量とAl量のバランスを適正化(Si≧Al)することにより、高温疲労特性もSUS444と同等以上となることを見出した。   Further, in an exhaust system member of an automobile such as an exhaust manifold, characteristics against fatigue due to vibration during use are also important. Accordingly, the inventors diligently studied the means for improving the high temperature fatigue characteristics, and found that, by optimizing the balance between the Si content and the Al content (Si ≧ Al), the high temperature fatigue characteristics are equal to or higher than that of SUS444.

さらに発明者らは、加工性および耐酸化性に及ぼすCr量の影響について鋭意研究した結果、Cr量を低下させることで加工性を向上することができ、このときの耐酸化性には大きく影響しないことを明らかにした。   Furthermore, the inventors have intensively studied the influence of Cr content on workability and oxidation resistance. As a result, workability can be improved by decreasing the Cr content, and this greatly affects the oxidation resistance. Clarified not to.

Cr量を低減することで加工性が向上することは従来から知られているが、Cr量を低減するだけでは耐酸化性が低下してしまうため、従来は特許文献1のようにCrの代わりにMoやWを添加することで耐酸化性の低下を補ってきた。これに対し、Alを適正量添加することにより、高価な元素であるMoやWを添加することなくCr量を低減しても優れた耐酸化性と加工性とを両立できることが判明した。   Although it has been conventionally known that workability is improved by reducing the amount of Cr, oxidation resistance is lowered only by reducing the amount of Cr. The addition of Mo and W to the surface compensates for the decrease in oxidation resistance. On the other hand, by adding an appropriate amount of Al, it has been found that excellent oxidation resistance and workability can be achieved even if the amount of Cr is reduced without adding expensive elements such as Mo and W.

本発明は、本発明者の以上のような知見に基づいて完成されたものである。   The present invention has been completed based on the above findings of the present inventors.

すなわち、本発明は、mass%で、C:0.015%以下、Si:0.4〜1.0%、Mn:1.0%以下、P:0.040%以下、S:0.010%以下、Cr:12%以上16%未満、N:0.015%以下、Nb:0.3〜0.65%、u:1.0〜2.5%、Al:0.2〜1.0%を含有し、Ti、MoおよびWを、それぞれTi:0.01%以下、Mo:0.1%以下、W:0.1%以下に規制し、かつSi≧Alを満たし、残部がFeおよび不可避的不純物からなることを特徴とする耐熱性と加工性に優れるフェライト系ステンレス鋼を提供する。 That is, the present invention is mass%, C: 0.015% or less, Si: 0.4 to 1.0%, Mn: 1.0% or less, P: 0.040% or less, S: 0.010 % or less, Cr: less than 12% or more 16%, N: 0.015% or less, Nb: 0.3~0.65%, C u : 1.0~2.5%, Al: 0.2~1 0.0% , Ti, Mo and W are respectively regulated to Ti: 0.01% or less, Mo: 0.1% or less, W: 0.1% or less, and satisfying Si ≧ Al , and the balance The present invention provides a ferritic stainless steel excellent in heat resistance and workability, characterized by comprising Fe and inevitable impurities.

また、本発明は、さらに、mass%で、B:0.003%以下、REM:0.08%以下、Zr:0.5%以下、V:0.5%以下、Co:0.5%以下およびNi:0.5%以下のうちから選ばれる1種または2種以上を含有することを特徴とする耐熱性と加工性に優れるフェライト系ステンレス鋼を提供する。   Further, the present invention further includes mass%, B: 0.003% or less, REM: 0.08% or less, Zr: 0.5% or less, V: 0.5% or less, Co: 0.5% Provided is a ferritic stainless steel excellent in heat resistance and workability, characterized by containing one or more selected from the following and Ni: 0.5% or less.

本発明によれば、高価なMoやWを添加することなく、SUS444(JISG4305)と同等以上の耐熱性(熱疲労特性、耐酸化性、高温疲労特性)および優れた加工性を有するフェライト系ステンレス鋼を安価に得ることができる。したがって、本発明の鋼は、自動車排気系部材に好適である。   According to the present invention, ferritic stainless steel having heat resistance (thermal fatigue characteristics, oxidation resistance, high temperature fatigue characteristics) equal to or better than SUS444 (JIS G4305) and excellent workability without adding expensive Mo or W. Steel can be obtained at low cost. Therefore, the steel of the present invention is suitable for automobile exhaust system members.

熱疲労試験片を説明する図である。It is a figure explaining a thermal fatigue test piece. 熱疲労試験における温度、拘束条件を説明する図である。It is a figure explaining the temperature in a thermal fatigue test, and constraint conditions. 高温疲労試験片を説明する図である。It is a figure explaining a high temperature fatigue test piece. 熱疲労特性に及ぼすCu含有量の影響を示すグラフである。It is a graph which shows the influence of Cu content which acts on a thermal fatigue characteristic. 耐酸化性(酸化増量)に及ぼすAl含有量の影響を示すグラフである。It is a graph which shows the influence of Al content which affects oxidation resistance (oxidation increase). 耐水蒸気酸化特性(酸化増量)に及ぼすSi含有量の影響を示すグラフである。It is a graph which shows the influence of Si content which acts on steam oxidation resistance (oxidation increase). 高温疲労特性に及ぼすSi含有量−Al含有量(Si−Al)の影響を示すグラフである。It is a graph which shows the influence of Si content-Al content (Si-Al) which has on high temperature fatigue characteristics. 耐水蒸気酸化特性(酸化増量)に及ぼすCr含有量の影響を示すグラフである。It is a graph which shows the influence of Cr content which acts on steam oxidation resistance (oxidation increase). 室温における三方向平均伸びに及ぼすCr含有量の影響を示すグラフである。It is a graph which shows the influence of Cr content which acts on the three-way average elongation at room temperature.

まず、本発明を完成するに至った基礎実験について、説明する。なお、以下の説明において、成分における%表示は全てmass%である。
C:0.005〜0.007%、N:0.004〜0.006%、P:0.02〜0.03%、S:0.002〜0.004%、Si:0.85%、Mn:0.4%、Cr:14%、Nb:0.45%、Al:0.35%、Ti:0.007%、Mo:0.01〜0.03%、W:0.01〜0.03%の成分組成をベースとし、Cuの含有量を0〜3%の範囲内で変化させた鋼を、実験室的に溶製して50kg鋼塊とし、この鋼塊を鍛造し、熱処理して断面積が35mm×35mmの鋼材とし、この鋼材から、図1に示したような寸法の熱疲労試験片を作製した。そして、図2に示したような、拘束率:0.30で100℃−850℃間を加熱・冷却する熱処理を繰り返して付与し、熱疲労寿命を測定した。なお、上記熱疲労寿命は、100℃において検出された荷重を、図1に示した試験片均熱平行部の断面積で割って応力を算出し、前のサイクルの応力に対して連続的に応力が低下し始めたときの最小のサイクル数とした。これは、試験片に亀裂が発生したサイクル数に相当する。なお、比較として、SUS444(Cr:19%−Mo:2%−Nb:0.5%鋼)についても、同様の試験を行った。
First, the basic experiment that led to the completion of the present invention will be described. In the following description, all percentages in the components are mass%.
C: 0.005-0.007%, N: 0.004-0.006%, P: 0.02-0.03%, S: 0.002-0.004%, Si: 0.85% , Mn: 0.4%, Cr: 14%, Nb: 0.45%, Al: 0.35%, Ti: 0.007%, Mo: 0.01 to 0.03%, W: 0.01 A steel with a component composition of ~ 0.03% as the base and the Cu content changed within the range of 0 to 3% is melted in the laboratory to form a 50kg steel ingot, and this steel ingot is forged. A heat fatigue test piece having a dimension as shown in FIG. 1 was produced from the steel material by heat treatment to obtain a steel material having a cross-sectional area of 35 mm × 35 mm. Then, the heat fatigue life was measured by repeatedly applying heat treatment for heating / cooling between 100 ° C. and 850 ° C. at a constraint ratio of 0.30 as shown in FIG. The thermal fatigue life is calculated by dividing the load detected at 100 ° C. by the cross-sectional area of the test piece soaking parallel section shown in FIG. The minimum number of cycles when the stress began to decrease was taken. This corresponds to the number of cycles in which a crack occurred in the test piece. For comparison, the same test was performed for SUS444 (Cr: 19% -Mo: 2% -Nb: 0.5% steel).

図4は上記熱疲労試験における熱疲労寿命に及ぼすCu含有量の影響を示したものである。この図から、Cu含有量を1.0%以上とすることにより、SUS444の熱疲労寿命(約1350サイクル)と同等以上の熱疲労寿命が得られること、したがって、熱疲労特性を改善するには、Cu含有量を1.0%以上とすることが有効であることがわかる。   FIG. 4 shows the influence of the Cu content on the thermal fatigue life in the thermal fatigue test. From this figure, by setting the Cu content to 1.0% or more, it is possible to obtain a thermal fatigue life equal to or greater than that of SUS444 (about 1350 cycles), and therefore to improve the thermal fatigue characteristics. It can be seen that it is effective to set the Cu content to 1.0% or more.

次に、C:0.006%、N:0.007%、P:0.02〜0.03%、S:0.002〜0.004%、Mn:0.2%、Si:0.85%、Cr:14%、Nb:0.49%、Cu:1.5%、Ti:0.007%、Mo:0.01〜0.03%、W:0.01〜0.03%の成分組成をベースとし、Al含有量を0〜2%の範囲内で変化させた鋼を、実験室的に溶製して50kg鋼塊とし、この鋼塊を、熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上げ焼鈍して、板厚2mmの冷延焼鈍板とした。上記のようにして得た冷延鋼板から30mm×20mmの試験片を切り出し、この試験片上部に4mmφの穴をあけ、表面および端面を#320のエメリー紙で研磨し、脱脂後、下記の大気中連続酸化試験に供した。   Next, C: 0.006%, N: 0.007%, P: 0.02-0.03%, S: 0.002-0.004%, Mn: 0.2%, Si: 0.00. 85%, Cr: 14%, Nb: 0.49%, Cu: 1.5%, Ti: 0.007%, Mo: 0.01-0.03%, W: 0.01-0.03% Based on the component composition of the above, the steel in which the Al content was changed within the range of 0 to 2% was melted in the laboratory to form a 50 kg steel ingot, which was hot-rolled and hot rolled. Sheet annealing, cold rolling, and finish annealing were performed to obtain a cold-rolled annealing sheet having a thickness of 2 mm. A 30 mm × 20 mm test piece was cut out from the cold-rolled steel sheet obtained as described above, a 4 mmφ hole was drilled on the top of the test piece, the surface and end face were polished with # 320 emery paper, degreased, and the following atmosphere It was subjected to a medium continuous oxidation test.

<大気中連続酸化試験>
上記試験片を、950℃に加熱された大気雰囲気の炉中に200時間保持し、加熱試験前後における試験片の質量の差を測定し、単位面積当たりの酸化増量(g/m)を求めた。
<Atmospheric continuous oxidation test>
The test piece is held in an atmospheric furnace heated to 950 ° C. for 200 hours, the difference in the mass of the test piece before and after the heating test is measured, and the increase in oxidation per unit area (g / m 2 ) is obtained. It was.

図5は上記大気中連続酸化試験における酸化増量に及ぼすAl含有量の影響を示したものである。この図から、Al含有量を0.2%以上とすることで、SUS444と同等以上の耐酸化性(酸化増量:19g/m以下)が得られることがわかる。 FIG. 5 shows the influence of the Al content on the increase in oxidation in the atmospheric continuous oxidation test. From this figure, it can be seen that when the Al content is 0.2% or more, oxidation resistance equal to or higher than that of SUS444 (oxidation increase: 19 g / m 2 or less) can be obtained.

次に、C:0.006%、N:0.007%、P:0.02〜0.03%、S:0.002〜0.004%、Mn:0.2%、Al:0.45%、Cr:14%、Nb:0.49%、Cu:1.5%、Ti:0.007%、Mo:0.01〜0.03%、W:0.01〜0.03%の成分組成をベースとし、Si含有量を種々に変化させた鋼を実験室的に溶製して50kg鋼塊とし、この鋼塊を、熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上げ焼鈍して、板厚2mmの冷延焼鈍板とした。上記のようにして得た冷延鋼板から30mm×20mmの試験片を切り出し、この試験片上部に4mmφの穴をあけ、表面および端面を#320のエメリー紙で研磨し、脱脂後、下記の水蒸気雰囲気連続酸化試験に供した。   Next, C: 0.006%, N: 0.007%, P: 0.02-0.03%, S: 0.002-0.004%, Mn: 0.2%, Al: 0.00. 45%, Cr: 14%, Nb: 0.49%, Cu: 1.5%, Ti: 0.007%, Mo: 0.01-0.03%, W: 0.01-0.03% Based on the component composition of the above, steel with various Si contents varied in the laboratory to produce a 50kg ingot, which was hot-rolled, hot-rolled and annealed, cold-rolled Then, finish annealing was performed to obtain a cold-rolled annealing plate having a thickness of 2 mm. A test piece of 30 mm × 20 mm was cut out from the cold-rolled steel sheet obtained as described above, a hole of 4 mmφ was made in the upper part of the test piece, the surface and the end surface were polished with # 320 emery paper, degreased, and the following water vapor It was subjected to an atmospheric continuous oxidation test.

<水蒸気雰囲気中連続酸化試験>
上記試験片を用いて、950℃に加熱された10vol%CO−20vol%HO−5vol%O−bal.Nガスを0.5L/minで流し、水蒸気雰囲気で950℃に加熱された炉中に200時間保持し、加熱試験前後における試験片の質量の差を測定し、単位面積当たりの酸化増量(g/m)を求めた。
<Continuous oxidation test in steam atmosphere>
10 vol% CO 2 -20 vol% H 2 O-5 vol% O 2 -bal. Heated to 950 ° C. using the above test piece. N 2 gas was allowed to flow at 0.5 L / min, held in a furnace heated to 950 ° C. in a steam atmosphere for 200 hours, the difference in the mass of the test piece before and after the heating test was measured, and the oxidation increase per unit area ( g / m 2 ).

図6は上記水蒸気酸化試験における酸化増量に及ぼすSi含有量の影響を示したものである。この図から、Si含有量を0.4%以上としないとSUS444同等の耐酸化性(酸化増量:37g/m以下)が得られないことがわかる。 FIG. 6 shows the influence of the Si content on the oxidation increase in the steam oxidation test. From this figure, it can be seen that unless the Si content is 0.4% or more, oxidation resistance equivalent to SUS444 (oxidation increase: 37 g / m 2 or less) cannot be obtained.

次に、C:0.006%、N:0.007%、P:0.02〜0.03%、S:0.002〜0.004%、Mn:0.2%、Cr:14%、Nb:0.49%、Cu:1.5%、Ti:0.007%、Mo:0.01〜0.03%、W:0.01〜0.03%の成分組成をベースとし、これにSi、Alの含有量を種々に変化させた鋼を実験室的に溶製して50kg鋼塊とし、この鋼塊を、熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上げ焼鈍して、板厚2mmの冷延焼鈍板とした。上記のようにして得た冷延鋼板から図3に示すような形状の疲労試験片を作製し、下記の高温疲労試験に供した。   Next, C: 0.006%, N: 0.007%, P: 0.02-0.03%, S: 0.002-0.004%, Mn: 0.2%, Cr: 14% Nb: 0.49%, Cu: 1.5%, Ti: 0.007%, Mo: 0.01-0.03%, W: 0.01-0.03% In this, steel with various contents of Si and Al was melted in a laboratory to form a 50 kg steel ingot, which was hot-rolled, hot-rolled and annealed, cold-rolled, Finish annealing was performed to obtain a cold-rolled annealing plate having a thickness of 2 mm. A fatigue test piece having a shape as shown in FIG. 3 was produced from the cold-rolled steel sheet obtained as described above, and was subjected to the following high-temperature fatigue test.

<高温疲労試験>
上記試験片を用い、シェンク式疲労試験機により850℃において1300rpmで鋼板を両振りすることにより評価した。なお、試験時には鋼板表面に70MPaの曲げ応力を負荷した。高温疲労特性は、破断までの疲労回数(サイクル)で評価した。
<High temperature fatigue test>
Evaluation was performed by shaking the steel plate at 1300 rpm at 850 ° C. using a Schenck fatigue tester using the above test piece. During the test, a bending stress of 70 MPa was applied to the steel sheet surface. High temperature fatigue properties were evaluated by the number of fatigue times (cycles) until breakage.

図7は上記高温疲労試験における疲労回数(サイクル)に及ぼすSi−Alの影響を示したものである。この図から、SUS444と同等以上の高温疲労寿命(24×10サイクル)を得るためには、Si≧Alを満たす必要があることがわかる。 FIG. 7 shows the influence of Si—Al on the number of fatigue times (cycles) in the high temperature fatigue test. From this figure, it can be seen that in order to obtain a high temperature fatigue life (24 × 10 5 cycles) equal to or greater than that of SUS444, it is necessary to satisfy Si ≧ Al.

次に、C:0.006%、N:0.007%、P:0.02〜0.03%、S:0.002〜0.004%、Mn:0.2%、Si:0.85%、Al:0.45%、Nb:0.49%、Cu:1.5%、Ti:0.007%、Mo:0.01〜0.03%、W:0.01〜0.03%の成分組成をベースとし、Cr含有量を種々に変化させた鋼を実験室的に溶製して50kg鋼塊とし、この鋼塊を、熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上げ焼鈍して、板厚2mmの冷延焼鈍板とした。上記のようにして得た冷延鋼板から30mm×20mmの試験片を切り出し、この試験片上部に4mmφの穴をあけ、表面および端面を#320のエメリー紙で研磨し、脱脂後、上記水蒸気酸化試験に供した。   Next, C: 0.006%, N: 0.007%, P: 0.02-0.03%, S: 0.002-0.004%, Mn: 0.2%, Si: 0.00. 85%, Al: 0.45%, Nb: 0.49%, Cu: 1.5%, Ti: 0.007%, Mo: 0.01-0.03%, W: 0.01-0. A steel having a Cr content of 3% and a Cr content varied in a laboratory is made into a 50 kg steel ingot, which is hot-rolled, hot-rolled, annealed, and cooled. Cold rolling and finish annealing were performed to obtain a cold-rolled annealed sheet having a thickness of 2 mm. A 30 mm × 20 mm test piece was cut out from the cold-rolled steel sheet obtained as described above, a hole of 4 mmφ was made in the upper part of the test piece, the surface and the end surface were polished with # 320 emery paper, degreased, and then steam-oxidized. It used for the test.

図8は上記水蒸気酸化試験における酸化増量に及ぼすCr含有量の影響を示したものである。この図から、Cr含有量が12%以上であればSUS444と同等の耐酸化性(酸化増量:37g/m以下)を得ることができることがわかる。 FIG. 8 shows the influence of the Cr content on the oxidation increase in the steam oxidation test. From this figure, it can be seen that if the Cr content is 12% or more, oxidation resistance equivalent to SUS444 (oxidation increase: 37 g / m 2 or less) can be obtained.

また、これらの冷延焼鈍板から圧延方向(L方向)、圧延方向に直角方向(C方向)、圧延方向に45°方向(D方向)のそれぞれを引張方向とするJIS13B号引張試験片を作製し、室温で引張試験を行った。室温で各方向の引張試験を行って破断伸びを測定し、平均伸びElを下記式から求めた。
平均伸びEl(%)=(E+2E+E)/4
ここで、E:L方向のEl(%)、E:D方向のEl(%)、E:C方向のEl(%)
Also, JIS13B tensile test specimens are prepared from these cold-rolled annealed sheets, with the rolling direction (L direction), the perpendicular direction to the rolling direction (C direction), and the 45 ° direction (D direction) as the rolling direction. Then, a tensile test was performed at room temperature. Tensile tests in each direction were performed at room temperature to measure the elongation at break, and the average elongation El was determined from the following formula.
Average elongation El (%) = (E L + 2E D + E C ) / 4
Here, E L : El (%) in the L direction, E D : El (%) in the D direction, E C : El (%) in the C direction

図9はその際の三方向(L、C、D方向)の平均伸びの値に及ぼすCr含有量の影響を示したものである。この図に示すように、Cr含有量が16%未満の場合に三方向(L、C、D方向)の平均伸び36%以上の良好な加工性が得られることがわかる。   FIG. 9 shows the influence of the Cr content on the average elongation value in the three directions (L, C, D direction). As shown in this figure, it can be seen that when the Cr content is less than 16%, good workability with an average elongation of 36% or more in the three directions (L, C, and D directions) can be obtained.

本発明は、以上のような基礎実験の結果に基づき、さらに検討を加えた結果完成されたものである。   The present invention has been completed as a result of further studies based on the results of the basic experiment as described above.

以下、本発明に係るフェライト系ステンレス鋼について詳細に説明する。
まず、本発明の成分組成について説明する。
Hereinafter, the ferritic stainless steel according to the present invention will be described in detail.
First, the component composition of the present invention will be described.

C:0.015%以下
Cは、鋼の強度を高めるのに有効な元素であるが、0.015%を超えて含有すると、靭性および成形性の低下が顕著となる。よって、本発明では、C含有量を0.015%以下とする。なお、成形性を確保する観点からは、C含有量は低いほど好ましく、0.008%以下とするのが望ましい。一方、排気系部材としての強度を確保するには、C含有量は0.001%以上含有することが好ましく、より好ましくは、0.002〜0.008%の範囲である。
C: 0.015% or less C is an element effective for increasing the strength of steel, but if it exceeds 0.015%, the toughness and formability are significantly reduced. Therefore, in the present invention, the C content is set to 0.015% or less. In addition, from the viewpoint of ensuring moldability, the lower the C content, the more preferable, and 0.008% or less is desirable. On the other hand, in order to ensure the strength as an exhaust system member, the C content is preferably 0.001% or more, and more preferably in the range of 0.002 to 0.008%.

Si:0.4〜1.0%
Siは、水蒸気雰囲気中での耐酸化性向上のために重要な元素である。図6に示したように、SUS444と同等の耐水蒸気酸化特性を得るためには0.4%以上含有させることが必要である。一方、Si含有量が1.0%を超えると加工性が著しく低下する。このため、Si含有量を0.4〜1.0%の範囲とする。より好ましくは、0.4〜0.8%の範囲である。Si含有量を0.4%以上とすることにより耐水蒸気酸化特性が向上する詳細なメカニズムは必ずしも明らかではないが、Siを0.4%以上とすることにより鋼板表面に緻密なSi酸化物層が連続的に生成し、外部からのガス成分の侵入を抑制することで耐水蒸気酸化特性が向上したものと考えられる。より厳しい環境下での耐酸化性を必要とする場合は、Si含有量を0.5%以上とすることが好ましい。
Si: 0.4 to 1.0%
Si is an important element for improving the oxidation resistance in a water vapor atmosphere. As shown in FIG. 6, in order to obtain the steam oxidation resistance equivalent to SUS444, it is necessary to contain 0.4% or more. On the other hand, if the Si content exceeds 1.0%, the workability is significantly reduced. For this reason, Si content shall be 0.4 to 1.0% of range. More preferably, it is 0.4 to 0.8% of range. Although the detailed mechanism for improving the steam oxidation resistance by making the Si content 0.4% or more is not necessarily clear, the Si oxide layer dense on the steel sheet surface by making Si 0.4% or more. It is considered that the steam oxidation resistance is improved by continuously generating and suppressing the invasion of gas components from the outside. In the case where oxidation resistance under a more severe environment is required, the Si content is preferably 0.5% or more.

Mn:1.0%以下
Mnは、鋼の強度を高める元素であり、脱酸剤としての作用も有するが、過剰に含有すると高温でγ相が生成しやすくなり、耐熱性を低下させる。このため、Mn含有量を1.0%以下とする。好ましくは、0.7%以下である。また、強度を高める効果および脱酸効果を得るためには、0.05%以上が好ましい。
Mn: 1.0% or less Mn is an element that increases the strength of steel and also has a function as a deoxidizer. However, if contained excessively, a γ phase is easily generated at a high temperature, and heat resistance is lowered. For this reason, Mn content shall be 1.0% or less. Preferably, it is 0.7% or less. Further, in order to obtain the effect of increasing the strength and the deoxidation effect, 0.05% or more is preferable.

P:0.040%以下
Pは、靭性を低下させる有害元素であり、可能な限り低減するのが望ましい。このため、P含有量を0.040%以下とする。好ましくは、0.030%以下である。
P: 0.040% or less P is a harmful element that lowers toughness, and is desirably reduced as much as possible. For this reason, the P content is set to 0.040% or less. Preferably, it is 0.030% or less.

S:0.010%以下
Sは、伸びやr値を低下させ、成形性に悪影響を及ぼすとともに、ステンレス鋼の基本特性である耐食性を低下させる有害元素でもあるため、できるだけ低減するのが望ましい。このため、S含有量を0.010%以下とする。好ましくは、0.005%以下である。
S: 0.010% or less S is a harmful element that lowers elongation and r value, adversely affects formability, and lowers corrosion resistance, which is a basic characteristic of stainless steel. Therefore, it is desirable to reduce S as much as possible. For this reason, S content shall be 0.010% or less. Preferably, it is 0.005% or less.

Cr:12%以上16%未満
Crは、ステンレス鋼の特徴である耐食性、耐酸化性を向上させるのに有効な重要元素であるが、その含有量が12%未満では、十分な耐酸化性が得られない。一方、Crは、室温において鋼を固溶強化し、硬質化、低延性化する元素であり、特にその含有量が16%以上になると、上記弊害が顕著となる。このため、Cr含有量を12%以上16%未満の範囲とする。より好ましくは、12〜15%の範囲である。
Cr: 12% or more and less than 16% Cr is an important element effective for improving the corrosion resistance and oxidation resistance, which are the characteristics of stainless steel. However, if its content is less than 12%, sufficient oxidation resistance is obtained. I can't get it. On the other hand, Cr is an element that solidifies and strengthens steel at room temperature to harden and lower the ductility. Particularly, when the content thereof is 16% or more, the above-described adverse effect becomes remarkable. For this reason, Cr content shall be 12% or more and less than 16% of range. More preferably, it is 12 to 15% of range.

N:0.015%以下
Nは、鋼の靭性および成形性を低下させる元素であり、0.015%を超えて含有すると、上記低下が顕著となる。このため、N含有量を0.015%以下とする。なお、Nは、靭性、成形性を確保する観点からは、できるだけ低減するのが好ましく、0.010%未満とするのが望ましい。
N: 0.015% or less N is an element that decreases the toughness and formability of steel. When the content exceeds 0.015%, the above-described decrease becomes significant. For this reason, N content shall be 0.015% or less. Note that N is preferably reduced as much as possible from the viewpoint of securing toughness and moldability, and is preferably less than 0.010%.

Nb:0.3〜0.65%
Nbは、C,Nと炭化物、窒化物または炭窒化物を形成して固定し、耐食性や成形性、溶接部の耐粒界腐食性を高める作用を有するとともに、高温強度を上昇させて熱疲労特性を向上する効果を有する元素である。このような効果は、0.3%以上含有させることで認められる。一方、その含有量が0.65%を超えると、FeとNbの金属間化合物であるLaves相(FeNb)が析出しやすくなり、脆化を促進する。このため、Nb含有量を0.3〜0.65%の範囲とする。好ましくは、0.4〜0.55%の範囲である。
Nb: 0.3 to 0.65%
Nb forms and fixes C, N and carbides, nitrides or carbonitrides, and has the effect of enhancing corrosion resistance, formability, and intergranular corrosion resistance of welds, and increases high-temperature strength to cause thermal fatigue. It is an element having the effect of improving the characteristics. Such an effect is recognized by containing 0.3% or more. On the other hand, if the content exceeds 0.65%, the Laves phase (Fe 2 Nb), which is an intermetallic compound of Fe and Nb, is likely to precipitate, and embrittlement is promoted. For this reason, Nb content is taken as 0.3 to 0.65% of range. Preferably, it is 0.4 to 0.55% of range.

Mo:0.1%以下
Moは、高価な元素であり、本発明の趣旨からも積極的な添加は行わない。しかし、原料であるスクラップ等から0.1%以下の範囲で混入することがある。このため、Mo含有量を0.1%以下とする。
Mo: 0.1% or less Mo is an expensive element and is not actively added for the purpose of the present invention. However, it may be mixed in the range of 0.1% or less from the raw material scrap or the like. For this reason, Mo content is made into 0.1% or less.

W:0.1%以下
Wは、Moと同様に高価な元素であり、本発明の趣旨からも積極的な添加は行わない。しかし、原料であるスクラップ等から0.1%以下の範囲で混入することがある。このため、W含有量を0.1%以下とする。
W: 0.1% or less W is an expensive element like Mo, and is not actively added for the purpose of the present invention. However, it may be mixed in the range of 0.1% or less from the raw material scrap or the like. For this reason, W content shall be 0.1% or less.

Cu:1.0〜2.5%
Cuは、熱疲労特性の向上には非常に有効な元素である。図3に示したように、SUS444と同等以上の熱疲労特性を得るには、Cu含有量を1.0%以上とすることが必要である。しかし、その含有量が2.5%を超えると、熱処理後の冷却時にε−Cuが析出し、鋼が著しく硬質化するとともに、熱間加工時に脆化を起こしやすくなる。さらに重要なことは、Cuを含有させることにより、熱疲労特性は向上するものの、鋼自身の耐酸化性が却って低下し、総体的に見ると、耐熱性が低下してしまうことである。この原因は、必ずしも明らかになっているわけではないが、生成したスケール直下の脱Cr層にCuが濃化し、ステンレス鋼本来の耐酸化性を向上する元素であるCrの再拡散を抑制するためと考えられる。このため、Cu含有量を1.0〜2.5%の範囲とする。より好ましくは、1.1〜1.8%の範囲である。
Cu: 1.0 to 2.5%
Cu is an extremely effective element for improving thermal fatigue characteristics. As shown in FIG. 3, in order to obtain a thermal fatigue characteristic equal to or higher than that of SUS444, the Cu content needs to be 1.0% or higher. However, if its content exceeds 2.5%, ε-Cu precipitates during cooling after heat treatment, and the steel becomes extremely hard, and embrittlement tends to occur during hot working. More importantly, the inclusion of Cu improves the thermal fatigue properties, but the oxidation resistance of the steel itself decreases, and the overall heat resistance decreases. The cause of this is not necessarily clarified, but Cu is concentrated in the generated Cr-depleted layer immediately below the scale to suppress the re-diffusion of Cr, which is an element that improves the original oxidation resistance of stainless steel. it is conceivable that. For this reason, Cu content is taken as 1.0 to 2.5% of range. More preferably, it is 1.1 to 1.8% of range.

Ti:0.15%以下
Tiは、Nbと同様、C,Nを固定して、耐食性や成形性、溶接部の粒界腐食性を向上させる作用を有する。しかし、そのような効果は、Nbを含有している本発明の成分系では、その含有量が0.15%を超えると飽和するとともに、固溶硬化によって鋼が硬質化する。このため、Ti含有量を0.15%以下とする。TiはNbと比べてNと結合しやすく粗大なTiNを形成しやすい。粗大なTiNは亀裂の起点となりやすく靭性を低下させるので、熱延板の靭性が必要な場合には0.01%以下とするのが好ましい。なお、本発明ではTiは積極的に含有させる必要はなく、したがって、下限は0%を含むものである。
Ti: 0.15% or less Ti, like Nb, fixes C and N, and has an effect of improving the corrosion resistance, formability, and intergranular corrosion of the welded portion. However, such effects are saturated in the component system of the present invention containing Nb when the content exceeds 0.15%, and the steel is hardened by solid solution hardening. For this reason, Ti content shall be 0.15% or less. Ti is easier to bond with N than Nb, and it is easy to form coarse TiN. Coarse TiN tends to be the starting point of cracks and lowers the toughness. Therefore, when the toughness of the hot-rolled sheet is required, the content is preferably 0.01% or less. In the present invention, Ti does not need to be positively contained, and therefore the lower limit includes 0%.

Al:0.2〜1.0%
Alは、図5に示したように、Cu添加鋼の耐酸化性を向上するために必要不可欠な元素である。また、Alは、鋼中に固溶することにより固溶強化元素としても作用し、特に800℃を超える温度での高温強度を上昇させる効果を持つため、本発明において高温疲労特性向上のため重要な元素である。本発明の目的であるSUS444と同等以上の耐酸化性を得るにはAlは0.2%以上含有させることが必要である。一方、1.0%を超えて含有させると、鋼が硬質化して加工性が低下する。よって、Al含有量を0.2〜1.0%の範囲とする。より好ましくは、0.3〜1.0%の範囲である。一層好ましくは、0.3〜0.5%の範囲である。
Al: 0.2 to 1.0%
As shown in FIG. 5, Al is an indispensable element for improving the oxidation resistance of the Cu-added steel. In addition, Al acts as a solid solution strengthening element when dissolved in steel, and particularly has the effect of increasing the high-temperature strength at a temperature exceeding 800 ° C. Therefore, it is important for improving high-temperature fatigue properties in the present invention. Element. In order to obtain an oxidation resistance equal to or higher than that of SUS444, which is the object of the present invention, Al needs to be contained in an amount of 0.2% or more. On the other hand, if the content exceeds 1.0%, the steel becomes hard and workability decreases. Therefore, the Al content is set to a range of 0.2 to 1.0%. More preferably, it is 0.3 to 1.0% of range. More preferably, it is 0.3 to 0.5% of range.

Si≧Al
上述のように、Alは、鋼中に固溶することにより固溶強化元素としても作用し、特に800℃を超える温度での高温強度を上昇させる効果を持つため、本発明において高温疲労特性向上のため重要な元素であり、SiはこのようなAlの固溶強化作用を有効に活用するために重要な元素である。Si量がAl量よりも少ない場合、高温においてAlが優先的に酸化物や窒化物を形成し固溶Al量が減少するため、Alは強化に寄与しなくなってしまう。一方,Si量がAl量より多ければSiが優先的に酸化し、鋼板表面に緻密な酸化物層を連続的に形成する。この酸化物層が酸素や窒素の拡散の障壁となり、外部からの酸素や窒素の拡散が抑制されるため、Alは酸化や窒化することなく固溶状態が保たれ、固溶強化によって鋼を強化して高温疲労特性を向上させることができる。このためSUS444と同等以上の高温疲労特性を得るにはSi≧Alを満たす必要がある。
Si ≧ Al
As described above, Al acts as a solid solution strengthening element when dissolved in steel, and has the effect of increasing the high temperature strength particularly at temperatures exceeding 800 ° C. Therefore, Si is an important element for effectively utilizing such a solid solution strengthening action of Al. When the amount of Si is less than the amount of Al, Al preferentially forms oxides and nitrides at a high temperature, and the amount of solute Al decreases, so that Al does not contribute to strengthening. On the other hand, if the amount of Si is larger than the amount of Al, Si is preferentially oxidized, and a dense oxide layer is continuously formed on the steel sheet surface. This oxide layer acts as a barrier to oxygen and nitrogen diffusion and suppresses the diffusion of oxygen and nitrogen from the outside, so that Al remains in a solid solution state without being oxidized or nitrided, and strengthens the steel by solid solution strengthening. Thus, the high temperature fatigue characteristics can be improved. For this reason, in order to obtain high temperature fatigue characteristics equivalent to or higher than those of SUS444, it is necessary to satisfy Si ≧ Al.

本発明のフェライト系ステンレス鋼は、上記必須とする成分に加えてさらに、B、REM、Zr、V、CoおよびNiのうちから選ばれる1種または2種以上を、下記の範囲で含有させてもよい。   In addition to the essential components, the ferritic stainless steel of the present invention further contains one or more selected from B, REM, Zr, V, Co and Ni in the following range. Also good.

B:0.003%以下
Bは、加工性、特に2次加工性を向上させるのに有効な元素である。しかし、その含有量が0.0030%を超えると、BNを生成して加工性を低下させる。このため、Bを含有させる場合は、その含有量を0.0030%以下とする。上記効果は0.0004%以上で有効に発揮されるため、0.0004〜0.0030%の範囲がより好ましい。
B: 0.003% or less B is an element effective for improving workability, particularly secondary workability. However, when the content exceeds 0.0030%, BN is generated and workability is lowered. For this reason, when it contains B, the content shall be 0.0030% or less. Since the said effect is exhibited effectively at 0.0004% or more, the range of 0.0004 to 0.0030% is more preferable.

REM:0.08%以下、Zr:0.5%以下
REM(希土類元素)およびZrはいずれも、耐酸化性を改善する元素であり、本発明では、必要に応じて含有させることができる。しかし、REM含有量が0.080%を超えると鋼が脆化し、また、Zr含有量が0.50%を超えるとZr金属間化合物が析出してやはり鋼が脆化する。このため、REMを含有させる場合はその含有量を0.080%以下、Zrを含有させる場合はその含有量を0.50%以下とする。上記効果は、REMが0.01%以上、Zrが0.005%以上で有効に発揮されるため、REM含有量は0.01〜0.080%、Zr含有量は0.005〜0.50%の範囲が好ましい。
REM: 0.08% or less, Zr: 0.5% or less Each of REM (rare earth element) and Zr is an element that improves oxidation resistance, and can be contained as necessary in the present invention. However, if the REM content exceeds 0.080%, the steel becomes brittle, and if the Zr content exceeds 0.50%, the Zr intermetallic compound precipitates and the steel becomes brittle. For this reason, when REM is contained, the content is 0.080% or less, and when Zr is contained, the content is 0.50% or less. The above effect is effectively exhibited when the REM is 0.01% or more and the Zr is 0.005% or more. Therefore, the REM content is 0.01 to 0.080%, and the Zr content is 0.005 to 0.00. A range of 50% is preferred.

V:0.5%以下
Vは、加工性の向上および耐酸化性に有効な元素である。しかし、その含有量が0.50%を超えると、粗大なV(C,N)を析出し、表面性状を劣化させる。このため、Vを含有させる場合は、その含有量を0.50%以下とする。加工性および耐酸化性を向上させる効果は、0.15%以上で有効に発揮されるため、0.15〜0.50%が好ましい。より好ましくは、0.15〜0.4%の範囲である。
V: 0.5% or less V is an element effective for improving workability and oxidation resistance. However, when the content exceeds 0.50%, coarse V (C, N) is precipitated, and the surface properties are deteriorated. For this reason, when it contains V, the content shall be 0.50% or less. Since the effect of improving workability and oxidation resistance is effectively exhibited at 0.15% or more, 0.15 to 0.50% is preferable. More preferably, it is 0.15 to 0.4% of range.

Co:0.5%以下
Coは、靭性の向上に有効な元素であるとともに、高温強度を上昇させる元素である。しかし、Coは、高価な元素であり、また、その含有量が0.5%を超えても、上記効果は飽和する。このため、Coを含有させる場合は、その含有量を0.5%以下とする。上記効果は0.02%以上で有効に発揮されるため、0.02〜0.5%の範囲が好ましい。より好ましくは、0.02〜0.2%の範囲である。
Co: 0.5% or less Co is an element effective for improving toughness and an element for increasing high-temperature strength. However, Co is an expensive element, and the above effect is saturated even if its content exceeds 0.5%. For this reason, when it contains Co, the content shall be 0.5% or less. Since the said effect is exhibited effectively at 0.02% or more, 0.02 to 0.5% of range is preferable. More preferably, it is 0.02 to 0.2% of range.

Ni:0.5%以下
Niは、靭性を向上させる元素である。しかし、Niは、高価であり、また、強力なγ相形成元素であるため、高温でγ相を生成し、その含有量が0.5%を超えると耐酸化性を低下させる。このため、Niを含有させる場合は、その含有量を0.5%以下とする。上記効果は0.05%以上で有効に発揮されるため、0.05〜0.5%の範囲が好ましい。より好ましくは、0.05〜0.4%の範囲である。
Ni: 0.5% or less Ni is an element that improves toughness. However, since Ni is expensive and is a strong γ-phase forming element, it generates a γ-phase at a high temperature, and if its content exceeds 0.5%, the oxidation resistance is lowered. For this reason, when it contains Ni, the content shall be 0.5% or less. Since the above effect is effectively exhibited at 0.05% or more, the range of 0.05 to 0.5% is preferable. More preferably, it is 0.05 to 0.4% of range.

残部は、Feおよび不可避的不純物である。不可避的不純物のうちOは0.010%以下、Snは、0.005%以下、Mgは0.005%以下、Caは0.005%以下とすることが好ましい。より好ましくは、Oは0.005%以下、Snは、0.003%以下、Mgは0.003%以下、Caは0.003%以下である。
The balance is Fe and inevitable impurities. Of the inevitable impurities, O is preferably 0.010% or less, Sn is 0.005% or less, Mg is 0.005% or less, and Ca is preferably 0.005% or less. More preferably, O is 0.005% or less, Sn is 0.003% or less, Mg is 0.003% or less, and Ca is 0.003% or less.

次に、本発明のフェライト系ステンレス鋼の製造方法について説明する。
本発明のステンレス鋼は、フェライト系ステンレス鋼の通常の製造方法により製造することができ、その製造条件は特に限定されるものではない。例えば、転炉、電気炉等の公知の溶解炉で鋼を溶製し、あるいはさらに取鍋精錬、真空精錬等の2次精錬を経て上述した本発明の成分組成を有する鋼とし、次いで、連続鋳造法あるいは造塊−分塊圧延法で鋼片(スラブ)とし、その後、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍、酸洗等の各工程を経て冷延焼鈍板とする方法を好適な製造方法として挙げることができる。なお、上記冷間圧延は、1回または中間焼鈍を挟む2回以上の冷間圧延を行ってもよく、また、冷間圧延、仕上焼鈍、酸洗の各工程は、繰り返して行ってもよい。さらに、場合によっては、熱延板焼鈍は省略してもよく、鋼板表面の光沢性が要求される場合には、冷延後あるいは仕上焼鈍後、スキンパスを施してもよい。
Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.
The stainless steel of this invention can be manufactured with the normal manufacturing method of ferritic stainless steel, The manufacturing conditions are not specifically limited. For example, steel is produced in a known melting furnace such as a converter or an electric furnace, or further subjected to secondary refining such as ladle refining or vacuum refining to obtain steel having the above-described component composition of the present invention, and then continuously It is made into a steel slab (slab) by the casting method or ingot-bundling rolling method, and then cold-rolled annealing through each process of hot rolling, hot-rolled sheet annealing, pickling, cold rolling, finish annealing, pickling, etc. A method for producing a plate can be mentioned as a preferred production method. In addition, the said cold rolling may perform cold rolling of 2 times or more on both sides of intermediate annealing, and each process of cold rolling, finish annealing, and pickling may be performed repeatedly. . Further, depending on the case, the hot-rolled sheet annealing may be omitted, and when the gloss of the steel sheet surface is required, a skin pass may be applied after cold rolling or after finish annealing.

より好ましい製造条件としては、以下に示すようなものを挙げることができる。
熱間圧延工程および冷間圧延工程の一部条件を特定条件とすることが好ましい。また、製鋼においては、前記必須成分および必要に応じて含有させる成分を含有する溶鋼を、転炉あるいは電気炉等で溶製し、VOD法により二次精錬を行うのが好ましい。溶製した溶鋼は、公知の製造方法にしたがって鋼素材とすることができるが、生産性および品質の観点から、連続鋳造法によるのが好ましい。連続鋳造して得られた鋼素材は、例えば、1000〜1250℃に加熱され、熱間圧延により所望の板厚の熱延板とされる。もちろん、板材以外として加工することもできる。この熱延板は、必要に応じて、600〜800℃のバッチ式焼鈍あるいは900〜1100℃の連続焼鈍を施した後、酸洗等により脱スケールされ熱延板製品となる。また、必要に応じて、酸洗の前にショットブラストしてスケール除去してもよい。
More preferable production conditions include the following.
It is preferable that a specific condition is a partial condition in the hot rolling process and the cold rolling process. Moreover, in steelmaking, it is preferable to melt the molten steel containing the essential components and components to be contained as necessary in a converter or an electric furnace and perform secondary refining by the VOD method. The molten steel can be made into a steel material according to a known production method, but from the viewpoint of productivity and quality, it is preferable to use a continuous casting method. The steel material obtained by continuous casting is heated to 1000 to 1250 ° C., for example, and is hot rolled into a desired thickness by hot rolling. Of course, it can be processed as other than the plate material. The hot-rolled sheet is subjected to batch-type annealing at 600 to 800 ° C. or continuous annealing at 900 to 1100 ° C. as necessary, and then descaled by pickling or the like to obtain a hot-rolled sheet product. If necessary, the scale may be removed by shot blasting before pickling.

さらに、冷延焼鈍板を得るためには、上記で得られた熱延焼鈍板が、冷間圧延工程を経て冷延板とされる。この冷間圧延工程では、生産上の都合により、必要に応じて中間焼鈍を含む2回以上の冷間圧延を行ってもよい。1回または2回以上の冷間圧延からなる冷延工程の総圧下率を60%以上、好ましくは70%以上とする。冷延板は、900〜1150℃、さらに好ましくは950〜1120℃の連続焼鈍(仕上げ焼鈍)、次いで酸洗を施されて、冷延焼鈍板とされる。また、用途によっては、冷延焼鈍後に軽度の圧延(スキンパス圧延等)を加えて、鋼板の形状、品質調整を行うこともできる。   Furthermore, in order to obtain a cold-rolled annealed plate, the hot-rolled annealed plate obtained above is made a cold-rolled plate through a cold rolling process. In this cold rolling process, two or more cold rollings including intermediate annealing may be performed as necessary for the convenience of production. The total rolling reduction of the cold rolling process comprising one or more cold rollings is set to 60% or more, preferably 70% or more. The cold-rolled sheet is subjected to continuous annealing (finish annealing) at 900 to 1150 ° C., more preferably from 950 to 1120 ° C., and then pickled to form a cold-rolled annealed sheet. Depending on the application, the shape and quality of the steel sheet can be adjusted by applying mild rolling (skin pass rolling or the like) after cold rolling annealing.

このような製造方法により得られた熱延板製品、あるいは冷延焼鈍板製品を用い、それぞれの用途に応じた曲げ加工等を施し、自動車やオートバイの排気管、触媒外筒材および火力発電プラントの排気ダクトあるいは燃料電池関連部材(例えばセパレーター、インターコネクター、改質器等)に成形される。これらの部材を溶接するための溶接方法は、特に限定されるものではなくMIG(Metal Inert Gas)、MAG(Metal Active Gas)、TIG(Tungsten Inert Gas)等の通常のアーク溶接方法や、スポット溶接、シーム溶接等の抵抗溶接方法、および電縫溶接方法などの高周波抵抗溶接、高周波誘導溶接が適用可能である。   Using hot-rolled sheet products or cold-rolled annealed sheet products obtained by such a manufacturing method, bending processing is performed according to each application, exhaust pipes for automobiles and motorcycles, catalyst outer cylinder materials, and thermal power plants It is formed into an exhaust duct or a fuel cell-related member (for example, a separator, an interconnector, a reformer, etc.). The welding method for welding these members is not particularly limited, and is a normal arc welding method such as MIG (Metal Inert Gas), MAG (Metal Active Gas), TIG (Tungsten Inert Gas), or spot welding. High-frequency resistance welding and high-frequency induction welding such as resistance welding methods such as seam welding and electric resistance welding methods can be applied.

[実施例1]
表1に示す成分組成を有するNo.1〜23の鋼を真空溶解炉で溶製し、鋳造して50kg鋼塊とし、鍛造して2分割した。その後、2分割した片方の鋼塊を、1170℃に加熱後、熱間圧延して板厚5mmの熱延板とし、1020℃の温度で熱延板焼鈍し、酸洗し、圧下率60%の冷間圧延し、1040℃で仕上焼鈍し、平均冷却速度5℃/secで冷却し、酸洗して板厚が2mmの冷延焼鈍板とした。No.1〜11は本発明の範囲内の本発明例、No.12〜23は本発明の範囲から外れる比較例である。なお、比較例のうち、No.19は、Nb−Si複合添加鋼の例としてJFE429EXの組成に相当するものであり、No.20は、SUS444の組成に相当するものであり、No.21、22、23は、それぞれ特許文献2の発明例3、特許文献3の発明例3、特許文献4の発明例5の組成に相当するものである。
[Example 1]
No. having the component composition shown in Table 1. Steels 1 to 23 were melted in a vacuum melting furnace, cast into a 50 kg steel ingot, and forged into two parts. Thereafter, one of the two steel ingots was heated to 1170 ° C., and then hot-rolled to form a hot-rolled sheet having a thickness of 5 mm, hot-rolled sheet annealed at a temperature of 1020 ° C., pickled, and a reduction rate of 60%. Was cold-rolled, finish-annealed at 1040 ° C., cooled at an average cooling rate of 5 ° C./sec, and pickled to obtain a cold-rolled annealed plate having a thickness of 2 mm. No. 1 to 11 are examples of the present invention, No. 1 within the scope of the present invention. Nos. 12 to 23 are comparative examples outside the scope of the present invention. Of the comparative examples, No. No. 19 corresponds to the composition of JFE429EX as an example of Nb—Si composite added steel. No. 20 corresponds to the composition of SUS444. 21, 22, and 23 correspond to the compositions of Invention Example 3 of Patent Document 2, Invention Example 3 of Patent Document 3, and Invention Example 5 of Patent Document 4, respectively.

以上のようにして得られたNo.1〜23の冷延焼鈍板について、以下に示す2種類の耐酸化性試験、高温疲労試験、室温引張試験に供した。   No. obtained as described above. The 1 to 23 cold-rolled annealed plates were subjected to the following two types of oxidation resistance tests, high temperature fatigue tests, and room temperature tensile tests.

<大気中連続酸化試験>
上記のようにして得た各種冷延焼鈍板から30mm×20mmのサンプルを切り出し、サンプル上部に4mmφの穴をあけ、表面および端面を#320のエメリー紙で研磨し、脱脂後、950℃に加熱保持された大気雰囲気の炉内に吊り下げて、200時間保持した。試験後、サンプルの質量を測定し、予め測定しておいた試験前の質量との差を求め、酸化増量(g/m)を算出した。なお、試験は各2回実施し、その平均値で耐連続酸化性を評価した。
<Atmospheric continuous oxidation test>
Cut out a 30mm x 20mm sample from the various cold-rolled annealed plates obtained as described above, drill a 4mmφ hole at the top of the sample, polish the surface and end face with # 320 emery paper, degrease, and heat to 950 ° C It was suspended in a furnace in a maintained atmospheric atmosphere and held for 200 hours. After the test, the mass of the sample was measured, the difference from the pre-measured mass before the test was determined, and the increase in oxidation (g / m 2 ) was calculated. In addition, the test was implemented twice and the continuous oxidation resistance was evaluated by the average value.

<水蒸気雰囲気中連続酸化試験>
上記のようにして得た各種冷延焼鈍板から30mm×20mmのサンプルを切り出し、サンプル上部に4mmφの穴をあけ、表面および端面を#320のエメリー紙で研磨し、脱脂を行った。その後10vol%CO−20vol%HO−5vol%O−bal.Nガスを0.5L/minで流して水蒸気雰囲気にし、かつ950℃に加熱された炉中に200時間保持し、試験後、サンプルの質量を測定し、予め測定しておいた試験前の質量との差を求め、酸化増量(g/m)を算出した。
<Continuous oxidation test in steam atmosphere>
A 30 mm × 20 mm sample was cut out from the various cold-rolled annealed plates obtained as described above, a 4 mmφ hole was made in the upper part of the sample, and the surface and end face were polished with # 320 emery paper for degreasing. Then 10vol% CO 2 -20vol% H 2 O-5vol% O 2 -bal. N 2 gas was flowed at 0.5 L / min to make a water vapor atmosphere, and kept in a furnace heated to 950 ° C. for 200 hours. After the test, the mass of the sample was measured, and the pre-test before measurement was measured in advance. The difference from the mass was determined, and the increase in oxidation (g / m 2 ) was calculated.

<高温疲労試験>
上記のようにして得た各種冷延焼鈍板から、図3に示すような形状の試験片を切り出し、シェンク式疲労試験機により850℃において1300rpmで鋼板を両振りした。なお、試験時には鋼板表面に70MPaの曲げ応力を付与し、破断までのサイクル数で評価した。
<High temperature fatigue test>
A test piece having a shape as shown in FIG. 3 was cut out from the various cold-rolled annealed plates obtained as described above, and the steel plates were shaken at 1300 rpm at 850 ° C. using a Schenck fatigue tester. During the test, a bending stress of 70 MPa was applied to the steel sheet surface, and the number of cycles until rupture was evaluated.

<室温引張試験>
上記冷延焼鈍板から圧延方向(L方向)、圧延方向に直角方向(C方向)、圧延方向に45°方向(D方向)のそれぞれを引張方向とするJIS13B号引張試験片をそれぞれ作製し、室温で各方向の引張試験を行って破断伸びを測定し、平均伸びElを下記式から求めた。
平均伸びEl(%)=(E+2E+E)/4
ここで、E:L方向のEl(%)、E:D方向のEl(%)、E:C方向のEl(%)
<Room temperature tensile test>
From the cold-rolled annealed plate, a rolling direction (L direction), a direction perpendicular to the rolling direction (C direction), and a 45 ° direction (D direction) in the rolling direction are each prepared as a JIS 13B tensile test piece, Tensile tests in each direction were performed at room temperature to measure the elongation at break, and the average elongation El was determined from the following formula.
Average elongation El (%) = (E L + 2E D + E C ) / 4
Here, E L : El (%) in the L direction, E D : El (%) in the D direction, E C : El (%) in the C direction

[実施例2]
実施例1において2分割した50kg鋼塊の残り鋼塊を、1170℃に加熱後、熱間圧延して厚さ:30mm×幅:150mmのシートバーとした。その後、このシートバーを鍛造し、35mm□のバーとし、1040℃で焼鈍後、機械加工し、図1に示した寸法の熱疲労試験片に加工し、以下に示す熱疲労試験に供した。
[Example 2]
The remaining steel ingot of the 50 kg steel ingot divided into two in Example 1 was heated to 1170 ° C. and hot-rolled to obtain a sheet bar having a thickness of 30 mm × width: 150 mm. Thereafter, this sheet bar was forged into a 35 mm square bar, annealed at 1040 ° C., machined, processed into a thermal fatigue test piece having the dimensions shown in FIG. 1, and subjected to the thermal fatigue test shown below.

<熱疲労試験>
熱疲労試験は、拘束率0.30で、100℃と850℃の温度間を繰り返して昇温・降温し、熱疲労寿命を測定した。この際、昇温速度および、降温速度は、それぞれ10℃/secとし、100℃での保持時間は2min、850℃での保持時間は5minとした。また、熱疲労寿命は、100℃において検出された荷重を試験片均熱平行部の断面積で割って応力を算出し、前のサイクルの応力に対して連続的に応力が低下し始めたときの最小のサイクル数とした。
<Thermal fatigue test>
In the thermal fatigue test, the thermal fatigue life was measured by repeatedly raising and lowering the temperature between 100 ° C. and 850 ° C. with a restraint ratio of 0.30. At this time, the heating rate and the cooling rate were 10 ° C./sec, the holding time at 100 ° C. was 2 min, and the holding time at 850 ° C. was 5 min. The thermal fatigue life is calculated by dividing the load detected at 100 ° C by the cross-sectional area of the test piece soaking parallel part, and when the stress begins to decrease continuously with respect to the stress of the previous cycle. The minimum number of cycles.

上記実施例1の大気中連続酸化試験、水蒸気雰囲気中連続酸化試験、高温疲労試験および室温引張試験の結果および実施例2の熱疲労試験の結果を表2にまとめて示した。表2から明らかなように、本発明の範囲内である本発明例の鋼は、いずれもSUS444と同等以上の耐熱性(耐酸化性、熱疲労特性、高温疲労特性)かつ室温における三方向(L、C、D方向)の平均伸び36%以上の優れた加工性を有しており、本発明の目標を満たしていることが確認された。これに対して、本発明の範囲を外れる比較例の鋼は、耐酸化性、熱疲労特性、高温疲労特性、および加工性のいずれかが劣っており、本発明の目標が達成されていないことが確認された。   Table 2 summarizes the results of the continuous oxidation test in the atmosphere of Example 1, the continuous oxidation test in a steam atmosphere, the high temperature fatigue test, the room temperature tensile test, and the thermal fatigue test of Example 2. As is apparent from Table 2, the steels of the examples of the present invention within the scope of the present invention all have heat resistance (oxidation resistance, thermal fatigue characteristics, high temperature fatigue characteristics) equal to or higher than SUS444 and three directions at room temperature ( (L, C, D direction) excellent workability with an average elongation of 36% or more, and it was confirmed that the objective of the present invention was satisfied. On the other hand, the steel of the comparative example outside the scope of the present invention is inferior in any of oxidation resistance, thermal fatigue characteristics, high temperature fatigue characteristics, and workability, and the target of the present invention is not achieved. Was confirmed.

Figure 0005152387
Figure 0005152387

Figure 0005152387
Figure 0005152387

本発明の鋼は、自動車等の排気系部材用として好適であるだけでなく、同様の特性が要求される火力発電システムの排気系部材や固体酸化物タイプの燃料電池用部材としても好適に用いることができる。   The steel of the present invention is not only suitable for exhaust system members such as automobiles, but also suitably used as exhaust system members for thermal power generation systems and solid oxide fuel cell members that require similar characteristics. be able to.

Claims (2)

mass%で、C:0.015%以下、Si:0.4〜1.0%、Mn:1.0%以下、P:0.040%以下、S:0.010%以下、Cr:12%以上16%未満、N:0.015%以下、Nb:0.3〜0.65%、u:1.0〜2.5%、Al:0.2〜1.0%を含有し、Ti、MoおよびWを、それぞれTi:0.01%以下、Mo:0.1%以下、W:0.1%以下に規制し、かつSi≧Alを満たし、残部がFeおよび不可避的不純物からなることを特徴とする耐熱性と加工性に優れるフェライト系ステンレス鋼。 In mass%, C: 0.015% or less, Si: 0.4 to 1.0%, Mn: 1.0% or less, P: 0.040% or less, S: 0.010% or less, Cr: 12 % or more but less than 16%, N: 0.015% or less, Nb: 0.3~0.65%, C u : 1.0~2.5%, Al: it contains 0.2% to 1.0% Ti, Mo, and W are respectively regulated to Ti: 0.01% or less, Mo: 0.1% or less, and W: 0.1% or less, satisfying Si ≧ Al, the balance being Fe and inevitable impurities Ferritic stainless steel with excellent heat resistance and workability characterized by comprising さらに、mass%で、B:0.003%以下、REM:0.08%以下、Zr:0.5%以下、V:0.5%以下、Co:0.5%以下およびNi:0.5%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の耐熱性と加工性に優れるフェライト系ステンレス鋼。   Furthermore, in mass%, B: 0.003% or less, REM: 0.08% or less, Zr: 0.5% or less, V: 0.5% or less, Co: 0.5% or less, and Ni: 0.00. The ferritic stainless steel excellent in heat resistance and workability according to claim 1, comprising one or more selected from 5% or less.
JP2011221763A 2010-10-14 2011-10-06 Ferritic stainless steel with excellent heat resistance and workability Active JP5152387B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2011221763A JP5152387B2 (en) 2010-10-14 2011-10-06 Ferritic stainless steel with excellent heat resistance and workability
MYPI2013001167A MY165138A (en) 2010-10-14 2011-10-12 Ferritic stainless steel excellent in heat resistance property and formability
PCT/JP2011/073980 WO2012050226A1 (en) 2010-10-14 2011-10-12 Ferritic stainless steel excellent in heat resistance and workability
CN201180049437.9A CN103154294B (en) 2010-10-14 2011-10-12 The ferrite-group stainless steel of heat resistance and excellent in workability
MX2013004053A MX339281B (en) 2010-10-14 2011-10-12 Ferritic stainless steel excellent in heat resistance and workability.
US13/876,093 US20130183190A1 (en) 2010-10-14 2011-10-12 Ferritic stainless steel excellent in heat resistance property and formability
KR1020137010304A KR101581886B1 (en) 2010-10-14 2011-10-12 Ferritic stainless steel excellent in heat resistance property and formability
ES11832650T ES2720733T3 (en) 2010-10-14 2011-10-12 Ferritic stainless steel excellent in heat resistance and work capacity
EP11832650.3A EP2628814B1 (en) 2010-10-14 2011-10-12 Ferritic stainless steel excellent in heat resistance and workability
TW100137265A TWI472629B (en) 2010-10-14 2011-10-14 Ferritic stainless steel having excellent heat resistance and workability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010231562 2010-10-14
JP2010231562 2010-10-14
JP2011221763A JP5152387B2 (en) 2010-10-14 2011-10-06 Ferritic stainless steel with excellent heat resistance and workability

Publications (2)

Publication Number Publication Date
JP2012102397A JP2012102397A (en) 2012-05-31
JP5152387B2 true JP5152387B2 (en) 2013-02-27

Family

ID=45938442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221763A Active JP5152387B2 (en) 2010-10-14 2011-10-06 Ferritic stainless steel with excellent heat resistance and workability

Country Status (10)

Country Link
US (1) US20130183190A1 (en)
EP (1) EP2628814B1 (en)
JP (1) JP5152387B2 (en)
KR (1) KR101581886B1 (en)
CN (1) CN103154294B (en)
ES (1) ES2720733T3 (en)
MX (1) MX339281B (en)
MY (1) MY165138A (en)
TW (1) TWI472629B (en)
WO (1) WO2012050226A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234214B2 (en) * 2011-10-14 2013-07-10 Jfeスチール株式会社 Ferritic stainless steel
JP5304935B2 (en) * 2011-10-14 2013-10-02 Jfeスチール株式会社 Ferritic stainless steel
ES2673216T3 (en) * 2012-05-28 2018-06-20 Jfe Steel Corporation Ferritic stainless steel
JP5904306B2 (en) * 2014-02-05 2016-04-13 Jfeスチール株式会社 Ferritic stainless steel hot-rolled annealed steel sheet, manufacturing method thereof, and ferritic stainless steel cold-rolled annealed steel sheet
MX2016014668A (en) 2014-05-14 2017-03-06 Jfe Steel Corp Ferritic stainless steel.
WO2016068139A1 (en) 2014-10-31 2016-05-06 新日鐵住金ステンレス株式会社 Ferrite-based stainless steel plate, steel pipe, and production method therefor
CN105220074A (en) * 2015-10-22 2016-01-06 山西太钢不锈钢股份有限公司 Chrome ferritic high temperature steel making method in a kind of boiler swing pipe tray use
MX2019007483A (en) * 2016-12-21 2019-08-29 Jfe Steel Corp Ferritic stainless steel.
CN107557693A (en) * 2017-07-26 2018-01-09 邢台钢铁有限责任公司 A kind of wire drawing low-intensity ferrite stainless steel wire rod and its production method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340568B1 (en) * 1997-12-26 2002-07-18 이구택 A method for setting up annealing condition of high-alloyed ferritic stainless steels
JPH11350081A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Corrosion resistant steel
JP3468156B2 (en) 1999-04-13 2003-11-17 住友金属工業株式会社 Ferritic stainless steel for automotive exhaust system parts
US20040170518A1 (en) 2001-07-05 2004-09-02 Manabu Oku Ferritic stainless steel for member of exhaust gas flow passage
JP3942876B2 (en) * 2001-11-22 2007-07-11 日新製鋼株式会社 Ferritic stainless steel for hydrocarbon fuel reformer
JP3903855B2 (en) 2002-06-14 2007-04-11 Jfeスチール株式会社 Ferritic stainless steel that is soft at room temperature and excellent in high-temperature oxidation resistance
JP3886933B2 (en) * 2003-06-04 2007-02-28 日新製鋼株式会社 Ferritic stainless steel sheet excellent in press formability and secondary workability and manufacturing method thereof
JP4468137B2 (en) 2004-10-20 2010-05-26 日新製鋼株式会社 Ferritic stainless steel material and automotive exhaust gas path member with excellent thermal fatigue characteristics
JP5208450B2 (en) * 2006-07-04 2013-06-12 新日鐵住金ステンレス株式会社 Cr-containing steel with excellent thermal fatigue properties
JP4948998B2 (en) * 2006-12-07 2012-06-06 日新製鋼株式会社 Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
JP5010301B2 (en) * 2007-02-02 2012-08-29 日新製鋼株式会社 Ferritic stainless steel for exhaust gas path member and exhaust gas path member
JP5297630B2 (en) * 2007-02-26 2013-09-25 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent heat resistance
US20080279712A1 (en) * 2007-05-11 2008-11-13 Manabu Oku Ferritic stainless steel sheet with excellent thermal fatigue properties, and automotive exhaust-gas path member
KR20090052954A (en) * 2007-11-22 2009-05-27 주식회사 포스코 Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same
JP5387057B2 (en) * 2008-03-07 2014-01-15 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and toughness
JP4386144B2 (en) * 2008-03-07 2009-12-16 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance
JP5274074B2 (en) * 2008-03-28 2013-08-28 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP5239645B2 (en) * 2008-08-29 2013-07-17 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP4624473B2 (en) * 2008-12-09 2011-02-02 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent weather resistance and method for producing the same
KR20100075180A (en) * 2008-12-24 2010-07-02 주식회사 포스코 Method for manufacturing ferritic stainless steel
SI2480693T1 (en) * 2009-09-21 2019-04-30 Aperam Stainless steel having local variations in mechanical resistance

Also Published As

Publication number Publication date
KR20130058070A (en) 2013-06-03
JP2012102397A (en) 2012-05-31
TWI472629B (en) 2015-02-11
MX339281B (en) 2016-05-19
KR101581886B1 (en) 2015-12-31
EP2628814A4 (en) 2015-01-21
ES2720733T3 (en) 2019-07-24
WO2012050226A1 (en) 2012-04-19
CN103154294B (en) 2018-11-23
EP2628814B1 (en) 2018-12-05
CN103154294A (en) 2013-06-12
US20130183190A1 (en) 2013-07-18
TW201221658A (en) 2012-06-01
MY165138A (en) 2018-02-28
EP2628814A1 (en) 2013-08-21
MX2013004053A (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP4702493B1 (en) Ferritic stainless steel with excellent heat resistance
JP4386144B2 (en) Ferritic stainless steel with excellent heat resistance
JP5152387B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP5387057B2 (en) Ferritic stainless steel with excellent heat resistance and toughness
JP5700175B2 (en) Ferritic stainless steel
JP5609571B2 (en) Ferritic stainless steel with excellent oxidation resistance
KR101554835B1 (en) Ferritic stainless steel
JP5234214B2 (en) Ferritic stainless steel
US10975459B2 (en) Ferritic stainless steel
US10400318B2 (en) Ferritic stainless steel
JP5428396B2 (en) Ferritic stainless steel with excellent heat resistance and weldability
JP5428397B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP2009235572A (en) Ferritic stainless steel having excellent heat resistance and shape-fixability
JP2014214321A (en) Ferritic stainless steel excellent in thermal fatigue characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120409

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120409

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5152387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250